
NONLINEAR DISCRETIZATIONS AND NEWTON’S METHOD:

CHARACTERIZING STATIONARY POINTS

Conor Rowan

Smead Aerospace Engineering Sciences

University of Colorado Boulder

Boulder, CO 80309

conor.rowan@colorado.edu

ABSTRACT

Second-order methods are emerging as promising alternatives to standard first-order optimizers such

as gradient descent and ADAM for training neural networks. Though the advantages of including

curvature information in computing optimization steps have been celebrated in the scientific machine

learning literature, the only second-order methods which have been studied are quasi-Newton,

meaning that the Hessian matrix of the objective is approximated. Though one would expect only to

gain from using the true Hessian in place of its approximation, we show that neural network training

fails spectacularly when relying on exact curvature information. This failure mode provides insight

both into the geometry of nonlinear discretizations as well as the distribution of stationary points in

the loss landscape, leading us to question the conventional wisdom that the loss landscape is replete

with local minima.

Keywords Non-convex optimization · Machine learning · Physics-informed machine learning · Second-order

optimization · Nonlinear discretizations

1 Introduction

First-order optimization methods have historically dominated approaches to train neural networks. These methods

find a minimum of the objective function by iteratively updating the neural network parameters in the direction which

most rapidly decreases this objective. In the case of ADAM—a widely-used first-order algorithm which includes

“momentum"—the update to the parameters is a weighted combination of the current and past steepest descent directions

[9]. While ADAM has been successful on an impressive array of problems in scientific machine learning (SciML)

[17, 8, 6, 12, 11], recent years have seen growing interest in using second-order optimization methods for physics-

informed machine learning problems. Second-order optimization strategies use a local quadratic approximation of

the objective function in order to choose the step direction and step size. An advantage of a second-order method

is that, because it contains stationary points, the local quadratic approximation of the objective naturally suggests a

step size, unlike the unbounded linear approximation of steepest descent methods [20]. Another advantage is that the

step direction avoids oscillations and slow convergence in ill-conditioned regions of the loss landscape, a well-known

shortcoming of first-order methods [15]. Because of these advantages, second-order optimization methods are already

standard in many areas of science and engineering. Accordingly, many authors have begun to investigate these strategies

for optimization problems arising from machine learning. In this work, our attention will be limited to regression

problems inspired by problems from the SciML literature. In particular, we have in mind physics-informed neural

networks (PINNs), for which the target function is defined in space and/or time and the regression problem involves

spatial and/or temporal derivatives of the neural network regressor. The basic PINNs approach was first introduced

in [23, 17], and has since been explored extensively in many interesting scientific and engineering application areas

[13, 7, 2, 4].

Before proceeding, we distinguish between exact Newton and quasi-Newton second-order optimization. An exact

Newton method will use the Hessian matrix—in other words, the matrix of second-derivatives of the objective function—

in order to build a local quadratic approximation of the objective. The Hessian matrix is either computed analytically

and supplied to the optimizer or computed with finite differencing, though the cost of this is typically prohibitive. In

contrast, a quasi-Newton method constructs a running approximation of the Hessian with observations of the loss and

its gradient obtained over the optimization history. At each optimization step, the previous estimate of the Hessian

is updated based on new observations of the loss and its gradient. A common update strategy is provided by the

method of Broyden-Fletcher-Goldfarb-Shanno (BFGS), which finds a minimum Frobenius norm update to the previous

Hessian subject to the constraint that the update is consistent with a Taylor approximation (secant condition) [1]. A

popular modification of this approach is the limited-memory BFGS (L-BFGS) algorithm, which avoids storing a dense

approximation of the inverse Hessian and is thus more efficient for high-dimensional problems.

To the best of the author’s knowledge, all second-order methods explored in the SciML literature have been

quasi-Newton. In [26], the authors use PINNs to optimize an airfoil geometry while simultaneously learning the

flow distribution using L-BFGS. Because of the ability of second-order quasi-Newton methods to converge rapidly

even in ill-conditioned loss landscapes, a novel hybrid of L-BFGS and ADAM is proposed in [18], demonstrating

improved performance for physics-informed objective functions. One study compares optimizers in the BFGS family on

challenging PINNs problems, demonstrating that self-scaled variants of BFGS and Broyden optimizers lead to marked

performance improvements [10]. Another work shows that quasi-Newton methods naturally resolve conflicts between

gradients of different terms in the loss function, which often lead to poor convergence for first-order methods [29]. The

authors in [27] report that minor modifications to the loss function and standard BFGS algorithm allow PINNs solutions

2

to outperform incumbents such as finite difference methods. Finally, in [3], a novel quasi-Newton preconditioning

strategy is developed and shown to outperform state-of-the-art methods such as L-BFGS.

Though quasi-Newton methods for training neural networks have seen a surge of interest in recent years, exact Newton

methods have remained unexplored. While analytically forming, storing, and inverting the Hessian is prohibitively

expensive for many large-scale problems of interest, we show in this work that exact Newton methods exhibit surprising

behaviors which provide insight into the geometry of neural network discretizations and the nature of stationary points

in the loss landscape. In particular, our contributions are as follows:

1. We discuss regression on manifolds, showing that stationary points can be interpreted geometrically;

2. We conceptualize neural networks as a defining a particular approximation manifold, namely one in which a

basis and coefficients are fit simultaneously;

3. We identify a stationary point of the regression objective which is specific to neural network discretizations

and represents a trivial zero solution to the regression problem;

4. We show through numerical experimentation that exact Newton methods reliably find these trivial solutions,

even for simple one-dimensional problems;

5. We discuss the ways in which quasi-Newton methods differ from exact Newton methods and how these

differences lead to better performance.

The rest of this work is organized as follows. In Section 2, we discuss nonlinear discretizations and regression problems

defined on manifolds. We show that stationary points of the regression objective need not be minima, and that the

condition for stationarity can be interpreted geometrically. In Section 3, we turn to regression with neural networks,

showing that multilayer perceptron neural networks can be viewed as simultaneously fitting and scaling basis functions.

