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Abstract 8 

Host-microbe interactions are crucial for normal physiological and immune system development and are 9 
implicated in a wide variety of diseases, including inflammatory bowel disease (IBD), obesity, colorectal 10 
cancer (CRC), and type 2 diabetes (T2D). Despite large-scale case-control studies aimed at identifying 11 
microbial taxa or specific genes involved in pathogeneses, the mechanisms linking them to disease have 12 
thus far remained elusive. To identify potential mechanisms through which human-associated bacteria 13 
impact host health, we leveraged publicly-available interspecies protein-protein interaction (PPI) data to 14 
find clusters of microbiome-derived proteins with high sequence identity to known human protein 15 
interactors. We observe differential presence of putative human-interacting bacterial genes in 16 
metagenomic case-control microbiome studies. In 8 independent case studies, we find evidence that the 17 
microbiome broadly targets human immune, oncogenic, apoptotic, and endocrine signaling pathways in 18 
relation to IBD, obesity, CRC and T2D diagnoses. This host-centric analysis strategy provides a 19 
mechanistic hypothesis-generating platform for any metagenomics cohort study and extensively adds 20 
human functional annotation to commensal bacterial proteins.  21 

One-sentence summary 22 

Microbiome-derived proteins are linked to disease-associated human pathways by metagenomic and 23 
protein-interaction analyses.   24 
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Main Text 25 

Metagenomic case-control studies of the human gut microbiome have implicated bacterial genes in a 26 
myriad of diseases. Yet, the sheer diversity of genes within the microbiome (1) and the lack of functional 27 
annotations (2) have thwarted efforts to identify the mechanisms by which bacterial genes impact host 28 
health. In the cases where functional annotations exist, they tend to reflect the proteins’ most granular 29 
molecular functions (e.g. DNA binding, post-translational modification) rather than their role in 30 
biological pathways (3) and few, if any, relate to host cell signaling and homeostasis. Associating any 31 
commensal bacterial gene and a host pathway has thus far required experimental approaches catered to 32 
each gene or gene function (4, 5).  33 

Protein-protein interactions (PPIs) have revealed the mechanisms by which pathogens interact with host 34 
tissue through in-depth structural studies of individual proteins (5–7), as well as large-scale whole-35 
organism interaction screens (8, 9). We hypothesized that host-microbiome PPIs may underlie health 36 
status and could serve to provide additional information, through annotation of human pathways, about 37 
the role of bacteria in modulating health. There are already canonical examples of protein-mediated 38 
microbe-associated patterns (MAMPs) that directly trigger host-signaling pathways through pattern 39 
recognition receptors present on epithelial and immune tissues (10), such as flagellin with Toll-like 40 
receptor 5 (TLR5). Several recent observations have further underscored a role for commensal-host PPIs 41 
in health: a protease secreted by Enterococcus faecalis binds incretin hormone glucagon-like peptide 1 42 
(GLP-1), a therapeutic target for type 2 diabetes (T2D) (11); and a slew of ubiquitin mimics encoded by 43 
both pathogens (12) and gut commensals (13) play a role in modulating membrane trafficking.  44 

Currently, few experimentally-verified PPIs exist between bacterial and human proteins (roughly 8,000 in 45 
the IntAct database (14)) and only a handful of these involve proteins pulled from the human gut 46 
microbiome. Expanding the commensal-human interaction network through state-of-the-art structural 47 
modeling (15) is untenable, as there are few sequences homologous to genes found in metagenomes 48 
represented in co-crystals from the Protein Data Bank (16) (PDB) (Fig. S1, Supplementary Note 1). In the 49 
absence of structure and experimental data, sequence identity methods have been used to great effect to 50 
infer host-pathogen PPI networks for single pathogens (17–19), but such approaches have not yet been 51 
applied at the community-level, as would be required for the human gut microbiome.  52 

All pathogen-host interactions are initially implicated in virulence, whereas microbiome-associated 53 
disorders tend not to follow Koch’s postulates (20). To distinguish PPIs that may be associated with 54 
health versus disease, we compared community-level PPI profiles in large case-control cohorts of well-55 
established microbiome-associated disorders—namely colorectal cancer (CRC) (21–24), T2D (25, 26), 56 
inflammatory bowel disease (IBD) (27) and obesity (28) (Fig. 1A, Table S1). In order to build 57 
community-level PPI profiles, we mapped quality-filtered metagenomic sequencing reads from eight 58 
studies to a newly constructed database of bacterial human-protein interactors and the bacterial members 59 
of their associated UniRef clusters (Fig. S2, Supplementary Methods), which represent homeomorphic 60 
protein superfamilies through sequence identity (29). Using a normalized feature importance ranking 61 
from random forest classifiers trained on each disease cohort (Fig. S3, Supplementary Methods), we find 62 
46,734 commensal bacterial proteins (comprising 579 clusters) associated with disease, by virtue of their 63 
putative interactions with 1,145 human proteins.   64 
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Figure 1. Human proteins differentially targeted by the microbiome in disease are enriched for relevant gene-disease 65 
associations. (A) The number of interspecies bacterial proteins (blue), human proteins (orange) and interactions (dark blue) in 66 
the IntAct database; those inferred using homology clusters (UniRef); those determined to be present in the gut microbiomes 67 
from eight metagenomic studies; and those associated with disease through our metagenomic machine learning approach, 68 
comparing prevalence in cases (grey) and control (red). (B) The number of bacterial gene clusters that include members from 69 
each bacterial phyla (top) and class (bottom). Only genes that were detected in human metagenomes from the eight studies are 70 
used in this analysis. Note that most clusters contain proteins from more than one class and phylum (Fig. S4). (C) Histograms 71 
showing the sequence similarity per bacterial cluster between proteins with experimentally determined human interactions and 72 
proteins detected in human microbiomes, normalized according to their prevalence. (D) Human proteins implicated in CRC by 73 
our method (normalized importance > 0) are plotted with their bacterial interactors (blue), and annotated based on their GDAs in 74 
the DisGeNET database to CRC (red) or either diabetes, obesity or IBD (orange). Human proteins without relevant GDAs are 75 
colored in gray. (E) The proportions of human proteins implicated in disease (normalized importance > 0) compared to all human 76 
proteins with experimentally detected PPIs in the IntAct database, according to their GDAs in the DisGeNET database. (F) The 77 
number of bacterial gene clusters plotted according to their transmembrane and secretion predictions, i.e. type 3 or type 4 78 
secretion systems (T3SS or T4SS), and/or the presence of eukaryotic-like domains (ELDs).  79 
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Interaction does not need to be conserved across homologous proteins in different bacterial species. A key 80 
concern is the disproportionate number of bacteria-human PPIs in IntAct derived from high-throughput 81 
screens performed on three intracellular pathogens: Yersinia pestis, Francisella tularensis and Bacillus 82 
anthracis (8). However, we find that patient-detected bacterial clusters are not biased towards the 83 
originating classes of these three pathogens—Bacilli or Gammaproteobacteria—and rather, reflect the 84 
breadth of taxa typically associated with human gut microbiomes (Fig. 1C and S4). We verified that 85 
human microbiome proteins have high amino-acid similarity to experimentally-verified human interactors 86 
in the same UniRef cluster (Fig. 1C and S5). Additionally, interspecies bacterial-human protein interface 87 
residues, in general, are highly similar, or even identical, between members of the same UniRef cluster 88 
(Fig. S6, Supplementary Note 2). Although we appreciate that there will be commensal-human PPIs that 89 
are not captured by this approach due to the limited scope of experimental data available, this is the 90 
largest and only dataset of microbiome-host associated PPIs.  91 

