Going in circles: returning to the basic physics of rotation

Conor Rowan ¹,

¹University of Colorado Boulder, Center for Mechanics Without Application (CMWA)

MORIS Meeting

1/20

Provocation

- Strange things happen when objects rotate
- Linear momentum is pretty intuitive, angular momentum is not
- But angular momentum is entirely derivative of linear momentum and is not a separate principle!

Conor Rowan MORIS Meeting November 2025 2 / 20

Starting from particles

 Most of mechanics can be derived from the conservation of linear momentum for particles:

$$\mathbf{F} = \frac{\partial}{\partial t} (m \frac{\partial \mathbf{x}}{\partial t})$$

• Consider a collection of N particles with masses $\{m_i\}_{i=1}^N$ and positions $\{\mathbf{x}_i(t)\}_{i=1}^N$:

$$\frac{\partial^2}{\partial t^2} \left(\frac{\sum_i m_i \mathbf{x}_i}{\sum_i m_i} \right) = \frac{1}{\sum_i m_i} \sum_i (\mathbf{F}_i^{\text{ext}} + \sum_{j \neq i} \mathbf{F}_{ij})$$

• Define $M = \sum_{i} m_{i}$ and $\mathbf{X} = \sum_{i} m_{i} \mathbf{x}_{i} / \sum_{i} m_{i}$ and note that $\sum_{i} \sum_{j \neq i} \mathbf{F}_{ij} = \mathbf{0}$ by Newton's third law:

$$M\frac{\partial^2 \mathbf{X}}{\partial t^2} = \sum_i \mathbf{F}_i^{\text{ext}}$$

Conor Rowan MORIS Meeting November 2025 3/20

Interpretation

- External forces cause motion of the center of mass (or vice versa?)
- This result is true for rigid and deformable bodies
- This is a "coarse-graining"—we lose information about the motion of individual particles
- The body can satisfy the coarse-grained linear momentum relation but violate linear momentum conservation at the particle level
- In order to remedy this, we first assume that the collection of particles form a "rigid body," i.e.

$$\frac{\partial}{\partial t} \frac{1}{2} \|\mathbf{x}_i - \mathbf{x}_j\|^2 = 0, \quad i, j = 1, 2, \dots, N, \quad j \neq i$$

$$\implies (\mathbf{x}_i - \mathbf{x}_j) \cdot (\dot{\mathbf{x}}_i - \dot{\mathbf{x}}_j) = 0$$

• Now decompose motion into (motion of center of mass) + (motion around center of mass)...

Decomposition of motion

 Can be shown that the general form of motion that satisfies the rigid body condition is

$$\dot{\mathbf{x}}_i = \mathbf{V} + \boldsymbol{\omega} \times \mathbf{x}_i$$

Take time derivative of center of mass to obtain

$$\dot{\mathbf{X}} = \frac{1}{M} \sum_{i} m_{i} \dot{\mathbf{x}}_{i} = \frac{1}{M} \sum_{i} m_{i} (\mathbf{V} + \boldsymbol{\omega} \times \mathbf{x}_{i}) = \mathbf{V} + \boldsymbol{\omega} \times \mathbf{X}$$

$$\Rightarrow \mathbf{V} - \dot{\mathbf{X}} - \boldsymbol{\omega} \times \mathbf{X}$$

• Now define center of mass coordinates as $\mathbf{x}_i' = \mathbf{x}_i - \mathbf{X}$ and use the definition of \mathbf{V} to write the velocity of particle i as

$$\dot{\mathbf{x}}_{\mathbf{i}} = \dot{\mathbf{X}} - \omega \times \mathbf{X} + \omega \times (\mathbf{x}_i' + \mathbf{X}) = \dot{\mathbf{X}} + \omega \times \mathbf{x}_i'$$

• Coarse-grained linear momentum relation governs $\dot{\mathbf{X}}$, what governs the angular velocity $\boldsymbol{\omega}$?

