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Axonal Channel Capacity in
Neuro-Spike Communication

Keyvan Aghababaiyan, Student Member, IEEE, Vahid Shah-Mansouri , Senior Member, IEEE,
and Behrouz Maham, Senior Member, IEEE

Abstract— Novel nano-scale communication techniques
are inspired by biological systems. Neuro-spike commu-
nication is an example of this communication paradigm
which transfers vital information about external and inter-
nal conditions of the body through the nervous system.
The analysis of this communication paradigm is beneficial
to exploit in the artificial neural systems where nano-
machines are linked to neurons to treat the neurodegener-
ative diseases. In these networks, nano-machines are used
to replace the damaged segments of the nervous system
and they exactly behave like biological entities. In neuro-
spike communication, neurons / nano-machines exploit the
electro-chemical spikes and molecular communication to
transfer information. This communication paradigm can be
divided into three main parts, namely the axonal pathway,
the synaptic transmission, and the spike generation. In this
paper, we focus on the axonal transmission part as a
separate channel since the capacity of the axonal pathway
has a significant effect on the capacity of neuro-spike
communication channel. In thinner axons, the capacity of
this part is the bottleneck of the neuro-spike communica-
tion channel capacity. Hence, we investigate the restricting
factors of the axonal transmission which limit its capacity.
We derive the capacity of single-input single-output and
multiple-input single-output (MISO) axonal channels. In the
MISO case, we investigate the effect of the correlation
among inputs on the channel capacity. Moreover, we derive
a closed form description for the optimum value of the input
spike rate to maximize the capacity of the axonal channel
when the information is encoded by firing rate of neurons /
nano-machines.

Index Terms— Nano-scale communications, neuro-spike
communications, axonal transmission, channel capacity.

I. INTRODUCTION

ELECTROMAGNETIC-BASED communication appro-
aches are unfortunately inapplicable or inappropriate in

very small dimensions or in specific environments, such
as nano-tunnels and nano-networks [1], [2]. Hence, recent
breakthroughs in nano technology have motivated diffusion-
based molecular communication. Molecular communication
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is a new promising field that can be used in nano-networks
and provides communication among nano-machines by using
molecules as information carriers [3], [4]. The calcium sig-
naling [5] and transmitting information by pheromones and
neuro-transmitters [3] are some examples of molecular com-
munication mechanisms. Nervous system is the most complex
and advanced intra-body nano-network. Neurons are notable
among the cells of the body in their capability to propagate
signals rapidly over large distances. They perform this by
producing electrical pulses called action potentials or, more
simply, spikes that can propagate along nerve fibers. The
communication which is used in the neuronal nano-network
is called neuro-spike communication. It is a hybrid model
that involves both molecular communication in the synaptic
transmission part, which occurs between two adjacent neurons,
and electrical transmission of action potentials in the axonal
pathway. An action potential is a roughly 100 mV oscillation
in the electrical potential across the cell velum that lasts for
about 1 ms. Action potentials can be propagated over large
distances since they are the only form of velum potential
fluctuation.

Several work has been performed in neuro-spike com-
munication field. It has been investigated in [6] that the
efficiency of neuro-spike communication is acceptable in terms
of robustness, speed and reliability. In [7], a mathemati-
cal model of how a neuron stochastically processes data
and communicates information is introduced and analyzed.
A physical channel model for neuro-spike communication has
been proposed in [8] to characterize its fundamental properties.
This model describes the neuro-spike communication channels
in the Cornu Ammonis (CA) region, a specific zone in the
hippo-campus location of the brain. In [9], an alternative
representation of the neuron-to-neuron communication process
has been proposed. A synaptic model has been suggested
in [10]. This model shows that redundancy of synapses
provides an improvement in the information transmission
efficiency. In [8], Balevi and Akan proposed a theoretical
lower bound on the capacity of a simple cortical synapse
model. In [11], Veletić et al. derived theoretical upper bounds
on the information capacity of both bipartite and tripartite
synapses. In [12], we have derived the capacity bounds of the
neuro-spike communication systems by exploiting temporal
modulations. Johnson [13] showed that connections among
neurons can enhance the capacity. In [14], Malak and Akan
studied the multiple-access communications among neurons
which are occurred through exchanging of molecules via
chemical synapses. The axonal propagation in the CA region
and its reliability have been investigated in [15] and [16].
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In [17], we have investigated the effect of the axonal noise
on the axonal pathway capacity. In [4], the impact of axonal
variability on the synaptic response has been investigated.
Moreover, an optimum detection policy has been proposed
in [18] to detect spikes under different stochastic impairments
such as axonal and synaptic noises and random vesicle release.
Most of the existing works, such as [8], [18], and [19] have
considered the axonal noise as a Bernoulli random variable
regardless of the noise spike rate. Moreover, their model is
inefficient to describe the modality of the axonal noise.

The axonal noise depends on action potential physical
characteristics. The action potential is produced by voltage-
gated ion channels, which control the flow of ionic currents
through the velum. Therefore, oscillations in voltage-gated ion
channels result in probabilistic gating, generating random elec-
trical currents called axonal channel noise [20]. In thin axons,
the behavior of individual ion channels can have a substantial
impact on the velum potential dynamics owing to the higher
input resistance of these axons [21], [22], [23]. Since in these
axons fewer channels sustain conduction of action potential,
oscillations in a single ion channel have more significant effect
on the velum potential. In axons thinner than 0.3 μm diameter,
the input resistance is large enough such that spontaneous
opening of single Na+ channel at the resting potential can
generate Na+ sparks which can trigger action potentials in
the absence of any other inputs. These spontaneous action
potentials become exponentially more frequent when the axon
diameter reduces. Faisal et al. [21] have shown that channel
noise sets a lower bound to reliable axonal communication
at 0.08 - 0.1 μm diameter. Above this bound, in axons of
0.1 - 0.5 μm diameter, channel noise causes fluctuation in
the rising phase of the spike and the resting input resistance
of axons. Thus, spikes are added along the axon [22]. Hence,
axonal noise has a significant effect on the capacity of neuro-
spike communication channel so that it can be the bottleneck
of the capacity of neuro-spike communication.

