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1 Rotating Beam

1.1 Governing equation

We want to model the dynamics of an Euler-Bernoulli beam that is undergoing
time varying rotation about a fixed axis. The axis will be perpendicular to the
span of the beam such that beam traces out a plane as it rotates. The rotation
axis will be defined as x3, the length of the beam as x1, and x2 will be in the
direction of counterclockwise rotation w.r.t. positive x1 as seen looking down
from the x3 axis. Because the unit vectors ê1 and ê2 rotate with the beam’s
angular velocity vector Ω3(t)ê3, there will be fictitious forces in the equation
of motion. These arise from time derivatives of the unit vectors. In order to
compute the equation of motion in the rotating frame, we take derivatives of
the position vector in the rotating frame. The time derivative of the position in
a frame rotating with beam is

d

dt
r =

∂

∂t
(riêi) =

∂ri
∂t

êi + ri
∂êi
∂t

d2

dt2
r =

∂

∂t

(
∂ri
∂t

êi + ri
∂êi
∂t

)
=

∂2ri
∂t2

êi +
∂ri
∂t

∂êi
∂t

+
∂ri
∂t

∂êi
∂t

+ ri
∂2êi
∂t2

Note that Newton’s law operates on the position vector not the displacement.
The relation between the two in solid mechanics is

r(t) = x+ u(t)

In inertial frames, there is no distinction made from the standpoint of accel-
erations between the position and the displacement because the spatial position
x is independent of time. But for rotating frames, we will see that it is impor-
tant to distinguish between position and displacement, as the fictitious forces
do not depend only on derivatives of r. Thus, the spatial coordinate x makes
an explicit appearance in the equations of motion. Using the relation between
position and displacement, along with the definition of the time derivative of
rotating unit vectors, we have that
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d2

dt2
r = ü+ 2Ω× u̇+

∂Ω

∂t
× (x+ u) + Ω× (Ω× (x+ u))

The governing equations for elasticity then involve multiple fictitious forces
from the rotating coordinate system:

ρü = ∇ · σ + b− 2ρ(Ω× u̇)− ρ
(
Ω̇× (x+ u)

)
− ρΩ× (Ω× (x+ u))

1.2 Kinematic model of 3D beam

The displacement field for the beam is

u1 = ū1(x1) + x3Φ2(x1)− x2Φ3(x1)

u2 = ū2(x1)

u3 = ū3(x1)

The axial displacement is arises from uniform tension/compression and ro-
tations of the cross sections. These cross-sectional rotations are related to the
bending displacements ū2 and ū3. Note that Φ2 corresponds to a positive ro-
tation (by the right-hand rule) around the x2 axis, and Φ3 corresponds to a
positive rotation around the x3 axis. In this axis system, positive rotations
around x2 correspond to positive displacements in x1 (tension) when x3 > 0,
and similarly, positive values of x2 and positive Φ3 correspond to compression.
The only non-zero strain component from the stress field for Euler-Bernoulli
beam bending is

ϵ11 =
∂ū1

∂x1
+ x3k2 − x2k3

σ11 = E

(
∂ū1

∂x1
+ x3k2 − x2k3

)

Φ2 =
∂ū3

∂x1
, Φ3 =

∂ū2

∂x1
, k2 :=

∂Φ2

∂x1
, k3 :=

∂Φ3

∂x1

1.3 Variational Formulation

Treating the fictitious forces from rotations of body forces, we can write the
total potential energy of the dynamics problem:

Π =

∫
V

1

2
ρu̇iu̇i −

1

2
σijϵij + biui − 2ρeijkΩku̇kui − ρeijkΩ̇jxkui

− ρeijkΩ̇jukui − ρeijkΩjekℓmΩℓxmui − ρeijkΩjekℓmΩℓumuidV
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1.4 Kinetic Energy

We can simplify each term one-by-one. Start with the kinetic energy:∫
V

1

2
ρu̇iu̇idV =

∫
V

ρ

2

(
( ˙̄u1 + x3Φ̇2 − x2Φ̇3)

2 + ˙̄u2
2 +

˙̂u2
3

)
dV

=

∫ L

0

∫
A

ρ

2

(
˙̄u2
1+x2

3Φ̇
2
2+x2

2Φ̇
2
3+2 ˙̄u1x3Φ2−2 ˙̄ux2Φ̇3−2x2x3Φ̇2Φ̇3+ ˙̄u2

2+ ˙̄u2
3

)
dAdx1

If the x2−x3 axes are centered at the centroid of the section and are aligned
with principal axes, the area integral zeroes three of the terms from the u1

kinetic energy. Evaluating the area integral, we obtain∫ L

0

ρ

2

(
A ˙̄u2

1 + I3Φ̇
2
2 + I2Φ̇

2
3 + ˙̄u2

2 + ˙̄u2
3

)
dx1

1.5 Strain Energy

Now we can look at the strain energy term. There is only one non-zero stress
and strain component, so we have∫