Surprisingly, the 816 human proteins we associate with CRC via the microbiome contain a number of 92 
previously identified CRC-associated genetic loci, including well-known cancer genes: tumor protein 93 
p53, epidermal growth factor receptor (EGFR), matrix metalloprotease 2 (MMP2), and insulin-like 94 
growth factor-binding protein 3 (IGFBP3), among others (Fig. 1D). This represents a larger trend: the 95 
1,145 human interactors are overall enriched for proteins with previously-reported gene-disease 96 
associations (GDA) in CRC, T2D, and IBD (Fig. 1E, Table S2), with the exception of obesity, where 97 
annotation is generally scarce. In line with mixed etiologies of diseases, we see that GDAs are not 98 
disease-cohort specific (Fig. S7). In fact, 36 percent of our genes have more than one GDA for our 99 
diseases of interest. We suspected this may extend to autoimmune diseases, which are increasingly 100 
studied in the context of the gut microbiome (30), and we confirm enrichment of GDAs for autoimmune 101 
disorders in the human proteins implicated by our method. This concordance between known disease 102 
annotation and disease association through our method increases our confidence that we are capturing 103 
relevant molecular heterogeneity underlying microbiome-related disease.  104 

If these bacterial proteins are indeed modulating human health through PPIs, we should expect them to 105 
contain signatures of surface localization or secretion. We find that a majority of disease-associated 106 
bacterial protein clusters (90.2%) contain proteins that are transmembrane, are secreted by type 3 or type 107 
4 secretion systems, and/or contain eukaryotic-like domains, another marker for secretion (Fig. 1F). The 108 
remaining 9.8% may also be adequately localized, but our annotations do not cover all bacterial secretion 109 
systems, and it is unclear whether bacterial lysis may result in protein delivery to the host. 110 

One of the major advantages of our work is that through this new interaction network, we vastly improve 111 
our ability to annotate host-relevant microbiome functions. 35.8% of our disease-associated bacterial 112 
clusters contain no members with annotated microbial pathways in KEGG (Kyoto Encyclopedia of Genes 113 
and Genomes) (31) (Fig. 2A). Yet, most of these genes can now be annotated according to the pathways 114 
of their human targets, obtaining a putative disease-relevant molecular mechanism (Fig. 2B). 115 
Interestingly, most of the bacterial clusters with KEGG pathway annotations also gain a secondary human 116 
pathway annotation. This dual function is not entirely surprising, as a number of these have orthologs that 117 
have been previously identified as bacterial ‘moonlighting’ proteins, which perform secondary functions 118 
in addition to their primary role in the cell (32). Mycoplasma pneumoniae GroEL and Streptococcus suis 119 
enolase, a protein involved in glycolysis, bind to both human plasminogen and extra-cellular matrix 120 
components (33, 34). Mycobacterium tuberculosis DnaK signals to leukocytes causing the release of the 121 
chemokines CCL3-5 (35). Streptococcus pyogenes glyceraldehyde-3-phosphate dehydrogenase 122 
(GAPDH), canonically involved in glycolysis, can be shuffled to the cell surface where it plays a role as 123 
an adhesin, and can also contribute to human cellular apoptosis (36). These examples distinctly illustrate 124 
how bacterial housekeeping proteins are used by pathogens to modulate human health. In this study, we 125 
uncover commensal proteins that similarly may have ‘interspecies moonlighting’ functions and appear to 126 
be pervasive throughout our indigenous microbiota.  127 
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Figure 2. Human pathway annotation can be propagated through interactors to improve bacterial pathway annotation. 128 
(A) Paired stacked bar plots showing the disease-associated bacterial cluster pathways annotated by KEGG (left) and their 129 
inferred pathways according to the human proteins they target (right), as annotated by WikiPathways (59). (B) Human pathways 130 
(annotated using WikiPathways) targeted by bacterial gene clusters detected in human microbiomes from these eight studies. The 131 
top 75 human pathways that contribute the most annotations to bacterial clusters detected in the eight metagenomic cohorts that 132 
previously lacked KEGG-based annotations are shown. (C) Human cellular pathways, enriched in our disease-associated human 133 
proteins (with a Benjamini-Hochberg false discovery rate (BHFDR) ≤ 0.05. –log(BHFDR), displayed on the barplot to the left), 134 
are colored according to the percent of pathway members differentially targeted in each case-control cohort.   135 
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In evaluating the statistical significance of recurrent human functional annotations, we performed 136 
pathway enrichment analysis on the implicated human proteins and find proteins with established roles in 137 
cellular pathways coherent with the pathophysiology of CRC, IBD, obesity and T2D (Fig. 2C), namely 138 
those involving immune system, apoptosis, oncogenesis, and endocrine signaling pathways. Though most 139 
enriched pathways include human proteins associated with all four diseases, reflecting their associated 140 
relative risks (37–41), there is heterogeneity in the identity and number of members associated with each 141 
study. Far more human proteins from the antigen presentation pathway are associated with T2D, obesity 142 
and IBD cohorts’ microbiomes than with CRC, perhaps indicating a disease-specific association with this 143 
process. We see this again with CRC, in the death receptor signaling pathway and remodeling of 144 
epithelial adherens junctions. 145 