Such structure allows for stationarity of the regression objective to be satisfied by a trivial solution, but one which

imposes particular structure on the learned basis functions. We show with numerical examples that neural networks

trained with exact Newton methods reliably converge to this trivial solution, which we observe to be a saddle point rather

than a local minimum. In Section 4, we explore two boundary value problems with PINNs, showing that trivial solutions

are also possible in the case of physics-informed training. Though the conditions under which such a solution is possible

seem as or more complex than the original regression problem, we again show that exact Newton methods favor these

trivial saddle solutions. Finally, in Section 5 we conclude with light philosophical reflections on high-dimensional loss

landscapes and a discussion of how quasi-Newton methods avoid saddle points.

2 Nonlinear discretizations

Consider a discrete regression problem in which a target vector v is to be approximated by a parameterized vector

N(θ), where θ are the parameters to be determined. The regression problem is solved with a quadratic error objective

and its stationarity condition:

3

L(θ) = ∥N(θ)− v∥2, ∂L
∂θk

= (N(θ)− v) · ∂N
∂θk

= 0. (1)

Eq. (1) shows that stationarity of the quadratic objective enforces that the the error vector e(θ) = N(θ) − v is

orthogonal to the tangent space of the approximation given by span{ ∂N
∂θ1

, ∂N
∂θ2

, . . . }. When the approximation is linear,

meaning that the parameters scale fixed basis vectors {hj}|θ|j=1, the condition for stationarity reads

∂L
∂θk

= (

|θ|∑
j=1

θjhj − v) · hk = e(θ) · hk = 0. (2)

This is known as Galerkin optimality, which states that the error vector has zero projection in the approximation space

defined by the basis. If the basis functions are linearly independent, the stiffness matrix Kjk = hj · hk is both full-rank

and positive definite. These conditions ensure that the optimization problem 1) has a unique solution and 2) that the

solution is a minimum. In other words, when the basis is fixed, the stationary point is as good of an approximation

as the basis allows. No such guarantees exist for nonlinear discretizations, which is any parameterization N(θ) other

than that of a fixed basis with variable coefficients. We view these nonlinear discretizations as defining approximation

spaces which are manifolds, or surfaces embedded in a higher-dimensional space than that of their parameterization. To

see this, consider the following regression problem:

N(θ) =

cos(θ)
sin(θ)

 , v =

2
2

 , θ ∈ [0, 2π).

Galerkin optimality requires that the error vector is orthogonal to the tangent of the approximation, which reads

∂L
∂θ

=

cos(θ)− 2

sin(θ)− 2

 ·

− sin(θ)

cos(θ)

 = 2(sin(θ)− cos(θ)) = 0.

This equation can be satisfied for θ = π/4, 5π/4. Evidently, unlike the linear discretization, the uniqueness of

the solution is no longer guaranteed. Furthermore, computing the second derivative of the loss as ∂2L/∂θ2 =

2(cos(θ) + sin(θ)), we observe that

∂2L
∂θ2

∣∣∣∣∣
π/4

= 2
√
2 > 0,

∂2L
∂θ2

∣∣∣∣∣
5π/4

= −2
√
2 < 0,

which indicates that π/4 corresponds to a minimum and to 5π/4 a maximum. Thus, not only does the nonlinear

discretization have multiple solutions, the error vector can be orthogonal to the tangent(s) of the approximation when the

objective is maximized. Finding a stationary point is no longer a trustworthy guide to good performance on regression

problems when the discretization is nonlinear. The satisfaction of the orthogonality condition at both the minimum and

4

maximum error is shown in Figure 1. We remark that the unit circle approximation space is a manifold in the sense that

it is embedded in R2 but is parameterized by a single coordinate θ. In contrast, linear discretizations always define

hyperplane approximation spaces, where the dimension of hyperplane is equivalent to the number of parameters.

x1

x 2

Minimum error

x1

x 2

Maximum error

approximation space
target
approximation
error vector
tangent

Figure 1: The error vector is orthogonal to the tangent of the approximation space both when the error is minimized and
when it is maximized.

When the discretization has only one parameter, the solution to the regression problem is necessarily either a

minimum or a maximum. With two or more parameters, it is possible to find stationary points of the loss that are saddle

points. A saddle point is a minimum with respect to some parameters and a maximum with respect to others. In order

to visualize the geometry of saddle points with nonlinear discretizations, we now define our approximation space as the

surface of an ellipsoidal torus. The torus is parameterized by

N(θ) =


(R+ r cos(θ2) cos(θ1)

(R+ r cos(θ2))e sin(θ1)

r sin(θ2)

 , θ1, θ2 ∈ [0, 2π),

where θ = [θ1, θ2] are the parameters, R is the radius of the axis of the torus, r is the thickness of the torus, and e is

the eccentricity defining the ratio of the major to the minor axis in the elliptical footprint of the torus. See Figure 2 to

visualize the geometry of the approximation space. We look for points on the ellipse to approximate the origin, i.e.

v = [0, 0, 0]T . The regression problem is

L(θ) = ∥N(θ)∥2, ∂L
∂θk

= N(θ) · ∂N
∂θk

= 0. (3)

This stationarity condition states that the position vector is orthogonal to the two tangent vectors of the surface of the

torus. To solve this nonlinear system of equations, we use Newton’s method:

5

Figure 2: The nonlinear discretization is constructed with two parameters that traverse the surface of an ellipsoidal
torus. The approximation space is visualized in 3D (left) and in cross-section (right).

