
Optimization Problems

Conor Rowan

Spring 2024

1 Inverse Problems

1.1 Static, Finding Boundary Condition

Figure 1: Set-up for heat conduction inverse problem. Three of the four bound-
aries are zero, and the prescribed temperature distribution is chosen to optimize
some objective.

Let’s work with heat conduction on a square domain. Three of the four
boundaries will have zero temperature, and the fourth will have a spatially vary-
ing prescribed temperature. See Figure 1 for the setup. The goal of this problem
is to find the temperature boundary condition which optimizes some objective
which depends on the temperature field inside the domain. This is called an
inverse problem because we are finding the boundary condition (forcing) from

1



the temperature field, as opposed to the temperature from the boundary con-
dition. One common example of this is using measurements of the temperature
inside a domain to determine an unknown boundary condition. As an example,
this problem might arise if it is possible to accurately measure the temperature
of a flow inside a pipe but not the temperature along the outside of the pipe.
There are situations in which it is useful to infer the boundary condition from
the solution, as one may be easier to measure than the other. A more academic
problem is to simply choose some temperature u(x1, x2) and see how closely it
can be matched with an optimal choice of boundary condition. For now, we will
leave the objective unspecified, noting only that it depends on the temperature
inside the domain. The inverse problem can be stated as

argmin
θ

z
(
u(x1, x2; θ)

)
s.t.

∂u

∂xi∂xi
= 0, u|Γ1 = g(x1; θ), u|Γi̸=1

= 0

This says that we want minimize the objective z, which depends on the tem-
perature inside the domain. Because the temperature must satisfy the governing
equation, it is a function of the parameters/optimization variables θ which con-
struct the one non-zero boundary condition. The boundary condition g(x1)
is discretized with the parameters θ. The first step in solving this problem is
to solve the governing equations for a given g numerically. There are no heat
sources in the domain, and all boundary conditions are Dirichlet. The weak
form of the governing equation is then∫

∇u · ∇wdΩ = 0

where the test function w is zero over all the boundaries. We discretize the test
function with

w =
∑
j

wjfj(x1, x2)

which after plugging into the governing equation and noting that the coefficients
wj are arbitrary, we obtain the system∫

∇u · ∇fjdΩ = 0

We discretize the temperature and build in the boundary condition g. This
ensures that it is automatically satisfied. Note that adding in a function which
ensures that the nonzero boundary condition is satisfied must respect the other
three boundary conditions, i.e. it must be zero along these three sides. There
are a number of ways of accomplishing this, one of which is

u(x1, x2) = g(x1, θ) sin(πx1)(1− x2) +
∑
i

uifi = g̃(x1, x2; θ) +
∑
i

uifi

2



Note that we have assumed the domain is square with side length 1. The
sine function enforces that the temperature is zero along the two x1 edges, and
(1 − x2) ensures that the boundary condition is zero at the x2 edge. Note
that the shape functions fi are all zero along the boundaries. The temperature
discretization can be plugged into the weak form to obtain

ui

∫
∇fi · ∇fjdΩ = −

∫
∇g̃ · ∇fjdΩ

Evaluating these integrals allows us to write this in matrix-vector form as

Kijuj = Fi(θ)

With the discretized governing equation in hand, we can rephrase the opti-
mization problem as

argmin
θ

z
(
u(x1, x2; θ)

)
s.t. Kijuj = Fi(θ)

Now we need to compute the gradient of the objective with respect to the
parameters to feed into an optimization algorithm. This can be accomplished
by differentiating the objective:

dz

dθm
=

∂z

∂u

∂(
∑

i uifi)

∂uk

∂uk

∂θm
=

∂z

∂u
fk

∂uk

∂θm

The derivative of the objective with respect to the temperature is something
which can be computed analytically. Note that we have an additional step
in the chain rule because of the global basis, which arises from the fact that
the displacement degrees of freedom do not correspond to actual values of the
displacement. The derivative of the degrees of freedom with respect to the
parameters is called the sensitivity, and is computed using the discrete governing
equation

∂

∂θ

(
Ku = F

)
=⇒ ∂u

∂θ
= K−1 ∂F

∂θ

Thus the sensitivity can be written as

dz

dθm
=

∂z

∂u
fkK

−1
kj

∂Fj

∂θm

This expression is slightly misleading because it has a term fk which is a
function of the spatial coordinates. This does not make sense entering into the
gradient of the objective. In reality, the objective takes a form like

z =

∫
q
(
u(x1, x2; θ

)
dΩ

so that the gradient is the same as stated above, but inside the integral:

3



dz

dθm
=

(∫
∂q

∂u
fkdΩ

)
K−1

kj

∂Fj

∂θm

The derivative ∂Fj/∂θm can be computed analytically, with finite differenc-
ing, or using automatic differentiation.