V

1

2
σijϵijdV =

∫
V

E

2
(ϵ̄1 + x3k2 − x2k3)

2dV

=

∫ L

0

∫
A

E

2
(ϵ̄21 + x2

3k
2
2 + x2

2k
2
3 + 2ϵ̄1x3k2 − 2ϵ̄1x2k3 − 2x3x2k2k3)dAdx1

Similar to above, evaluating the area integral cancels many of the terms. We
obtain ∫ L

0

E

2

(
Aϵ̄21 + I3k

2
2 + I2k

2
3

)
dx1

1.6 Fictitious Forces

We will assume there are no body forces, so this term in the energy is zero. We
can turn to the first fictitious force of rotation term:

−2

∫
V

ρeijkΩj u̇kuidV

The angular velocity Ωk = Ω3(t) has a fixed orientation but varies in time.
Thus, using the properties of the permutation tensor, we can write

−2ρ

∫
V

e132Ω3u̇2u1 + e231Ω3u̇1u2dV = 2ρΩ3

∫
V

−u̇1u2 + u̇2u1dV
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= 2ρΩ3

∫ L

0

∫
A

˙̄u2(ū1 + x3Φ2 − x2Φ3)− ( ˙̄u1 + x3Φ̇2 − x2Φ̇3)ū2dAdx1

Evaluating the area integral once again zeros some of these terms. We are
left with

= 2ρAΩ3

∫ L

0

(
˙̄u2ū1 − ˙̄u1ū2

)
dx1

We can move on to the next rotational term from the energy above:

−
∫
V

ρeijkΩ̇jukuidV = −
∫
V

ρei3kΩ̇3ukuidV =

∫
V

−ρΩ̇3(e132u2u1+e231u1u2)dV = 0

The term involving the time derivative of the angular velocity vector drop
outs. This is probably because the orientation of the angular velocity does not
change. The next fictitious force term is

−
∫

ρeijkΩ̇jxkuidV = −ρΩ̇3

∫ L

0

∫
A

e132x2u1 + e231x1u2dAdx1

= ρAΩ̇3

∫ L

0

x1ū2dx1

The first of centripetal force terms is

−
∫
V

ρeijkΩjekℓmΩℓxmuidV = −ρ

∫
V

ei3kΩ3ek3mΩ3xmuidV

= −ρΩ2
3

∫
V

(e132e231x1u1 + e231e132x2u2)dV = ρΩ2
3

∫
V

x1u1 + x2u2dV

= ρAΩ2
3

∫ L

0

x1ū1dx1

And the second centripetal force term is

−
∫
V

ρeijkΩjekℓmΩℓumuidV = −ρ

∫
V

ei3kΩ3ek3mΩ3umuidV

= ρΩ2
3

∫ L

0

∫
A

(ū1 + x3Φ2 − x2Φ3)
2 + ū2

2dAdx1

ρΩ2
3

∫ L

0

Aū2
2 +Aū2

1 + I3Φ
2
2 + I2Φ

2
3dx1
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1.7 Putting it all together

The total potential energy written using the kinematic assumptions of 3D beam
theory is

Π =

∫ L

0

ρ

2

(
A ˙̄u2

1+ I3Φ̇
2
2+ I2Φ̇

2
3+ ˙̄u2

2+ ˙̄u2
3

)
dx1−

∫ L

0

E

2

(
Aϵ̄21+ I3k

2
2 + I2k

2
3

)
dx1

2ρAΩ3

∫ L

0

(
˙̄u2ū1 − ˙̄u1ū2

)
dx1 + ρAΩ̇3

∫ L

0

x1ū2dx1+

ρAΩ2
3

∫ L

0

x1ū1dx1 + ρΩ2
3

∫ L

0

Aū2
2 +Aū2

1 + I3Φ
2
2 + I2Φ

2
3dx1

Using the definitions of the rotation angles and curvatures, the energy can be
written explicitly in terms of the displacement field. Bars over the displacement
components will be dropped for readability.

