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Silicon-based computer systems have powerful computational capability. However, they are easy to malfunction because of a
slight program error. Organisms have better adaptability than computer systems in dealing with environmental changes or noise.
A close structure-function relation inherent in biological structures is an important feature for providing great malleability to
environmental changes. An evolvable neuromolecular hardware motivated by some biological evidence, which integrates inter-
and intraneuronal information processing, was proposed. The hardware was further applied to the pattern-recognition domain.
The circuit was tested with Quartus II system, a digital circuit simulation tool. The experimental result showed that the artificial
neuromolecularware exhibited a close structure-function relationship, possessed several evolvability-enhancing features combined
to facilitate evolutionary learning, and was capable of functioning continuously in the face of noise.

1. Introduction

Effective programmability is an important feature inherent
in computer systems, including software and hardware,
which allows us to explore various problem domains. How-
ever, most of computer systems are brittle in the sense that a
slight modification of a system’s structure can inadvertently
change its functions or cause it to malfunction [1]. This
is because computer systems possess a mapping structure
with fitness landscapes consisting of isolated peaks that
are separated by wide, deep valleys. By contrast, organisms
possess a mapping structure with fitness landscapes holding
some degree of smoothness that a slight change in an organ-
ism’s gene structure generally will not significantly alter its
functions. Finding feasible solutions within a reasonable time
may become much easier in a smooth landscape than in a
rugged landscape [2]. In biological systems, the smoothness
(gradualism) property is naturally represented in the close
structure-function relationship.

In the early 1990s, some other researchers concentrated
on applying evolutionary techniques to hardware design.

They attempted to use a reconfigurable hardware to con-
tinually change the internal circuit structure until the desired
structure appears. This field was called evolvable hardware
(EHW). EHW brought an interdisciplinary integration. One
such idea is to combine the merits of biological sys-tems
and computer systems together and hopefully create hard-
ware with better adaptability. For example, Sipper and
Ronald [3] proposed an FPGA circuit to simulate the glob-al
behaviour of a swarm of fireflies. Mange et al. [4] success-
fully applied evolutionary techniques into the design of a
timer (stopwatch) and a full watch (biowatch) with digital
circuits. Higuchi and his colleagues [5, 6] worked on the
development of a number of evolvable hardware chips for
various applications, including an analog chip for cellular
phones, a clock-timing chip for Gigahertz systems, a chip
for autonomous reconfiguration control, a data compression
chip, and a chip for controlling robotic hands. Murakawa
et al. [7] applied evolutionary techniques to reconfigure
neural network topology, de Garis [8, 9] developed an
artificial brain that assembled a group of cellular automata-
based neural net modules to control a robot, and Torresen
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[10] designed an evolutionary digital circuit to control
prosthetic hands.

Our goal is to provide the digital machine with a
representation of the internal structure-function relations
of biological systems, to capture some of the dynamic
modes of the processing of these systems, and to incorporate
learning algorithms of the type used in natural systems.
Redundancy, weak interactions, and compartmentalization
are three important features inherent in biological structures
that facilitate evolutionary learning [1]. The proposed sys-
tem (artificial neuro molecular system, ANM) is a plastic
architecture with rich dynamics that combines these three
features into the system, in particular into the subneuronal
level of processing. We note that redundancy allows an
organism to absorb genetic changes and yet wait for other
mutations to join together to make a significant change
in its phenotypic traits. By virtue of redundancy, several
genetic mutations do not have to occur simultaneously. Weak
interaction is the other indispensable feature for facilitating
evolution. When the interactions among the constituted
components of a system are small, adding a component
into (or removing it from) a system will not significantly
alter its outputs (or functions). This allows a system to
stabilize its current state in responding to structural changes
or environmental changes. Compartmentalization is another
evolution-friendliness feature. It allows a system to block off
disturbance or noise in the environment.

2. Architecture of ANM

The ANM model was motivated from the molecular mecha-
nisms inside real neurons. The model consists of two types
of neurons: cytoskeletal neurons and reference neurons.
Cytoskeletal neurons have significant intraneuronal informa-
tion processing that might directly or indirectly relate to their
firing behavior. They combine, or integrate, input signals in
space and time to yield temporally patterned output signals.
Reference neurons serve as pointers to other neurons in a way
that allows for interneuronal memory manipulation.