1.2 Static, Finding Material

In the previous problem, some objective was defined on the temperature field
and a temperature boundary condition was found to optimize this objective. We
can re-use much of this analysis to solve a new inverse problem, which amounts
to high-tech parameter estimation. Say that we have a specified temperature
boundary condition g(x) with the same problem setup as before, and a known
temperature field u(x1, x2). The goal is to estimate the conductivity which pro-
duces this temperature field. Assuming isotropic heat conduction, the governing
equation would be

ui

∫
a(x1, x2; θ)∇fi · ∇fjdΩ = −

∫
∇g̃ · ∇fjdΩ

Thus, the stiffness matrix depends on the unknown parameters. The opti-
mization problem can be stated as

argmin
θ

1

2

∫ (
u(x1, x2; θ)− T (x1, x2)

)2

dΩ s.t. Kij(θ)uj = Fi

where T is the known temperature field inside the domain which respects the
boundary conditions. The gradient of this quantity is

dz

dθm
=

(∫ (
u(x1, x2; θ)− T (x1, x2)

)
fkdΩ

)
∂uk

∂θm

The sensitivity is computed by differentiating the governing equations. In
this case, the stiffness matrix depends on the parameters, not the force vector.
We find that

∂uk

∂θm
= −K−1

kℓ

∂Kℓj

∂θm
uj

The gradient of the objective is then

dz

dθm
= −

(∫ (
u(x1, x2; θ)− T (x1, x2)

)
fkdΩ

)
K−1

kℓ

∂Kℓj

∂θm
uj

Note that there are not necessarily any constraints in these problems because
the governing equations are enforced through the chain rule by noting that the
solution has implicit dependence on the parameters.

4



Figure 2: Mass and spring system driven by an external force.

1.3 Dynamic, Finding Forcing

An inverse problem in the context of dynamics seems to be very similar to
problems in control theory. For example, we might want to find an external
force f(t) that gives the mass a certain trajectory a(t) for given initial conditions.
This is like optimally “controlling” the mass-spring system. See Figure 2 for
the problem setup. The governing equation is

mä+ ka(t) = f(t)

where a(t) is the time varying position of the mass. Let’s say we want to solve
the control problem, where the force is chosen such that the mass follows a
specified trajectory g(t). The objective is then

z =
1

2

∫ T

0

(
a(t)− g(t)

)2

dt

As in the previous problems, the function to be determined by the optimiza-
tion process is parameterized in terms of θ. This ensures that the solution has
implicit dependence on these parameters. We want to minimize the objective
while satisfying the constraint of the governing equation. Differentiating the
objective, we find that

dz

dθm
=

∫ T

0

(
a(t; θ)− g(t)

) ∂a

∂θm
dt

As before, we can compute the sensitivity by differentiating the governing
equation, which in the case of dynamics is not discretized. By changing the
order of differentiation, we have that

m
∂2

∂t2

(
∂a

∂θm

)
+ k

∂a

∂θm
=

∂f

∂θm

The sensitivities can be computed by solving a system of ODE’s. What
are the initial conditions on this system? Given the physical interpretation of

5



∂a/∂θ as how much the solution changes with the force parameters at a given
time, the initial conditions should both be zero. This is because the initial state
and velocity of the solution should not be sensitive at all to the force, given
that these initial conditions are specified in the problem statement itself. So the
sensitivities are computed with zero initial position and velocity.

2 Density-based Optimization with Global Ba-
sis

We want to perform topology optimization on a 2D linearly elastic structure.
Before we can do this, we need to outline a method for a forward solve of the
problem. Each component of the displacement will be discretized with the same
set of global shape functions. Call this set of global shape functions hi(x1, x2).
The two displacement components are discretized with

u1 =

N∑
i=1

θ1ihi(x1, x2), u2 =

N∑
j=1

θ2jhj(x1, x2)

where the parameters θij are the displacement degrees of freedom. This expres-
sion can easily be written in matrix form as

[
u1(x1, x2)
u2(x1, x2)

]
=

[
hT (x1, x2) 0

0 hT (x1, x2)

]


θ11
θ12
...

θ21
θ22
...


, h(x1, x2) =


h1(x1, x2)
h2(x1, x2)

...
hN (x1, x2)



=⇒ ui = Hij(x1, x2)θ̃j

where θ̃ indicates that the 2×N matrix of parameters is reshaped to a vector.
The matrix H contains all the shape functions. Next, we can write the strain
vector as a matrix of derivatives multiplying the displacement field.