We see specific examples of known molecular mechanisms for these diseases now implicated with 146 
microbiome-host PPIs: We find that DNA fragmentation factor subunit alpha (DFFA) is associated with 147 
T2D (in the Qin et al. cohort), and is involved in death receptor signaling, an important pathway for the 148 
destruction of insulin-producing β-cells (42). Collagen alpha-1(I) chain (COL1A1) is also a significant 149 
target associated with T2D (in the Karlsson et al. cohort), and plays a role in dendritic cell maturation and 150 
hepatic fibrosis/hepatic stellate cell activation pathways, capturing known comorbidities between T2D 151 
and hepatic steatosis and nonalcoholic steatohepatitis (NASH) (43). Proteins associated with CRC 152 
spanned expected bacteria-associated pathways, such as the direct sensing of enterotoxins, e.g. heat-stable 153 
enterotoxin receptor GUCY2C (in the Feng et al. and Zeller et al. cohorts); but also classical cancer-154 
associated pathways, such as the maintenance of DNA integrity, e.g. protection of telomeres protein 1 155 
(POT1) (in the Feng et al., Qin et al. and Schirmer et al. cohorts) and X-ray repair cross-complementing 156 
protein 6 (XRCC6) (in the Feng et al. and Yu et al. cohorts), the latter of which is required for double-157 
strand DNA break repair. Interestingly, actin-related protein 2/3 complex subunit 2 (ARPc2) (associated 158 
in the Yu et al. and Karlsson et al. cohorts) regulates the remodeling of epithelial adherens junctions, a 159 
common pathway disrupted in IBD (44), CRC (45) and, most recently, T2D (37). This host-centric 160 
annotation is useful beyond large-scale analysis of metagenomic data, as it broadly enables hypothesis-161 
driven research into the protein-mediated mechanisms underlying microbiome impacts on host health. 162 

These data suggest a set of discrete protein interactions that induce physiological effects when delivered 163 
to the host. Consistent with this idea, we find that indeed many associated human proteins are known drug 164 
targets (Table S3). For example, both T2D cohorts’ and the obesity cohort’s microbiomes independently 165 
implicate human protein Rev-ErbA alpha (NR1D1), the target of the drugs GSK4112, SR9009 and 166 
SR9011, which inhibit the binding of Rev-ErbA alpha with its natural ligand, heme (Fig. 3A). These 167 
drugs have been shown to affect cellular metabolism in vitro and affect hyperglycaemia when given to 168 
mouse models of metabolic disorder (46, 47). We also find instances where the off-label effects or side 169 
effects associated with the drug match our microbiome-driven human protein association. For instance, 170 
imatinib mesylate (brand name: Gleevec) has several human binding partners, including macrophage 171 
colony-stimulating factor 1 receptor (M-CSF1R) (Fig. 3B), a human protein we associate with CRC (in 172 
the Feng et al. and Zeller et al. cohorts), and platelet-derived growth factor receptor-β (PDGFR-B), 173 
associated with obesity and T2D (in the Le Chatelier et al. and Qin et al. cohorts, respectively). Literature 174 
on imatinib supports these findings: although imatinib is best known as a treatment for leukemia, it has 175 
been shown to affect glycemic control in patients with T2D (48). Furthermore, imatinib can also halt the 176 
proliferation of colonic tumor cells and is involved generally in inflammatory pathways, through its 177 
inhibition of TNF-alpha production (49). Whereas the notion of microbiome-derived metabolites acting as 178 
drugs is well-appreciated (50, 51), this work broadens the scope of microbiome-derived drugs to include 179 
protein products acting through PPI.   180 
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Figure 3. Human proteins targeted by gut commensal proteins include known therapeutic drug targets. (A)RevErbA alpha 181 
(NR1D1) binds several human proteins (not shown), DNA (not shown) and heme. GSK4112 competitively binds Rev-ErbA 182 
alpha, inhibiting binding with heme. ParE is a microbiome protein present in a diverse range of organisms and has a high relative 183 
risk associated with T2D. (B) Macrophage colony stimulating factor 1 receptor (CSF1R) is targeted by imatinib, among other 184 
drugs, as well as the uncharacterized bacterial protein YqeH, a protein that has a low relative risk associated with CRC. 185 
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Here, we reveal for the first time an extensive host-microbiome PPI landscape. To achieve this, we 186 
benefit from existing methods in pathogen-host PPI discovery, further informed by community-level PPI 187 
profiles of genes differentially detected in human metagenomes. This work highlights the myriad host 188 
mechanisms targeted by the gut microbiome and the extent to which these mechanisms are targeted across 189 
microbiome-related disorders. However, this network is far from complete. Few of the interaction studies 190 
on which this interaction network is based were performed on commensal bacteria and therefore, we may 191 
be missing interactions specific to our intimately associated bacteria. In addition to large-scale PPI studies 192 
involving commensal bacteria and their hosts, further in-depth studies will be needed to fully characterize 193 
these mechanisms, such as whether these bacterial proteins activate or inhibit their human protein 194 
interactors’ pathways.  195 