In this section, we introduce the intraneuronal archi-
tecture that plays the role of integrating spatiotemporal
signals inside a neuron and the interneuronal architecture
that orchestrates groups of neurons for performing coherent
tasks. We then explain the evolutionary learning algorithm
used in this model.

2.1. Operation Hypotheses. The model is based on two
hypotheses.

H1. There are some brain neurons in charge of the time-
space information transition. This kind of neuron is
called cytoskeletal neuron. Cytoskeletal neurons are
based on the operation hypothesis between the nerve
cell cytoskeletons and molecules, producing a time-
space input signal and transducing it into a series of
time outputs [1, 11].

H2. There are some brain neurons in charge of memory
control and neuron group organization. This kind of
neuron is called reference neurons. The purpose of

reference neurons is to form a common-goal infor-
mation processing group from cytoskeletal neurons.
By the memory screening of reference neurons, each
workgroup would have neurons of different internal
structures, thus being able to finish the group task
[1, 11].

2.2. Intraneuronal Architecture. It has been firmly established
by now that information processing inside a neuron is
significant. The objective of the present study is not to
identify the precise nature of these mechanisms, but rather to
capture the working hypothesis that the cytoskeleton serves
as a signal integration system. Our model is restricted to
the membrane components. In the present implementation,
the membrane of the cytoskeleton is abstracted as a macro-
molecular network (a cytoskeletal network) comprising a
number of components capable of initiating, transmitting,
and integrating cytoskeletal signals. Our assumption is
that an inter-neuronal signal impinging on the membrane
of a neuron is converted to an intraneuronal signal (a
cytoskeletal signal) transmitting on the cytoskeleton. This
process was called “transduction”; therefore, a cytoskeletal
neuron could be considered a transducer with a specific
structure. Cytoskeletal neurons are platforms of message
processing, and they are inspired by the signal integration
and memory function of the cytoskeleton.

This research utilized 2D cellular automata (CA) [11–13]
to conduct the experiment of cytoskeletal neurons, and the
wraparound fashion links were adopted for the CA arrange-
ment. A cytoskeleton has multiple molecule networks of
microtubules, microfilaments, and neurofilaments. In order
to simulate these networks, we defined three kinds of fibers
to make a cytoskeleton type (C-type), and the fibers were
named C1, C2, and C3. Each of the cytoskeletal elements will
have its own shape, thus forming the cytoskeletal molecule
networks. The conformation of each cytoskeletal element is
variable; therefore, molecule-mass-like groups may possibly
be formed. Different types of cytoskeletal elements have
different signal transmission features. C1 has the strongest
signal bearing capacity, but it has the slowest transmission
speed. C3 has the weakest signal bearing capacity, but it has
the fastest speed. C2’s performance is between C1 and C3.
The illustration of cytoskeletal neurons structure is shown in
Figure 1. Each cytoskeletal neuron has its unique cytoskeletal
fiber structure. The types of signal flows depend on the dif-
ferent structures and different transmission characteristics.
Some signal flow would execute the transduction tasks with
a diffusion-like method, sometimes fast and sometimes slow.

When an external stimulus hits a cytoskeletal neuron
membrane, it will activate the readin enzyme at that location.
The activation will cause a signal flow to transmit along the
route of the same cytoskeletal elements. For example, after
the on-location (3, 2) readin received the external input, it
will transmit the signals to its eight neighbors that have the
same cytoskeletal element locations. The illustration shows
that it can transmit the signal to C2 at locations (2, 2) and
(4, 2). Any cytoskeletal element that receives this kind of
signal will do the same, thus forming the phenomenon of
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a signal flow. In order to ensure it is a one-way transmission,
meaning there will not be any signal backflow or loop
formed, the cytoskeletal element will enter a temporal resting
state after the transmission. This is called a refractory state.
The additional remark is that after a signal was transmitted
by a cytoskeletal element, the signal did not disappear imme-
diately within the element. Instead, the signal would decrease
progressively until it finally disappeared. The decreasing
signal and the new-coming signals would cause a time-space
integration reaction, and that is a very important mechanism
that decides when a firing will occur.