ϵ =

∂/∂x1 0
0 ∂/∂x2

∂/∂x2 ∂/∂x1

[
u1

u2

]
=⇒ ϵk = BkiHij θ̃j

The matrix B maps the displacement field to the strain vector. Finally,
we can write the stress as the constitutive matrix times the stain vector. This
reads:

σℓ = Dℓkϵk = DℓkBkiHij θ̃j

6



Thus all quantities of interest can be written as linear transformations on
the unknown displacement coefficients θ̃. The potential energy is then

Π =
1

2

∫
A

σℓϵℓdA−
∫
Γ

tiuidS =
1

2

∫
A

BℓmHmnθ̃nDℓkBkiHij θ̃jdA−
∫
Γ

tiHij θ̃jdS

=⇒ 1

2
θ̃nθ̃j

(∫
A

BℓmHmnDℓkBkiHijdA

)
− θ̃j

(∫
Γ

tiHijdS

)
The two quantities in the parentheses are the stiffness matrix and force

vector respectively:

Knj =

(∫
A

BℓmHmnDℓkBkiHijdA

)
, Fj =

(∫
Γ

tiHijdS

)
The governing equation is found by computing a minimum of the potential

energy through differentiation with respect to displacement degrees of freedom.
Thus we obtain the usual linear system

Kij θ̃j = Fi

We will work on square domains, and can easily use Fourier-type global shape
functions to discretize the problem. Note that a square domain is not restrictive
in the case of topology optimization, as the optimized design will be “carved
out” of this ambient domain in some way. With density methods, the topology of
the structure is defined implicitly through a density field ρ(x1, x2) ∈ [0, 1] which
continuously interpolates between solid (1) and void (0). Thus, we parameterize
the density in some way and optimize the parameters of the density to minimize
the design objective. The density scales the material properties of the solid at
each point:

Deff
ij = f

(
ρ(x1, x2; d)

)
Dij

where d is the set of parameters used to discretize the density. The density sim-
ply multiplies the constitutive tensor. Note that the density does not necessarily
linearly scale the stiffness. We want to choose a scaling such that the frequency
of intermediate values of density, i.e. some ill-defined state between solid and
void, is minimized. This can be accomplished by penalizing the volume of the
structure through a constraint, and using

f(ρ) = ρn

for some n > 1. If the volume is computed as

V =

∫
A

ρdA

but the stiffness scales like

7



Deff
ij = ρn(x1, x2; d)Dij

it can be seen that when n is large and ρ takes an intermediate value between
0 and 1, there is more a penalty to the volume than there is a gain in stiffness.
Only when ρ becomes very close to 1 do we realize the full extent of the stiffness
gain. This method is especially effective at penalizing intermediate densities
when the design objective is the strain energy of the structure

z(d) =
1

2
Kqj θ̃q θ̃j =

1

2

(∫
A

ρn(d)BqmHmℓDℓkBkiHijdA

)
θ̃q θ̃j

In order to perform optimization, we need gradients of this quantity with
respect to the density parameters. The stiffness matrix and displacements all
depend on the density. We can simplify this process by using the Clapeyron
theorem, which states that (in discrete form)

1

2
Kℓj θ̃ℓθ̃j =

1

2
Fj θ̃j

In other words, the stored strain energy equals the work done by quasi-static
applied external forces. We thus reformulate the objective as

z(d) = Fj θ̃j

where the factor of 1/2 is omitted. This formulation avoids tedious expressions
for the gradient of the objective. It is straightforward to obtain gradients of this
quantity. We have

∂z

∂dm
= Fj

∂θ̃j
∂dm

The derivative of the displacement degrees of freedom with respect to the
design variables is called the sensitivity, and can be computed by differentiating
the governing equation:

∂

∂ds

[(∫
A

ρn(d)BqmHmℓDℓkBkiHijdA

)
θ̃q = Fj

]
The force vector does not depend on the design variables. The stiffness

matrix depends explicitly on the design, and the displacement has an implicit
dependence. Using the product rule and rearranging, we obtain the sensitivity
as

∂θ̃q
∂ds

= −K−1
qj (d)

(∫
A

nρn−1 ∂ρ

∂ds
(d)BpmHmℓDℓkBkiHijdA

)
θ̃p

The design optimization problem with a strain energy objective and volume
constraint is stated as

8



argmin
d

(
F · θ̃(d)

)
s.t. g(d) =

∫
A

ρ(d)dA− V0 = 0

A standard optimization algorithm will require the gradient of the objective
and constraint. We have shown how to compute the gradient of the objective.
The gradient of the volume constraint is simply

∂g

∂ds
=

∫
A

∂ρ

∂ds
dA

We have alluded to the fact that a global basis is used in the discretiza-
tion, and this could be any common spectral-type basis. We have not specified
how the density will be discretized. Because we expect large gradients in the
density field, indicating sharp delineations between solid and void, we need a
discretization scheme that is capable of capturing complex and localized behav-
ior. A natural choice is to use a deep neural network, which is defined globally
over the domain and shows great expressivity in representing complex behav-
ior. Another benefit of the neural network discretization is that the output can
be passed through a function which ensures that the requirement ρ ∈ [0, 1] is
met. This means there is no need to enforce box constraints in the optimization
process. Consider a neural network D(x1, x2; d) which discretizes the density.
Then the new function

ρ(x1, x2; d) =

(
1

2
− ε

)
tanh

(
D(x1, x2; d)

)
+

(
1

2
+ ε

)
automatically satisfies the constraints. The hyperparameter ϵ is a small number
that ensures numerical stability.

9


	Inverse Problems
	Static, Finding Boundary Condition
	Static, Finding Material
	Dynamic, Finding Forcing

	Density-based Optimization with Global Basis