In this paper, we model the input spike train of this channel
by a doubly Poisson process which is a Poisson process with a
time-varying rate. Moreover, we consider the axonal noise as a
Poisson process. We investigate how noise of axons affects the
capacity of axonal transmission. We derive the capacity for a
simple Single-Input Single-Output (SISO) axonal transmission
channel. We obtain the distribution function of input rate
which maximizes the mutual information between input and
output of the axonal channel. Then, we extend our analytic
works by considering a Multiple-Input Single-Output (MISO)
axonal transmission channel and investigate the effect of
correlation among inputs on the capacity of this channel.
We demonstrate when the correlation among inputs increases,
the channel capacity decreases. Moreover, in contrast to pre-
vious works, we investigate the effect of optimization of the
input spike rate to design the efficient input encoding rate with
the goal of reduction in the adverse effect of axonal noise.
To derive this optimum distribution, we exploit the convexity
of the mutual information and Jensens inequality. The results
of our work could be beneficial to exploit in the artificial neural
systems where nano-machines are linked to neurons to treat
the neurodegenerative diseases, e.g., Alzheimers, where some

cells lost their ability to communicate and the nervous system
needs to be re-connected.

The rest of this paper is organized as follows. In Section II
a simple mathematical model for axonal channel, its input and
noise characteristics are presented. In Section III, we derive
the capacity of SISO and MISO axonal channel, analytically.
In this section, we investigate the effect of correlation of inputs
on the capacity of MISO axonal channels. In Section IV,
we derive an optimum input spike rate which maximizes the
channel capacity. Finally, Section V concludes this paper.

II. AXONAL TRANSMISSION MODEL

The communication among neurons is called neuro-spike
communication, since spikes are used as information carriers
from one neuron to another one. Neurons exploit firing rate
and temporal coding to transmit information by action poten-
tials. Neural coding refers to the mapping from the stimulus
to the response of neuron. The neuro-spike communication
includes three main parts. In the first part, i.e., the axonal
pathway, spikes are diffused along the axon. The pre-synaptic
terminals which are located at the end of the axon release
the neuro-transmitter packets to the gaps among neurons,
i.e., synapses. The synaptic transmission, i.e., the second
part of the neuro-spike communication, begins by releas-
ing the neuro-transmitter packets. Every packet encompasses
many neuro-transmitter molecules. By the release of neuro-
transmitters, each neuro-transmitter propagates towards the
output neuron. There are many post-synaptic terminals at the
dendrites, in which the receptors are located [14], and they
receive the propagated molecules. When neuro-transmitters
are absorbed, the final part of neuro-spike communication,
called spike generation, is commenced by the movement of
ions. Moving ions excite the velum potential of the output
neuron, and lead to the action potential generation. There is a
threshold value for each neuron to be depolarized. Thus, action
potentials are generated at the neuron axon by any excitation
above this threshold level. The arrival of this excitation to the
input neuron is a stochastic process. This stochastic model can
be assumed as a Poisson process [8].

We use Fano factor to verify that the Poisson process
is a realistic model for the input of axonal transmission
channel. The Fano factor describes the relevance between the
mean spike count over a specified interval and the spike-
count variance. Mean spike count n̄ and variance σn

2 from
a wide variety of neuronal recording are fitted to the equation
σn

2 = An̄B , and the multiplier A and exponent B are deter-
mined. The values of both A and B typically lie between 1 and
1.5 [24]. Since the Poisson model predicts A = B = 1, this
indicates that the data shows a higher degree of variability than
the Poisson model would predict. The results for spike-count
means and variances extracted from recording of MT (Medial
temporal) neuron in alert macaque monkeys using a number
of various stimuli depict A and B values are close to 1 [25].
The MT area is a visual region of the primate cortex where
many neurons are sensitive to image motion. Hence, we can
conclude that although many neural responses cannot be
described by Poisson statistics, it is reassuring to see a case
where the Poisson model seems a reasonable approximation.
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The refractory effect is often the main cause that spike
trains are not described exactly by a Poisson model. For a
few millisecond just after an action potential has been fired,
it may be virtually impossible to generate another spike. This
is called the absolute refractory period. For a longer interval
known as the relative refractory period, lasting up to tens
of milliseconds after a spike, it is more hard to initiate an
action potential. Thus, the Poisson model with refractories
provides a reasonably good description for input spike train.
This description can be modeled by a Poisson process with
a time-variant rate. Moreover, neurons fire action potentials
in cluster or bursts of spikes that cannot be described by a
Poisson process with a fixed rate. Bursting can be included in
a Poisson model by allowing the firing rate to fluctuate in order
to describe the high rate of firing during a burst period. Hence,
the distribution of bursts themselves can be described by a
doubly Poisson process which is called a Cox process [26].
Therefore, we model the input spike train of axonal transmis-
sion part by a doubly Poisson process in this paper.

We consider a simple model for axonal transmission channel
as a separate part of neuro-spike communication system. The
input spike sequence of axonal transmission can be represented
as a sum of Dirac delta functions. As mentioned before,
the channel input is taken as a random process x(t) where
{x(t), tε(0, T )} is a doubly Poisson stochastic process with a
non-negative random intensity of λ(t) as follows:

x (t) =
∑

k

δ(t − tk), (1)

where tk is the time that a spike is generated. We define the
signal in the pre-synaptic terminal of the input neuron, q(t),
as follows:

q (t) = x (t) + n(t), (2)

where n(t) is the axonal noise. As mentioned before, fluctua-
tions in voltage-gated ion channels result to random electrical
currents called axonal channel noise [20]. Thus, some action
potentials are added along the axon [22]. We model the axonal
noise by arbitrary spikes as:

n(t) =
∑

m

δ(t − tm), (3)

where tm is the time that an undesirable spike is generated.
Since the axonal noise mainly is a result of the stochastic
opening of the ion channels, and since there may be numerous
ion channels, the axonal noise can be considered as a Poisson
process by a constant rate. This rate is a function of the axon
thickness and it is more for thinner axons. Fig. 1 shows the rate
of spontaneous spikes for some types of axons with different
diameters. It can be observed this rate is more significant
for axons thinner than 0.3 μm. Since the input resistance
in thinner axons is large enough, spontaneous opening of
single ion channel at the resting potential can trigger action
potentials in the absence of any other inputs. Besides, since
stochastic fluctuations of the ion channels are regardless of
the input spikes train, the spikes due to the axonal noise
are independent of the actual input [4]. Therefore, we can
assume x(t) and n(t) are independent processes. The capacity
of axonal transmission channel is the maximum of the mutual
information between x(t) and q(t). Therefore, we investigate

Fig. 1. The spontaneous spike rate for diverse types of axons with
different diameters [21].

the capacity of axonal channel and attempt to maximize this
capacity by allocating the optimum rate to the input spike train.
We can exploit this result to design optimum artificial neural
networks by using nano-machines instead of infirm neurons.