5/20

Sidenote: kinetic energy decomposition

• Can use this velocity decomposition in defining the kinetic energy of the (continuous) body Ω :

$$T = \int_{\Omega} \frac{1}{2} \rho \|\dot{\mathbf{x}}\|^2 d\Omega = \int_{\Omega} \frac{1}{2} \rho (\|\dot{\mathbf{X}}\|^2 + 2\dot{\mathbf{X}} \cdot (\boldsymbol{\omega} \times \mathbf{x'}) + e_{ijk}\omega_j x'_k e_{i\ell m}\omega_\ell x'_m) d\Omega$$
$$= \frac{1}{2} M \|\dot{\mathbf{X}}\|^2 + 0 + \frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{I} \boldsymbol{\omega}, \quad \int_{\Omega} \rho \mathbf{x'} d\Omega = 0, \quad I_{j\ell} := \int_{\Omega} \rho e_{ijk} e_{i\ell m} x'_k x'_m d\Omega$$

- The kinetic energy of the body decomposes into a purely translational and purely rotational component
- I is the moment of inertia tensor, which is a property of the body's geometry

◆ロト ◆個ト ◆差ト ◆差ト を めへぐ

Angular momentum of a particle

- Angular momentum equations are obtained by taking the cross product of linear momentum
- For a single particle, this reads

$$\mathbf{x} \times \mathbf{F} = \mathbf{x} \times \frac{\partial}{\partial t} (m \frac{\partial \mathbf{x}}{\partial t}) = \frac{\partial}{\partial t} (\mathbf{x} \times m \frac{\partial \mathbf{x}}{\partial t})$$
(1)

- Define the angular momentum vector for a particle as ${\bf L}={\bf x}\times m\frac{\partial {\bf x}}{\partial t}$ and the torque as ${m au}={\bf x}\times {\bf F}$
- This formulation is not useful for a single particle

Conor Rowan MORIS Meeting November 2025 7 / 20

Angular momentum of body

 The angular momentum about the center of mass of a continuum body is

$$\mathbf{L} = \int_{\Omega} \mathbf{x}' \times \rho \dot{\mathbf{x}}' d\Omega$$

 When the body is rigid, we can use the velocity decomposition to write

$$\mathbf{L} = \int_{\Omega} \mathbf{x}' \times
ho(\boldsymbol{\omega} \times \mathbf{x}') d\Omega = \left(\int_{\Omega}
ho e_{kij} e_{k\ell m} x_j' x_m' d\Omega\right) \omega_{\ell} = \mathbf{I} \boldsymbol{\omega}$$

 This is the same moment of inertia tensor derived from the rotational kinetic energy

Conor Rowan MORIS Meeting November 2025 8 / 20

Conservation of angular momentum for a body

- In order for the body to be rigid and in circular motion, there need to be internal "constraint" forces
- Assume particle \mathbf{x}'' exerts a force on particle \mathbf{x}' through $\mathbf{c}(\mathbf{x}',\mathbf{x}'')$:

$$\frac{\partial}{\partial t} \mathbf{L} = \frac{\partial}{\partial t} (\mathbf{I} \boldsymbol{\omega}) = \underbrace{\int_{\Omega} \mathbf{x}' \times \mathbf{f} d\Omega}_{\text{external torque}} + \underbrace{\int_{\Omega} \mathbf{x}' \times \left(\int_{\Omega'} \mathbf{c}(\mathbf{x}', \mathbf{x}'') d\Omega' \right) d\Omega}_{\text{internal torque}}$$

ullet The external forces ullet are often taken to move with the body and thus the external torque can be time-independent even with rotations

Conor Rowan MORIS Meeting November 2025 9 / 20

Dealing with the internal torque term

- The net torque from internal forces drops out in certain circumstances
- To see this, consider the discretized form of the internal torque and use Newton's third law:

$$\tau^{\text{int}} = \sum_{i} \left(\mathbf{x}'_{i} \times \sum_{j} \mathbf{c}_{ij} \right) = \mathbf{x}'_{1} \times (\mathbf{c}_{12} + \mathbf{c}_{13} + \dots) + \mathbf{x}'_{2} \times (\mathbf{c}_{21} + \mathbf{c}_{23} + \dots)$$

$$= (\mathbf{x}'_{1} \times \mathbf{c}_{12} + \mathbf{x}'_{2} \times \mathbf{c}_{21}) + (\mathbf{x}'_{1} \times \mathbf{c}_{13} + \mathbf{x}'_{3} \times \mathbf{c}_{31})$$

$$= (\mathbf{x}'_{1} - \mathbf{x}'_{2}) \times \mathbf{c}_{12}$$

- If the force lies along the relative position vector between the points, each cross product in the sum that forms the internal torque is zero
- This means that the constraint forces which maintain rigidity of the body do not show up in angular momentum conservation