θk+1 = θk −
(

∂2L
∂θ∂θ

)−1
∣∣∣∣∣
θk

(
∂L
∂θ

)∣∣∣∣∣
θk

, (4)

where we define the Hessian matrix as J := ∂2L/∂θ∂θ [20]. The Newton iterations continue until ∥∂L/∂θ∥ ≈ 0,

meaning that the nonlinear system of equations for stationarity has been approximately solved. All parameter gradients

are computed with automatic differentiation in PyTorch. The initial guess of each parameter is independent and

uniformly distributed in [0, 2π). The geometric properties of the torus are given by R = 1, r = 0.35, and e = 1.2. See

Figure 3 for the results of the Newton solution for three different initializations of the parameters. In each of the three

runs, we obtain a different point on the torus as satisfying stationarity. As before, it is clear geometrically that the error

vector is orthogonal to the tangent space of the approximation, yet only one of these solutions minimizes the error. To

understand the nature of the stationary points, we turn to the Hessian matrix J, whose eigenvalues dictate whether the

solution is a minimum, maximum, or saddle. Because the Hessians at the three solutions are diagonal, this allows us to

read off the eigenvalues directly. The three Hessian matrices are:

J1 =

3.7 0

0 0.7

 , J2 =

1.6 0

0 −0.7

 , J3 =

−1.6 0

0 −1.1

 .

As seen by the sign of the diagonal entries, Solution 1 is a minimum, Solution 2 is a saddle point, and Solution 3

is a maximum. The eigenvalues report how the distance from the origin changes as we traverse the surface of the

torus in each of the eigenvector directions, which in this case align with tangent directions. A positive eigenvalue

corresponding to the tangent direction means that the loss is locally convex in the direction of the tangent. A negative

eigenvalue indicates concavity. In the case of Solution 2, it is interesting to consider how the elliptical shape of the x3

6

cross-sections of the torus ensures that moving along the torus with the tangent in the x3 direction decreases the distance

from the origin whereas moving with the x2 tangent increases the distance. Such mixed curvature is the definitin of a

saddle point.

Figure 3: There are multiple stationary points of the objective function for the regression problem. Using the Hessian
matrices, we classify Solution 1 as a minimum, Solution 2 as a saddle point, ans Solution 3 as a maximum.

In total, there are 8 stationary points of the regression given in Eq. (2). With the geometric interpretation of

stationarity in mind, it is straightforward to see that there 8 positions on the torus where the position vector is orthogonal

to the tangent space. All stationary points lie in the x3 = 0 plane. See Figure 4 for a visualization and characterization

of each of the stationary points, as well as a depiction of the dynamics of Newton optimization in the loss landscape.

There are 2 minima, 2 maxima, and 4 saddle points. The convergence trajectories indicate that optimization based on

standard Newton’s method has no preference for minima over other stationary points. This is a well-known consequence

of Newton’s method looking for a zero of the gradient, rather than a minimum of the objective.

3 Regression with neural networks

The most widely used nonlinear discretization is that of a neural network. We now leverage the intuition from the

circular and toroidal approximation spaces to interpret a standard neural network regression problem solved using

7

x1

x 2

Stationary points
minima
maxima
saddles

0 2 4 6
θ1

0

1

2

3

4

5

6

θ 2

Newton trajectories

0.400

0.625

0.850

1.075

1.300

1.525

1.750

1.975

2.200

2.425

Figure 4: All stationary points are in the x3 = 0 plane and lie along one of the coordinate axes (left). We show 25
convergence histories of Newton’s method for random initializations of the parameters (right). Converged solutions are
indicated by blue dots. Note that by periodicity, the saddle point at each of the four corners is actually the same solution.
This is also the case for the minimum found along the left and right edge of the domain and the saddle at the center of
the top and bottom edges.

Newton methods. We take the architecture to be a multilayer perceptron (MLP) neural network. In an MLP, the

input-output relation for the i-th hidden layer is

yi = σ
(
Wiyi−1 +Bi

)
,

where σ(·) is a nonlinear “activation function” applied element-wise. As shown, the output yi then becomes the next

layer’s input. The parameters of the neural network are the collection of the weight matrices Wi and bias vectors Bi

for each layer. Thus, we can write the neural network parameters as θ = [W1,B1,W2,B2, . . .]. Typically, a linear

mapping with no bias is used to go from the last hidden layer to the output.

Returning to the regression problem, we call the scalar target function v(x) and the neural network discretization

N (x;θ) where x ∈ [0, 1] and θ is the collection of trainable parameters. The objective function is

L(θ) = 1

2

∫ 1

0

(
N (x;θ)− v(x)

)2

dx. (5)

Using Newton’s method, we find a zero of the following nonlinear system of equations corresponding to stationarity of

the objective:

8

∂L
∂θ

=

∫ 1

0

(
N (x;θ)− v(x)

)∂N
∂θ

dx (6)

The connection to the finite dimensional stationary condition is made more clear when Eq. (6) is numerically integrated.

Approximating the integral on a uniform grid, this reads

∂L
∂θj

= ∆x

N∑
i=1

(
N (xi;θ)− v(xi)

)∂N (xi,θ)

∂θj
= ∆xe(θ) · ∂N

∂θj
= 0, j = 1, 2, . . .

where {xi}Ni=1 are the integration points. Even in the continuous setting, stationarity of a quadratic loss dictates that the

error is orthogonal to the tangent space of the approximation. With this in mind, we show that structure of MLP neural

networks gives certain stationary points interpretable structure. First, we write the neural network discretization in a

more revealing form as

N (x,θ) =

|θO|∑
k=1

θO
khk(x;θ

I), (7)

where the total parameter set θ = [θI,θO] is decomposed into an “inner" and “outer" part. The inner parameters

define the last layer of the network, which we interpret as basis functions hk(x;θ
I), and the outer parameters act as

coefficients scaling these basis functions. Note that this assumes there is no bias in the output layer of the network. The

most intuitive solution to Eq. (6) is when the error vector is zero, given that the zero vector is to any tangent vector.

But, as the examples of the circle and torus suggest, nonlinear discretizations harbor other stationary points of the

regression objective. To see an example of this, make the ansatz that N (x;θ) = 0 is a solution to Eq. (6). In this case,

the stationarity condition becomes

∂L
∂θ

=

∫ 1

0

v(x)
∂N
∂θ

dx =

∫ 1

0
v(x) ∂N

∂θO dx∫ 1

0
v(x)∂N

∂θI dx

 = 0, (8)

where we have decomposed the parameter gradient defining the tangent vectors into inner and outer components.

