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1 Brief Notes

This is meant to explore what energy minimization for physics problems look like
when the solution is discretized in a nonlinear fashion. A usual discretization
of a solution is u(x) =

∑
i wiNi(x) where wi are unknown parameters or “coor-

dinates” for the problem. In general, the solution could depend nonlinearly on
the parameters. The non-linear degree of freedom means that the solution lives
on a manifold, as opposed to in a linear vector space. To illustrate how to deal
with this, we will consider taking derivatives of vector-valued functions defined
over parameterized spaces. For example, we may want to find the extremum of
the function

f(x, y, z) = xyz

constrained to the unit sphere centered at the origin. Thus, the solution space
is parameterized by two coordinates (defining a surface). The unit sphere can
be parameterized with two angular coordinates by

x =

cos(θ1) sin(θ2)sin(θ1) sin(θ2)
cos(θ2)


The extremum of the function constrained to the surface is defined as a point

at which a small “nudge” along the constraint surface produces no change in
the function value. This says that the gradient of the function if normal to
the constraint surface. An admissible nudge is one that stays within the space
defined by the parameterized surface (respects constraints imposed by parame-
terization of the solution). The nudge is therefore tangent to the parameterized
surface. When this surface has curvature, admissible nudges live in the local
tangent plane and thus depend on where we are on the surface. For the current
example, this condition can be stated as

lim
ϵ→0

1

ϵ

[
f

(
x(θ1, θ2) + ϵ

(
a
∂x

∂θ1
+ b

∂x

∂θ2

))
− f(x(θ1, θ2))

]
= 0 ∀a, b
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A pair (θ1, θ2) that satisfies this condition extremizes the function f and
lives on the parameterized surface. The arbitrary coefficients a and b are used
to parameterize all possible nudges in the tangent plane. Because ∂x

∂θ1
and ∂x

∂θ2
are a basis for the tangent plane, it suffices to show that

lim
ϵ→0

1

ϵ

[
f

(
x(θ1, θ2) + ϵ

∂x

∂θ1

)
− f(x(θ1, θ2))

]
= 0

lim
ϵ→0

1

ϵ

[
f

(
x(θ1, θ2) + ϵ

∂x

∂θ2

)
− f(x(θ1, θ2))

]
= 0

This is equivalent to showing that the directional derivatives of f are zero
in the direction of bases for plane tangent to the parameterized solution space:

∇f · ∂x

∂θ1
= ∇f · ∂x

∂θ2
= 0

This derivation serves to motivate that of functionals. Now, assume we have
a functional

Π =

∫
f(u, ux)dx

where the solution lives in a parameterized space

u(x) = u(x; θ1, . . . , θn)

We can think of these parameters constructing an approximation of the
solution in terms of unknown degrees of freedom. However, the solution need
not have the typical linear approximation

u(x) =
∑
i

θiNi(x)

An example of a parameterized solution that with non-linear degrees of free-
dom is

u(x) =
∑
i

θiNi(x; θi)

The structure of the parameterized solution space is more complicated in the
example of non-linear degrees of freedom. Extrema of the functional constrained
to a parameterized solution space are defined analogously to the vector-valued
function:

lim
ϵ→0

1

ϵ

[
Π

(
u(x) + ϵ

∑
i

ai
∂u

∂θi

)
−Π(u(x))

]
= 0

where the ai are arbitrary. As before, this can be split into a single condition
for each basis of the tangent space
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lim
ϵ→0

1

ϵ

[
Π

(
u(x) + ϵ

∂u

∂θi

)
−Π(u(x))

]
= 0 ∀i

A typical calculus of variations derivation then leads to∫
∂f

∂u

(
∂u

∂θi

)
dx+

∫
∂f

∂ux

∂

∂x

(
∂u

∂θi

)
dx = 0 ∀i

When the approximation of the solution is linear, the test functions ∂u/∂θi
have a particularly simple form. Nonlinear parameterizations of the solution
will lead to nonlinear systems of equations, even when the energy functional
is linear. These can be solved with Newton’s Method, or the energy can be
minimized using gradient descent. Note that one issue with this method is that
the system of equations arising from the condition for a minimum can be satisfied
for many choices of parameters. This is equivalent to saying that a minimum
of the energy can be found for any linear basis expansion of the solution. Thus
it is not clear we extract an optimal representation of the solution out of the
residual equations. When we directly minimize the energy, there may be local
minima but at least there is a notion of continuing to decrease the energy, which
ideally leads to optimal representations of the solution.
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