Π =

∫ L

0

ρ

2

(
A

(
∂u1

∂t

)2

+I3

(
∂2u3

∂x1∂t

)2

+I2

(
∂2u2

∂x1∂t

)2

+A

(
∂u2

∂t

)2

+A

(
∂u3

∂t

)2)
dx1

−
∫ L

0

E

2

(
A

(
∂u1

∂x1

)2

+I3

(
∂2u3

∂x2
1

)2

+I2

(
∂2u2

∂x2
1

)2)
dx1+2ρAΩ3

∫ L

0

(∂u2

∂t
u1−u2

∂u1

∂t

)
dx1

ρAΩ̇3

∫ L

0

x1u2dx1+ρAΩ2
3

∫ L

0

x1u1dx1+ρΩ2
3

∫ L

0

Au2
2+Au2

1+I3

(
∂u3

∂x1

)2

+I2

(
∂u2

∂x1

)2

dx1

We will assume that the problem is driven by the time varying angular ve-
locity Ω3(t). We have assumed that there are no tractions or body forces by
not including these as external forces in the energy. Notice that the x3 problem
is totally decoupled from the x1 and x2 problems. This is because fictitious
forces are perpendicular to the rotation axis, and we expect a decoupling of the
coordinate directions for linear elasticity (this is the case in usual 3D bending
analysis). There is a new centripetal force term in the x3 problem, though it
seems that it will be small compared to elastic forces (rotation speed squared
almost certainly small compared to the modulus). Probably allowing the ori-
entation of the angular velocity to vary in time would have fully coupled all of
the directions. It is perhaps interesting to note that the x1 and x2 problems are
coupled as a result of the rotation, which does not happen in an inertial frame.
Let’s look at the x1 − x2 problem by ignoring terms involving u3:
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Π =

∫ L

0

ρ

2

(
A

(
∂u1

∂t

)2

+ I2

(
∂2u2

∂x1∂t

)2

+A

(
∂u2

∂t

)2)
dx1

−
∫ L

0

E

2

(
A

(
∂u1

∂x1

)2

+ I2

(
∂2u2

∂x2
1

)2)
dx1 + 2ρAΩ3

∫ L

0

(∂u2

∂t
u1 − u2

∂u1

∂t

)
dx1

+ρAΩ̇3

∫ L

0

x1u2dx1+ρAΩ2
3

∫ L

0

x1u1dx1+ρΩ2
3

∫ L

0

Au2
2+Au2

1+I2

(
∂u2

∂x1

)2

dx1

Discretize the two displacements with

u1 =
∑
i

aifi(x1), u2 =
∑
i

bifi(x1)

Π =

∫ L

0

ρ

2

(
A
∑
i

∑
j

ȧiȧjfifj+I2
∑
i

∑
j

ḃiḃj
∂fi
∂x1

∂fj
∂x1

+A
∑
i

∑
j

ḃiḃjfifj

)
dx1

−
∫ L

0

E

2

(
A
∑
i

∑
j

aiaj
∂fi
∂x1

∂fj
∂x1

+ I2
∑
i

∑
j

bibj
∂2fi
∂x2

1

∂2fj
∂x2

1

)
dx1

+ 2ρAΩ3

∫ L

0

(∑
i

∑
j

ḃiajfifj −
∑
i

∑
j

biȧjfifj

)
dx1

+ ρAΩ̇3

∫ L

0

x1

∑
i

bifidx1 + ρAΩ2
3

∫ L

0

x1

∑
i

aifidx1

+ρΩ2
3

∫ L

0

A
∑
i

∑
j

bibjfifj +A
∑
i

∑
j

aiajfifj + I2
∑
i

∑
j

bibj
∂fi
∂x1

∂fj
∂x1

dx1

There are four fundamental quantities to define:

Mij :=

∫ L

0

fifjdx1

Kij :=

∫ L

0

∂fi
∂x1

∂fj
∂x1

dx1

Hij :=

∫ L

0

∂2fi
∂x2

1

∂2fj
∂x2

1

dx1

Fi :=

∫ L

0

x1fidx1

With the spatial part of the energy integrated out, we can write it as
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Π =
ρA

2
ȧiȧjMij +

ρI2
2

ḃiḃjKij +
ρA

2
ḃiḃjMij −

EA

2
aiajKij −

EI2
2

bibjHij

+ 2ρAΩ3ḃiajMij − 2ρAΩ3biȧjMij + ρΩ̇3Fibi + ρAΩ2
3Fiai + ρΩ2

3AbibjMij

+ ρΩ2
3AaiajMij + ρΩ2

3I2bibjKij

The governing equations for this problem can be obtained by using the Euler-
Lagrange equations for the multiple degree of freedom system. When only the
time variable is present (as is the case with the spatially discretized energy),
these equations read

∂

∂t

∂Π

∂q̇
− ∂Π

∂q
= 0

Thus, the two governing equations are

ρAMij äj+EAKijaj−2ρAΩ3Mij ḃj−2ρAMij
∂

∂t
(bjΩ3)−ρAΩ2

3Fi−2ρΩ2
3AMijaj = 0

=⇒ ρMij äj + (EKij − 2ρΩ2
3Mij)aj − 2ρΩ̇3Mijbj − 4ρΩ3Mij ḃj = ρΩ2

3Fi

ρI2Kij b̈j + ρAMij b̈j + EI2Hijbj + 2ρAMij
∂

∂t
(Ω3aj) + 2ρAΩ3Mij ȧj

− ρΩ̇3Fi − 2ρΩ2
3AMijbj − 2ρΩ2

3I2Kijbj = 0

=⇒ (ρI2 + ρAMij)b̈j + (EI2Hij − 2ρΩ2
3AMij − 2ρΩ2

3I2Kij)bj

+ 2ρAΩ̇3Mijaj + 4ρAΩ3Mij ȧj = ρΩ̇3Fi

It is interesting to note that the rotations introduce a forcing term to the
u1 and u2 displacement problems. Centripetal forces are proportional to the
position and the square of the angular velocity. These appear as a force for
displacement in the x1 direction. There is a Coriolis-type force for displacements
in the x2 direction, where a force arises from angular acceleration. The typical
Coriolis forces are a function of the velocity and appear in the left side of the
equation. In block matrix form, this problem can be written in terms of constant
and time-dependent matrices defined from the above equations:

[
M1 0

0 M2

] [
ä

b̈

]
+

[
0 M3(t)

M4(t) 0

] [
ȧ

ḃ

]
+

[
M5 M6(t)

M7(t) M6

] [
a
b

]
=

[
F 1(t)
F 2(t)

]
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Define new matrices once again and finite difference the derivatives

A

(
x(t+∆t)− 2x(t) + x(t−∆t)

∆t2

)
+B

(
x(t+∆t)− x(t−∆t)

2∆t

)
+Cx(t) = F (t)

This can be written as

A

∆t2
x(t+∆t)+

B(t)

2∆t
x(t+∆t) = F (t)−C(t)x(t)+

A

∆t2

(
2x(t)−x(t−∆t)

)
+
B(t)

2∆t
x(t−∆t)

x(t+∆t) =

(
A

∆t2
+

B(t)

2∆t

)−1(
F (t)− C(t)x(t) +

A

∆t2

(
2x(t)− x(t−∆t)

)
+

B(t)

2∆t
x(t−∆t)

)
This is an interesting problem because the matrices are time dependent.

What time step do we evaluate them at? We cannot pre-compute an inverse be-
cause the entries of these quantities change with time. Do normal mode methods
work with time-dependent matrices? This is also an interesting problem because
there is a damping-type term present.

2 Fractional Derivative

In this paper, fractional derivatives are used for a viscoelastic constitutive model.
This inspires the idea of killing two birds with one stone in doing a non-linear
elastic problem and fractional derivatives in one. We will use a potentially made-
up model of a Saint-Venant constitutive relation but in the viscoelastic context.
A one-dimensional problem will be solved. In this case, the Green-Lagrange
strain is

E =
∂u

∂x
+

1

2

(
∂u

∂x

)2

For a fixed left boundary u(0) = 0 and an applied traction on the right
boundary, the weak form of the static governing governing equation is∫ L

0

∂Ψ

∂E
δE − tδu(L) = 0

But the viscoelastic material response ensures that the problem is dynamic,
thus we must include inertial effects. Using that the second Piola-Kirchoff stress
is the derivative of the energy w.r.t. the Green-Lagrange strain, the governing
equation is ∫ L

0

(
S(t)δE + ρ

∂2u

∂t2
δu

)
dV − t(t)δu(L) = 0
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We will argue that the stress is computed from the strain via a fractional
derivative in time of order α:

S(x, t) = DαE(x, t) =
∂a

∂ta
Ib(E(x, t))

where we have α = a− b and a is computed from rounding α up to the nearest
integer. The expression Ib(·) indicates the Cauchy repeated integral b times.

Ib(f(t)) =
1

Γ(b)

∫ t

a

f(τ)(t− τ)b−1dτ

Plugging this in, we obtain

S(x, t) =
1

Γ(b)

(
Πa

i=1(b− i)
)∫ t

a

E(x, τ)(t− τ)b−a−1dτ

S(x, t) = f(a, b)

∫ t

a

(
∂u

∂x
+

1

2

(
∂u

∂x

)2
)
(t− τ)b−a−1dτ

Discretizing with u(x, t) =
∑

i ui(t)Ni(x), this becomes

S(x, t) = f(a, b)

∫ t

a

∑
i

ui(τ)
∂Ni

∂x
+

1

2

∑
j

uj(τ)
∂Nj

∂x

2
(t− τ)b−a−1dτ

Simplifying the first term and leaving it “undiscretized” for now, but using
the discretization for the other terms, the weak form of the governing equation
becomes ∫ L

0

S(x, t)
∂E

∂(∂u∂x )

∂δu

∂x
dx+

(
ρ

∫ L

0

NiNjdx

)
üj = t(t)Ni(L)

The chain rule is used on the Green-Lagrange strain to test against linear
degrees of freedom in the virtual displacement. Renaming the mass matrix and
force vector in the usual way, we can plug in to simplify the internal force vector
term:

Mij üj+

∫ L

0

f(a, b)

∫ t

a

∑
i

ui(τ)
∂Ni

∂x
+

1

2

∑
j

uj(τ)
∂Nj

∂x

2
(t−τ)b−a−1dτ

∗

(
1 +

∑
ℓ

uℓ
∂Nℓ

∂x

)
∂Ni

∂x
dx = Fi(t)

Note that in this derivation we have assumed that the material properties
are all unity (elastic stiffness and damping parameters) as it is not clear exactly
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how they show up with the fractional derivative. For example, they scale with
the order of the fractional derivative. The point of this derivation is to illustrate
the kind of numerical problems one obtains when using fractional derivatives.
These problems are “non-local” in the sense that the displacement history is
used in computing the stress. This is similar to typical viscoelastic constitutive
relations, where convolution integrals appear.