Referring to Eq. (7), it is clear that the outer parameter tangents are simply the basis functions at the current setting of

the inner parameters:

∂N
∂θO

j

= hj(x;θ
I).

Thus, with the trivial regression solution N = 0, the orthogonality of the error to the outer parameter gradients can be

satisfied by fitting basis functions that are orthogonal to the target function v(x). But, Eq. (8) shows that in order to

satisfy stationarity generally, we also require orthogonality with respect to the inner parameter gradients. The inner

parameter gradients can be written as

9

∂N
∂θI

ℓ

=

|θO|∑
k=1

θO
k

∂hk(x)

∂θI
ℓ

.

Given that all functions v(x) are trivially orthogonal to the zero function, we simply require that θO = 0 in order to

satisfy orthogonality with respect to the inner parameter tangents. Thus, stationarity of the loss can be obtained by

fitting zero coefficients on a basis that is orthogonal to the target function. At this point, we do not claim that neural

networks trained with Newton’s method actually find this solution. We only show that it is possible in principle to

obtain trivial solutions to regression problems when using MLP neural networks trained with Newton’s method. Note

that such pathological behavior is made possible by the structure of the output layer of MLP neural networks, which

gives a linear combination of a customizable basis. There is no analogue of setting the coefficients θO = 0 in order to

zero a subset of the tangents in the torus discretization. The tangent vectors of the torus are always nonzero, ensuring

that orthogonality of the error cannot be trivially satisfied.

We now explore what solutions exact Newton optimization finds to a neural network-based regression problem. To

the best of the author’s knowledge, all second-order optimization studies in the literature have been with quasi-Newton

methods. To this end, we define the orthogonality of the basis with the target function over the course of training as

Oj(t) =

∫ 1

0

v̂(x)ĥj(x;θ
I(t))dx,

where t is a pseudo-time variable indicating the optimization epochs, v̂(x) is the forcing function normalized to have

a squared integral of unity, and ĥj is the j-th basis function normalized in the same way. The objective is that of the

regression problem given in Eq. (5), and the inner and outer gradient magnitudes are computed as ∥∂L/∂θI∥2/|θI| and

∥∂L/∂θO∥2/|θO| respectively. The standard Newton optimization is modified per

θk+1 = θk − η

(
∂2L
∂θ∂θ

+ ϵI

)−1
∣∣∣∣∣
θk

(
∂L
∂θ

)∣∣∣∣∣
θk

, (9)

where 0 < η < 1 relaxes the Newton step and ϵ > 0 introduces convexity into the quadratic approximation of the loss

to avoid excessively large steps when the loss has little to no curvature. This is known as the Levenberg-Marquardt

algorithm [14]. Convergence of the Newton updating will halt once ∥∂L/∂θ∥ < T where T is a problem-specific

convergence criterion.

In the regression problem, we use a standard MLP architecture with two hidden layers, hyperbolic tangent activation

functions, and 10 neurons per hidden layer with an output layer containing no bias. This corresponds to |θ| = 140

trainable parameters. Going forward, all neural network parameters will be initialized with the built-in Xavier

initialization in PyTorch. We use an integration grid of 100 equally spaced points. The target function is v(x) =

2 sin(4πx). In this example, we take η = ϵ = 5× 10−2 and T = 1× 10−5. See Figure 5 for the results of the Newton

10

optimization. Exactly as discussed above, we obtain a trivial solution by finding a basis which is orthogonal to the

target function and setting the coefficients to zero. Because the constant function is orthogonal to sin(4πx), all but one

of the basis functions is set is constant. The one non-constant basis resembles sin(πx) + c where c is a constant shift,

which is also orthogonal to the target. Figure 6 shows the distribution of eigenvalues of the Hessian at the converged

solution. Most eigenvalues are approximately zero, and the remainder are an even split between positive and negative,

indicating that the solution is saddle point in this high-dimensional loss landscape.

We re-run the problem with different initializations to investigate the robustness of this trivial solution. In one

numerical experiment, we obtained the trivial solution 9 out of 10 runs, though the non-constant basis functions is not

always replicated. Note that we verify that the network is capable of accurately representing the target function by

solving the regression problem with ADAM optimization, for which convergence to saddle points is not an issue.

0.0 0.2 0.4 0.6 0.8 1.0
x

−2

0

2
Converged sol tion

newton
exact

0.0 0.2 0.4 0.6 0.8 1.0
x

−1

0

1

Converged basis

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.25

0.00

0.25

Tangents

0 50 100 150 200
epoch

−0.2

0.0

0.2

Orthogonality

0 50 100 150 200
epoch

0.00

0.02

0.04

0.06
Gradient magni te

inner
o ter

0 50 100 150 200
epoch

0.99

1.00

1.01

Objective
newton sol tion
trivial sol tion

Figure 5: Exact Newton optimization obtains the trivial solution we identified. Note that the magnitude of each basis
function is normalized to unity for visualization and in computing the evolution of orthogonality.

