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Capacity and Error Probability Analysis of
Neuro-Spike Communication Exploiting

Temporal Modulation
Keyvan Aghababaiyan , Student Member, IEEE, Vahid Shah-Mansouri , Member, IEEE,

and Behrouz Maham, Senior Member, IEEE

Abstract— In this paper, we consider a neuro-spike communi-
cation system between two neurons where nano-machines are
used to enhance ability of neurons. Nano-machines can be
employed for stimulation tasks when neurons have lost their
ability to communicate. In the assumed system, information
is conveyed via the time intervals between the input spikes
train. For efficiency evaluation of temporal coding, we model the
neuro-spike communication system by an additive Gamma noise
channel. We present this model by considering different time
distortion factors in the neuro-spike system. Then, we derive
upper and lower bounds on the channel capacity. We analyze
the channel capacity bounds as functions of the time intervals
between the input spikes and the firing threshold of the target
neuron. Moreover, we propose maximum likelihood and max-
imum a posteriori receivers and derive the resulting bit error
probability when the system uses binary modulation. In addition,
we obtain an upper bound for this error probability. Then,
we extend this upper bound to the symbol error probability of
the T -ary modulations. Simulation results show that this upper
bound is tight. The derived results show that temporal coding has
a higher efficiency than spike rate coding in terms of achievable
data rate.

Index Terms— Neuro-spike communication, temporal
modulation, capacity bounds, symbol error probability, gamma
distribution.

I. INTRODUCTION

RECENT developments in nano-technology and commu-
nication engineering are expected to lead to a new gener-

ation of nano-scale devices implantable inside the human body
[2], [3]. Nano-scale devices or nano-machines are capable
of carrying out complex tasks and overcoming their indi-
vidual limitations through interconnecting in a nano-network
[4], [5]. Recently, intra-body nano-networks have been pro-
posed for monitoring the nervous system [6]–[8]. The main

Manuscript received March 30, 2019; revised July 12, 2019 and
November 5, 2019; accepted December 10, 2019. Date of publication Decem-
ber 27, 2019; date of current version April 16, 2020. This article was
presented in part at the 2018 IEEE Wireless Communications and Networking
Conference (WCNC 2018) [1]. The associate editor coordinating the review of
this article and approving it for publication was M. Pierobon. (Corresponding
author: Vahid Shah-Mansouri.)

Keyvan Aghababaiyan and Vahid Shah-Mansouri are with the School of
Electrical and Computer Engineering, College of Engineering, University
of Tehran, Tehran 14395-515, Iran (e-mail: aghababaiyan@ut.ac.ir; vman-
souri@ut.ac.ir).

Behrouz Maham is with the Department of Electrical and Computer
Engineering, School of Engineering, Nazarbayev University, Astana 010000,
Kazakhstan (e-mail: behrouz.maham@nu.edu.kz).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCOMM.2019.2962805

goal of such system is to assist the development of new
medical diagnosis and treatment techniques. A class of appli-
cations is based on the deployment of autonomous or coor-
dinated nano-machines in the neuronal tissue, to directly
apply or indirectly induce a stimulus [9]. The neuron is
a biological computational unit with pre-synaptic input ter-
minals, processing unit and post-synaptic output terminals
[10]. Following this application, nano-machine to neuron
interfaces can be used in the pre-synaptic and post-synaptic
terminals.

The nervous system is a natural communication system
in the body that conveys biological information. There are
about 100 billion nerve cells in the human nervous system,
and on average, each of them communicates directly with
1000 others [11]. The communication among neurons is called
neuro-spike communication. Neuro-spike communication is a
hybrid system comprising three main parts. In the first part,
i.e., the axonal transmission, action potentials propagate along
the nerve fiber, called axon. Note that an action potential is
an oscillation of roughly 100 mV in the electrical potential
across the cell velum that lasts for about 1 ms. Neuroscientists
often refer to action potentials as spike. Since the spikes in
the nervous system are similar, the information has to be
encoded in the configurations of the spikes which propagate
along the axon. Neural coding refers to the mapping from
the stimulus to the configurations of the generated spikes by
neurons [12]. In particular, neurons employ the spike rate and
temporal coding to transmit information via action potentials.
When a spike arrives at the end of the axon, the pre-synaptic
terminals release packet of neuro-transmitters into the synaptic
cleft between two adjoining neurons. The synaptic transmis-
sion, the second part of neuro-spike communication, begins
with the releasing these packets. Every packet includes many
neuro-transmitter molecules. Each neuro-transmitter propa-
gates towards the receiving neuron via free diffusion. There are
many post-synaptic terminals at the dendrites, where receptors
are located which receive the propagated molecules. When a
sufficient number of neuro-transmitters is absorbed, the final
part of neuro-spike communication, called spike generation,
is commenced due to the movement of ions. There is a
population of ion channels at membrane of the output neuron.
Thus, moving ions excites its membrane potential, and leads
to the generation of a new action potential with firing of
the neuron [12]. There is a threshold for each neuron that
has to be excluded for firing. Thus, in the nervous system,
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the information is transmitted from one neuron to another one
by spikes.

In the nervous system, if spikes propagate from the
pre-synaptic neuron to the post-synaptic neuron with a con-
stant delay, when information is encoded by patterns of input
spikes, the communication channel is noiseless and the output
spikes pattern is identical to the input spikes pattern. However,
this is not a realistic assumption in practice since there are
many reasons which distort time of spikes in the neuro-spike
communication system. We describe these reasons in different
parts of neuro-spike communication in the following.