Conor Rowan MORIS Meeting November 2025 10 / 20

Summary

- Angular momentum conservation for the body is the rotational analogue of the statement that external forces cause motion of the center of mass
- This is the extra requirement needed such that linear momentum at the particle level is satisfied
- ullet This equation governs the angular velocity ω , which fully determines the velocity field of a rigid body
- Conservation of angular momentum reads:

$$\frac{\partial}{\partial t}(\mathbf{I}\omega) = \boldsymbol{ au}^{\mathsf{ext}}$$
 (2)

 Most intuitive to the angular momentum and torques about the center of mass of the body

Conor Rowan MORIS Meeting November 2025 11 / 20

Common simplifications

 Note that an identity for the product of permutation symbols can be used to write

$$egin{aligned} I_{i\ell} &= \int_{\Omega}
ho e_{kij} e_{k\ell m} x_j' x_m' d\Omega = \int_{\Omega}
ho (\delta_{i\ell} \delta_{jm} - \delta_{im} \delta_{j\ell}) x_j' x_m' d\Omega \ &= \int_{\Omega}
ho (\delta_{i\ell} x_m' x_m' - x_\ell x_i) d\Omega \end{aligned}$$

- The moment of inertia tensor is diagonal when $\int_{\Omega} \rho x_{\ell}' x_{i}' d\Omega = 0$
- Such a coordinate system is found by solving an eigenvalue problem for the "principal axes"
- When the axis of rotation is fixed around x'_3 , the coordinate system is aligned with principal axes, and the body is rigid, the governing equation for the angular velocity is

$$I_{33}\dot{\omega}_3 = \tau_3, \quad I_{33} = \int_{\Omega} \rho(x_1'^2 + x_2'^2) d\Omega$$

Conor Rowan MORIS Meeting November 2025 12 / 20

Rate of change of angular momentum

 For an arbitrary rotation, both the moment of inertia tensor and angular velocity vector are time-dependent:

$$rac{\partial}{\partial t}\mathsf{L} = rac{\partial \mathsf{I}}{\partial t}\omega + \mathsf{I}rac{\partial \omega}{\partial t} = au^\mathsf{ext}$$

- The moment of inertia tensor changes in time because the body changes orientation
- Use the Leibniz rule for an integral whose bounds are time-varying:

$$\frac{\partial \mathbf{I}}{\partial t} = \frac{\partial}{\partial t} \left(\int_{\Omega(t)} \rho e_{kij} e_{k\ell m} x_j' x_m' d\Omega \right) = \int_{\partial \Omega} (\rho e_{kij} e_{k\ell m} x_j' x_m') (\boldsymbol{\omega} \times \mathbf{x}') \cdot \mathbf{n} dS$$

- This requires finding the surface at each point in time and computing integrals over the body...
- The geometry of the body is independent of time if we choose a coordinate system that moves with the body

Time derivative of a quantity in rotating frame

- Define basis vectors $\{\hat{\mathbf{a}}_i\}_{i=1}^3$ which rotate with the body (as opposed to a standard coordinate system is fixed in space)
- Rates of changes of a vector quantity $\mathbf{q}(\mathbf{a})$ arise from movement within the coordinate system and movement of the coordinate system itself

$$rac{\partial}{\partial t}(q_i\hat{\mathbf{a}}_i) = rac{\partial q_i}{\partial t}\mathbf{\hat{a}}_i + q_irac{\partial \mathbf{\hat{a}}_i}{\partial t} = rac{\partial q_i}{\partial t}\mathbf{\hat{a}}_i + q_i(oldsymbol{\omega} imes \mathbf{\hat{a}}_i) = rac{\partial \mathbf{q}}{\partial t} + oldsymbol{\omega} imes \mathbf{q}_i$$

 When the body is rigid, the moment of inertia tensor is time-independent in the a coordinate system, so conservation of angular momentum becomes

$$rac{\partial}{\partial t}\mathsf{L} = rac{\partial}{\partial t}(\mathsf{I}\omega) = \mathsf{I}rac{\partial\omega}{\partial t} + \omega imes (\mathsf{I}\omega) = oldsymbol{ au}^\mathsf{ext}$$

 This is the non-linear Euler equation for rotational motion, which predicts interesting behavior such as precession