This platform enables a high-throughput glimpse into the mechanisms by which microbes impact host 196 
tissue, allowing for mechanistic inference and hypothesis generation from any metagenomic dataset. 197 
Pinpointing those microbe-derived proteins that interact directly with human proteins will enable the 198 
discovery of novel diagnostics and therapeutics for microbiome-driven diseases, more nuanced definitions 199 
of the host-relevant functional differences between bacterial strains, and a deeper understanding of the co-200 
evolution of humans and other organisms with their commensal microbiota.   201 
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Methods 416 
 417 
Building a putative bacteria-human protein-protein interaction (PPI) network 418 
Interactions were downloaded from the IntAct database (14) [August 2018]. Only interactions with 419 
evidence codes that indicated binary, experimental determination of the interaction between UniProt 420 
identifiers with non-matching taxa were preserved, thereby excluding co-complex associations, small 421 
molecule interactions, and predicted interactions. This resulted in a set of 296,103 interspecies PPIs. 422 
Interspecies protein interactors were mapped to their UniRef50 sequence clusters (52). UniRef50 Clusters 423 
are calculated every week and are publicly available through the UniProt web service. UniRef50 clusters 424 
are named after their seed sequence, which has at least 50% sequence identity to all other members in the 425 
cluster. Additionally, all members in the cluster have at least 80% sequence identity to the seed sequence. 426 
Given a UniRef cluster with an experimentally determined PPI with a human protein, all bacterial 427 
members of the cluster are labeled as putative interactors. Human proteins that have not been verified by 428 
the SwissProt curating platform are filtered out of the final interaction network. The latter step avoids the 429 
over-annotation of human isoforms or homologs, or non-verified human proteins. Overall, we generate 430 
8,808,328 bacteria-human PPIs involving 1,613,641 bacterial proteins and 4,186 reviewed human 431 
proteins. This corresponds to 18,097 interactions between 33,123 UniRef clusters containing bacterial 432 
proteins and the aforementioned 4,186 reviewed human proteins.  433 
 434 
Detection of human-targeting proteins in metagenomic shotgun sequencing data 435 
Reads from eight metagenomic studies (Table S1) were downloaded from the Sequence Read Archive 436 
(SRA) using fasterq-dump. Reads belonging to more than one replicate from the same patient were 437 
concatenated and treated as a single run. Reads were then dereplicated using prinseq (v0.20.2) and 438 
trimmed using trimmomatic (v0.36) with the following parameters:  439 
 440 

Dereplication 441 
perl prinseq-lite.pl -fastq {1} -fastq2 {2} \ 442 
        -derep 12345 -out_format 3 -no_qual_header \  443 
        -out_good {3} -out_bad {4}; 444 
 445 
{1,2} Refer to paired read input files 446 
{3,4} Refer to output filepaths 447 
 448 
Trimming 449 
java -Xmx8g -jar trimmomatic-0.36.jar \ 450 
        PE -threads 5 {1} 451 
        ILLUMINACLIP:{2}:2:30:10:8:true \ 452 
        SLIDINGWINDOW:4:15 LEADING:3 TRAILING:3 MINLEN:50 453 
 454 
{1} Refer to input files 455 
{2} Is the path to a fasta file of Nextera TruSeq adapters  456 

 457 
Paired reads were combined into a single file and aligned to a protein library of all 1,613,641 human-458 
interacting bacterial proteins generated above. This read-to-protein alignment was performed using 459 
BLASTx through the DIAMOND (53) command line tool (v0.9.24.125). Read alignments were filtered to 460 
only consider results with an identity of at least 90% and no gaps. Bacterial proteins were considered 461 
detected with sufficient depth and coverage: more than 10 reads across 95% of the protein sequence, 462 
excluding 10 amino acids at each terminus. We assign any bacterial protein detection to its corresponding 463 
UniRef homology cluster. Human-interacting bacterial clusters are marked as either ‘detected’ or ‘not 464 
detected’ for each patient in each study. For each patient, we also generate a file of human proteins that 465 
are targeted by their detected bacterial proteins based on our bacteria-human PPI network.  466 
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Identity, similarity, and conservation measurements 467 
The sequence identity constraints imposed from a UniRef cluster’s seed on all other member sequences 468 
don’t explicitly provide any information about the sequence identity, or similarity, between other pairs of 469 
sequences in the cluster. We compute pairwise alignments in order to understand how appropriate our 470 
annotation mapping is between proteins experimentally-verified to interact with human proteins and 471 
bacterial members of the same UniRef cluster that were detected in metagenomic samples. 472 
Experimentally-verified interactors are aligned to their metagenome-detected UniRef cluster members 473 
using the Smith-Waterman local alignment algorithm with a BLOSUM62 matrix via python’s parasail 474 
(54) library (v.1.1.17). Amino acid identity is calculated as the number of identical matches in the 475 
pairwise alignment, divided by the length of the experimentally-verified interactor. Amino acid similarity 476 
is likewise calculated as the number of matches in the pairwise alignment that represent frequent 477 
substitutions (non-negative BLOSUM62 scores), divided by the length of the experimentally-verified 478 
interactor. 479 
 480 
Each cluster has a different number of bacterial members, and thus, comparisons, so we need to 481 
summarize the bacterial identity and similarity metrics per cluster. We represent the identity between 482 
experimentally-verified and metagenomic-detected bacterial protein sequences for each cluster as mean, 483 
median, or a weighted average (Fig. S5). Specifically, we calculate the weighted average of 484 
identity/similarity as: 485 
 486 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑%𝑚𝑎𝑡𝑐ℎሺ𝑐𝑙𝑢𝑠𝑡𝑒𝑟ሻ ൌ 
𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 ൈ %𝑚𝑎𝑡𝑐ℎ

𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒௨௦௧∈௨௦௧

 487 

 488 
Where Prevalencemember is the percent of patients where the bacterial sequence was detected, 489 
Prevalencecluster is the percent of patients where any bacterial sequence from the cluster was detected, and 490 
%match is either the identity or similarity between the member and the experimentally-verified protein 491 
interactor.  492 
 493 
When necessary, we constructed multiple sequence alignments using only the experimentally-verified 494 
interactor sequence and all the metagenome-detected members of its homology cluster in order to 495 
quantify amino acid conservation at each site. We calculated the Jensen-Shannon divergence using the 496 
code provided by Capra et al. (55) with a window size of 3.  497 
 498 
Prioritization of disease-associated bacterial protein clusters and human targets 499 
In order to identify heterogeneity in the prevalence of bacteria-human PPIs, we preprocessed the data into 500 
two detection matrices. Each patient from each study is represented in two feature spaces: (a) a binary 501 
vector of detected bacterial gene clusters or (b) a binary vector of putatively targeted human proteins. 502 
Human proteins were considered redundant if they shared all the same bacterial protein partners in our 503 
database, as their “detection” is, by definition, perfectly correlated in this design, and were treated as a 504 
single feature. Additionally, we build a contingency table based on the case/control balance of the dataset 505 
and the prevalence of each bacterial gene cluster or human protein. Features with an expected count of 506 
less than 5 in any cell of the contingency table were also filtered out as being under- or over-detected.  507 

We use these processed matrices to train a random forest machine learning classifier on the task of 508 
separating case and control patients and, after verifying that they achieve reasonable performance on the 509 
task using leave-one-out cross-validation (Fig. S3), we extract the feature importance from the classifiers. 510 
Having used the scikit-learn (56) implementation of the random forest algorithm, feature importance 511 
corresponds to the average Gini impurity of the feature in all splits that it was involved in. Gini feature 512 
importance is a powerful prioritization tool, as it can capture the multivariate feature importance (whereas 513 
simple metrics like log-odds ratio and corrected chi-squared statistics only capture univariate feature 514 
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importance). However, it has been noted that in sparse, binary decision tasks like our own (57, 58), this 515 
feature importance can be can overestimate the importance of features based on their prevalence alone.    516 

To obtain a normalized Gini feature importance, we perform a Monte Carlo estimate of the expected Gini 517 
importance for each feature given the prevalence of all features in that dataset. On each iteration of the 518 
simulation, we generate a random null feature matrix using a Bernoulli binary generator where:  519 

𝑃ሺ𝑛𝑢𝑙𝑙ሾ𝑝𝑎𝑡𝑖𝑒𝑛𝑡ሿሾ𝑓𝑒𝑎𝑡𝑢𝑟𝑒ሿ ൌ 1ሻ  ൌ  𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒ሺ𝑓𝑒𝑎𝑡𝑢𝑟𝑒ሻ   520 

We train two random forests on the disease labels for each patient, using either the real matrix or the null 521 
matrix. Both real and null Gini feature importances are extracted for each feature and aggregated across 522 
iterations of the simulation. The normalized Gini importance for each feature is expressed as a z-score: 523 

𝑛𝑜𝑟𝑚𝐺𝑖𝑛𝑖 ൌ  
𝐺𝑖𝑛𝑖

 െ  𝐺𝑖𝑛𝑖
௨

max ሺ𝜎൫𝐺𝑖𝑛𝑖
൯,𝜎൫𝐺𝑖𝑛𝑖

௨൯ሻ
 524 

The simulation is repeated until the distance between the maximum and minimum normalized Gini 525 
importance converges (at least 200 iterations of holding equal value). Code and preprocessed detection 526 
matrices for each of the studies are provided in the Auxiliary Supplementary Materials. 527 

This iterative procedure is a convenient way to generate a null feature importance for comparison, but 528 
also provides a very robust measurement of Ginireal. Random trees from a random forest act as 529 
independent estimators: Given the same data, calculating the average importance of N forests with E 530 
estimators is equivalent to the importance on a single forest with N × E estimators. For the real Gini 531 
feature importance calculation, our final estimates are equivalent to a forest with I × E trees, where I is the 532 
number of iterations at convergence. The entire procedure is analogous to iteratively increasing the 533 
number of trained trees in a random forest (and its paired null model) with a step-size E (in our case, 534 
E=100) until normalized feature importance converges. An example is provided in the Auxiliary 535 
Supplementary Materials. 536 

Most of the normalized feature importances across studies fall at or below zero, indicating that their Gini 537 
feature importance is not higher than would be expected in the null model (Fig. S8). This provides a 538 
convenient cutoff (normalized Gini > 0) to prioritize a set of proteins, as human proteins with positive 539 
normalized Gini importance capture proteins with large log-odds ratio magnitudes and rescues candidates 540 
that would’ve been missed through univariate analysis.  541 

 542 
Human pathway annotation and enrichment analysis  543 
Human pathway annotation was performed using the mygene python library. Specifically, we queried 544 
pathway annotations from WikiPathways (59), filtering out pathways from TarBase, as they specifically 545 
only include miRNA interaction annotation. 546 
 547 
We performed pathway enrichment analysis using QIAGEN’s Ingenuity Pathway Analysis (IPA) (60) 548 
tool. All human proteins with a normalized feature importance greater than zero were uploaded as 549 
UniProt identifiers into the desktop interface and submitted to their webserver for Core Enrichment 550 
Analysis was conducted only on human tissue and cell lines and IPA’s stringent evidence filter. Pathways 551 
were considered enriched if they had both a -log(p-value) ≥ 1.3 and a Benjamini-Hochberg False 552 
Discovery Rate less or equal to 5%. 553 
 554 
We additionally annotated all human proteins with any known drug targets from the probes-and-drugs 555 
database (61) (04.2019 database dump), which aggregates drug-target interactions from the largest drug-556 
target databases.  557 
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Human gene-disease association 558 
Disease annotations were extracted from all of GDAs from DisGeNET (62) (v.6.0). Lacking a simple 559 
hierarchy of disease, we binned similar disease terms into the 5 larger categories relevant to our study. 560 
Human protein identifiers were mapped to their Entrez gene ID’s using the UniProt batch mapping 561 
resource and then annotated with these 5 labels: 562 
 563 

CRC: Adenocarcinoma of large intestine, Hereditary non-polyposis colorectal cancer syndrome, 564 
Hereditary nonpolyposis colorectal carcinoma, Malignant neoplasm of colon stage IV, Malignant 565 
neoplasm of sigmoid colon, Malignant tumor of colon, Microsatellite instability-high colorectal 566 
cancer,  567 