• Axonal Transmission: The traveling speed of the spikes
along the axon is not constant. Lass and Abeles [13]
found jitter in the speed of the spikes propagating through
a single fiber of the frog sciatic nerve, to which a pair of
stimuli was applied to generate a pair of output spikes.
Moreover, the speed of a spike depends on the history
of the spike train since the transmission of a spike
modifies the physiological state of the axon. If a spike
is generated before the original physiological state of the
axon is restored, the traveling speed through the axon is
affected [14].

• Synaptic Transmission: A spike is generated by the output
neuron due to the integration of stimuli arriving at several
different synapses associated with this neuron [15]. Since
diffusion of neuro-transmitters in the synapse is random,
integrated stimuli reach the firing threshold randomly.
Moreover, size of released neuro-transmitter vesicles to
the synaptic cleft due to arriving a spike is random [16].

• Spike Generation: The amplitude of the post-synaptic
responses is different trial-to-trial [17]. Thus, the stimuli
of different vesicles for spike generation are not similar.
Moreover, when the integrated stimuli approaches the
threshold value, whether an output spike occurs or not
is fully stochastic [18]. This means, sometimes an output
spike is generated and sometimes it is not [19].

For these reasons, generated spikes travel at different speeds
and the time intervals between them are altered as they prop-
agate between two neurons. In temporal modulation, the time
intervals between input spikes are important and the input
spike pattern represents the information that is encoded. The
stochastic properties of neuro-spike communication channel
impair the time relations between input spikes. This phenom-
enon is referred to as channel noise. Channel noise affects the
action potential propagation time and produces trial-to-trial
variability in action potential timing.

Neuro-spike communication has been the focus of recent
researches. It has been shown in [12] that the efficiency of
neuro-spike communication is acceptable in terms of robust-
ness, speed, and reliability. In [20], a mathematical model
has been provided which shows how a neuron stochastically
processes data and transmits information. A physical channel
representation has been proposed in [17] to characterize the
fundamental properties of neuro-spike communication. This
model has been inspired by the neuro-spike communication
in the Cornu Ammonis (CA) region, a specific zone in the
hippo-campus area of the brain. An alternative model for the

neuron-to-neuron communication process has been proposed
in [21]. In [22], a mathematical channel model for synaptic
communication via modeling the diffusion and binding of
neuro-transmitters and reabsorption of neuro-transmitters by
the transmitting neuron has been proposed. The authors of [23]
have proposed a realistic pool-based model for vesicle release
and have evaluated the capacity of information transmission
for this process. The authors of [24] have derived theoretical
upper bounds on the capacity of both bipartite and tripartite
synapses. The authors of [16] have investigated the multiple-
access communications among neurons. In [25] and [26],
we have derived the axonal transmission channel capacity
by modeling the input spike train and the axonal noise.
In [27], [28] and [29], the effect of axonal variability on
the synaptic transmission has been studied. However, none
of the above works have considered the temporal modulation
employing spike intervals for information transfer in neuro-
spike communication. In this paper, we study the neuro-spike
communication timing channels and their capacity bounds.
We consider a neuro-spike communication channel between
two neurons located in the motor cortex region of the brain
where the information is encoded by spike time intervals [30].
We take into account the variations in propagation time in the
axonal pathway, synaptic transmission, and spike generation
parts. In particular, for synaptic transmission, we consider the
Brownian motion model which is a commonly used model
for the propagation of neuro-transmitters in the synaptic cleft.
In this paper, we assume transmitter and receiver are ideal and
do not include errors. Hence, in our model, the communication
is corrupted by the randomness originating from the variations
of the propagation time of spikes. The key contributions of this
paper can be summarized as follows:

• We model the jitter of the neuro-spike communication
channel between two neurons, located in the motor cortex
region exploiting temporal modulation, as channel noise.
We show a Gamma random variable is suitable to model
this jitter. Thus, the neuro-spike communication channel
is modeled as communication over an additive Gamma
noise channel.

• Exploiting the additive Gamma noise model, we develop
upper and lower bounds on the capacity of the con-
sidered neuro-spike communication system. We derive
these bounds by using the additivity property of Gamma
distributions.

• We investigate the receiver design for neuro-spike com-
munication systems exploiting temporal modulation and
present ML and MAP detectors for binary modulation.
Moreover, we derive bit error probability and an upper
bound on the corresponding bit error probability of ML
detector.

• We extend the ML detector to T -ary modulation, and
derive an upper bound on the corresponding symbol error
probability.

This paper is organized as follows. In Section II, we present
the system model for neuro-spike communication when tem-
poral modulation is used. This system model is exploited
in Section III to derive capacity bounds for the neuro-spike
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Fig. 1. Employing nano-machines for stimulation tasks when neurons have
lost their ability to communicate.

communication channel. In Section IV, we develop a Maxi-
mum Likelihood Estimator (MLE) for the transmission time
of spikes. In addition, we design ML and MAP detectors
for temporal modulations. Furthermore, we analyze the error
probability of different modulation formats in this section.
Finally, in Section V, we conclude this paper.