3 Pre-twist Torsion

Figure 1: Example of rod generated from a cross-sectional extrusion that rotates
as it is extruded. This geometry is interesting because it is an odd and more
complex case of St. Venant torsion. The twist couples the tension and torsion
response of the rod.

We will derive the governing equations for the static response of a “twisted”
rod. The cross-section has the same shape at each axial position along the rod,
but this shape rotates with the length of the rod. Call x1 the coordinate axis
going down the length of the rod. Under the usual assumptions of St. Venant
torsion, the displacement components are

u1 = u1(x1) +
∂θ

∂x1
Ψ(x1, x2, x3)

u2 = −x3θ2(x1)

u3 = x2θ(x1)

The displacement field is parameterized in terms of the rotation angle θ(x1)
in the usual way. As a result of the twist in the rod, the warping function Ψ
depends on the axial coordinate x1. The exact nature of this dependence is dis-
cussed later. Furthermore, we hypothesize an explicit axial displacement u1(x1)
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which is not the result of the warping. This axial displacement will arise from
the geometry of the rod, and is used to model the coupled tension/torsion re-
sponse. Intuitively, this could arise from the twisted rod having an“unwinding”
response under the action of an applied torque. The strain components from
this displacement field are

ϵ11 =
∂u1

∂x1
+

∂θ

∂x1

∂Ψ

∂x1
+

∂2θ

∂x2
1

Ψ

ϵ13 = ϵ31 =
1

2

∂θ

∂x1

(
∂Ψ

∂x3
+ x2

)

ϵ12 = ϵ21 =
1

2

∂θ

∂x1

(
∂Ψ

∂x2
− x3

)
The rest of the strain components are zero. Assuming isotropic linear elastic

stress-strain relation, the stress components are simply

σ11 = Eϵ11

σ12 = 2Gϵ12

σ13 = 2Gϵ13

We will use a variational approach to derive the governing equations for this
problem. The energy for the static torsion problem with an applied end torque
is

Π =

∫
V

1

2
σijϵijdV −Mθ(L) =

∫
V

1

2
σ11ϵ11 + σ12ϵ12 + σ13ϵ13dV −Mθ(L)

=

∫
V

1

2
Eϵ211 + 2Gϵ212 + 2Gϵ213dV −Mθ(L)

We can expand and simplify these terms individually. First start with the
energy from tension:

E

2

∫
V

ϵ211dV =
E

2

∫
V

(
∂u1

∂x1
+

∂θ

∂x1

∂Ψ

∂x1
+

∂2θ

∂x2
1

Ψ

)2

dV

=
E

2

∫
V

(
∂u1

∂x1

)2

+

(
∂θ

∂x1

∂Ψ

∂x1

)2

+

(
∂2θ

∂x2
1

Ψ

)2

+ 2
∂u1

∂x1

∂θ

∂x1

∂Ψ

∂x1

+ 2
∂u1

∂x1

∂2θ

∂x2
1

Ψ+ 2
∂θ

∂x1

∂Ψ

∂x1

∂2θ

∂x2
1

ΨdV

We can evaluated the area integral by noting that Ψ is the only the, that
has dependence on the cross-sectional position variables x2 and x3.
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=
E

2

∫ L

0

(
∂u1

∂x1

)2(∫
dA

)
+

(
∂θ

∂x1

)2
(∫ (

∂Ψ

∂x1

)2

dA

)
+

(
∂2θ

∂x2
1

)2(∫
Ψ2dA

)
+2

∂u1

∂x1

∂θ

∂x1

(∫
∂Ψ

∂x1
dA

)
+2

∂u1

∂x1

∂2θ

∂x2
1

(∫
ΨdA

)
+2

∂θ

∂x1

∂2θ

∂x2
1

(∫
Ψ

∂Ψ

∂x1
dA

)
dx1

If the cross-section is generated by extruding and rotating at a constant
rate, the derivatives of the warping function with the axial coordinate will be
constant, thus their integrals will be independent of x1. Thus, we can define
the following geometric quantities to simplify this expression:

A1 :=

∫
dA

A2 :=

∫ (
∂Ψ

∂x1

)2

dA

A3 :=

∫
Ψ2dA

A4 :=

∫
∂Ψ

∂x1
dA

A5 :=

∫
ΨdA

A6 :=

∫
Ψ

∂Ψ

∂x1
dA

The energy from tension is then

=
E

2

∫ L

0

A1

(
∂u1

∂x1

)2

+A2

(
∂θ

∂x1

)2

+A3

(
∂2θ

∂x2
1

)2

+ 2A4
∂u1

∂x1

∂θ

∂x1

+ 2A5
∂u1

∂x1

∂2θ

∂x2
1

+ 2A6
∂θ

∂x1

∂2θ

∂x2
1

dx1

Now we can look at the energy contribution from the shear strains. First,
we have