III. CAPACITY OF AXONAL CHANNELS

In the next three subsections, we investigate the capacity of
different axonal channels. First, we consider a SISO model for
axonal channel to derive the capacity as a function of input
and axonal noise rates. Then, we extend our model to a MISO
channel to derive the channel capacity and study the effect of
correlation between inputs in this case.

A. Capacity of SISO Axonal Channel
In this part, we consider a Single-Input and Single-Output

model for the axonal channel. A SISO axonal channel model
can be used when the dendrites of a neuron receive a spike
train from a pre-synaptic terminal and the neuron transmits
this spike train along its axon. As we assume, the input of
the channel is x(t) where {x(t), tε(0, T )} is a doubly Poisson
stochastic process with a non-negative random intensity, λ (t).
In SISO model, the input of each neuron is the output spike
train of another neuron. Since the firing rate of each neuron is
dependent on its own past due to the refractory effect, the λ(t)
has memory. In addition, the noise of this channel is the axonal
noise which is a Poisson stochastic process with a constant
non-negative intensity, n. As mentioned before, this rate is a
function of the axon thickness. Therefore, the output of this
channel, i.e., q(t) is a doubly Poisson stochastic process with
an intensity equal to the sum of λ (t) and n. If we ignore the
brief duration of action potential, an action potential sequence
can be characterized simply by a list of the times when spikes
occurred. A stochastic process that describes a sequence of
events, such as action potential, is called a point process. Let
QT be the samples of the output point process q(t) in the time
interval (0, T ) and X T be the samples of x(t) in this interval.
We define P(QT ) as the probability density function of the
q(t) samples. Since λ(t) is dependent on its own past values,
from [29, Th. 2] for doubly Poisson processes, we have

P(QT ) = e− ∫ T
0 (λ̄(t)+n)dt+∫ T

0 log(λ̄(t)+n)dq(t), (4)

where λ̄ (t) is the estimate of the λ (t) when we have the output
intensity. The P(QT |X T ) is defined as the probability density
function of the q (t) samples when the x (t) is given in the
time interval (0, T ). Then, from [29, Th. 4], we have

P
(

QT |X T
)

= e− ∫ T
0 (λ(t)+n)dt+∫ T

0 log(λ(t)+n)dq(t). (5)
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Thus, we can define the mutual information between input and
output of our channel as:

I
(

X T ; QT
)

= Eλ(t)

[
log

(
P

(
QT |X T

)

P
(
QT

)
)]

, (6)

where Eλ(t)[·] is the expectation operation over λ(t). By sub-
stituting the expressions in (4) and (5) into (6), we have

I
(

X T ; QT
)

= Eλ(t)[−
∫ T

0

(
λ (t) − λ̄ (t)

)
dt

+
∫ T

0
log

(
λ (t) + n

λ̄ (t) + n

)
dq (t)]. (7)

We have Eλ(t)
[
λ̄(t)

] = Eλ(t)

[
Ê [λ(t)|q(t)]

]
= Eλ(t) [λ(t)],

and thus, we can simplify the expression in (7) as follows:

I
(

X T ; QT
)

= Eλ(t)

[∫ T

0
log

(
λ (t) + n

λ̄ (t) + n

)
dq (t)

]
. (8)

In addition, q (t) − ∫ T
0 log (λ (t) + n) dt is a martingale

[30, eq. (3.20)], then from a theorem of stochastic integrals
[31, p. 437] the expression in (8) is converted to

I
(

X T ; QT
)
=Eλ(t)

[∫ T

0
(λ (t) + n) log

(
λ (t) + n

λ̄ (t) + n

)
dt

]
. (9)

Thus, we have

I
(

X T ; QT
)

=
∫ T

0
(Eλ(t)

[
(λ (t) + n) log (λ (t) + n)

]

− Eλ(t)
[
(λ (t) + n) log

(
λ̄ (t) + n

)]
)dt . (10)

Then, by replacing the λ(t) with its estimation when q (t) is
given in the second term, we have

I
(

X T ; QT
)

=
∫ T

0
(Eλ(t)

[
(λ (t) + n) log (λ (t) + n)

]

− Eλ(t)

[
Ê

[
(λ (t) + n) log

(
λ̄ (t) + n

) |q(t)
]]

)dt . (11)

Since Ê [(λ (t) + n) |q(t)] = λ̄ (t) + n, we can simplify the
expression in (11) as follows:

I
(

X T ; QT
)

=
∫ T

0
(Eλ(t)

[
(λ (t) + n) log (λ (t) + n)

]

− Eλ(t)
[(

λ̄ (t) + n
)

log
(
λ̄ (t) + n

)]
)dt, (12)

and the capacity of the SISO axonal channel is defined as the
maximum of the expression in (12) over λ (t).

CSISO = max
λ(t)

I (QT ; X T ). (13)

Therefore, we solve the following optimization problem sub-
ject to average and peak rate constraints for obtaining the
capacity of the SISO axonal channel.

max
λ(t)

{
∫ T

0
(Eλ(t)

[
(λ (t) + n) log (λ (t) + n)

]

− Eλ(t)
[(

λ̄ (t) + n
)

log
(
λ̄ (t) + n

)]
dt)},

s.t.
1

T
Eλ(t)

⎡

⎣
T∫

0

λ (t) dt

⎤

⎦ ≤ σ R, 0 ≤ λ (t) ≤ R,

0 ≤ σ ≤ 1, (14)

where R is the maximum rate of the input spike train in
response to stimuli and σ is the ratio of average to peak
rate. We consider an upper bound expression for I (QT ; X T )
denoted as U(QT ; X T ). Note that since the function f (x) =
x log x is convex, Jensen’s inequality (E[ f (x)] ≥ f (E[x]))
gives

Eλ(t)
[(

λ̄s(t) + n
)

log
(
λ̄s(t) + n

)]

≥ [
Eλ(t)

(
λ̄s(t) + n

)]
log

[
Eλ(t)

(
λ̄s(t) + n

)]
, (15)

and since Eλ(t)
[
λ̄(t)

] = Eλ(t)

[
Ê [λ(t)|q(t)]

]
= Eλ(t) [λ(t)],

we have[
Eλ(t)

(
λ̄s(t) + n

)]
log

[
Eλ(t)

(
λ̄s(t) + n

)]

= [
Eλ(t) (λs(t) + n)

]
log

[
Eλ(t) (λs(t) + n)

]
. (16)

Thus, we have

I (QT ; X T ) ≤ U(QT ; X T )

=
∫ T

0
(Eλ(t)

[
(λ (t) + n) log (λ (t) + n)

]

− [
Eλ(t) (λ (t) + n)

]
log

[
Eλ(t) (λ (t) + n)

]
)dt .