II. SYSTEM MODEL

Neuro-degenerative diseases are incurable and debilitating
conditions that result in progressive degeneration or death of
nerve cells. In these situations, the connection of neurons is
lost. Recent experiments have shown a loss of neurons connec-
tivities increases average path-length between neurons. This
is the main reason of Alzheimer’s disease [31]. The neurons
size ranges from 4 to 100 μm which appears extremely small;
however, from the molecular point of view, there is enough
space to place nano-scale devices. These nano-machines are
employed to reconnect the nerve cells. There are three sce-
narios as shown in Fig. 1. In these scenarios, one or more
nano-machines connect to the unhealthy neurons. When the
pre-synaptic neuron is unhealthy, pre-synaptic nano-machines
release neuro-transmitters to the synaptic cleft according to
the received stimuli from the pre-synaptic neuron as shown
in Fig. 1 (a). When the post-synaptic neuron is unhealthy,
post-synaptic nano-machines bind neuro-transmitters from the
synaptic cleft and stimulate the post-synaptic neuron as shown
in Fig. 1 (b). The third scenario is synthesis of the first and sec-
ond scenarios as shown in Fig. 1 (c). The connection between
nano-machines and neuron is called gap junction [9]. In the
gap junctions, the membranes of neuron and nano-machines

are in direct contact where they are separated by only 3 nm.
In every side of this connection, clusters of connexine (Cx36)
proteins [32] are combined to form a channel with diameter
1 − 2 nm. The connexine allows bidirectional flows of ions
between neuron and nano-machines. Passing the flows of ions
between neuron and nano-machines through the gap junction
is fast and it takes a short time in comparison to the time
required for diffusion of neuro-transmitters across the synaptic
cleft. Hence, neglecting the effect of gap junctions, the system
model of neuro-spike communication comprises three main
parts, i.e., the axonal pathway, synaptic transmission, and spike
generation. We investigate these parts in detail to develop a
suitable mathematical model for the neuro-spike communi-
cation jitter. In neuro-spike communication systems, jitter is
referred to the variation in the delay of the spikes. Since we
assume the communicating neurons are located in the motor
cortex region, we consider the neurons of this region for our
model. The motor cortex is a region in the cerebral cortex
involved in the planning, control, and execution of voluntary
movements.

A. Variation of Propagation Time Along the Axonal Pathway

In the axonal pathway, due to the refractory period, the pat-
tern of output spike train is different from the pattern of input
spikes. The refractory period cuts off short action potential
intervals and alters the propagation velocities of the spikes.
Hence, the biological information which is encoded by the
time intervals between the spikes and the instantaneous spike
rate is impaired. Exploiting biophysical theory and stochas-
tic simulations have demonstrated that there is a significant
variation in the action potential propagation time along axons
with different diameters [33], [34]. The variability in the post-
axonal responses will increase in the longer and thinner axons.
The authors of [33] have studied the movement of triggered
action potentials along the axons of Intra Telencephalic (IT)
and Pyramidal Track (PT) neurons in the motor cortex region.
They have reported a short latency and a temporal variation
in the propagation time of the action potentials. Accord-
ing to the results reported in [33] (Figs. 3 (c), (g) and
Fig. 5 (g)), a Gaussian distribution is a suitable model to
describe the variation of the action penitential propagation
time along the axon. For modeling the propagation time in
the axonal pathway, we assume the length of the axon is
da and the average velocity of propagation of spikes along
the axon is V̄ . We adopt a Gaussian stochastic variable to
model the transmission time of the spikes along the axon,
i.e., ta ∼ N(μa, σ2

a), and

f(ta) =
1√

2πσ2
a

e
− (ta−μa)2

2σ2
a , (1)

where μa = V̄
da

is the mean of the traveling time and its
variance is σ2

a.

B. Synaptic Transmission Model

In this paper, we consider chemical synapses which are
specialized junctions where cells of the nervous system com-
municate with one another. In the synaptic transmission part,
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Fig. 2. The diffusion process of neuro-transmitters in the synaptic cleft with
considering spillover effect.

we assume that when a spike arrives at the pre-synaptic termi-
nal, the content of one vesicle of excitatory neuro-transmitters
is released. The release of neuro-transmitters influences the
membrane ion flow of the output neuron to increase the
probability that the cell will produce an action potential, i.e., it
has an excitatory effect. We consider Glutamate as the neuro-
transmitters. Glutamate is used by the great majority of fast
excitatory synapses in the brain [35]. We assume each vesicle
contains NGlu neuro-transmitters. The vesicle release is very
fast and it takes a short time for all of the neuro-transmitters
to enter the cleft compared to the time required for diffusion
across the cleft. Hence, we assume that the neuro-transmitters
are released instantaneously.

Moreover, we take into account that the movement of
neuro-transmitter molecules is governed by a Brownian motion
[36]. Hence, the neuro-transmitters concentration in different
locations and for different times can be approximated by Fick’s
equation [37] as

∂C(x, y, z, t)
∂t

= D∇2C(x, y, z, t), (2)

where D is the diffusion coefficient, t ≥ 0, and (x, y, z) ∈
�2 × [0, L] according to Fig. 2. Since the content of vesicle
is released instantaneously and we assume that the release
befalls at the origin of x-y plane, the initial distribution for
concentration of neuro-transmitters is described as

C(x, y, z, 0) = NGluδ (x, y, z) , (3)

where NGlu is the number of neuro-transmitters in a vesicle.
Next, we assume that there is no flux of neuro-transmitters
through pre-synaptic and post-synaptic membranes. It results
the boundary conditions as

δ

δz
C(x, y, 0, t) =

δ

δz
C(x, y, L, t) = 0. (4)

Recent studies showed that neuro-transmitters which are
released at synapses, sometimes diffuse long enough distances
to activate receptors located outside the synaptic cleft or
even in neighboring synapses. This phenomenon is termed
spillover which has significant physiological effects on the
synaptic transmission [38]. Considering the effect of spillover,
the solution of the diffusion equation in terms of Fourier Series
in a domain between two parallel planes with infinite extent
is obtained as [39]

C(x, y, z, t) =
N t

Glu

4πLDt
exp(−x2 + y2

4Dt
)(

1 + 2
N∑

n=1

cos
(nπz

L

)
exp

(
− (nπ)2Dt

L2

))
, (5)