It is both interesting and surprising that the neural network reliably converges to a trivial solution by learning an

orthogonal basis rather than minimizing the error with the target function. Figure 5 shows that among all choices

of functions orthogonal to sin(4πx), the network favors the two lowest frequency options. We posit that this is a

case of the well-known spectral bias of neural networks, which states that standard neural network architectures

converge most rapidly on low frequency functions [16]. In order to push our findings a step further, we manually inject

11

−0.2 0.0 0.2 0.4 0.6
λ

0

20

40

60

80

100

120

Co
un

t

Distribution of eigenvalues

Figure 6: Most eigenvalues of the Hessian matrix at the converged solution cluster around zero, indicating that the loss
landscape has little to no curvature in the corresponding eigenvector directions. The remaining eigenvalues are an even
mix of positive and negative, indicating a saddle point solution. We note that a similar clustering of eigenvalues around
zero is observed over the course of training as well, which explains why the Levenberg-Marquardt modification in Eq.
(9) is required to stabilize training.

high-frequency behavior into the network by using sinusoidal activation functions, which is known as the sinusoidal

representation network (SIREN) [24]. We use the same two hidden layer network but replace hyperbolic tangent

activation functions with sin(ω0(·)) where ω0 is a hyperparameter controlling the frequency content of the neural

network approximation. We use the same target function and the same value of η = 5× 10−2 but increase the convexity

parameter to ϵ = 1 × 10−1 and the convergence criterion to T = 1 × 10−3. The frequency hyperparameter is set

at ω0 = 4. These adjustments account for the more complex loss landscape arising from the oscillatory activation

functions. See Figure 7 for the results of the Newton optimization. Once again, we obtain a trivial solution to the

regression problem. However, the basis functions are now 1) high-frequency and 2) non-redundant. As before, the

eigenvalues of the Hessian indicate that this solution is a saddle point. Learning a high-frequency orthogonal basis

as opposed to fitting the target function represents a spectacular failure of exact Newton optimization. Fitting an

orthogonal basis of the sort shown in Figure 7 seems to be a more complex problem than driving the error to zero by

matching the target function. In fact, [19] shows that orthogonality of a basis is a prohibitively complex optimization

objective for neural networks, though this was without high-frequency behavior injected into the network. In spite of

the complexity of explicitly learning an orthogonal basis, one numerical experiment indicated that the trivial solution

was obtained 4 out of 5 runs of the Newton optimization.

Another strategy for introducing high-frequency behavior into MLP neural networks is that of Fourier feature

embedding [30]. Whereas the standard MLP network takes in the spatial coordinate x, the Fourier feature network’s

input layer is

12

0.0 0.2 0.4 0.6 0.8 1.0
x

−2

0

2
Converged sol tion

newton
exact

0.0 0.2 0.4 0.6 0.8 1.0
x

−1

0

1

Converged basis

0.0 0.2 0.4 0.6 0.8 1.0
x

−1

0

1
Tangents

0 50 100 150 200 250 300
epoch

−0.25

0.00

0.25

0.50
Orthogonality

0 50 100 150 200 250 300
epoch

0.0

0.2

0.4

0.6
Gradient magni te

inner
o ter

0 50 100 150 200 250 300
epoch

1.0

1.1

1.2
Objective

newton sol tion
trivial sol tion

Figure 7: The SIREN network introduces manually introduces high-frequency behavior into the neural network, which
leads to higher frequency basis functions but does not avoid the trivial saddle point solution.

γ(x) = [sin(2πBx), cos(2πBx)]T ,

where B ∈ Rf is a vector whose components are normally distributed with variance σ2 and 2f is the number of Fourier

features. The variance of the components of the random embedding matrix B determine the frequency content of

the discretization. Taking σ2 = 1.5, and f = 10, we use a two hidden layer MLP with hyperbolic tangent activation

functions which takes in the Fourier features at the input layer. The width of the hidden layers is again 10, and we

set η = 5 × 10−2, ϵ = 1 × 10−1 and T = 1 × 10−3. See Figure 8 for the results of the Newton optimization.

In spite of the high-frequency basis, we again converge to the trivial solution. Like the SIREN network, the basis

functions are high-frequency and non-redundant. From our experience, the trivial solution is obtained with the Fourier

features approximately half of all runs, indicating again that the Newton optimization routinely fails to solve the desired

regression problem. The majority of the remaining runs fail to converge at all.

4 Physics-informed machine learning

We explore whether the same trivial solution is obtained for physics-informed training, in addition to the regression

problems of the previous section. As a first test, we solve the second-order elliptic boundary value problem given by

13

0.0 0.2 0.4 0.6 0.8 1.0
x

−2

0

2
Converged solu ion

new on
exac

0.0 0.2 0.4 0.6 0.8 1.0
x

−2

0

2
Converged basis

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.5

0.0

0.5
Tangen s

0 50 100 150 200 250
epoch

−0.4

−0.2

0.0

0.2

Or hogonali y

0 50 100 150 200 250
epoch

0.00

0.05

0.10

0.15
Gradien magniu e

inner
ou er

0 50 100 150 200 250
epoch

0.925

0.950

0.975

1.000
Objec ive

new on solu ion
 rivial solu ion

Figure 8: The MLP network with 2f = 20 embedded Fourier features also finds a trivial solution to the regression
problem with Newton optimization, in spite of the high-frequency basis.

∂2u

∂x2
+ v(x) = 0, u(0) = u(1) = 0.

Per the standard PINNs approach [17], we take the regression objective and modify it to minimize the strong form loss

of the governing differential equation:

L(θ) = 1

2

∫ 1

0

(
∂2N (x;θ)

∂x2
+ v(x)

)2

dx, N (0;θ) = N (1;θ) = 0. (10)

We choose to build the boundary conditions into the neural network discretization of the solution with the distance

function method. A standard distance function discretization for homogeneous Dirichlet boundaries is given by

N (x;θ) = sin(πx)Ñ (x;θ), where Ñ is a neural network that need not satisfy the Dirichlet boundary conditions

[28, 25, 21]. We modify this distance function approach in order to preserve the interpretation of the inner and outer

parameters of the network as building and scaling basis functions. As such, we use the distance function to enforce the

homogeneous Dirichlet boundaries at the level of the basis functions themselves. The neural network discretization

then reads

14

N (x;θ) =

|θO|∑
k=1

θO
k sin(πx)h̃k(x;θ

I),

where h̃k represents the k-th neuron in the final layer of a standard MLP network. The basis functions to are

then hk(x;θ
I) = sin(πx)h̃k(x;θ

I). This ensures that the solution satisfies the homogeneous Dirichlet boundaries

automatically without complicating our breakdown of the neural network into inner and outer parameters. Taking a

gradient of Eq. (10), stationarity of the physics objective is given by

∂L
∂θk

=

∫ 1

0

(
∂2N (x;θ)

∂x2
+ v(x)

)
∂3N

∂θk∂x2
dx = 0.