There could be some interactions among different
cytoskeletal fibers. Microtubule-associated proteins (MAPs)
have the ability to connect different cytoskeletal fibers,
thus causing cross-fiber signal flow channels. This will help
the flow of microsubstances within neurons. For instance,
when the input signal originated from location (3, 2)
goes along the C2 elements of the second column, it
will meet an MAP-linked C1 element at location (5, 2).
The C2 signal will be transmitted to C1 through MAP,
and another signal flow will be formed in C1. However,
due to different types of cytoskeletal fibers and different
transmission features, there might be some energy transition
problems when signals going through different mediums.
Hence, regarding the cross-fiber signals, this research defined
the signal bearing capacity of C1, C2, and C3 as S, I, and
W, meaning strong, intermediate, and weak. Because the
linking function provided by MAP allows the signals to flow
among different molecule elements, there exist information
processing behaviors within the neurons.

When a time-space integrated cytoskeletal signal arrives
at a location of a readout enzyme, the activation will lead
to a neuron firing. For example, the signal flows started at
locations (1, 5) and (8, 7) may be integrated at location
(5, 5), and the readout enzyme at that location would
be activated, thus causing a neuron firing. Because the
integrated cytoskeletal signals may continuously appear, the
firing outputs become a series of signals that happened in
different time points. This research collected these signals to
serve as the reference for transduction efficiency assessments.

2.3. Digital Hardware Design of Cytoskeletal Neuron. In the
process of digitalization, each grid in cytoskeletal neuron is
called processing unit (PU). Figure 2 shows the conceptual
architecture of a PU, including four control parts and four
signal processing blocks. The input department controler
is responsible for controlling the conversions of the signals
arriving at the input department into signals for the process
department. The output department controler is responsible
for controlling the layout of the information for signals sent
out from output department to its neighboring cells. The
processor department controller has two purposes. Firstly,
it will control the countdown of an accumulator so that
its value will degrade at a certain speed. Secondly, it will
control the timing of the signals sent from the accumulator
to its corresponding bounder, which in turn determines the
transmitting speed of a cell. The following explains how to
implement signal initiation, transmission, and integration
on the cytoskeleton of a neuron.
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Figure 1: Structure of cytoskeletal neuron.

2.3.1. Signal Initiation. In the present implementation, there
are two possible mechanisms to initiate a cytoskeletal signal.
One is directly initiated by an external stimulus. When
a PU receives an external stimulus and there is a readin
enzyme sitting on it, a new cytoskeletal signal is initiated. The
other mechanism is combining some specific combinations
of cytoskeletal signals in space and time to turn a PU
into a highly activated state, which in turn initiates a new
signal. Each PU processes the signals sent from its eight
neighboring PUs through the input block (Figure 3). We
note that a PU will change its state when it receives a
signal from its neighboring PU (through MAP). Different
types of cytoskeletal signals are initiated and transmitted by
different types of PUs. We assume that there are four possible
PU types: C1, C2, C3, and none. The first three represent
different types of cytoskeletal components for transmitting
signals (i.e., different signal flows) whereas the last one
represents the lack of a component. In Figure 3, a signal from
a C1-type, C3-type, and C2-type neighboring PU is labeled
as S, W, and I, respectively.

2.3.2. Signal Transmission. The following explains how to
implement signal transmission on an 8 × 8 grid of PUs.
We assume that signal transmission occurs through the
neighboring PUs of the same type. An activated PU will
activate its neighboring PUs of the same type at its next time
step, which in turn activates its neighboring PUs of the same
type at the following next time step. This process continues as
long as there is a neighboring PU belonging to the same type.
To assure unidirectional signal transmission, an activated PU
will enter a refractory state. The refractory period depends
on the update time of each PU type (to be described in the
next section). It will then go back to the quiescent state after
the refractory period is over. A PU in the refractory state
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Figure 3: Conceptual architecture of the input block.

will ignore any stimuli during the refractory period. This
would prevent a signal from bouncing repeatedly between
two neighboring PUs. We note that the refractory time is an
important parameter that may affect the performance in the
present hardware design. That is, different output is possible
when length of the refractory time of each type is varied. But
our goal at this stage is to fulfill the function that a PU serves
as a signal integrator that combines different signals in space
and time (the detail will be described in the next section).
That is, the refractory time is fixed and will not be involved
in the evolutionary change. In the present implementation,
we have not performed a systematical experiment along this
line. But it would be interesting to perform the experiment
in the near future.

A switch controlled by the interrupt block is used to
regulate the signal flow from the input block to the integra-
tion block (Figure 4(a)). The timing of control is through the
output block (Figure 4(b)). When a PU is in the state of being

ready to take any signals from its neighboring PUs, its output
block will turn on the switch (through the interrupt block)
by sending it a high-voltage signal. This indicates that any
signal from its neighboring PU is allowed to change the state
of a PU. However, the switch will be turned off if a PU is
either in the state of processing a neighboring signal or in the
refractory state.