Fig. 3. (a) Integrate-and-Fire (I&F) system model. (b) The equivalent model
by employing Thévenin’s theorem.

where N is the number of Fourier modes taken in the
approximation and N t

Glu is the number of Glutamate molecules
in the synapse at time t. It is obtained by subtracting the
number of bound neuro-transmitters from NGlu, i.e., N t

Glu =

NGlu−
t−∑

t′=0

N̂ t′
Glu. Bound neuro-transmitters are counted from

the moment of releasing vesicle up to time t−.
A fraction of the neuro-transmitters are reabsorbed by the

pre-synaptic terminal for recycling. Therefore, we consider
the impact of this reuptake process to obtain a more realistic
model. To model the reuptake process, we consider the same
concentration as in no-flux case with modifying the coefficient
of Fourier modes based on the uptake probability, i.e., Pu.
When the reuptake probability is 0, i.e., Pu = 0, no neuro-
transmitter which hits the pre-synaptic boundaries is absorbed.
On the other hand, when the reuptake probability tends to 1,
i.e., Pu = 1, all particles are absorbed. Hence, through con-
sidering the corresponding modification to reuptake process,
the neuro-transmitters concentration is obtained as

C(x, y, z, t)

=
N t

Glu

4πLDt
exp(−x2 + y2

4Dt
)(

1 + 2
N∑

n=1

(1 − Pu)n cos
(nπz

L

)
exp

(
− (nπ)2Dt

L2

))
.

(6)

C. Spike Generation

We consider an efficient model for generation of spikes,
which is referred to as Integrate-and-Fire (I&F) model [40] as
shown in Fig. 3 (a). In this model, the neuron is modeled as a
capacitor, C. There is a threshold voltage for neurons and they
can generate a spike when their membrane voltage exceeds this
threshold voltage. According to Fig. 3 (a), we have

Im(t) =
Vc(t)

R
+ C

dVc(t)
dt

, (7)

where Vc(t) is the voltage of capacitor C, R is the value of
the neuron membrane resistance, and Im(t) is the current that
results from movement of ions across the neuron membrane.
By employing the Thévenin’s theorem, the described model
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in Fig. 3 (a) can be replaced by the model in Fig. 3 (b). Thus,
the expression in (7) is converted to

Vm(t) = Vc(t) + τm
dVc(t)

dt
, (8)

where Vm(t) = RIm(t) and τm = RC which is the time con-
stant of the RC circuit. In the I&F model, the excitatory neuro-
transmitters make positive charge onto the capacitor through
depolarization. Moreover, the voltage waveform generated at
one receptor in response to a neuro-transmitter, i.e., Excitatory
Post-Synaptic Potential (EPSP), can be modeled by an alpha
function as [17]

h(t) = hpeak
t

τ
exp(1 − t

τ
)u(t), (9)

where τ is a constant associated with the type of the receptor,
hpeak is the peak EPSP magnitude, and u(t) is the Heaviside
step function which is defined as u(t) = 1 for t ≥ 0 and
u(t) = 0 for t < 0. We consider α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) receptors for Glu-
tamate neuro-transmitters. Moreover, it is assumed that neuro-
transmitters are independent. We assume receptors bind neuro-
transmitters in a small volume around them which is referred
to as the effective volume [41]. The probability of finding
each neuro-transmitter inside the effective volume around a
receptor, i.e., Ve, at time t is obtained as

Pe
t =

∫ ∫
Ve

∫
C(x, y, z, t)dxdydz. (10)

Thus, the binding probability Pe
t for an unoccupied receptor at

time t can be described as P t
Glu = 1−(1 − P t

e)Nt
Glu , where N t

Glu
is the number of unbound excitatory neuro-transmitters in the
synaptic cleft at time t with considering the reuptake process.
Therefore, the number of received neuro-transmitters at time
t can be derived as N̂ t

Glu = N t
GluP

t
Glu. When we only consider

the effect of one received neuro-transmitter, the generated
voltage at the post-synaptic terminal becomes

V̂m(t) = h(t). (11)

The Laplace transform of V̂m(t) is given by

V̂m(s) = hPeak
e

τ
(
s + 1

τ

)2 . (12)

Thus, according to the expression in (8), the Laplace transform
of the voltage of the capacitor resulted from one neuro-
transmitter, i.e., V̂c(s) is obtained as

V̂c(s) = hPeak
e

τ
(
s + 1

τ

)2 (1 + τms)
. (13)

Hence, the voltage of capacitor is derived as

V̂c(t) = hPeak

(
ττ2

m(e−
t

τm − e−
t
τ )

(τ − τm)2
+

τmte−
t
τ

(τ − τm)

)
e. (14)

Next, by considering the effect of all bound neuro-transmitters
at time t, i.e., N̂ t

Glu, the voltage of capacitor is derived as

Vc(t) = N̂ t
GluV̂c(t) + Vc(0), (15)

TABLE I

SIMULATION PARAMETERS

where Vc(0) is the initial voltage of C. In our model,
we assume spikes are generated whenever the voltage Vc(t)
exceeds a voltage threshold, i.e., Vth. Then, the diode momen-
tarily turned on to generate a spike. We define the time of
spike generation as td = tx + ta, where ta is the propagation
time along the axon and tx is the time that the voltage Vc(t)
reaches to the threshold value, i.e., Vth. This means tx =
{t ∈ � |Vc(t) = Vth}. Next, we analyze f(td) by numerical
methods and since it cannot be described in a closed form,
we endeavor to approximate f(td) by known distributions.

