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Provocation

Strange things happen when objects rotate

Linear momentum is pretty intuitive, angular momentum is not

But angular momentum is entirely derivative of linear
momentum and is not a separate principle!
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https://www.youtube.com/watch?v=1n-HMSCDYtM


Starting from particles

Most of mechanics can be derived from the conservation of linear
momentum for particles:

F =
∂

∂t
(m

∂x

∂t
)

Consider a collection of N particles with masses {mi}Ni=1 and
positions {xi (t)}Ni=1:
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∂t2
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i mixi∑
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Define M =
∑

i mi and X =
∑

i mixi/
∑

i mi and note that∑
i

∑
j ̸=i Fij = 0 by Newton’s third law:

M
∂2X

∂t2
=
∑
i

Fext
i
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Interpretation

External forces cause motion of the center of mass (or vice versa?)

This result is true for rigid and deformable bodies

This is a “coarse-graining”—we lose information about the motion of
individual particles

The body can satisfy the coarse-grained linear momentum relation
but violate linear momentum conservation at the particle level

In order to remedy this, we first assume that the collection of particles
form a “rigid body,” i.e.

∂

∂t

1

2
∥xi − xj∥2 = 0, i , j = 1, 2, . . . ,N, j ̸= i

=⇒ (xi − xj) · (ẋi − ẋj) = 0

Now decompose motion into (motion of center of mass) + (motion
around center of mass)...
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Decomposition of motion

Can be shown that the general form of motion that satisfies the rigid
body condition is

ẋi = V + ω × xi

Take time derivative of center of mass to obtain

Ẋ =
1

M

∑
i

mi ẋi =
1

M

∑
i

mi (V + ω × xi ) = V + ω × X

=⇒ V = Ẋ− ω × X

Now define center of mass coordinates as x′i = xi − X and use the
definition of V to write the velocity of particle i as

ẋi = Ẋ− ω × X+ ω × (x′i + X) = Ẋ+ ω × x′i

Coarse-grained linear momentum relation governs Ẋ, what governs
the angular velocity ω?
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Sidenote: kinetic energy decomposition

Can use this velocity decomposition in defining the kinetic energy of
the (continuous) body Ω:

T =

∫
Ω

1

2
ρ∥ẋ∥2dΩ =

∫
Ω

1

2
ρ(∥Ẋ∥2 + 2Ẋ · (ω × x′) + eijkωjx

′
keiℓmωℓx

′
m)dΩ

=
1

2
M∥Ẋ∥2 + 0 +

1

2
ω · Iω,

∫
Ω
ρx′dΩ = 0, Ijℓ :=

∫
Ω
ρeijkeiℓmx

′
kx

′
mdΩ

The kinetic energy of the body decomposes into a purely translational
and purely rotational component

I is the moment of inertia tensor, which is a property of the body’s
geometry
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Angular momentum of a particle

Angular momentum equations are obtained by taking the cross
product of linear momentum

For a single particle, this reads

x× F = x× ∂

∂t
(m

∂x

∂t
) =

∂

∂t
(x×m

∂x

∂t
) (1)

Define the angular momentum vector for a particle as L = x×m ∂x
∂t

and the torque as τ = x× F

This formulation is not useful for a single particle
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Angular momentum of body

The angular momentum about the center of mass of a continuum
body is

L =

∫
Ω
x′ × ρẋ′dΩ

When the body is rigid, we can use the velocity decomposition to
write

L =

∫
Ω
x′ × ρ(ω × x′)dΩ =

(∫
Ω
ρekijekℓmx

′
j x

′
mdΩ

)
ωℓ = Iω

This is the same moment of inertia tensor derived from the rotational
kinetic energy
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Conservation of angular momentum for a body

In order for the body to be rigid and in circular motion, there need to
be internal “constraint” forces

Assume particle x′′ exerts a force on particle x′ through c(x′, x′′):

∂

∂t
L =

∂

∂t
(Iω) =

∫
Ω
x′ × fdΩ︸ ︷︷ ︸

external torque

+

∫
Ω
x′ ×

(∫
Ω′

c(x′, x′′)dΩ′
)
dΩ︸ ︷︷ ︸

internal torque

The external forces f are often taken to move with the body and thus
the external torque can be time-independent even with rotations
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Dealing with the internal torque term

The net torque from internal forces drops out in certain circumstances

To see this, consider the discretized form of the internal torque and
use Newton’s third law:

τ int =
∑
i

x′i ×
∑
j

cij

 = x′1 × (c12 + c13 + . . . ) + x ′2 × (c21 + c23 + . . . ) + . . .

= (x′1 × c12 + x′2 × c21) + (x′1 × c13 + x′3 × c31) + . . .

= (x′1 − x′2)× c12 + . . .