 568 
Diabetes: Brittle diabetes, Familial central diabetes insipidus, Fibrocalculous pancreatic diabetes, 569 
Gastroparesis due to diabetes mellitus, Insulin resistance in diabetes, Insulin-dependent but 570 
ketosis-resistant diabetes, Insulin-dependent diabetes mellitus secretory diarrhea syndrome, 571 
Insulin-resistant diabetes mellitus, Insulin-resistant diabetes mellitus at puberty, Latent 572 
autoimmune diabetes mellitus in adult, Macroalbuminuric diabetic nephropathy, Maturity onset 573 
diabetes mellitus in young, Maturity-onset diabetes of the young, type 10, Maturity-onset diabetes 574 
of the young, type 11, Microalbuminuric diabetic nephropathy, Moderate nonproliferative 575 
diabetic retinopathy, Monogenic diabetes, Neonatal diabetes mellitus, Neonatal insulin-dependent 576 
diabetes mellitus, Non-insulin-dependent diabetes mellitus with unspecified complications, 577 
Nonproliferative diabetic retinopathy, Other specified diabetes mellitus, Other specified diabetes 578 
mellitus with unspecified complications, Pancreatic disorders (not diabetes), Partial nephrogenic 579 
diabetes insipidus, Prediabetes syndrome, Proliferative diabetic retinopathy, Renal cysts and 580 
diabetes syndrome, Severe nonproliferative diabetic retinopathy, Transient neonatal diabetes 581 
mellitus, Type 2 diabetes mellitus in nonobese, Type 2 diabetes mellitus in obese, Type 2 582 
diabetes mellitus with acanthosis nigricans, Visually threatening diabetic retinopathy, diabetes 583 
(mellitus) due to autoimmune process, diabetes (mellitus) due to immune mediated pancreatic 584 
islet beta-cell destruction, diabetes mellitus risk, idiopathic diabetes (mellitus), postprocedural 585 
diabetes mellitus, secondary diabetes mellitus NEC 586 

 587 
Autoimmune: Addison's disease due to autoimmunity, Adult form of celiac disease, Aneurysm of 588 
celiac artery, Ankylosing spondylitis, Ankylosing spondylitis and other inflammatory 589 
spondylopathies, Arteriovenous fistulas of celiac and mesenteric vessels, Blood autoimmune 590 
disorders, Bullous systemic lupus erythematosus, Chilblain lupus 1, Dianzani autoimmune 591 
lymphoproliferative syndrome, Dilatation of celiac artery, Hyperthyroidism, Nonautoimmune, 592 
Latent autoimmune diabetes mellitus in adult, Maternal autoimmune disease, Multiple sclerosis in 593 
children, Neonatal Systemic lupus erythematosus, Subacute cutaneous lupus, Systemic lupus 594 
erythematosus encephalitis, Venous varicosities of celiac and mesenteric vessels, Warm 595 
autoimmune hemolytic anemia, diabetes (mellitus) due to autoimmune process, lupus cutaneous, 596 
lupus erythematodes 597 

 598 
Obesity: Abdominal obesity metabolic syndrome, Adult-onset obesity, Aplasia/Hypoplasia of the 599 
earlobes, Childhood-onset truncal obesity, Constitutional obesity, Familial obesity, Generalized 600 
obesity, Gross obesity, Hyperplastic obesity, Hypertrophic obesity, Hypoplastic olfactory lobes, 601 
Hypothalamic obesity, Moderate obesity, Overweight and obesity, Overweight or obesity, 602 
Prominent globes, Simple obesity, Type 2 diabetes mellitus in nonobese, Type 2 diabetes mellitus 603 
in obese 604 
 605 
IBD: Acute and chronic colitis, Acute colitis, Allergic colitis, Amebic colitis, Chronic colitis, 606 
Chronic ulcerative colitis, Crohn Disease, Crohn's disease of large bowel, Crohn's disease of the 607 
ileum, Cytomegaloviral colitis, Distal colitis, Enterocolitis, Enterocolitis infectious, Eosinophilic 608 
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colitis, Food-protein induced enterocolitis syndrome, Hemorrhagic colitis, IIeocolitis, Infectious 609 
colitis, Left sided colitis, Necrotizing Enterocolitis, Necrotizing enterocolitis in fetus OR 610 
newborn, Neonatal necrotizing enterocolitis, Non-specific colitis, Pancolitis, Pediatric Crohn's 611 
disease, Pediatric ulcerative colitis, Perianal Crohn's disease, Typhlocolitis, Ulcerative colitis in 612 
remission, Ulcerative colitis quiescent 613 

 614 
We additionally downloaded all human proteins involved in protein-protein interactions from the IntAct 615 
database and annotated them in the same manner in order to compare label frequencies.  616 
 617 
Bacterial pathway, secretion, and taxonomy annotation 618 
We submitted all bacterial protein sequences that were detected in human metagenomes to the 619 
KofamKOALA (63) KEGG orthology search resource. We additionally submitted our bacterial sequences 620 
to EffectiveDB (64) in order to obtain predictions for EffectiveT3 (type 3 secretion based on signal 621 
peptide), T4SEpre (type 4 secretion based on composition in C-terminus), EffectiveCCBD (type 3 622 
secretion based on chaperone binding sites), and EffectiveELD (predicts secretion based on eukaryotic-623 
like domains). We used the single default cutoffs for T4SEpre, EffectiveCCBD, and EffectiveELD, and 624 
chose the ‘sensitive’ cutoff (0.95) rather than the ‘selective’ (0.9999) cutoff for EffectiveT3. 625 
Transmembrane proteins or signal peptides were predicted using TMHMM (65) (v.2.0c), with a threshold 626 
of 19 or more expected number of amino acids in transmembrane helices. 627 
 628 
Bacterial taxonomy information was extracted from NCBI. UniProt identifiers and annotations were 629 
downloaded using UniProt SPARQL endpoint. 630 
 631 
Statistics 632 
For Fig. 1D, we quantify the difference between the human proteins implicated in disease by our method 633 
(StudySet) and all human proteins that have available protein interaction information (NullSet) by 634 
comparing the proportion of these sets that have certain gene-disease associations. To do so we perform a 635 
chi squared test (dof=1): The total number of proteins in these sets is 13,698 (NullSet) and 767 636 
(StudySet). The breakdown of chi squared statistics and p-values can be found in Supplementary Table 6. 637 
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Supplementary Notes 638 