2G

∫
V

ϵ212dV = 2G

∫
V

(
1

2

∂θ

∂x1

(
∂Ψ

∂x2
− x3

))2

dV

=
G

2

∫
V

(
∂θ

∂x1

)2
((

∂Ψ

∂x2

)2

+ x2
3 − 2x3

∂Ψ

∂x2

)
dV

Distributing the area integral again, we have
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=
G

2

∫ L

0

A7(x1)

(
∂θ

∂x1

)2

dx1

The coefficient A7 depends on the axial coordinate because the x2 derivative
of the warping function will vary when the section is at different angles from its
twist. Thus, this is not a geometric quantity.

A7(x1) :=

∫ (
∂Ψ

∂x2

)2

+ x2
3 − 2x3

∂Ψ

∂x2
dA

Similarly for the other shear strain component, we have

2G

∫
V

ϵ213dV = 2G

∫
V

(
1

2

∂θ

∂x1

(
∂Ψ

∂x3
+ x2

))2

dV

=
G

2

∫
V

(
∂θ

∂x1

)2
((

∂Ψ

∂x3

)2

+ x2
2 + 2x2

∂Ψ

∂x3

)
dV

=
G

2

∫ L

0

A8(x1)

(
∂θ

∂x1

)2

dx1

The total potential energy is then

Π = −Mθ(L)+
E

2

∫ L

0

A1

(
∂u1

∂x1

)2

+A2

(
∂θ

∂x1

)2

+A3

(
∂2θ

∂x2
1

)2

+2A4
∂u1

∂x1

∂θ

∂x1

+ 2A5
∂u1

∂x1

∂2θ

∂x2
1

+ 2A6
∂θ

∂x1

∂2θ

∂x2
1

dx1 +
G

2

∫ L

0

(
A7(x1) +A8(x1)

)( ∂θ

∂x1

)2

dx1

We will derive the governing equations in strong form, as a contrast to always
building weak forms for the sake of numerical solutions. For an energy functional
of the form

Π =

∫
f(u, ux, uxx, x)dx

the corresponding Euler-Lagrange equations provide a PDE whose solution is a
minimizer. The Euler-Lagrange equations in the presence of second derivatives
are

∂2

∂x2

∂f

∂uxx
− ∂

∂x

∂f

∂ux
+

∂f

∂u
= 0

It can be shown that in the case of the energy functional for torsion of the
twisted rod, the two governing equations are

A3
∂4θ

∂x4
1

+A5
∂u3

1

∂x3
1

−A2
∂2θ

∂x2
1

−A4
∂2u1

∂x2
1

+
G

E

∂

∂x

(
(A7(x1) +A8(x1))

∂θ

∂x1

)
= 0
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A1
∂2u1

∂x2
1

+A4
∂2θ

∂x2
1

+A5
∂3θ

∂x3
1

= 0

The torsion and tension problems are coupled, as shown by the presence of
u1 terms in the governing equation for the rotation angle θ, and vice verse. We
have not yet explored how the quantities Ai can be computed, or how exactly
the warping function depends on x1. For an elliptical cross-section with major
and minor axis lengths b and a respectively, the warping function is known to
be

Ψ =
b2 − a2

b2 + a2
x2x3

We assume that this same warping function applies for the cross-sections of
the twisted rod, except that x2 and x3 are aligned with local major and minor
axes of the ellipse. Call the local axes x′

2 and x′
3. For the twisted rod, the

warping function is

Ψ(x1, x2, x3) =
b2 − a2

b2 + a2
x′
2x

′
3

The relation between the local (primed) position in the cross section and the
global coordinate system has the form[

x′
2

x′
3

]
= R(αx1)

[
x2

x3

]
We have already assumed that the twist rate of the rod’s cross-section is

constant. Thus, we can say that the angle at which the cross-section at position
x1 is rotated is αx1 where α is a constant twist rate. The parameter α is
geometric in that it determines how twisted the rod is. The quantity R is a
rotation matrix relating the global coordinates to the local ones in terms of the
angle of rotation. Thus, the x1 derivative of the warping function comes from
the angle used to build the rotation matrix which transforms from global to
local coordinates. There would be no x1 dependence of the warping function if
it weren’t for the twist of the rod. Computing all of the parameters involving
integrals of the warping function and its derivatives over the cross-section is a
cumbersome task. We are somewhat brief in deriving the form of the warping
function for the twisted rod, but this sketch should suffice to illustrate the
moving parts of this problem. This problem ends up being surprisingly complex
in spite of its proximity to the usual St. Venant torsion analysis.