If the force lies along the relative position vector between the points,
each cross product in the sum that forms the internal torque is zero

This means that the constraint forces which maintain rigidity of the
body do not show up in angular momentum conservation
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Summary

Angular momentum conservation for the body is the rotational
analogue of the statement that external forces cause motion of the
center of mass

This is the extra requirement needed such that linear momentum at
the particle level is satisfied

This equation governs the angular velocity ω, which fully determines
the velocity field of a rigid body

Conservation of angular momentum reads:

∂

∂t
(Iω) = τ ext (2)

Most intuitive to the angular momentum and torques about the
center of mass of the body
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Common simplifications

Note that an identity for the product of permutation symbols can be
used to write

Iiℓ =

∫
Ω
ρekijekℓmx

′
j x

′
mdΩ =

∫
Ω
ρ(δiℓδjm − δimδjℓ)x

′
j x

′
mdΩ

=

∫
Ω
ρ(δiℓx

′
mx

′
m − xℓxi )dΩ

The moment of inertia tensor is diagonal when
∫
Ω ρx ′ℓx

′
i dΩ = 0

Such a coordinate system is found by solving an eigenvalue problem
for the “principal axes”

When the axis of rotation is fixed around x ′3, the coordinate system is
aligned with principal axes, and the body is rigid, the governing
equation for the angular velocity is

I33ω̇3 = τ3, I33 =

∫
Ω
ρ(x ′21 + x ′22 )dΩ
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Rate of change of angular momentum

For an arbitrary rotation, both the moment of inertia tensor and
angular velocity vector are time-dependent:

∂

∂t
L =

∂I

∂t
ω + I

∂ω

∂t
= τ ext

The moment of inertia tensor changes in time because the body
changes orientation

Use the Leibniz rule for an integral whose bounds are time-varying:

∂I

∂t
=

∂

∂t

(∫
Ω(t)

ρekijekℓmx
′
j x

′
mdΩ

)
=

∫
∂Ω

(ρekijekℓmx
′
j x

′
m)(ω × x′) · ndS

This requires finding the surface at each point in time and computing
integrals over the body...

The geometry of the body is independent of time if we choose a
coordinate system that moves with the body
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Time derivative of a quantity in rotating frame

Define basis vectors {âi}3i=1 which rotate with the body (as opposed
to a standard coordinate system is fixed in space)

Rates of changes of a vector quantity q(a) arise from movement
within the coordinate system and movement of the coordinate system
itself

∂

∂t
(qi âi ) =

∂qi
∂t

âi + qi
∂âi
∂t

=
∂qi
∂t

âi + qi (ω × âi ) =
∂q

∂t
+ ω × q

When the body is rigid, the moment of inertia tensor is
time-independent in the a coordinate system, so conservation of
angular momentum becomes

∂

∂t
L =

∂

∂t
(Iω) = I

∂ω

∂t
+ ω × (Iω) = τ ext

This is the non-linear Euler equation for rotational motion, which
predicts interesting behavior such as precession
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Deformable bodies

A rotating body necessarily experiences internal forces to prevent it
from flying apart (material points want to move in straight lines)
These forces will cause deformations, which introduce
time-dependence into the moment of inertia tensor even in the body
axes
There is thus a two-way coupling between the equation for the
angular velocity and the displacement field
When the deformations are small, we can solve for the angular
velocity independent of the displacement, then compute the
displacement with stress equilibrium in a rotating frame:

ρ

ü+ ω̇ × (a+ u)︸ ︷︷ ︸
Euler

+2(ω × u̇)︸ ︷︷ ︸
Coriolis

+ω × ω × (a+ u)︸ ︷︷ ︸
Centripetal

 = ∇ · σ + b(a)

The time derivatives computed in body coordinate system introduce
fictitious forces
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Euler equation in principal basis

When the body coordinate system is aligned with principal axes, the
moment of inertia tensor is diagonal and the Euler equation in the
absence of torques is

I1ω̇1 + ω2ω3(I3 − I2) = 0

I2ω̇2 + ω1ω3(I1 − I3) = 0

I3ω̇3 + ω1ω2(I2 − I1) = 0

Assume that the moments of inertia around the principal axes are
ordered so that I1 < I2 < I3
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Intermediate axis theorem

Try to spin your phone around each of the three principal axes...it is
only possible around the axes with the largest and smallest moments
of inertia!

To see this, consider perturbations δ1(t) and δ2(t) introduced to
angular velocity Ω(t) around the intermediate axis

ω1 = δ1(t), ω2 = Ω(t), ω3 = δ3(t)

Plugging into the second equation:

I2Ω̇ = −δ1δ3(I1 − I3) ≈ 0 =⇒ Ω(t) = Ω0 (3)

Plugging into the first and third equations, differentiating the first
and substituting the third, we obtain

I1δ̈1 +
Ω2
0

I3
(I3 − I2)(I1 − I2)δ1 = 0 (4)
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Intermediate axis theorem (cont.)

Based on the relative sizes of the moments of inertia, the coefficient
on δ1 is negative

This corresponds to exponential growth of the perturbation

Perturbed rotations about the other axes give rise to exponential
decay of the perturbation

Torque free rotation around the intermediate axis is unstable, rotation
around the other axes is stable
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Momentum conservation in a continuum body

Conservation of linear momentum of a “chunk” of a continuum is a
statement about the motion of the center of mass:

∂

∂t

∫
Ω
ρ(x)v(x)dΩ =

∫
Ω
b(x)dΩ+

∫
∂Ω

t(x)dS

Center of mass motion is a coarse-grained statement of momentum
laws, need angular momentum to ensure that motion is physical:

∂

∂t

∫
Ω
x× ρ(x)v(x)dΩ =

∫
Ω
x× b(x)dΩ+

∫
∂Ω

x× t(x)dS

=

∫
Ω
eijkxjρ

∂vk
∂t

dΩ =

∫
Ω
eijkxjbk + eijkxj

∂σkℓ
∂xℓ

+ eijkσkjdΩ

=⇒
∫

eijkσkjdΩ = 0

This shows that the symmetry of the stress tensor ensures
conservation of angular momentum
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Outstanding questions

Angular momentum for deformable bodies

Make sense of the bike wheel experiment

Do a precession problem

Asymmetry of the first Piola-Kirchhoff stress tensor?
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