Supplementary Note 1. Structural data available for these microbiome-human PPIs  639 

Interaction network studies have increasingly moved towards structural interaction networks (66). These 640 
networks represent not only the group of binary PPIs that have been detected, but also the partner-specific 641 
interfaces on which these interactions occur. In the absence of resolved structural data for a given 642 
bacterial-human PPI, structural PPI data of homologous proteins can be used to identify potential protein 643 
interfaces.  644 

We measured the extent to which structural interfaces could be used to infer gut commensal-human 645 
protein-protein interaction by using DIAMOND (64) to query all amino acid sequences submitted to the 646 
PDB for any templates that might match bacterial or human proteins in our putative interactor library. Out 647 
of the 732 bacterial gene clusters that contain both members with experimentally-verified PPIs and were 648 
detected in human gut metagenomic sequences, 596 have BLASTP matches to a sequence in the PDB. A 649 
low-quality filter for at least 50% identity and 50% query coverage further lowers this set to 478 bacterial 650 
gene clusters. The same process and cutoffs detect PDB matches for 837 of the 2,140 human proteins in 651 
our interaction network. The overlap of these two sets reveals 20 cocrystal structures that can provide 652 
interface information for only 18 protein pairs including 15 bacterial gene-cluster proteins and 8 human 653 
proteins (Fig. S1). 654 

In order to identify interface residues between each pair of chains in the 20 cocrystal structures, we first 655 
use NACCESS (67) to calculate the solvent accessibility of each residue in each chain. Chains with an 656 
accessible surface area of 15 Å or more are considered surface residues. We then calculate the change in 657 
accessible surface area for each residue when other chains in the same crystal structures are introduced. 658 
Residues which have a change in solvent accessible surface area above 1 Å are determined to be interface 659 
residues (68). 660 

While we identify interface residues in all 18 protein pairs (Table S4), 12 of these cases involve large 661 
complexes where the human protein and bacterial protein match domains on more than one chain, and 662 
sometimes the same chain (Table S5). Determining interface residues for two proteins with multiple 663 
matches can complicate analysis, as they can result in multiple interfaces for the same protein partner. For 664 
example, in PDB 2b3y, both the human protein IREB2 and the bacterial proteins from the Aconitate 665 
hydratase cluster match domains in chains A and B. This would cause IREB2’s interface residues to 666 
contain interface residues from two sources in the same crystal structure. There are, however, 6 cases in 667 
which the human protein and bacterial proteins match their respective chains exclusively. We highlight 668 
one example in which there are uniquely mapped chains, where 1p0s chains H and E match human 669 
coagulation factor X and bacterial Ecotin, respectively (Fig. S10). Through this analysis, we demonstrate 670 
the power of sequence homology searches in structural databases to confirm bacteria-human PPIs and 671 
characterize their interfaces, but find that there are currently not enough representative sequences to do 672 
structural prediction at a large scale for the commensal human microbiome. 673 

Supplementary Note 2. Conservation of interface residues in bacterial members of UniRef50 674 
Clusters with human interactors in the PDB 675 

Functional annotations are commonly propagated between members of the same UniRef50 cluster (52, 676 
69), yet it is not clear whether this intra-cluster conservation of function applies to exogenous interaction. 677 
To validate whether this is generally the case, we analyzed the conservation of interface residues across 678 
bacterial members of the same UniRef cluster for all bacteria-human protein-protein interactions 679 
submitted to the Protein Data Bank (PDB). 680 

Using UniProt’s SPARQL API, we compiled a list of all PDB structures which contain both human 681 
proteins and bacterial proteins (751 structures as of January 2020), the UniRef50 cluster identifier for the 682 
bacterial protein, and all protein sequences in the corresponding cluster that also originate from bacterial 683 
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proteomes (68,434 unique bacterial protein sequences as of January 2020). Using Clustal Omega, we then 684 
generated multiple sequence alignments for all the members of each UniRef50 clusters, excluding any 685 
duplicated sequences. We calculated interface residues on all pairs of chains in each of the 751 structures 686 
and measured the BLOSUM62 similarity between bacterial interface residues and their corresponding 687 
amino acids in their respective UniRef50 cluster MSA.  688 

 689 

Despite the small number of PPIs in our dataset that have representatives in the PDB (Fig. S1), examining 690 
bacteria-human PPI co-crystal structures supports transfer of interaction among UniRef50 cluster 691 
members. We find that there is high amino acid sequence identity and similarity between interface 692 
residues in bacteria-human cocrystal structures and other bacterial members of the same cluster (Fig.S6). 693 
We additionally calculate the Jensen-Shannon divergence on the columns of the MSA containing 694 
interface residues and find that they are well-conserved (Fig.S6). Overall, we find evidence that interface 695 
residues with a human protein interactor tend to be maintained between bacterial members of the same 696 
UniRef50 cluster.   697 
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Supplementary Figures  749 
 750 
Figure S1. Few bacterial-human interaction sequences populate the Protein Data Bank.  751 
A Venn diagram describing the number of detected bacterial clusters and human proteins in the eight metagenomic cohorts that 752 
have any matching structure (using BLASTp) in the PDB and whether their structures appear on the same PDB cocrystal 753 
structure.  754 

732 2,140
18 interactions

with structure

478 bacterial
gene clusters
with structure

15 8
837 human proteins

with structure

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 29, 2020. ; https://doi.org/10.1101/821926doi: bioRxiv preprint 

https://doi.org/10.1101/821926
http://creativecommons.org/licenses/by-nc-nd/4.0/


  25 

Figure S2.  An outline of our homology mapping procedure and alignment.   755 
Depiction of the interaction network inference and protein detection pipeline. Note that only bacterial proteins found to be 756 
human-interactors through the mapping procedure are used as candidates for detection in metagenomic studies.  757 