We perform Monte Carlo simulation to analyze the f(td)
with parameters given in Table I. Fig. 4 (a)-(c) show the
f(td) in this scenario. It can be observed that PDF of td
is generally skewed toward higher delays. Hence, Gamma,
Inverse Gaussian and Log-Normal distributions plus a constant
value can be suitable candidates to approximate the f(td).
These distributions have different parameters for fitting to the
f(td). We summarize these distributions and their parameters
in the following. All distributions have a constant shift for
modeling the minimum value of td.

G(α, β, Δ) =
βα

Γ(α)
(x − Δ)α−1e−β(x−Δ), x > Δ, (16)

IG(μ, γ, Δ) =
(

γ

2π(x − Δ)3

)0.5

e
−λ(x−Δ−μ)2

2μ2(x−Δ) , x > Δ,

(17)

LN(μ, σ2, Δ) =
1

(x − Δ)σ
√

2π
e−

(Ln(x−Δ)−μ)2

2σ2 , x > Δ.

(18)

Then, we compare these distributions in terms of Root Mean
Square Error (RMSE) to find the best approximation for f(td).
The RMSE can be defined as

∞∫
0

(f(td) − f(P1, P2, Δ))2dtd, (19)

where according to (16)-(18), (P1, P2) denote (α, β) in
Gamma, (μ, γ) in Inverse Gaussian, and (μ, σ) in Log-Normal
distribution and Δ is a constant shift. Tables II, III, and IV
report the RMSE of the mentioned distributions for different
values of their parameters. We highlight the optimum para-
meters of each distribution. It can be observed that Gamma
distribution has a lower RMSE in comparison to other dis-
tributions. Hence, we conclude that the Gamma distribution
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Fig. 4. (a) f(td) and the best approximated Gamma distribution. (b) f(td) and the best approximated Inverse Gaussian distribution. (c) f(td) and the best
approximated Log-Normal distribution.

TABLE II

THE RMSE OF THE APPROXIMATION OF f(td) BY

GAMMA DISTRIBUTIONS WITH

DIFFERENT PARAMETERS

is the best approximation for f(td). Next, we choose the
optimum parameters of the approximated Gamma distribution
in different simulation scenarios by minimizing the RMSE as

(α∗, β∗, Δ∗) = argmin
α,β,Δ

∞∫
0

(f(td) − G(α, β, Δ))2dtd. (20)

D. Modeling the Jitter of Neuro-Spike Communication
Channel as Channel Noise

The output spikes arrival times are affected by different
delays. When the propagation delay is constant, it is possible
to obtain the input spike times according to the output arrival
times; however, the spike propagation delays are fluctuated due
to the neuro-spike communication channel jitter. We consider
this jitter as an additive noise in the form of a random
propagation delay. In this paper, we assume this jitter is the
only source of uncertainty in output spikes arrival times. Since
this noise has a Gamma distribution, we refer to the channel as
an additive Gamma noise channel. Since the obtained Gamma
distribution has a time shift from the origin, we consider
the delay of the channel contains two terms. The minimum
propagation delay, denoted as τ , which is deterministic and
a random delay which is modeled by a Gamma distribution
without any shift, referred to as N . Thus, the arrival time of
the output spike at the post-synaptic neuron can be modeled
as

Y � = X + N + τ, (21)

where X is the input spike time. For simplicity, since τ is a
deterministic term, we define Y = Y � − τ , and henceforth,
we consider Y as the arrival time of the output spike. More-
over, we can consider N as a Gamma random variable with
the following PDF:

fN (n) =
βα

Γ(α)
nα−1e−βn = G(α, β). (22)

By substituting the expression in (21) into (22) and considering
the fact that Y = Y � − τ , the conditional PDF of the arrival
time of the output spike, i.e., Y = y when the input spike is
propagated at X = x can be obtained as

fy|x(y|x) =

⎧⎨
⎩

βα

Γ(α)
(y − x)α−1e−β(y−x), y > x,

0, y ≤ x.
(23)

III. CAPACITY BOUNDS OF NEURO-SPIKE

COMMUNICATION CHANNEL

In this section, we analyze the capacity of the neuro-spike
communication channel when we encode the information by
the input spike train time intervals. According to the presented
model in (21), the mutual information between the input X
and the output Y of the neuro-spike communication channel
is obtained by

I(X ; Y ) = h(Y ) − h(Y |X) = h(Y ) − h(X + N |X), (24)

where h(·) is the entropy function. Since X and N are
independent processes, we have

I(X ; Y ) = h(Y ) − h(N |X) = h(Y ) − h(N). (25)

The capacity of a channel is defined as the maximum mutual
information between its input and output which is optimized
over all possible input distributions fX(x). The constraints
on the input signal X determine the set of all possible
input distributions. The constraints on the input signal are
application dependent, e.g., both peak-constrained and mean
constrained inputs can be considered based on the application.
In this paper, we consider the mean constrained input signal
since the average arrival time of input spikes is affected by
the average input spike rate. Moreover, the peak constraints
are not analytically tractable. Thus, we assume the transmitter
neuron waits less than m seconds in average to transmit each
input spike. Hence, the channel capacity with input X and
mean constraint E [X ] ≤ m is defined as

C = max
fx(x):E(X)≤m

I(X ; Y ). (26)

The expected value of channel jitter noise, i.e., E(N) is finite.
Thus, the expected value of arrival times of the output spikes
at the receiver nano-machine is constrained, i.e., E(Y ) =
E(X) + E(N) ≤ m + E(N). From this expression, we can
conclude since the PDF of N is supported on [0,∞), the peak
constraint is not meaningful for the arrival times at the
receiver nano-machine. Unfortunately, there is no closed form

Authorized licensed use limited to: Nazarbayev University. Downloaded on April 30,2020 at 14:34:39 UTC from IEEE Xplore.  Restrictions apply. 