(17)

Hence, U(QT ; X T ) is the upper bound on the capacity of the
SISO axonal channel. According to (15) and (16), the axonal
channel capacity converges to its upper bound when λ̄(t) =
Eλ(t) [λ(t)]. Now, we try to obtain the optimum input intensity
distribution which maximizes the capacity of SISO axonal
channel. Therefore, to find the optimum input distribution we
solve the following optimization problem instead of (14) when
we assume λ̄(t) = Eλ(t) [λ(t)].

max
λ(t)

{
∫ T

0
(Eλ(t)

[
(λ (t) + n) log (λ (t) + n)

]

− [
Eλ(t) (λ (t) + n)

]
log

[
Eλ(t) (λ (t) + n)

]
dt)},

s.t.
1

T
Eλ(t)

⎡

⎣
T∫

0

λ (t) dt

⎤

⎦ ≤ σ R, 0 ≤ λ (t) ≤ R, 0 ≤ σ ≤ 1.

(18)

We assume Eλ(t)[λ(t)] = Rk , where 0 ≤ Rk ≤ R. For
achieving the optimum input distribution which maximizes
the capacity of the SISO axonal channel, we solve the dual
problem of the optimization problem in (18) as follow:

max
λ(t)

L(λ(t), ξ), (19)

where the L(λ(t), ξ) is defined as:

L(λ(t), ξ) =
T∫

0

(Eλ(t)
[
(λ (t) + n) log (λ (t) + n)

]

− [Eλ(t) (λ (t) + n)] log[Eλ(t) (λ (t) + n)]
+ ξ

T
(Eλ(t) [λ (t)] − σ R))dt, (20)

where ξ is the Lagrangian multiplier. When Eλ(t)[λ(t)] = Rk
and E[n] = Rn , the expression in (20) is converted to

T∫

0

(Eλ(t)
[
(λ (t) + n) log (λ (t) + n)

]

− (Rk + Rn) log(Rk + Rn)+ ξ

T
(Rk − σ R))dt . (21)
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Fig. 2. The closed convex hull of the graph of Y = (X + n)log(X + n) for
0 ≤ X ≤ R.

Note from Fig. 2 that 0 ≤ λ (t) ≤ R, then the possible
values of Eλ(t)

[
(λ (t) + n) log (λ (t) + n)

]
must lie in the

closed convex hull of the graph of Y = (X + n) log(X + n)
for 0 ≤ X ≤ R. Hence the largest possible values lie on the
cord AB. These values can be achieved by using the following
distribution:

Prob (λ = R) = 1 − Prob (λ = 0) = α, 0 � α � 1. (22)

Since Eλ(t) [λ (t)] = Rk , we have

Eλ(t) [λ (t)] =
∑

λ (t) Prob (λ) → Rk = RProb (λ = R)

= Rα → α = Rk

R
. (23)

Hence

max
λ(t)

Eλ(t)
[
(λ(t) + n) log(λ(t) + n)

]

= (
Rk

R
)(R + Rn) log(R + Rn) + (1 − Rk

R
)Rn log(Rn), (24)

Thus, by inserting (24) in (17) the capacity of the SISO axonal
channel is obtained as follows:

CSISO = Rk

R
(R + Rn) log (R + Rn) +

(
1 − Rk

R

)
Rn log (Rn)

− (Rk + Rn) log (Rk + Rn) , (25)

where Rn is the expectation value of the rate of axonal noise.

B. Capacity of MISO Channel With Independent Inputs
In this subsection, we consider the MISO axonal channel

with independent inputs model which can be used when the
dendrites of a neuron receive several independent spike trains
from different pre-synaptic terminals and the neuron transmits
them along its axon. For simplicity, let us consider two
independent inputs for this channel. As expressed in Section II,
the inputs of the channel are assumed as two independent
random processes x1(t) and x2(t) where {xi (t), tε(0, T )},
i = 1, 2 are two doubly Poisson stochastic processes with non-
negative random intensities λ1 (t) and λ2 (t). In MISO model,
the input of each neuron contains the spike trains of multiple
neurons. Since the firing rates of neurons are dependent on
their own past due to the refractory effect, the λ1(t) and λ2(t)
have memory. In addition, the noise of this channel is the
axonal noise which is a Poisson stochastic process with a
constant non-negative intensity n. Therefore, the output of this
channel, i.e., q(t) is a doubly Poisson stochastic process with
an intensity equal to the sum rates of λ1 (t), λ2 (t) and n. Let
QT be the samples of the output point process q(t) in the

time interval (0, T ), and also X1 and X2 be the samples of
x1(t) and x2(t) in this interval, respectively. We define P(QT )
as the probability density function of q(t) samples. Since
λ1(t) and λ2(t) are dependent on their own past values, from
[29,Th. 2] for doubly Poisson processes, we have

P(QT )=e− ∫ T
0 (λ̄1(t)+λ̄2(t)+n)dt+∫ T

0 log(λ̄1(t)+λ̄2(t)+n)dq(t), (26)

where λ̄1 (t) and λ̄2 (t) are the estimates of λ1 (t) and λ2 (t),
respectively; when we have the output intensity. The
P(QT |X1,X2) is defined as the probability density function
of q (t) samples when x1 (t) and x2 (t) are given in the time
interval (0, T ). Then, from [29, Th. 4], we have

P
(

QT |X1, X2

)

= e− ∫ T
0 (λ1(t)+λ2(t)+n)dt+∫ T

0 log(λ1(t)+λ2(t)+n)dq(t). (27)

Thus, we can define the mutual information between the inputs
and the output of this channel as:

I
(

X T ; QT
)

= E�

[
log

(
P

(
QT |X1, X2

)

P
(
QT

)
)]

, (28)

where E�[·] is the expectation operation over the vector � =
[λ1(t), λ2(t)]. By substituting the expressions in (26) and (27)
into (28), we have

I
(

X T ; QT
)

= E�

[
−

∫ T

0

(
λ1 (t) − λ̄1 (t)

)
dt −

∫ T

0

(
λ2 (t) − λ̄2 (t)

)
dt

]

+ E�

[∫ T

0
log

(
λ1 (t) + λ2 (t) + n

λ̄1 (t) + λ̄2 (t) + n

)
dq (t)