In order to obtain a trivial solution in the case of PINNs, it is necessary that N = 0 and that the forcing function v(x) is

orthogonal to second spatial derivatives of each basis function. The relevant orthogonality condition tracked during

Newton iteration becomes

Oj(t) =

∫ 1

0

v̂(x)
∂2ĥj(x;θ

I)

∂x2
dx,

where hats again indicate normalized quantities. We take v(x) = 100 sin(4πx) and discretize the solution with a two

hidden layer SIREN network of width 10 and ω0 = 4. Owing to the two order of magnitude increase in the scale of the

objective, we take the convergence criterion to be T = 1 and perform relaxed Newton optimization with η = 5× 10−2

and ϵ = 1× 10−1. Spatial gradients as well as parameter gradients are now computed with automatic differentiation

using PyTorch. See Figure 9 for the results. Once again, Newton’s method converges to a trivial saddle solution. The

interpretation of the trivial solution in the case of the PINNs solution is a simple analogue of the standard regression

problem: the network learns basis functions whose image under the differential operator are orthogonal to the target

function. This trivially enforces the stationarity of the physics loss. Like the regression examples, convergence to this

solution is robust, occurring 5 out of 5 runs in one numerical experiment.

Thus far, all tests have been in one spatial dimension. As a final exploration of saddle point solutions with neural

network discretizations, we solve a diffusion-reaction boundary value problem in two dimensions with homogeneous

Dirichlet boundary conditions. The governing equation is given by

∇2u(x) + u(x) + v(x) = 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

where the domain is Ω = [0, 1]2. Using the same modification of the distance function method, the boundary conditions

are built into the basis functions:

15

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.6
−0.4
−0.2
0.0
0.2
0.4
0.6

Converged sol tion
newton
exact

0.0 0.2 0.4 0.6 0.8 1.0
x

−2

−1

0

1

2

Second derivative of basis

0 100 200 300
epoch

−0.75

−0.50

−0.25

0.00

0.25

0.50

Orthogonality

0 100 200 300
epoch

2000

2100

2200

2300

2400

2500
Objective

newton sol tion
trivial sol tion

Figure 9: Training the network with a physics-based objective does not prevent convergence to trivial solutions.
Understanding the nature of these saddle point solutions in the physics-informed regime only requires changing the
orthogonality condition to involve the image of the basis under the differential operator.

N (x;θ) =

|θO|∑
k=1

θO
k sin(πx1) sin(πx2)h̃k(x;θ

I).

With the boundary conditions satisfied automatically by the discretization, the strong form loss is

L(θ) = 1

2

∫
Ω

(
∇2N (x;θ) +N (x;θ) + v(x)

)2
dΩ.

Analogous to the one dimensional PINNs problems, the condition for stationarity of the objective states that the residual

is orthogonal to the differential operator applied to the discretization. In the case of the trivial solution, this reads

∂L
∂θk

=

∫
Ω

v(x)

(
∂3N

∂xi∂xi∂θk
+

∂N
∂θk

)
dΩ = 0. (11)

Eq. (11) is satisfied when the target function is orthogonal to the image of the basis under the differential operator. The

orthogonality condition we track over the course of optimization is

16

Oj(t) =

∫ 1

0

v̂(x)
(
∇2ĥj(x;θ

I) + ĥj(x;θ
I)
)
dΩ.

We demonstrate that Newton methods again find this trivial solution. The forcing function is given by v(x) =

100 sin(4πx1) sin(4πx2), and we use a SIREN network with with two hidden layers and a width of 10 hidden units

per layer. The frequency hyperparameter is set at ω0 = 5. The step size and convexity parameters are ϵ = 5× 10−2

and ϵ = 1× 10−1. The convergence threshold is set at T = 1. We also compare against ADAM optimization with a

learning rate of 1× 10−2 with the same architecture to verify that the network is sufficiently expressive to accurately

represent the true solution. We note that the exact solution to the problem can be written down by inspection as

u(x) =
100

32π2
sin(4πx1) sin(4πx2).

See Figure 10 for the comparison of the Newton optimization to ADAM. As seen from the eigenvalues of the Hessian,

we obtain a trivial saddle solution. This is in contrast to the ADAM optimizer, which drives the strong form loss down

to near zero. Figure 11 gives a visual comparison of the ADAM and Newton solutions to the exact solution, as well as

showing 6 of the 10 basis functions learned from Newton optimization. As before, it is remarkable that it is easier for

the Newton to learn a basis which satisfies a complex orthogonality condition involving spatial gradients of the basis in

place of simply solving the differential equation.

0 200 400
epoch

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3
Orthogonality

0 200 400
epoch

0

250

500

750

1000

1250

1500

1750

2000
Gradient magnitude

0 200 400
epoch

0

200

400

600

800

1000

1200

1400
Objective function

Newton
ADAM
trivial solution

Figure 10: The converged solution is such that the learned basis satisfies the differential orthogonality condition. In
contrast, ADAM has no trouble finding a solution to the governing equation, indicating that the network is sufficiently
expressive.