2084 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 4, APRIL 2020

TABLE III

THE RMSE OF THE APPROXIMATION OF f(td) BY INVERSE GAUSSIAN DISTRIBUTIONS WITH DIFFERENT PARAMETERS

TABLE IV

THE RMSE OF THE APPROXIMATION OF f(td) BY LOG-NORMAL DISTRIBUTIONS WITH DIFFERENT PARAMETERS

solution for the channel capacity with Gamma distribution
noise unlike the AWGN channel. Hence, we exploit Gamma
distribution function to find upper and lower bounds on the
channel capacity. Prior to obtain these bounds, we present
two properties of the Gamma distribution function that we
use them later on.

Property 1 (Differential entropy of Gamma distributions):
We describe the differential entropy of a Gamma distribution
by hG(·) based on parameters α and β as

hG(α, β) = α − ln(β) + ln(Γ(α)) + (1 − α)Ψ(α), (27)

where Ψ(α) = Γ′(α)
Γ(α) and Γ(α) =

∞∫
0

qα−1e−qdq. This

differential entropy was proved in [1].
Property 2 (Additivity property of Gamma distributions):

Assume Ni ∼ G(αi, β), i = 1, 2, . . . , L are not necessarily

independent Gamma random variables. Then, N =
L∑

i=1

Ni

is a Gamma random variable as N ∼ G

(
L∑

i=1

αi, β

)
. This

property was proved in [1].
By using properties 1 and 2, the following theorem presents

the capacity bounds of neuro-spike communication channel.
Theorem 1: The capacity of neuro-spike channel with addi-

tive Gamma noise, which is defined in (26), is bounded as

hG(α+mβ, β)−hG(α, β)≤C≤ ln
(

(m+
α

β
)e
)
− hG(α, β),

(28)

where hG(α, β) is obtained by Property 1.
Proof: The proof is given in Appendix A.

Moreover, we consider a Doubly Poisson distribution to
model the input spike train times. Since there may be numer-
ous independent sources that produce the excitation, the input
spike train can be assumed as a Poisson process. Moreover,
the arrival of the stimuli can result no impulse, one impulse
or more than one impulse independent of time; therefore,
the firing rate of the neuron is itself a stochastic process as
well. This type of Poisson process is called Doubly Poisson.

In this scenario, we can only describe fY (y) in a closed form.
Thus, numerical methods is exploited to derive the mutual
information. We assume γ(t) is the intensity of Doubly Pois-
son process. The optimum distribution for γ(t) is described
as [25]

γ(t) =

{
γ, P1 = Pλ,

0, P0 = 1 − Pλ.
(29)

Since the waiting times for Poisson distribution is an expo-
nential distribution with parameter γ(t), according to the
expression in (29), the distribution of input spikes intervals
is obtained as

fX(x) =

{
γe−λxu(x), P1 = Pλ,

δ(x − k), P0 = 1 − Pλ,
(30)

where k = m−Pλλ
1−Pλ

since we have E(x) = m. Hence,
according to the expressions in (22) and (30), the output
distribution is derived by convolution of the input and channel
noise distributions as

fY (y) = Pλ

(
γe−λyu(y)

) ∗ (βαyα−1e−βy

Γ(α)
u(y)

)

+(1 − Pλ)

(
βα(y−k)α−1

e−β(y−k)

Γ(α)
u(y − k)

)
, (31)

where ∗ is the convolution operator.
Unlike AWGN channels, in our channel model, there is no

parameter like SNR which determines the mutual information.
In this condition, the mutual information is a function of both
average input spike train intervals and the receiver threshold,
i.e., Vth. Fig. 5 (a) shows the mutual information versus the
average input spike train intervals by considering a Doubly
Poisson distribution with Pλ = 0.5 as distribution of the times
of input spike train. Moreover, the upper and lower bounds
of channel capacity are shown where the output distribution
is considered as exponential and Gamma distributions in
these scenarios, respectively. As can be observed, the upper
and lower bounds are close to each others for shorter spike
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Fig. 5. (a) The upper and lower bounds of the channel capacity versus different values of input spike train intervals for Vth = −55 mV. (b) The upper and
lower bounds of the channel capacity versus different values of Vth.

intervals. In addition, the input with Doubly Poisson distri-
bution tracks the upper bound for different input intervals.
To evaluate the performance of using temporal coding in
neuro-spike communication systems, we compare the obtained
results based on the proposed model with reported results in
existing information-theoretic literature about nervous system.
The upper and lower bounds on the capacity of neuro-spike
communication system using spike rate coding have been pre-
sented in [48] for different spike frequencies. By comparison
between the obtained results and Fig. 5 in [48], for the same
spike frequencies, we conclude that temporal coding has a
higher efficiency than spike rate coding in terms of achievable
data rate. Moreover, Fig. 5 (b) shows the mutual information
versus different values of Vth. It can be observed the upper
and lower capacity bounds reduce when Vth increases since
the jitter of channel increases in this situation.

IV. RECEIVER DESIGN FOR NEURO-SPIKE

COMMUNICATION SYSTEM WITH

TEMPORAL MODULATIONS

In this section, we discuss the error probability of the
neuro-spike channel by recovering the transmission time of
input spikes from the arrival times of output spikes when we
employ different modulations. First, we obtain MLE for the
transmission time based on arrival time. Then, we develop the
ML and MAP receivers and analyze the error probability for
ML detector.

A. Maximum Likelihood Estimator

We denote the MLE of X as X̂ML, which is given by

X̂ML = argmax
t

fY |X(Y |X = t), (32)

where

fY |X(Y |X = t) =

⎧⎨
⎩

βα

Γ(α)
(Y − t)α−1e−β(Y −t), y ≥ t,

0, y < t.