2.3.3. Signal Integration. As mentioned earlier, there are
three types of PUs for transmitting signals. Our implementa-
tion of signal integration is that, to fire a neuron, it requires
at least two different types of signals to rendezvous at a PU
within a short period of time. In other words, a PU serves
as a signal integrator that combines different signals in space
and time. To capture this feature, two hypotheses are used.
The first is that different PU types have different transmission
speeds. The second hypothesis is that an activated PU can
influence the state of its neighboring PU through MAP
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Figure 5: Transition rules of a PU. S, I, and W indicate a signal from a highly activated C1-, C2-, and C3-type PU, respectively. For example,
if C1-type PU in the state q0 receives an I signal it will enter the moderately activated state q2. If it receives a W signal it will enter the more
activated state q3. For example, a C1-type PU in the state q0 will enter the less active state q1 when it receives a signal from a neighboring
C3-type PU (i.e., signal W). We note that if a PU does not receive a stimulus before its next update time, it will go into state q1 if it was in
state q2, or enter state q0 if it was in q1.

linking them together. That is, the latter will make a state
transition when it receives a signal from the former.

We assume that a PU has six possible states: quiescent
(q0), active with increasing levels of activity (q1, q2, q3,
and q4), and refractory (qr). Certainly, the complexity of
intraneuronal dynamics will be greater when a larger number
of PU states are allowed. Correspondingly, it will increase the
complexity of the hardware design. We note that six states
are sufficient for present use. The following describes the
transition rules of each PU. A PU in the highly active state
(q 3 or q4) will return to the refractory state (qr) at its next
update time, and then go into the quiescent state (q0) at the
following next update time. The next state for a less active
PU (q0, q1, or q2) depends on the sum of all stimuli received
from its active neighboring PUs (Figure 5). If a PU does not
receive a stimulus before its next update time, it will go into
state q1 if it was in state q2, or enter state q0 if it was in q1.

In the present implementation, a signal traveling along
C1-type PUs has the slowest speed, but also has the greatest
degree of influence on the other two PU types. In contrast,
a signal traveling along C3-type PUs has the fastest speed,

but also has the least degree of influence on the other two
PU types. The speed and the degree of influence of a C2-type
signal are between those of a C1- and C3-type signal. We note
that the degrees of influence between two different PU types
are asymmetrical. For example, a C1-type PU in the state q0

will enter the less active state q1 when it receives a signal from
a neighboring C3-type PU (i.e., signal W). By contrast, a C3-
type PU in the state q0 will enter a highly activated state q3 if it
receives a signal from a neighboring C1-type PU (i.e., signal
S). Roughly speaking, the signal with the greatest degree of
influence serves as the major signal flow in a neuron while
the other two types of signals provide modulating effects.

The integration block is the major component of the
ANM design that integrates signals transmitting in space and
time (Figure 6). The comparator is responsible for processing
either an external signal linked with its application domain
or a cytoskeletal signal from its neighboring PU. For each
external signal sent to a PU, we assume that the latter will
directly go into a highly active state (q3) if there is a readin
enzyme sitting at the same site. This allows the initiation
of a new cytoskeletal signal. As to a signal sending from its
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neighboring PU, the comparator determines the state change
of a PU. The adder serves as a recorder that keeps a record
of a PU’s present state. Different numbers represent different
states. Different types of PUs have different transmission
speeds. The present implementation is that the ratio of
transmission speeds of C1-, C2-, and C3-type PUs is 1 : 2 : 3.
To comply with the transmission speeds, the ratio of state
update times of C1-, C2-, and C3-type PUs is 3 : 2 : 1.
Our hardware implementation of speed control comprises
a multiplier, a downcounter, and a divider. The multiplier
magnifies a signal sent from the regulator and generates an
output for the downcounter. The degree of magnification is
determined by its update time. For each clock, the down-
counter decreases by one. The divider restores the magnified
signal in the downcounter back to its original range.

All of the digital circuit modules were design with Verilog
using Quartus II software, a digital circuit design tool de-
veloped by the Altera Corporation (San Jose, CA). The final
design of circuits were downloaded into an FPGA device
which produced by the Altera Corporation.