Conor Rowan MORIS Meeting November 2025 14 / 20

Deformable bodies

- A rotating body necessarily experiences internal forces to prevent it from flying apart (material points want to move in straight lines)
- These forces will cause deformations, which introduce time-dependence into the moment of inertia tensor even in the body axes
- There is thus a two-way coupling between the equation for the angular velocity and the displacement field
- When the deformations are small, we can solve for the angular velocity independent of the displacement, then compute the displacement with stress equilibrium in a rotating frame:

$$\rho\left(\ddot{\mathbf{u}} + \underbrace{\dot{\boldsymbol{\omega}} \times (\mathbf{a} + \mathbf{u})}_{\text{Euler}} + \underbrace{2(\boldsymbol{\omega} \times \dot{\mathbf{u}})}_{\text{Coriolis}} + \underbrace{\boldsymbol{\omega} \times \boldsymbol{\omega} \times (\mathbf{a} + \mathbf{u})}_{\text{Centripetal}}\right) = \nabla \cdot \boldsymbol{\sigma} + \mathbf{b}(\mathbf{a})$$

• The time derivatives computed in body coordinate system introduce fictitious forces

Euler equation in principal basis

 When the body coordinate system is aligned with principal axes, the moment of inertia tensor is diagonal and the Euler equation in the absence of torques is

$$I_1\dot{\omega}_1 + \omega_2\omega_3(I_3 - I_2) = 0$$

$$I_2\dot{\omega}_2 + \omega_1\omega_3(I_1 - I_3) = 0$$

$$I_3\dot{\omega}_3 + \omega_1\omega_2(I_2 - I_1) = 0$$

• Assume that the moments of inertia around the principal axes are ordered so that $I_1 < I_2 < I_3$

Conor Rowan MORIS Meeting November 2025 16 / 20

Intermediate axis theorem

- Try to spin your phone around each of the three principal axes...it is only possible around the axes with the largest and smallest moments of inertia!
- To see this, consider perturbations $\delta_1(t)$ and $\delta_2(t)$ introduced to angular velocity $\Omega(t)$ around the intermediate axis

$$\omega_1 = \delta_1(t), \quad \omega_2 = \Omega(t), \quad \omega_3 = \delta_3(t)$$

Plugging into the second equation:

$$I_2\dot{\Omega} = -\delta_1\delta_3(I_1 - I_3) \approx 0 \implies \Omega(t) = \Omega_0$$
 (3)

 Plugging into the first and third equations, differentiating the first and substituting the third, we obtain

$$I_1\ddot{\delta}_1 + \frac{\Omega_0^2}{I_3}(I_3 - I_2)(I_1 - I_2)\delta_1 = 0$$
 (4)

Conor Rowan MORIS Meeting November 2025 17 / 20

Intermediate axis theorem (cont.)

- Based on the relative sizes of the moments of inertia, the coefficient on δ_1 is negative
- This corresponds to exponential growth of the perturbation
- Perturbed rotations about the other axes give rise to exponential decay of the perturbation
- Torque free rotation around the intermediate axis is unstable, rotation around the other axes is stable

Conor Rowan MORIS Meeting November 2025 18 / 20

Momentum conservation in a continuum body

 Conservation of linear momentum of a "chunk" of a continuum is a statement about the motion of the center of mass:

$$\frac{\partial}{\partial t} \int_{\Omega} \rho(\mathbf{x}) \mathbf{v}(\mathbf{x}) d\Omega = \int_{\Omega} \mathbf{b}(\mathbf{x}) d\Omega + \int_{\partial \Omega} \mathbf{t}(\mathbf{x}) dS$$

• Center of mass motion is a coarse-grained statement of momentum laws, need angular momentum to ensure that motion is physical:

$$\begin{split} \frac{\partial}{\partial t} \int_{\Omega} \mathbf{x} \times \rho(\mathbf{x}) \mathbf{v}(\mathbf{x}) d\Omega &= \int_{\Omega} \mathbf{x} \times \mathbf{b}(\mathbf{x}) d\Omega + \int_{\partial \Omega} \mathbf{x} \times \mathbf{t}(\mathbf{x}) dS \\ &= \int_{\Omega} e_{ijk} x_j \rho \frac{\partial v_k}{\partial t} d\Omega = \int_{\Omega} e_{ijk} x_j b_k + e_{ijk} x_j \frac{\partial \sigma_{k\ell}}{\partial x_{\ell}} + e_{ijk} \sigma_{kj} d\Omega \\ &\implies \int e_{ijk} \sigma_{kj} d\Omega = 0 \end{split}$$

 This shows that the symmetry of the stress tensor ensures conservation of angular momentum

Conor Rowan MORIS Meeting November 2025 19 / 20

Outstanding questions

- Angular momentum for deformable bodies
- Make sense of the bike wheel experiment
- Do a precession problem
- Asymmetry of the first Piola-Kirchhoff stress tensor?