]
. (29)

Since E�

[
λ̄1 (t) + λ̄2(t)

] = E�

[
Ê [λ1 (t) + λ2 (t) |q(t)]

]
=

E� [λ1 (t) + λ2 (t)] , and thus, we can simplify the expression
in (29) as follows:

I
(

X T ; QT
)
=E�

[∫ T

0
log

(
λ1 (t) + λ2 (t) + n

λ̄1 (t) + λ̄2 (t) + n

)
dq (t)

]
. (30)

In addition, q (t)−∫ T
0 log(λ1 (t)+λ2 (t)+n)dt is a martingale

[30, eq. (3.20)], then from a theorem of stochastic integrals
[31, p. 437] the expression in (30) is converted to

I
(

X T ; QT
)

= E�[
∫ T

0
(λ1 (t) + λ2 (t) + n)

× log

(
λ1 (t) + λ2 (t) + n

λ̄1 (t) + λ̄2 (t) + n

)
dt]. (31)

Then, we have

I
(

X T ; QT
)

=
∫ T

0
(E�

[
(λ1 (t) + λ2 (t) + n) log (λ1 (t) + λ2 (t) + n)

]

− E�

[
(λ1 (t) + λ2 (t) + n) log

(
λ̄1 (t) + λ̄2 (t) + n

)]
)dt .

(32)

Then, by replacing the λi (t), i = 1, 2 with their estimations
when q (t) is given in the second term, we have

I
(
X T ; QT

)
=
∫ T

0
(E�[(λ1(t)+λ2(t)+n) log (λ1(t)+λ2(t)+n)]

− E�[Ê[(λ1 (t) + λ2 (t) + n)

× log
(
λ̄1 (t) + λ̄2 (t) + n

) |q(t)]])dt . (33)
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Since Eλ(t) [(λ1 (t) + λ2 (t) + n) |q(t)] = λ̄1 (t) + λ̄2 (t) + n,
we can simplify the expression in (33) as follows:

I
(

X T ; QT
)

=
∫ T

0
(E�

[
(λ1 (t) + λ2 (t) + n) log (λ1 (t) + λ2 (t) + n)

]

− E�

[(
λ̄1 (t) + λ̄2 (t) + n

)
log

(
λ̄1 (t) + λ̄2 (t) + n

)]
)dt,

(34)

and the capacity of the MISO axonal channel is defined
as the maximum of the expression presented in (34) over
� = [λ1 (t) , λ2 (t)].

CMISO = max
�

I (QT ; X T ). (35)

Therefore, we solve the following optimization problem sub-
ject to average and peak rate constraints, for obtaining the
capacity of the MISO axonal channel with independent inputs.

max
�

{
∫ T

0
(E�[(λ1 (t) + λ2 (t) + n) log (λ1 (t) + λ2 (t) + n)]

− E�[(λ̄1 (t)+λ̄2 (t)+n
)

log
(
λ̄1 (t)+λ̄2 (t)+n

)]dt},

s.t.
1

T
E�

⎡

⎣
T∫

0

λ1 (t) + λ2 (t) dt

⎤

⎦ ≤ σ R, 0 ≤ λ1 (t) ≤ R,

0 ≤ λ2 (t) ≤ R, 0 ≤ σ ≤ 1, (36)

where R is the maximum rate of the input spike trains in
response to stimuli and σ is the ratio of average to peak rate.
We consider an upper bound for I (QT ; X T ) as U(QT ; X T ).
Note that since the function f (x) = x log x is convex, Jensen’s
inequality gives

E�

[(
λ̄1(t) + λ̄2(t) + n

)
log

(
λ̄1(t) + λ̄2(t) + n

)]

≥ [
E�

(
λ̄1(t) + λ̄2(t) + n

)]
log

[
E�

(
λ̄1(t) + λ̄2(t) + n

)]
,

(37)

and since E�

[
λ̄i (t)

] = E�

[
Ê [λi (t)|q(t)]

]
= E� [λi (t)],

we have
[
E�

(
λ̄1(t) + λ̄2(t) + n

)]
log

[
E�

(
λ̄1(t) + λ̄2(t) + n

)]

= [
E�

(
λ1(t) + λ̄2(t) + n

)]
log [E� (λ1(t) + λ2(t) + n)] ,

(38)

and thus, we have

I (QT ; X T )

≤ U(QT ; X T )

=
∫ T

0
(E�

[
(λ1 (t) + λ2 (t) + n) log (λ1 (t) + λ2 (t) + n)

]

− [E�(λ1 (t)+λ2 (t)+n)] log [E� (λ1 (t)+λ2 (t)+n)])dt .

(39)

Thus, U(QT ; X T ) is the upper bound on the capacity of the
MISO axonal channel. According to (37) and (38), the axonal
channel capacity converges to its upper bound when λ̄i (t) =
E� [λi (t)]. Now, we try to obtain the optimum input intensity
distribution which maximizes the capacity of MISO axonal
channel. Therefore, to find the optimum input distribution we
solve the following optimization problem instead of (36) when

we assume λ̄i (t) = E� [λi (t)].

max
�

{
∫ T

0
(E�

[
(λ1 (t) + λ2 (t) + n) log (λ1 (t) + λ2 (t) + n)

]

− [E� (λ1 (t) + λ2 (t) + n)]

× log [E� (λ1 (t) + λ2 (t) + n)] dt)},

s.t.
1

T
E�

⎡

⎣
T∫

0

λ1 (t) + λ2 (t) dt

⎤

⎦ ≤ σ R, 0 ≤ λ1 (t) ≤ R,

0 ≤ λ2 (t) ≤ R, 0 ≤ σ ≤ 1. (40)

We assume E�[λi (t)] = Rk i , where 0 ≤ Rk i ≤ R. For
achieving the optimum input distribution which maximizes
the capacity of the MISO axonal channel, we solve the dual
problem of the optimization problem in (40) as follow:

max
�

L(�, ξ), (41)

where the L(�, ξ) is defined as:

L(�, ξ)

=
T∫

0

(E�

[
(λ1 (t) + λ2 (t) + n) log (λ1 (t) + λ2 (t) + n)

]

− [
E� (λ1 (t) + λ2 (t) + n)] log[E� (λ1 (t) + λ2 (t) + n)

]

+ ξ

T
(E� [λ1 (t) + λ2 (t)] − σ R))dt, (42)

where ξ is the Lagrangian multiplier. When E�[λi (t)] = Rk i
and E[n] = Rn , the expression in (42) is converted to