2.4. Interneuronal Architecture-Orchestral Learning. The ref-
erence neuron scheme is basically a Hebbian model, in
which the connection between two neurons is strengthened
when they are active simultaneously. This model also has
a hierarchical control feature. With this feature, reference
neurons are capable of assembling cytoskeletal neurons into
groups for performing specific tasks. Orchestration is an
adaptive process mediated by varying neurons in the as-
sembly which selects appropriate combinations of neurons
to complete specific tasks. Currently, cytoskeletal neurons
are divided into a number of comparable subnets. By com-
parable subnets, we mean that neurons in these subnets

are similar in terms of their inter-neuronal connections and
intraneuronal structures. Neurons in different subnets that
have similar inter-neuronal connections and intraneuronal
structures are grouped into a bundle.

Two levels of reference neurons are used to manipulate
these bundles of neuron. The two levels form hierarchical
control architecture (Figure 7). The first is referred to as
the low-level reference neurons that directly control the
bundles of cytoskeletal neurons. Each of these controls a
specific bundle (we note that only the bundles activated by
the reference neurons are allowed to perform information
processing). The second level is referred to as the high-level
reference neurons that play the role of grouping the low-level
reference neurons. The activation of a high-level reference
neuron will fire all of the low-level reference neurons that it
controls, which in turn will activate some of these bundles of
cytoskeletal neurons (i.e., neurons in different subnets that
have similar intraneuronal structures). For example, whenR2

fires, it will fire r1 and r32, which in turn causes E1 and E32 in
each subnet to fire.

The connections among low-level reference neurons and
cytoskeletal neurons are fixed. However, the connections
between high-level reference neuron and low-level reference
neuron layers are subjected to change during evolutionary
learning. The above process is called orchestral learning.

2.5. Evolutionary Learning. Processing units are responsible
for transmitting and integrating cytoskeletal signals. Evolu-
tion at the level of PU configurations is implemented by
copying (with mutation) the PU configurations of neurons in
the best-performing subnets to those of comparable neurons
in the lesser-performing subnets. Variation is implemented
by varying the PU configurations during the copy procedure.
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(1) Generate at random the initial MAP, PU-Type, readin enzyme, and readout enzyme
patterns of each neuron in the reproduction subnet. Each neuron is denoted by
neuron (s, b) where s is the subnet number and b is the bundle number.
(2) Copy the MAP, PU-Type, readin enzyme, and readout enzyme patterns of each
neuron in the reproduction subnet to those of comparable neurons in the competition
subnets.

Copy neuron (5, b) to

⎧
⎨

⎩

neuron (1,b)
neuron (2,b)
neuron (3,b)
neuron (4,b)

⎫
⎬

⎭
, for b = 1, 2, . . ., 32

(3) Vary the MAP pattern of each neuron in the first subnet, the PU-type pattern in the
second subnet, the readin enzyme pattern in the third subnet, and the readout enzyme
pattern in the fourth subnet.

Vary

⎧
⎨

⎩

the M4P pattern of neuron (1,b)
the PU-Type pattern of neuron (2,b)

the readin enzyme pattern of neuron (3,b)
the readout enzyme pattern of neuron (4,b)

⎫
⎬

⎭
, if U ≤ P, for b = 1, 2, . . . , 32

where P is the mutation rate and U is a random number generated between 0 and 1.
(4) Evaluate the performance of each competition subnet and select the best-performing
subnet.
(5) Copy the MAP, PU-Type, readin enzyme, and readout enzyme patterns of each neuron
in the best-performing subnet to those of comparable neurons in the reproduction
subnets, if the former shows better performance than the latter.
(6) Go to Step2 unless the stopping criteria are satisfied.

Algorithm 1: Evolutionary learning algorithm.

We note that different PU configurations exhibit different
patterns of signal flows.

In the present implementation, the ANM system has 256
cytoskeleton neurons, which are divided into eight compa-
rable subnets. As we mentioned earlier, comparable subnets
are similar in terms of their inter-neuronal connections and
in-traneuronal structures. Thus, they also can be grouped
into 32 bundles. The copy process occurs among neurons
in the same bundle. The initial patterns of readin enzymes,
readout enzymes, MAPs, and PU-types of the reproduction
subnet are randomly decided. That is, the initial value of
each bit is randomly assigned as 0 or 1. The evolutionary
learning algorithm is shown in Algorithm 1. Note that
the mechanism controlling the evolutionary process does
not have to be so rigid. Instead, there are several possible
alternatives to train this system. In this study, we simply pick
out one of these alternatives and precede our experiments. In
the future it would be interesting to investigate the impacts

of varying the number of learning cycles assigned to each
level and the level opening sequence on the learning.