Interactions are propagated
within UniRef homology clusters

Binary, cross-taxa protein-protein
interactions are identified in IntAct

And then filtered to include
only human/bacteria interactions

33,123
Homolog Cluster

Interactions

7,599
Clusters

Original Interactor

Protein
(taxa A)

Protein
(taxa B)

Homology Cluster Seed

Identity guarantees

Putative Interactors

4,186
Clusters

≥ 100%, 90% or 50%

Always ≥ 80%

Bacterial Protein
Human Protein

 Metagenomic reads are mapped to
bacterial proteins to identify those

present in patients

Reads aligned with BLASTx (identity ≥ 90%,
no gaps, non-exclusive alignment)

Require coverage of at least 10 reads deep
over 95% of the sequence (excluding 10
terminal amino acids)

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 29, 2020. ; https://doi.org/10.1101/821926doi: bioRxiv preprint 

https://doi.org/10.1101/821926
http://creativecommons.org/licenses/by-nc-nd/4.0/


  26 

Figure S3. Performance metrics. 758 
A heatmap of precision, recall, and F1-scores for random forests with 5000 estimators, evaluated using leave-one-out cross-759 
validation on each of the eight studies. Performances are listed for both the bacterial and human representations of the 760 
metagenomic sample. The bacterial representation lists all the bacterial genes detected in a patient that share a UniRef cluster 761 
with an experimentally-verified human-protein interactor. The vector of human proteins represents all the human proteins which 762 
might be targeted by the bacterial genes found in each metagenome.  763 
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Figure S4. Taxonomic diversity in bacterial clusters detected in patients. 764 
Histogram showing the number of species, genera, families, orders, classes and phyla for bacterial clusters with members 765 
detected in human microbiomes.   766 
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Figure S5. Pairwise identity and similarity between proteins found in the human microbiome and those with 767 
experimentally verified interaction. 768 
Histogram showing the percent identity and similarity between bacterial proteins with experimental verification and their 769 
corresponding detected proteins in human microbiomes in the same UniRef cluster. Three aggregation methods are used to 770 
estimate each metric at a cluster level: median, average, and an average weighted by prevalence.  771 
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Figure S6. Interface similarity between bacterial proteins within a UniRef cluster. 772 
Similarity, identity, and Jensen-Shannon divergence of interface residues across all bacterial members of the same UniRef cluster 773 
sourced from all cocrystal structures with human and bacterial interactors and no filtering based on our datasets. 774 
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Figure S7. Previous gene-disease associations for human interactors in our dataset. 775 
The number of human interactors (with normalized feature importance greater than 0) according to their GDAs for CRC, T2D, 776 
obesity, IBD and autoimmunity.   777 
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Figure S8. Human protein interactors according to their normalized feature importance and log odds ratio.  778 
Volcano plots of the human protein interactors according to their normalized feature importance and log odds ratios in each case-779 
control cohort study.  780 
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Figure S9. Clustering of cases and controls is not due to disease status or study.  781 
(A) Principal components analysis of patients by their detected human protein interactors, colored by study and label. (B) 782 
Principal components analysis of detected human protein interactors for all samples in eight metagenomic studies colored by 783 
disease status according to study. Controls are all colored together in blue.  784 

  785 
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Figure S10. Cocrystal structure of blood coagulation factor Xa in complex with Ecotin M84R. 786 
Cluster Uniref50_Q1R9K8 contains several bacterial ecotins detected in human metagenomes. Using BLAST, we found high-787 
quality matches between members of this cluster and the structure 1p0s:E (Ecotin precursor M84R) in the PDB (identity of 788 
97.2%, eval=1e-75). Our putative interactor to this cluster, coagulation factor X (P00742) likewise matched structure 1p0s:H 789 
(coagulation factor X precursor) (identity of 100%, eval=3.8 e-150). Chain E is shown in blue, and chain H in orange, with their 790 
interface residues highlighted as spheres. The linear model of both proteins is shown underneath. The linear model’s colored 791 
areas indicate the part of the proteins that were crystallized in this PDB, while the greyed-out areas indicate non-crystallized 792 
spans. The squares indicate the range of the BLAST match between our query proteins and the PDB reference sequences. Finally, 793 
ticks on the linear model indicate the location of interface residues as detected in this model. There are currently not enough 794 
published structures to perform this analysis on all interactions involving detected bacterial genes (Fig. S1, Tables S4 and S5). 795 
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Supplementary Tables 796 

Table S1. Metagenomic studies used in this research.  797 
For each study, we list its disease focus, the labels in the cohort study, the patient count for each of the 798 
labels, how we grouped cases and controls, the number of detected bacterial clusters and inferred human 799 
interactors, and the number of important bacterial and human proteins with normalized feature importance 800 
greater than 0.  801 
 802 
Table S2. Human interactors that have known gene-disease associations.  803 
Listed are the disease-associated human proteins (with normalized feature importance greater than 0) with 804 
GDAs in DisGeNET, along with the study in which they are found to be important.  805 
 806 
Table S3. Human interactors that are known drug targets.  807 
For each disease-associated human protein (with normalized feature importance greater than 0), we list 808 
the drug interactor and the study in which it was found to be important.  809 
 810 
Table S4. Interface residues from PDB chain pairs matching human and bacterial interactors in 811 
our dataset.  812 
All pairs of detected bacterial proteins and human proteins in the eight metagenomic datasets that have 813 
BLASTp matches to two different chains within the same PDB cocrystal structure (totaling 15 bacterial 814 
protein clusters and 8 human proteins). Listed are the BLAST readouts for both matches, as well as the 815 
interface residues for each chain at the PDB index, PDB sequence, and UniProt sequence mappings.  816 
 817 
Table S5. Cocrystal structures representing interactions in our set. 818 
A summary of the PDB chain-pairs (presented in Table S4) that can be used as representatives to identify 819 
interface residues for interactions in our set. We annotate each interaction by whether the bacterial and 820 
human proteins match non-overlapping pairs of chains.  821 
 822 
Table S6. Gene-disease association comparison statistics. 823 
The set sizes, fractions, chi-squared statistics and p-values used to generate Fig. 1E. 824 
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