4 Analysis of Pre-stressed Structures

When solving a solid mechanics problem, it is almost universally assumed that
the reference configuration, or undeformed state, is stress-free. The idea is that
only subsequent deformations of the structure generate stresses. But what if
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there are known to be existing internal stresses which are not caused by de-
formations from the reference state? These could arise from manufacturing
processes such as heat treatment. It could be that a part’s shape was perma-
nently altered in a metal forming process, meaning that plastic strains hold the
part in some deformed configuration, even when external loads are removed.
The internal stress state in a plastically deformed part is non-trivial, though
it may be tempting if any subsequent stress analysis is performed on this part
to treat this as the stress-free reference configuration. Let’s call the pre-stress
state σ̃ij . This needs to be experimentally or computationally determined, but
it is treated as a known quantity throughout the structure. When starting with
a stress or strain formulation of a mechanics problem, it is necessary to check
the compatibility condition. When we start from the perspective of displace-
ments, it is enforced naturally that stress and strain fields arise from gradients
of the displacement. However, not all symmetric tensors (strain tensors) can be
obtained by taking gradients of the displacement. This is because there are six
independent components of a symmetric 3D tensor, but only three displacement
components. Thus, a generic strain field could over-determine the displacement
unless it chosen properly. The same logic applies for the stress tensor, which is
obtained as a linear combination of strains. The question we can ask if: what
condition on the strains will ensure that they can be computed from gradi-
ents of the displacement? This is easiest to see in two dimensions. The three
independent strain components are

ϵ11 =
∂u1

∂x1
,

∂u2

∂x2
= ϵ22, ϵ12 = ϵ21 =

1

2

(
∂u1

∂x2
+

∂u2

∂x1

)
By taking derivatives of these strain components, we can see that

∂2ϵ11
∂x2

2

+
∂2ϵ22
∂x2

1

= 2
∂2ϵ12
∂x1∂x2

only if the strain components are derived from the strain-displacement relations.
This relation does not hold for a generic symmetric tensor. This is called the
compatibility condition. Note that if a stress field is specified, we can write

ϵ = C−1σ

and then verify that the stress field satisfies compatibility. So the pre-stress
field σ̃ must be compatible in order to be physical. I see a few options for how
to deal with the pre-stress problem. The first is to use a linearity argument
to say that the stresses generated by deformation will not be influenced by the
pre-stress if the material behaves elastically, i.e. there is no yielding or other
nonlinear phenomena. If we want to compute the total stress state, we simply
compute the stress field from external loads and add the pre-stress state. If
there is some kind of material nonlinearity, such as yielding at a specified stress
level, we might ignore the pre-stresses by correcting the yield criteria with the
stresses at zero deformation. For example, if the onset of plasticity occurs in

15



a bar at σy = 2, and there is a uniform pre-stress state of σ = 1, the effec-
tive yield criteria becomes σ̃y = 1. A slightly bizarre third method would be
to compute a fictitious reference configuration which is stress-free. This might
look like the following: characterize the pre-stress state σ̃ij(x). Use a mate-
rial model to convert from a stress field to a strain field ϵ̃ij . We then seek a
displacement field which gives rise to these strains. Assuming the strains can-
not be integrated analytically, this displacement field must be parameterized
in some way, perhaps with a neural network or some other flexible approxi-
mation framework. Working in two dimensions, we call the displacement field
u(x1, x2; θ) = [u1(x1, x2; θ), u2(x1, x2; θ)]

T . With a given “pre-strain” field, we
solve the following optimization problem

argmin
θ1,...,θN

[∫ (
ϵ11 −

∂u1

∂x1

)2

+

(
ϵ22 −

∂u2

∂x2

)2

+

(
ϵ12 −

1

2

(
∂u1

∂x2
+

∂u2

∂x1

))2

dΩ

]
The strain components are known and the displacement components depend

on the parameters, which are determined by minimizing the mismatch between
the true strain, and that which is computed from the displacement field. Once
the displacement field is known, we can map the pre-stressed structure back to a
fictitious reference configuration which is stress-free. Note that the displacement
field can then be plugged into the governing equations to find a corresponding
volumetric force required to produce this displacement. This is essentially us-
ing the method of manufactured solutions. There are nuances with boundary
conditions and what not, but the idea seems to be generally sound. To be
clear, it is not necessary to compute the displacement in order to obtain this
body force, as the stress could have been used as well. But it is nice to have
the ability to visualize the geometry of this fictitious reference configuration
through the displacement. Having this body force allows us to solve a problem
in the fictitious reference configuration. Call the body force obtained from the
method of manufactured solutions with the displacement matched to the pre-
strain field b̃i(x1, x2). We can then solve problems defined in the pre-strain field
by superimposing this body force. The governing equations would be

∂σij

∂xj
+ b̃i = 0

Imposing the body force leads to the pre-stress configuration even in the
absence of other external loads. If there is nonlinearity in the material, this
method appears to handle the correction to the yield criteria, where smaller
loads than expected may be required to produce yielding because of the existing
stresses.