Evolution of reference neurons is implemented by copy-
ing (with mutation) the patterns of low-level reference
neuron activities loaded by the most fit high-level reference
neurons to less fit high-level reference neurons (details can
be found in [14]). The copying process is implemented by
activating a most fit high-level reference neuron, which in
turn reactivates the pattern of low-level reference neuron
firing. This pattern is then loaded by a less fit high-level
reference neuron. Variation is implemented by introducing
noise into the copying process. Some low-level reference
neurons activated by a most fit high-level reference neuron
may fail to be loaded by a less fit high-level reference
neuron. Or some low-level reference neurons that are not
activated may fire and be “mistakenly” loaded by a less fit
high-level reference neuron. In the present implementation,
evolutionary learning at the reference neuron level is turned
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off, as we have not yet implemented it on digital circuits.
The realization of the evolutionary learning on digital circuit
at the reference neuron level is definitely a must-do step,
but undoubtedly a complicated job. But in the present
implementation, we are not ready to fulfill the design and
prefer to focus our study on the internal dynamics, instead of
the interneuronal dynamics.

3. Input/Output Interface and
Application Domain

We applied the chip to the IRIS dataset, one of the best
known datasets found in the pattern recognition literature.
The dataset was taken from the machine learning repository
at the University of California, Irvine. The dataset contains
3 classes (Iris Setosa, Iris Versicolour, Iris Virginica) of 50
instances each, where each class refers to a type of iris plant.
One class is linearly separable from the other two; the latter

are not linearly separable from each other. There are four
parameters in each instance: sepal length, sepal width, petal
length, and petal width.

The initial connections between these 4 parameters and
cytoskeletal neurons were randomly decided, but subject
to change as learning proceeded. Through evolutionary
learning, each cytoskeletal neuron was trained to be a
specific input-output pattern transducer. That is, each of
these neurons became responsible for processing only a small
subset of stimuli generated from these 4 parameters. We
used five bits to encode each of these 4 parameters. In
total, there were 20 bits required to encode all of them. For
each parameter, the minimal and maximal values of these
150 instances were determined (to be denoted by MIN and
MAX, resp.), and the difference between these two values was
divided by 5 (to be denoted by INCR). The transformation of
each actual parameter value (to be denoted by ACTUAL) into
the corresponding 5-bit pattern was shown to be

00001, if MIN ≤ ACTUAL < (MIN + INCR)

00010, if (MIN + INCR) ≤ ACTUAL < (MIN + INCR× 2)

00100, if (MIN + INCR× 2) ≤ ACTUAL < (MIN + INCR× 3)

01000, if (MIN + INCR× 3) ≤ ACTUAL < (MIN + INCR× 4)

10000, if (MIN + INCR× 4) ≤ ACTUAL ≤ MAX.

(1)

Each bit corresponded to a specific pattern of stimuli for
cytoskeletal neurons. All cytoskeletal neurons that had con-
nections with a specific bit would receive the same pattern of
stimuli simultaneously. When a readin enzyme received an
external stimulus, a cytoskeletal signal was initiated. It was
randomly decided in the beginning and subject to change
during the course of learning as to which readin enzymes
of a neuron would receive the stimuli from a parameter. For
each instance, all stimuli were sent to cytoskeletal neurons
simultaneously. In other words, all cytoskeletal signals were
initiated at the same time. The cytoskeleton integrated these
signals in space and time. For each instance, the class of the
first firing cytoskeletal neuron was assigned as its output.
Cytoskeletal neurons were equally divided into three classes,
corresponding to these three different groups of instances.
For each instance, we defined that the chip made a correct
response when the class of the first firing neuron was in
accordance with the group shown in the dataset (Figure 8).
The ANM design was tested with each of these 150 instances
in sequence. The greater the number of correct responses
made by the chip, the higher its fitness.