T∫

0

(E�

[
(λ1 (t) + λ2 (t) + n) log (λ1 (t) + λ2 (t) + n)

]

− (Rk 1 + Rk 2 + Rn) log(Rk 1 + Rk 2 + Rn)

+ ξ

T
(Rk 1 + Rk 2 − σ R))dt . (43)

For 0 ≤ Rk i ≤ R the possible values of E�[(λ1(t)+λ2(t)+n)
log(λ1(t) + λ2(t) + n)] must lie in the closed convex hull
of the graph of Z = (X + Y + n) log(X + Y + n) for
0 ≤ X ≤ R and 0 ≤ Y ≤ R. Based on the argumentation
was presented in Subsection III-A, the largest possible values
for E�[(λ1 (t) + λ2 (t) + n) log (λ1 (t) + λ2 (t) + n)] can be
achieved by using the following distribution:

Prob (λi = R) = 1 − Prob (λi = 0) = αi ,

0 � αi � 1, α1 + α2 � 1. (44)

Since E� [λi (t)] = Rk i , we have

E� [λi (t)] =
∑

λi (t) Prob (λi ) → Rk i = R Prob (λi = R)

= Rαi → αi = Rk i

R
. (45)

Hence

max
�

E�

[
(λ1(t) + λ2(t) + n) log(λ1(t) + λ2(t) + n)

]

= (
Rk 1 + Rk 2

R
)(R + Rn) log(R + Rn)

+ (1 − Rk 1 + Rk 2

R
)Rn log(Rn). (46)
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Thus, by inserting (46) in (39) the capacity of the MISO axonal
channel is obtained as follows:

CMISO (Independent) = (
Rk 1

R
+ Rk 2

R
) (R + Rn) log (R + Rn)

+
(

1 − Rk 1

R
− Rk 2

R

)
Rn log (Rn)

− (Rk 1+ Rk2+ Rn) log(Rk 1+ Rk 2+ Rn),

(47)

where Rn is the expectation value of the rate of axonal noise.

C. Capacity of MISO With Correlated Inputs

We consider the MISO axonal channel with correlated
inputs model which can be used when the dendrites of a
neuron receive several correlated spike trains from differ-
ent pre-synaptic terminals. Then, the neuron transmits them
along its axon. The correlated spike trains contain redundant
information from a stimulus. Since the axonal pathway is
unreliable, the redundancy is used commonly to enhance the
axonal transmission reliability. For simplicity, let us consider
two inputs for this channel. The inputs of the channel are
assumed as two correlated random processes x1(t) and x2(t)
where {xi(t), tε(0, T )}, i = 1, 2 are two point processes.
Besides, it is assumed that we can divide each of the inputs in
to two independent terms si (t) and s0(t). The si (t) describes
independent parts of x1(t) and x2(t). On the other hand,
the s0(t) describes common parts of x1(t) and x2(t) as follows:

xi (t) = si (t) + s0(t), i = 1, 2. (48)

As expressed in Section II, it is supposed that s0(t), s1(t)
and s2(t) are doubly Poisson stochastic processes with non-
negative random intensities λ0 (t), λ1 (t) and λ2 (t), respec-
tively. In MISO model, the input of each neuron contains the
spike trains of multiple neurons. In this scenario the spike
trains are correlated. Since the firing rates of neurons are
dependent on their own past due to the refractory effect,
the λ0(t), λ1(t) and λ2(t) have memory. We can obtain the
correlation coefficient between x1(t) and x2(t) as follows:

ρ = λ0(t)√
(λ1(t) + λ0(t))(λ2(t) + λ0(t))

. (49)

Moreover, it is assumed that, the noise of this channel is the
axonal noise which is a Poisson stochastic process with a
constant non-negative intensity n similar to Subsection III-A.
Therefore, the output of this channel, i.e., q(t) will be a
doubly Poisson stochastic process with an intensity equal to
the sum of λ0 (t), λ1 (t), λ2 (t) and n. Let QT be the samples
of the output point process q(t) in the time interval (0, T ).
Moreover, X1 and X2 be the samples of x1(t) and x2(t) in
this interval, respectively. We define P(QT ) as the probability
density function of q(t) samples. Since λ0(t), λ1(t) and λ2(t)
are dependent on their own past values, from [29, Th. 2] for
doubly Poisson processes, we have

P(QT )

= e− ∫ T
0 (λ̄1(t)+λ̄2(t)+λ̄0(t)+n)dt+∫ T

0 log(λ̄1(t)+λ̄2(t)+λ̄0(t)+n)dq(t),

(50)

where λ̄0(t), λ̄1(t) and λ̄2(t) are the estimates of the λ0(t),
λ1(t) and λ2(t), respectively. The P(QT |X1, X2) is defined
as the probability density function of q (t) samples when the
x1 (t) and x2 (t) are given in the time interval (0, T ). Then,
from [29, Th. 4], we have

P
(

QT |X1, X2

)

= e− ∫ T
0 (λ1(t)+λ2(t)+λ0(t)+n)dt+∫ T

0 log(λ1(t)+λ2(t)+λ0(t)+n)dq(t).

(51)

Thus, we can define the mutual information between the inputs
and the output of this channel as (28). By substituting the
expressions which are described in (50) and (51) into (28),
we have

I
(

X T ; QT
)

= E�[−
∫ T

0

(
λ0 (t) − λ̄0 (t)

)
dt −

∫ T

0

(
λ1 (t) − λ̄1 (t)

)
dt]

−
∫ T

0

(
λ2 (t) − λ̄2 (t)

)
dt]

+ E�[
∫ T

0
log

(
λ1 (t) + λ2 (t) + λ0 (t) + n

λ̄1 (t) + λ̄2 (t) + λ̄0 (t) + n

)
dq (t)], (52)

where E�[·] is the expectation operation over the vector � =
[λ1(t), λ2(t), λ0(t)]. Since E�

[
λ̄1 (t) + λ̄2 (t) + λ̄0 (t)

] =
E�[Ê [λ1 (t) + λ2 (t) + λ0 (t) |q(t)]] = E�[λ1 (t) + λ2 (t) +
λ0 (t)], and thus, we can simplify the expression in (52) as
follows:

I
(

X T ; QT
)

= E�

[∫ T

0
log

(
λ1 (t) + λ2 (t) + λ0 (t) + n

λ̄1 (t) + λ̄2 (t) + λ̄0 (t) + n

)
dq (t)