5 Blasius Equation

It is known from that the 99% boundary layer for an infinite flat plate in free
stream flow is

16



δ(x) =

√
νx

U

This is the height above the plate at which the x-velocity is 99% of the
free stream value. For a steady, incompressible flow, the x-component of the
governing equations are

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
,

∂u

∂x
+

∂v

∂y
= 0

where the second term in the Laplacian is neglected by assumption. The bound-
ary conditions are

u(x, 0) = v(x, 0) = 0, u(x,∞) = U

Assuming that the flow is self-similar down the length of the plate, we can
introduce the similarity variable

η =
y

δ(x)

which implies that the flow is the same at each percent height of the boundary
layer. By assumption, we can write

u(x, y) = Ug(η)

and use the definition of the stream function (u = ∂Ψ/∂y, v = −∂Ψ/∂x) to
write

Ψ =

∫
udy = δ(x)

∫
udη = δ(x)U

∫
g(η)dη = δ(x)Uf(η)

Plugging the stream function into the x-momentum equation, we get

∂Ψ

∂y

∂2Ψ

∂x∂y
− ∂Ψ

∂x

∂2Ψ

∂y2
= ν

∂3Ψ

∂y3

It can be shown that by plugging the definition of the stream function with
the similarity variable into this expression, we obtain the Blasius equation

∂3f

∂η3
+

1

2
f
∂2f

∂η2
= 0

The boundary conditions on the Blasius equation are

f ′(0) = f(0) = 0, f ′(∞) = 1

There are two boundary conditions on the left end and one asymptotic con-
dition on the right end. The typical approach to solve this problem is to choose
some “large” value for η and enforce the boundary condition at that finite value.
Shooting methods of time integration, whereby the initial condition f ′′(0) is it-
erated until the desired end condition is obtained, seem to be the standard
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approach. This is somewhat odd, because when the end condition at ∞ is re-
placed as a boundary condition at some finite η, this is a standard boundary
value problem. Thus, we can use the weak form of the governing equation to
explore numerically solving the Blasius equation as a boundary value problem.
Our right boundary condition will be f ′(L) = 1. We multiply the governing
equation by an arbitrary test function w(η) and integrate over the domain:∫ L

0

f ′′′w +
1

2
ff ′′wdη = 0

The boundary condition f(0) = 0 can be enforced strongly by choosing a
basis for f and w that satisfy this condition automatically. The other two
Neumann-type boundary conditions need to be enforced weakly. We can inte-
grate the first term by parts to obtain∫ L

0

−f ′′w′ +
1

2
ff ′′wdη + f ′′(L)w(L)

where only one boundary term appears from the fact taht w(0) = 0. We have
not yet made use of the other two boundary conditions, so we integrate the first
term by parts one more time to expose terms involving f ′:∫ L

0

f ′w′′ +
1

2
ff ′′wdη + f ′′(L)w(L)− f ′(L)w′(L) + f ′(0)w′(0)

Note that it not advantageous to integrate the second term from the govern-
ing equation by parts because it is non-linear and will lead to a more complex
weak form. Using the two boundary conditions on f ′, the weak form becomes∫ L

0

f ′w′′ +
1

2
ff ′′wdη + f ′′(L)w(L)− w′(L) = 0

To solve this numerically, we can discretize the test function with

w(η) =
∑
i

wigi(η)

where gi(0) = 0 in order to strongly enforce the Dirichlet boundary. Because the
test function is arbitrary, the coefficients wi are arbitrary, thus the discretized
weak form becomes a system of equations∫ L

0

f ′g′′i +
1

2
ff ′′gidη + f ′′(L)gi(L)− g′i(L) = 0

Now we discretize the solution in the same way:

f(η) =
∑
j

fjgj(η)
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=⇒
∑
j

fj

∫ L

0

g′jg
′′
i dη+

∑
j

∑
k

fjfk

∫ L

0

1

2
gjg

′′
kgidη+

∑
j

fjg
′′
j (L)gi(L)−g′i(L) = 0

Defining the following quantities allows us to write this in a simpler form:

χij :=

∫ L

0

g′′i g
′
jdη

κijk :=

∫ L

0

1

2
gigjg

′′
kdη

Γij := gi(L)g
′′
j (L)

Φi := g′i(L)

=⇒ χijfj + κijkfjfk + Γijfj − Φi = 0 := Ri

We need to solve the non-linear system of governing equations Ri. This can
be done with Newton’s method, for which a tangent stiffness matrix is needed.
Because the non-linearity is only quadratic, this is a reasonably simple quantity.
It can be written as

∂Ri

∂fℓ
= χiℓ + κiℓkfk + κijℓfj + Γiℓ

This term is used in a Newton solve algorithm to iteratively find coefficient
f that satisfy the system of equations R. This is how the Blasius equation could
be solved as a boundary value problem.
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