4. Experimental Results
4.1. Evolvability. The proposed hardware architecture incor-
porated several parameters PU, MAP, readin, and readout
(denoted as P, M, I, and O, resp.) that allowed us to turn them
on or off independently for evolutionary learning. We first
study the manner in which problem-solving capability (or

evolvability) depended on each level of parameter changes.
And then we investigated the effects of increasing the
number of evolutionary learning parameters (levels) opened
for evolution. For each case of parameter changes (to be
described later), five runs were performed. For each run,
100 out of these 150 instances in the IRIS set were selected
at random as the training set whereas the remaining 50
instances were grouped as the testing set. All the results
reported below were the average differentiation rates of five
runs. We first trained the chip for 1200 cycles (at which point
learning appeared to slow down significantly). Then, the chip
after learning for 1200 cycles was tested with the testing set.
The IRIS dataset includes 150 instances. In the evolvability
experiment, the dataset were performed for five runs. For
each run, the IRIS dataset was randomly divided into two
parts: training set and testing set. The training set includes
100 instances and testing set 50 instances. We trained the
chip for 1,200 cycles per run. It takes about 30 seconds to
complete a learning cycle. The total running time of this
experiment takes about 50 hours (30 s ∗ 1200 cycles ∗ 5
runs). When compared with BP neural network and SVM,
the time needed to perform the experiment with our system
is much longer than we expect. This is because the whole
system has been simulated in a computer that simulation
has to be performed in a step-by-step manner. When the
hardware design has been totally realized with a real digital
chip, it might take only microsec-onds to accomplish the
assigned tasks.
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Figure 8: Interface of the ANM design with the IRIS dataset.

To investigate the significance of each parameter, we first
allowed only one parameter to change during the course
of learning whereas evolution at the other three levels was
turned off. In total, there were four experiments performed.
Among these four parameters, the chip after learning when
only readin enzymes were allowed to evolve alone achieved
the highest recognition rate (i.e., 91.6%), when only PU types
were allowed the second highest (i.e., 90.0%), when only
MAPs were allowed the third highest (i.e., 84.4%), and when
only readout enzymes were allowed the lowest rate (83.6%).
This provided us some preliminary information about which
levels of parameter changes might be friendlier to evolution
than others.

The following experiment was to study the manner in
which problem-solving capability (or evolvability) depended
on different combinations of parameter changes. We first
increased the number of parameter changes to two (i.e.,
two parameters were allowed to evolve simultaneously).
There were six combinations of two parameter changes.
As shown in Figure 9, the chip after learning when two
levels were allowed to evolve simultaneously achieved higher
recognition rates than when only one level was allowed to
evolve alone. For example, the recognition rate was higher
when PUs and MAPs were allowed to evolve simultaneously
than when either PUs or MAPs were allowed to evolve alone.
This implied that each level of parameter changes more or
less contributed in facilitating evolutionary learning, and
that synergy occurred among different levels of learning.
We then performed the experiment that allowed three
parameters to evolve at the same time. There were four
possible combinations when three parameters were allowed
to evolve simultaneously. The chip after learning when PMI
(PU, MAP, and readin enzyme) were allowed to change at the
same time achieved the best recognition rate (94.0%) among
these four possible combinations (note that a parameter
that was not opened for evolutionary changes will be held
constant during the course of learning). The implication was
that synergies among different levels of evolution became

more important as more levels of parameter changes were
allowed; implying that learning at one level opened up
opportunities for another. However, it did not necessarily
mean that learning with more levels of evolutionary changes
could always achieve effective performance, in particular
when the limitation of learning time was imposed. This was
because the power of a multilevel system was not attained by
simply summing up the contributions of each constituting
element together, but by developing the synergy that might
occur among the interactions of different levels. Learning
with more levels of evolutionary changes would enhance
the repertoire of the system, but did not guarantee that
effective learning could be achieved with a limited amount
of time. When we looked into what levels (operators) of
evolution contributed to the learning progress and how
the interactions occurring between different levels exerted
control over the tempo of evolution, the result showed that
each operator more or less contributed to learning progress,
and that learning proceeded in an alternate manner. That
is, synergies percolated through different combinations of
evolutionary learning operators, implying that learning at
one level opened up opportunities for another. We noted
that synergy was more likely to occur when a comparatively
small number of parameter changes was involved. However,
synergy occurred only in a selective manner when more
parameter changes were involved.

4.2. Comparison with Other Neural Models. For comparison
we applied SVM and BP to the same training and testing sets.
As above, five runs were performed. In the former model the
average differentiation rates of the training and testing sets
were 95.6% and 91.9%, respectively, while in the latter were
96.7% and 91.7, respectively. The above result suggested that
the chip had performance comparable to either BP or SVM
(Table 1).