It is surprising the lengths the neural network goes to in finding this trivial saddle solution. We remark that we never

observe the neural network finding a maximum error solution, in spite of this remaining a theoretical possibility with

exact Newton methods. Perhaps it is the case the saddle points are more prevalent in the loss landscape than minima

or maxima? While the relative frequency of the three different kinds of stationary points is difficult to asses in high

17

Exact solution ADAM solution Newton solution

Basis 1 Basis 2 Basis 3

Basis 4 Basis 5 Basis 6

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

-0.3
-0.2
-0.2
-0.08
0
0.08
0.1
0.2
0.3

Figure 11: ADAM obtains the exact solution to the PINNs problem whereas Newton finds a trivial solution. The basis
functions from the SIREN network are not themselves trivial, in spite of the solution they ultimately construct.

dimensions, a very simple-minded argument suggests that saddle points are more common than other extrema. We

know that the eigenvalues of the Hessian matrix characterize the stationary point, and we know that the Hessian matrix

is symmetric. Let us assume for the sake of argument that the independent components of the Hessian are distributed as

independent standard random normal variables. We assume without loss of generality that the variance of the random

normal variable is unity, as a constant scale factor will not affect the sign of the eigenvalues of a matrix. The number of

parameters in the one-dimensional discretizations was |θ| = 140, so we take the Hessian matrix to be

J =
1

2
(M+MT), M ∈ R140×140, Mij

i.i.d.∼ N(0, 1). (12)

We randomly generate 105 such Hessian matrices and compute the eigenvalues. Out of these trials, not one random

Hessian matrix has purely negative or purely positive eigenvalues. Given that the squared error regression objective is

strictly positive, there is guaranteed to be a minimum somewhere, meaning there is some Hessian matrix with entirely

18

non-negative eigenvalues. The fact of the existence of this Hessian matrix indicates that the structure of these matrices

is not purely random. However, it is not clear what other structure can be imposed on Hessian matrices apart from

the one guaranteed minimum. As such, the independent and random components is a rough model. Certainly, this

model suggests that saddle points drastically outnumber minima and maxima in a high-dimensional loss landscape.

This sheds some light on the reliability of the convergence to saddle solutions. The predominance of saddle points in

high dimensions is discussed in [5], where more sophisticated arguments in favor of this conclusion are provided.

5 Conclusion: avoiding saddle points

The examples given above beg the question: if Newton methods so reliably converge to trivial saddle point solutions,

how is it that they are used in practice to train neural networks? First, we remark that true Newton methods involving

the exact Hessian are a rarity in machine learning. Though the avoidance of forming and inverting the exact Hessian

is usually attributed to computational cost, our results suggest that even if the true inverse Hessian could be obtained

for free, it would not be useful. Remember that Newton methods solve for a zero of the gradient of the loss, rather

explicitly minimizing the loss. Thus, given the prevalence of saddle points in loss landscapes involving neural networks,

the true Hessian points the way to nearby stationary points, rather than in descent directions. While this is well-known,

we believe the following point is under-appreciated in the machine learning literature: second-order quasi-Newton

optimizers succeed in practice not in spite of their failures to approximate the true Hessian, but because of them. BFGS

and L-BFGS approximations of the Hessian enforce the so-called “curvature condition" in order to maintain a positive

definite approximation of the Hessian, even when steps in the loss landscape suggest otherwise [1]. The saddle-free

Newton method modifies the true Hessian matrix in order to repel from saddle points and maxima [5]. See [22] for

a review of variants of saddle free Newton methods. Figure 12 depicts a return to the torus regression problem with

BFGS and saddle-free Newton methods. Now, all initializations converge to one of the two minima, in spite of the

prevalence of saddles and maxima in the loss surface.

Of course, by explicitly minimizing the objective function, first-order optimization methods such as gradient descent

and ADAM never ascend in the loss landscape to saddle solutions. They are, however, susceptible to capture by local

minima and descending to saddle solutions, though such saddles are unstable fixed points of the gradient flow dynamics.

We note that the standard intuition backing modifications of gradient descent such as ADAM is that the introduction

of momentum allows escape from saddles and minima. If this is the case, it is not clear why one would expect a

quasi-Newton optimizer, even one that avoids ascent directions, to perform better than ADAM. Under this interpretation,

such a second-order optimizer—while equipped with curvature information in order to choose optimal step directions

and sizes—would find the first local minimum and converge. Yet, a number of works cite quasi-Newton methods

as not only being competitive with ADAM, but offering improvements in accuracy [18, 10]. If entrapment in local

minima is a primary failure mode of an optimizer without momentum, it is not clear how to interpret the success of

19

quasi-Newton methods. We believe there remains much intuition to acquire about the nature of the loss landscape with

neural networks and the dynamics of different optimizers.

0 1 2 3 4 5 6
θ1

0

1

2

3

4

5

6
θ 2

Quasi-Newton trajectories
BFGS
Saddle free

0.400

0.625

0.850

1.075

1.300

1.525

1.750

1.975

2.200

2.425

Figure 12: Comparing 15 optimization trajectories for the torus regression problem using the PyTorch BFGS quasi-
Newton optimization and saddle free Newton, which modifies the exact Hessian to avoid saddle points and maxima. By
neglecting negative curvature, both these methods converge to one of the two minima every time.

Our goals in this work have been to 1) to provide geometric insight into the non-convex loss landscape supplied

by nonlinear discretizations, 2) characterize trivial solutions specifically for MLP neural networks, and 3) show that

exact Newton methods reliably find these solutions. The robust failures of Newton optimization in no way calls into

question the efficacy of second-order quasi-Newton optimization methods demonstrated in works such as [27, 3, 26].

However, our results do provide deeper insight into the nature of this efficacy. The second-order optimizer for machine

learning does not improve the speed and accuracy of the solution by incorporating curvature of the loss. It does so by

incorporating only that curvature information which pertains to minimizing the loss. This is the curvature which is

relevant to finding descent directions and taking adaptively calibrated steps in these directions. If negative curvature

information is incorporated into the Hessian, the neural network is prone to converge to a saddle solution, which our

examples suggest are ubiquitous. BFGS approximations of the Hessian disregard negative curvature, whereas saddle

free Newton methods explicitly step opposite the directions of negative curvature. Though the numerical examples

20

contained in this work are simple, we believe they are sufficient to provide worthwhile insight into the nature of loss

landscapes defined by neural networks, while simultaneously surfacing fine points about the behavior of second-order

optimization methods.

References

[1] Quasi-Newton Methods. In Jorge Nocedal and Stephen J. Wright, editors, Numerical Optimization, pages 192–221.

Springer, New York, NY, 1999.