(33)

Theorem 2: The ML estimation of the transmitted time X
in the neuro-spike channel with an additive Gamma noise is
obtained as

X̂ML = Y − α − 1
β

. (34)

Proof: The proof is given in Appendix B.

B. ML Detection

Similar to the AWGN channels which use signal
constellations, we exploit discrete values for the input of the
neuro-spike communication channel, i.e., the input spike train
time intervals. Thus, for T -ary modulation, we can denote the
transmission times by

X ∈ {t1, t2, . . . , tT } , 0 ≤ t1 < t2 < . . . < tT . (35)

In the first step, by using discrete input times set, we analyze
the error probability for binary modulation, where T = 2 with
exploiting ML detection at the receiver. Let X ∈ {t1, t2} , 0 ≤
t1 < t2, with P1 = P(X = t1) and P2 = P(X = t2). Hence,
the log-likelihood ratio L(Y ) is obtained as

L(Y ) = log
(

fY |X(Y |X = t2)
fY |X(Y |X = t1)

)
= Λ(t2) − Λ(t1). (36)

We can simplify L(Y ) as

L(Y ) =

⎧⎨
⎩ (α−1) ln

(
Y −t2
Y −t1

)
+β(t2−t1), Y > t2,

−∞, Y ≤ t2.
(37)

When L(Y ) is positive, t2 has higher likelihood than t1 and
vice versa, when L(Y ) is negative t2 has lower likelihood
than t1. When L(Y ) = 0, there is no preference between t1
and t2. We relinquish this case, which happens with vanishing
probability. Therefore, for ML detection, we set the decision
threshold as Yth = 0 and the decision rule is derived as

XML =

{
t2, L(Y ) > 0,

t1, L(Y ) < 0.
(38)

To consider maximum a posteriori (MAP) detection at the
receiver, we exploit the same decision rule when we replace
L(Y ) > 0 with L(Y ) > ln

(
P1
P2

)
. Hence, for the MAP

detection, we have

Yth = L(Y ) = ln
(

P1

P2

)
, (39)

and the decision rule is derived as

XMAP =

⎧⎪⎪⎨
⎪⎪⎩

t2, L(Y ) > ln
(

P1

P2

)
,

t1, L(Y ) < ln
(

P1

P2

)
.

(40)
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Fig. 6. (a) Bit error probability of binary modulation and its upper bound for Vth = −55 mV when P1 = 0.6 and P2 = 0.4. (b) Symbol error probability
of T -ary modulation for different values of T which is obtained through Monte Carlo simulation and its upper bound for Vth = −55 mV.

C. Error Probability Analysis for Binary Modulation

For binary modulation, the bit error probability is derived
as

Pe = P1 × P {Y = t2|X = t1}+P2 × P {Y = t1|X = t2} ,

(41)

where P {Y = t2|X = t1} is the probability of Y = t2 when
X = t1 and it can be obtained as

P {Y = t2|X = t1} =

∞∫
Yth

fY |X {Y |X = t1}dY. (42)

It can be simplified as

P {Y = t2|X = t1} = 1 − FN (α, β(Yth − t1))

= 1 − 1
Γ(α)

γ(α, β(Yth − t1)), (43)

where FN (·) is CDF of channel jitter noise and Yth is the
decision threshold value of Y . Similarly, we have

P {Y = t1|X = t2} =

Yth∫
t2

fY |X {Y |X = t2}dY. (44)

It can be simplified as

P {Y = t1|X = t2} = FN (α, β(Yth − t2))

=
1

Γ(α)
γ(α, β(Yth − t2)), (45)

where P {Y = t1|X = t2} is the probability of Y = t1 when
X = t2. By inserting the expressions in (43) and (45) into (41),
the bit error probability of binary modulation is derived as

Pe = P1− P1

Γ(α)
γ(α, β(Yth − t1)) +

P2

Γ(α)
γ(α, β(Yth−t2)).

(46)

In the following, we derive an upper bound on the bit error
probability of binary modulation when P1 ≥ P2, which is
simple to calculate and it closely approximates the exact error
probability.

Theorem 3: Consider binary modulation with input spikes
time intervals X ∈ {t1, t2}, 0 ≤ t1 < t2, with P(X = t1) =
P1, P(X = t2) = P2 and P1 ≥ P2. The upper bound on the

bit error probability of neuro-spike channel with an additive
Gamma noise by using the ML detector is obtained as

Pe < P1 (1 − FN (t2 − t1)) . (47)

Proof: The proof is given in Appendix C.

D. Symbol Error Probability of T -Ary Modulation

For T -ary modulation, we can easily generalize the symbol
error probability bound. We assume input spikes time intervals
X ∈ {t1, t2, . . . , tT }, where 0 ≤ t1 < t2 < . . . < tT and
P1 ≥ P2 ≥ . . . ≥ PT , and thus, the upper bound on the
symbol error probability is derived as

Pe ≤
T−1∑
i=1

Pi (1 − FN (ti+1 − ti))

≤
T−1∑
i=1

Pi

(
1 − 1

Γ(α)
γ (α, β(ti+1 − ti))

)
. (48)

In a special case, when P1 = P2 = . . . = PT , we have

Pe ≤ T − 1
T

(
1 − 1

Γ(α)
γ (α, βΔt)

)
, (49)

where Δt is the average input spike train intervals.