4.3. Noise Tolerance. This experiment was to test the capabil-
ity of the ANM design after substantial learning in tolerating
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Table 1: Average differentiation rates of different models with the
Iris dataset.

Model Training Testing

BP neural network 96.7% 91.7%

Support vector machine 95.6% 91.9%

ANM 94.8% 94.0%

noise. Through gradually increasing the degree of noise, we
observed the input/output relationship of the ANM design.
For each test, we kept the system’s structure unchanged but
varied the pattern of signals sent to cytoskeletal neurons.
If the system’s outputs changed gradually with the extent
of the increase in pattern variations, this in part supported
that the system’s structure embraced some degree of noise
tolerance capability. The ANM design trained for 1,200 cycles
was used.

In the following, we first tested the system with spatial
noise imposed on the training patterns. To generate a test
set, we made a copy of the training set, but altered some
bits during the copy process (changing a bit into “1” if it was
“0” and into “0” if it was “1”). Five levels of variations were
imposed during the copy process: 5%, 10%, 15%, 20%, and
25%. For example, at the 5% level of variations, we mean
that each bit has a 5% possibility of being altered. For each
level of variations, ten test sets were generated. The total
clock difference (TCD) value is the measure pointer indicates
the difference of firing time in the circuit. The TCD value
increased slightly as we imposed a 5% level of variations on
the patterns. Even when we increased the variation level to
25%, the system still demonstrated acceptable results. The
TCD value was increased from 38 to 310 at the 5% level

Table 2: Effect of increasing the degree of noise on the rate of the
TCD value growth.

Level of variations imposed 5.0% 10.0%

Rate of the TCD value increased 5.7% 11.1%

of variation (i.e., increased 272), to 569 at the 10% level
of variation (i.e., increased 531), to 633 at the 15% level
of variation (i.e., increased 625), to 626 at the 20% level of
variation (i.e., increased 588), and to 1030 at the 25% level of
variation (i.e., increased 992). If we divided the increments
by the TCD value before learning (i.e., 4781), the rate of the
TCD values increased gradually as we augmented the noise
levels (Table 2). This implied that the system had good noise
tolerance capability in dealing with spatial noise.

5. Conclusions

When a system is running in the real world, it is inevitable
to be confronted with noise generated either from the
environment or the system itself. When noise is made only
temporarily, structural changes of a system may not be
necessary (i.e., a system may ignore this noise). By contrast, a
system is required to alter its structure in responding to this
noise if it leads to a permanent change in the environment.
In such a case, a system has to learn in a moving landscape
when environmental change occurs from time to time. Two
main results are obtained in the noise tolerance experiment.
One is that learning is more difficult in a noisy environment
than in a noiseless environment, and that the system is able
to learn continuously when noise is made in a temporary
manner. The other result is that the system demonstrates
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a close structure/function relation. We note that noise
occurring at different levels of the cytoskeletal structure has
different degree of influence on its outputs. As we gradually
modify the structure, its outputs change accordingly. On the
other hand, we examine the system’s outputs by gradually
imposing noise in space and time on its input patterns.
The output changes gradually (i.e., proportionally) as the
degree of noise is increased. An interesting result is that
its system’s output does not necessarily change accordingly
as we increase the degree of noise generated in time. Note
that delaying a signal may alter a neuron’s firing activity.
However, this may not be true when several signals are
delayed simultaneously as these signals may integrate at a
later time (undoubtedly, this will delay its firing timing). The
above results demonstrate that this system has good noise
tolerance capability in dealing with spatiotemporal changes
in its inputs, implying that it possesses an adaptive surface
that facilitates evolutionary learning. With this feature, the
ANM design can be applied to various real-world problems.
We note that the ability to separate patterns is clearly a
prerequisite for pattern recognition. However, it is equally
important to recognize a family of patterns that are slightly
varied in space and time. If a system is trained on a particular
training set, any ability that it has to respond correctly
to noise induced variations in this set will be a form of
generalization. The manner of generalization depends on
its integrative dynamics (i.e., the flow of signals in the
cytoskeleton). This is directly or indirectly influenced by a
neuron’s PU configuration. Generally speaking, the input
patterns recognized by a neuron with internal dynamics will
be generalized in a more selective way than simple threshold
neurons.
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