[2] Diab W. Abueidda, Seid Koric, Rashid Abu Al-Rub, Corey M. Parrott, Kai A. James, and Nahil A. Sobh. A

deep learning energy method for hyperelasticity and viscoelasticity. European Journal of Mechanics - A/Solids,

95:104639, September 2022. arXiv:2201.08690 [cs].

[3] Shahbaz Ahmad and Muhammad Israr. A preconditioned quasi-newton optimizer for efficient training of PINNs.

Machine Learning for Computational Science and Engineering, 1(2):34, September 2025.

[4] Shengze Cai, Zhicheng Wang, Sifan Wang, Paris Perdikaris, and George Em Karniadakis. Physics-Informed

Neural Networks for Heat Transfer Problems. Journal of Heat Transfer, 143(060801), April 2021.

[5] Yann Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua Bengio.

Identifying and attacking the saddle point problem in high-dimensional non-convex optimization, June 2014.

arXiv:1406.2572 [cs].

[6] Weinan E and Bing Yu. The Deep Ritz method: A deep learning-based numerical algorithm for solving variational

problems, September 2017. arXiv:1710.00211 [cs].

[7] Xiaowei Jin, Shengze Cai, Hui Li, and George Em Karniadakis. NSFnets (Navier-Stokes Flow nets): Physics-

informed neural networks for the incompressible Navier-Stokes equations. Journal of Computational Physics,

426:109951, February 2021.

[8] Reza Khodayi-Mehr and Michael M. Zavlanos. VarNet: Variational Neural Networks for the Solution of Partial

Differential Equations, December 2019. arXiv:1912.07443 [cs].

[9] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January 2017. arXiv:1412.6980

[cs].

[10] Elham Kiyani, Khemraj Shukla, Jorge F. Urbán, Jérôme Darbon, and George Em Karniadakis. Optimizing the Opti-

mizer for Physics-Informed Neural Networks and Kolmogorov-Arnold Networks, August 2025. arXiv:2501.16371

[cs].

[11] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart,

and Anima Anandkumar. Fourier Neural Operator for Parametric Partial Differential Equations, May 2021.

arXiv:2010.08895 [cs].

21

[12] Lu Lu, Pengzhan Jin, and George Em Karniadakis. DeepONet: Learning nonlinear operators for identifying

differential equations based on the universal approximation theorem of operators. Nature Machine Intelligence,

3(3):218–229, March 2021. arXiv:1910.03193 [cs].

[13] M. Manav, R. Molinaro, S. Mishra, and L. De Lorenzis. Phase-field modeling of fracture with physics-informed

deep learning. Computer Methods in Applied Mechanics and Engineering, 429:117104, September 2024.

[14] Donald W. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the

Society for Industrial and Applied Mathematics, 11(2):431–441, June 1963. Publisher: Society for Industrial and

Applied Mathematics.

[15] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2nd edition, 2006.

[16] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred A. Hamprecht, Yoshua Bengio,

and Aaron Courville. On the Spectral Bias of Neural Networks, May 2019. arXiv:1806.08734 [stat].

[17] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning framework for

solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational

Physics, 378:686–707, February 2019.

[18] Pratik Rathore, Weimu Lei, Zachary Frangella, Lu Lu, and Madeleine Udell. Challenges in Training PINNs: A

Loss Landscape Perspective, June 2024. arXiv:2402.01868 [cs].

[19] Conor Rowan, John Evans, Kurt Maute, and Alireza Doostan. Solving engineering eigenvalue problems with

neural networks using the Rayleigh quotient, June 2025. arXiv:2506.04375 [math].

[20] Andrzej Ruszczynski. Nonlinear Optimization. Princeton University Press, 2006.

[21] Hailong Sheng and Chao Yang. PFNN: A penalty-free neural network method for solving a class of second-order

boundary-value problems on complex geometries. Journal of Computational Physics, 428:110085, March 2021.

[22] Cooper Simpson. Regularized Saddle-Free Newton: Saddle Avoidance and Ecient Implementation. PhD thesis,

University of Colorado Boulder, 2022.

[23] Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for solving partial differential

equations. Journal of Computational Physics, 375:1339–1364, December 2018. arXiv:1708.07469 [q-fin].

[24] Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wetzstein. Implicit

Neural Representations with Periodic Activation Functions, June 2020. arXiv:2006.09661 [cs].

[25] N. Sukumar and Ankit Srivastava. Exact imposition of boundary conditions with distance functions in physics-

informed deep neural networks. Computer Methods in Applied Mechanics and Engineering, 389:114333, February

2022.

[26] Yubiao Sun, Ushnish Sengupta, and Matthew Juniper. Physics-informed deep learning for simultaneous surrogate

modeling and PDE-constrained optimization of an airfoil geometry. Computer Methods in Applied Mechanics and

Engineering, 411:116042, June 2023.

22

[27] Jorge F. Urbán, Petros Stefanou, and José A. Pons. Unveiling the optimization process of physics informed

neural networks: How accurate and competitive can PINNs be? Journal of Computational Physics, 523:113656,

February 2025.

[28] Jiaji Wang, Y.L. Mo, Bassam Izzuddin, and Chul-Woo Kim. Exact Dirichlet boundary Physics-informed Neural

Network EPINN for solid mechanics. Computer Methods in Applied Mechanics and Engineering, 414:116184,

September 2023.

[29] Sifan Wang, Ananyae Kumar Bhartari, Bowen Li, and Paris Perdikaris. Gradient Alignment in Physics-informed

Neural Networks: A Second-Order Optimization Perspective, September 2025. arXiv:2502.00604 [cs].

[30] Sifan Wang, Hanwen Wang, and Paris Perdikaris. On the eigenvector bias of Fourier feature networks: From

regression to solving multi-scale PDEs with physics-informed neural networks. Computer Methods in Applied

Mechanics and Engineering, 384:113938, October 2021. arXiv:2012.10047 [cs].

23

	Introduction
	Nonlinear discretizations
	Regression with neural networks
	Physics-informed machine learning
	Conclusion: avoiding saddle points