E. Numerical Results

Fig. 6 (a) shows the bit error probability with binary
modulation. This figure compares the exact value of the error
probability and its upper bound. As can be observed, they are
very close to each others. Fig. 6 (b) shows the symbol error
probability with T -ary modulation for different values of T .
This figure compares the error probability of this modulation
which is obtained through Monte Carlo simulation and the
upper bound of this error probability for T = 4, 8. It can be
observed, the proposed upper bound is tight.

V. CONCLUSION

In this paper, we considered a neuro-spike communication
system where information conveyed in the time intervals of
input spike train. We have modeled this channel as an additive
Gamma noise channel. We have indicated via numeral methods
that the proposed channel model is suitable for a neuro-
spike communication system exploiting temporal modulation.
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Then, we have analyzed the channel capacity bounds versus
different values of input spike train time intervals and the
firing threshold of the receiver. It has been observed that the
upper and lower bounds are close to each other for shorter
input spikes intervals. According to the obtained results,
we conclude that temporal coding has a higher efficiency
than spike rate coding in terms of achievable data rate for
the same spike frequencies. In addition, we have proposed
optimum ML and MAP receivers and we have derived the bit
error probability for ML receiver when the system uses binary
modulation. Besides, we have obtained an upper bound for this
error probability. Then, we have extended this upper bound to
T -ary modulation. Simulation results have shown the upper
bounds are tight for different modulations.

APPENDIX A
PROOF OF THEOREM 1

From (25), we have I (X ; Y ) = h (Y ) − hG (α, β).
Therefore, we can conclude that the I(X ; Y ) achieves its
maximum value via maximizing h(Y ) subject to the constraint
E (X) ≤ m or equivalently E (Y ) ≤ m + α

β . Hence, I(X ; Y )
is maximized when h(Y ) gets its maximum value subject to
fY (y) = 0, y < 0, and E (Y ) ≤ m + α

β . To derive the upper
bound of the neuro-spike communication channel with an
additive Gamma noise, we consider an exponential distribution
for the output spikes time intervals which is defined over the
interval (0,∞), since the exponential distribution is known as
the entropy maximizing distribution when a random variable
has a mean constraint [49]. By assuming Y ∼ exp( 1

m+ α
β

);

it is obtained that h(Y ) = ln
(
(m + α

β )e
)

and h(Y ) has
the maximum value for any possible distributions of Y with
E (Y ) ≤ m + α

β . Hence, we have

C ≤ ln
(

(m +
α

β
)e
)
− (α − ln(β)

+ ln (Γ(α)) + (1 − α)Ψ(α)), (A.1)

that it can be simplified as

C ≤ ln
(

(mβ + α)e
Γ(α)

)
−α − (1 − α)Ψ(α) = CUpper. (A.2)

To derive the lower bound of the neuro-spike communication
channel with an additive Gamma noise, we consider the input
spike train time intervals, i.e., X is Gamma distributed with
α� and β parameters. Hence, when the input distribution is
assumed as G(mβ, β) since E (X) = m, then according to
Property 2, the output distribution is obtained as Y ∼ G(α +
mβ, β). Therefore, we have h(Y ) = hG(α+mβ, β). By using
Property 1, we derive

C ≥ mβ + ln
(

ln(α + mβ)
ln(α)

)
+ (1 − α − mβ)Ψ(α + mβ)

−(1 − α)Ψ(α) = CLower. (A.3)

Note that in this case fY (y) is not necessarily an entropy
maximizing distribution for a given mean of m + α

β . Thus,
we have CLower ≤ C ≤ CUpper.

APPENDIX B
PROOF OF THEOREM 2

We denote the log-likelihood function as Λ(ti) =
ln(fY |X(Y |X = ti)). Since ln(x) is a monotonic function,
we have

X̂ML = arg max
ti

fY |X(Y |X = ti) = arg max
ti

Λ(ti), (B.1)

where

Λ(ti) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α ln(β) − ln(Γ(α))
+(α − 1) ln(Y − ti)
−β(Y − ti), Y > ti,

−∞, Y ≤ ti.

(B.2)

By solving δΛ(ti)
δti

= 0 over values of Y > ti, we derive the
MLE as (34).

APPENDIX C
PROOF OF THEOREM 3

To prove (47), let

η =

∞∫
t2

fY |X(Y |X = t1)dY −
∞∫

Yth

fY |X(Y |X = t1)dY

=

Yth∫
t2

fY |X(Y |X = t1)dY . (C.1)

Since Yth > t2, we have η > 0. Moreover, we can write

P {Y = t2|X = t1}

=

∞∫
Yth

fY |X(Y |X = t1)dY =

∞∫
t2

fY |X(Y |X = t1)dY − η.

(C.2)

Based on the ML detection, when Y ≤ Yth, it can be
concluded that fY |X(Y |X = t1) ≤ fY |X(Y |X = t2). Thus,
we have

P {Y = t1|X = t2}

=

Yth∫
t2

fY |X(Y |X = t2)dY ≤
Yth∫
t2

fY |X(Y |X = t1)dY = η.

(C.3)

Finally, based on the expressions in (C.1) and (C.3), we can
write

Pe = P1 P {Y = t2|X = t1} + P2 P {Y = t1|X = t2}

≤ P1

⎛
⎝ ∞∫

t2

fY |X(Y |X)dY − η

⎞
⎠+ P2η

= P1

∞∫
t2

fY |X(Y |X = t1)dY − (P1 − P2)η. (C.4)
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Since we assume P1 ≥ P2, we conclude (P1 − P2)η ≥ 0.
Hence, we have

Pe ≤ P1

∞∫
t2

fY |X(Y |X = t1)dY . (C.5)

According to the definition of CDF function, we can write
∞∫
t2

fY |X(Y |X = t1)dY = 1−FN (t2− t1). Hence, the expres-

sion in (47) becomes.
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