]
. (53)

In addition, q (t) − ∫ T
0 log(λ1 (t) + λ2 (t) + λ0 (t) + n)dt is a

martingale [30, eq. (3.20)], then from a theorem of stochastic
integrals [31, p. 437] the expression in (53) is converted to

I
(

X T ; QT
)

= E�[
∫ T

0
(λ1 (t) + λ2 (t) + λ0 (t) + n)

× log

(
λ1 (t) + λ2 (t) + λ0 (t) + n

λ̄1 (t) + λ̄2 (t) + λ̄0 (t) + n

)
dt]. (54)

Then, we have

I
(

X T ; QT
)

=
∫ T

0
(E�[(λ1 (t) + λ2 (t) + λ0 (t) + n)

× log (λ1 (t) + λ2 (t) + λ0 (t) + n)]
− E�[(λ1 (t) + λ2 (t) + λ0 (t) + n)

× log
(
λ̄1 (t) + λ̄2 (t) + λ̄0 (t) + n

)])dt . (55)

Next, by replacing the λi (t), i = 0, 1, 2 with their estimations
when q (t) is given in the second term, we have

I
(

X T ; QT
)

=
∫ T

0
(E�[(λ1 (t) + λ2 (t) + λ0 (t) + n)

× log (λ1 (t) + λ2 (t) + λ0 (t) + n)]
− E�[Ê[(λ1 (t) + λ2 (t) + λ0 (t) + n)

× log
(
λ̄1 (t) + λ̄2 (t) + λ̄0 (t) + n

) |q(t)]])dt .

(56)



AGHABABAIYAN et al.: AXONAL CHANNEL CAPACITY IN NEURO-SPIKE COMMUNICATION 85

Since Ê[(λ1(t) + λ2(t) + λ0(t) + n)|q(t)] = λ̄1(t)+ λ̄2(t) +
λ̄0(t) + n, we can simplify the expression in (56) as follows:

I
(

X T ; QT
)

=
∫ T

0
(E�[(λ1 (t) + λ2 (t) + λ0 (t) + n)

× log (λ1 (t) + λ2 (t) + λ0 (t) + n)]
− E�[(λ̄1 (t) + λ̄2 (t) + λ̄0 (t) + n

)

× log
(
λ̄1 (t) + λ̄2 (t) + λ̄0 (t) + n

)])dt, (57)

and the capacity of the MISO axonal channel with correlated
inputs is defined as the maximum of the expression presented
in (57) over � = [λ1 (t), λ2 (t), λ0 (t)].

CM I S O = max
�

I (QT ; X T ). (58)

Therefore, we solve the following optimization problem sub-
ject to average and peak rate constraints for obtaining the
capacity of the MISO axonal channel with correlated inputs.

max
�

{
T∫

0

(E�[(λ1 (t) + λ2 (t) + λ0 (t) + n)

× log (λ1 (t) + λ2 (t) + λ0 (t) + n)]
− E�[(λ̄1 (t) + λ̄2 (t) + λ̄0 (t) + n

)

× log
(
λ̄1 (t) + λ̄2 (t) + λ̄0 (t) + n

)])dt},

s.t.
1

T
E�[

T∫

0

λ1 (t) + λ2 (t) + λ0 (t) dt] ≤ σ R,

s.t. 0 ≤ λ1 (t) + λ0 (t) ≤ R,

0 ≤ λ2 (t) + λ0 (t) ≤ R, 0 ≤ σ ≤ 1, (59)

where R is the maximum rate of the input spike trains in
response to stimuli and σ is the ratio of average to peak rate.
We consider an upper bound for I (QT ; X T ) as U(QT ; X T ).
Note that since the function f (x) = x log x is convex, Jensen’s
inequality gives

E�[(λ̄1(t) + λ̄2(t) + λ̄0(t) + n
)

× log
(
λ̄1(t) + λ̄2(t) + λ̄0(t) + n

)]
≥ [E�

(
λ̄1(t) + λ̄2(t) + λ̄0(t) + n

)]
× log[E�

(
λ̄1(t) + λ̄2(t) + λ̄0(t) + n

)], (60)

and since E�

[
λ̄i (t)

] = E�

[
Ê [λi (t)|q(t)]

]
= E� [λi (t)],

we have

[E�

(
λ̄1(t) + λ̄2(t) + λ̄0(t) + n

)]
× log[E�

(
λ̄1(t) + λ̄2(t) + λ̄0(t) + n

)]
= [E� (λ1(t) + λ2(t) + λ0(t) + n)]

× log [E� (λ1(t) + λ2(t) + λ0(t) + n)] , (61)

and thus, we have

I (QT ; X T ) ≤ U(QT ; X T )

=
∫ T

0
(E�[(λ1 (t) + λ2 (t) + λ0 (t) + n)

× log (λ1 (t) + λ2 (t) + λ0 (t) + n)]
− [E� (λ1 (t) + λ2 (t) + λ0 (t) + n)]

× log [E� (λ1 (t) + λ2 (t) + λ0 (t) + n)])dt .

(62)

Thus, U(QT ; X T ) is the upper bound on the capacity of the
MISO axonal channel with correlated inputs. According to
(60) and (61), the axonal channel capacity converges to its
upper bound when λ̄i (t) = E� [λi (t)]. Now, we try to obtain
the optimum input intensity distribution which maximizes
the capacity of MISO axonal channel with correlated inputs.
Therefore, to find the optimum input rate distribution we solve
the following optimization problem instead of (59) when we
assume λ̄i (t) = E� [λi (t)].

max
�

{
∫ T

0
(E�[(λ1 (t) + λ2 (t) + λ0 (t) + n)

× log (λ1 (t) + λ2 (t) + λ0 (t) + n)]
− [E� (λ1 (t) + λ2 (t) + λ0 (t) + n)]
× log[E� (λ1 (t) + λ2 (t) + λ0 (t) + n)]dt)},

s.t.
1

T
E�

⎡

⎣
T∫

0

λ1 (t) + λ2 (t) + λ0 (t) dt

⎤

⎦ ≤ σ R,

0 ≤ λ1 (t) + λ0 (t) ≤ R,

0 ≤ λ2 (t) + λ0 (t) ≤ R, 0 ≤ σ ≤ 1. (63)

We assume E�[λi (t)] = Rk i , where 0 ≤ Rk i ≤ R. For
achieving the optimum input distribution which maximizes
the capacity of the MISO axonal channel, we solve the dual
problem of the optimization problem in (63) as follow:

max
�

L(�, ξ), (64)

where the L(�, ξ) is defined as:

L(�, ξ) =
T∫

0

(E�[(λ1 (t) + λ2 (t) + λ0 (t) + n)

× log (λ1 (t) + λ2 (t) + λ0 (t) + n)]
− [E� (λ1 (t) + λ2 (t) + λ0 (t) + n)]
× log[E� (λ1 (t) + λ2 (t) + λ0 (t) + n)]
+ ξ

T
(E�[λ1 (t) + λ2 (t) + λ0 (t)] − σ R))dt, (65)

where ξ is the Lagrangian multiplier. When E�[λi (t)] = Rk i
and E[n] = Rn , the expression in (65) is converted to

T∫

0

(E�[(λ1 (t) + λ2 (t) + λ0 (t) + n)

× log (λ1 (t) + λ2 (t) + λ0 (t) + n)]
− (Rk 1 + Rk 2 + Rk 0 + Rn)

× log(Rk 1 + Rk 2 + Rk 0 + Rn)

+ ξ

T
(Rk 1 + Rk 2 + Rk 0 − σ R))dt . (66)

If we assume λ1(t) = λ2(t), the λ0(t) can be wrote as λ0(t) =
A × λi (t) for i = 1, 2, based on (49), where A = ρ

1−ρ .
For 0 ≤ Rk i + Rk 0 ≤ R the possible values of E�[(λ1(t)+
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Fig. 3. The capacity of SISO axonal channel versus different input rates
for the maximum input rate R = 200 Hz and various rates of axonal noise.

λ2(t) + λ0(t) + n) log(λ1(t) + λ2(t) + λ0(t) + n)] must lie in
the closed convex hull of the graph of Z = (X+Y +n) log(X+
Y +n) for 0 ≤ X ≤ (1 − ρ

2 )R and 0 ≤ Y ≤ (1 − ρ
2 )R . Based

on the argumentation was presented in Subsection III-A,
the largest possible values for E�[(λ1(t) + λ2(t) + λ0(t) + n)
log(λ1(t) + λ2(t) + λ0(t) + n)] can be achieved by using the
following distribution:

Prob (λi + λ0 = R) = 1 − Prob (λi + λ0 = 0) = αi , (67)

where 0 � αi � 1 and α1 + α2 � 1. Moreover, from (49) we
have Rk 0 = ρ

1−ρ Rk i . Thus, we have:

Rk 1 + Rk 0 = R Prob (λ1 + λ0 = R) = Rα1 → α1

= 1

1 − ρ

Rk 1

R
,

Rk 2 + Rk 0 = R Prob (λ2 + λ0 = R) = Rα2 → α2

= 1

1 − ρ

Rk 2

R
. (68)

Hence

max
�

E�[(λ1(t) + λ2(t) + λ0(t) + n)

× log(λ1(t) + λ2(t) + λ0(t) + n)]
= (1 − α1 − α2) Rn log Rn

+ (α1 + α2) (R + Rn) log(R + Rn). (69)

Thus, by inserting (69) in (63) the capacity of the MISO
axonal channel with correlated inputs is obtained as follows:

CMISO (Correlated)

= (1 − α1 − α2) Rn log Rn + (α1 + α2) (R + Rn)

× log(R + Rn)−(Rk 1 + Rk2 + Rn) log(Rk 1 + Rk2 + Rn),

(70)

where Rn is the expectation value of the rate of axonal noise.

IV. OPTIMUM INPUTS RATE

In this section, we propose an optimum rate allocation
scheme for the input spike train to encode information in a
way that this optimum rate enhances the capacity of axonal
transmission. Encoding of spikes based on the received stimuli
is carried out by input neurons/nano-machines. When we
consider the neuro-spike communication channel between two
nano-machines, they can design their coding. For example,
we assume a neuron transmits a spike train which contains
R1 spikes to inform the occurrence of event A and transmits
no spike to inform occurrence of event A′. When the nano-
machines are replaced instead of neurons, they can alter the
rate R1 to R2 to inform the occurrence of event A, so that the

Fig. 4. The capacity of MISO axonal channel versus different inputs
rates for the maximum inputs rate R = 200 Hz and various rates of
axonal noise.

Fig. 5. The capacity of MISO axonal channel with correlated inputs
versus different input rates for the maximum input rate R = 200 Hz
and the rate of axonal noise Rn = 10 Hz for various inputs correlation
coefficients (ρ).

average input rate tends to the optimum input rate. Fig. 3
shows the capacity of the SISO axonal channel based on
different input rates. It can be observed that there is an
optimum input rate which maximizes the channel capacity.
For deriving this optimum rate for the SISO channel, we solve
the following optimization problem:

max
Rk

I (QT ; X T ). (71)

Note that I (QT ; X T ) is a concave function with respect to Rk ,
since its second derivative is negative as ∂2 I (QT ;X T )

∂ Rk
2 = −1

Rk+Rn
.

Hence, based on the concavity of I (QT ; X T ), we solve the
problem ∂ I (QT ;X T )

∂ Rk
= 0 to obtain the optimum input rate. This

optimum rate is derived as:

Rk
∗ = (R + Rn) e

−1+ Rn
R log

(
1+ R

Rn

)

− Rn . (72)

Fig. 4 shows the capacity of the MISO channel with
independent inputs versus different input rates when we set
Rk = Rk 1 = Rk 2 and R = R1 = R2 for various rates of
the axonal noise. For deriving the optimum input rates for the
MISO channel with independent inputs, we solve the following
optimization problem:

max
Rk 1,Rk 2

I (QT ; X T ). (73)

By considering Rk 1 = L × Rk 2 = Rk , the I (QT ; X T ) is
concave with respect to Rk , since its second derivative is
negative as ∂2 I (QT ;X T )

∂ Rk
2 = −(1+L)2

(1+L)Rk+Rn
. Hence, we solve the

problems ∂ I (QT ;X T )
∂ Rk 1

= 0 and ∂ I (QT ;X T )
∂ Rk 2

= 0 to obtain the
optimum input rates. These optimum rates are derived as:

Rk
∗ = (R + Rn) e

−1+ Rn
R log

(
1+ R

Rn

)

− Rn . (74)

In addition, Fig. 5 shows the capacity of the MISO channel
with correlated inputs versus different input rates for various
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Fig. 6. The capacity of different axonal channels for different rates
of axonal noise (Rn) when the maximum inputs rates are assumed
P = 200 Hz.

correlation coefficients when we set Rk = Rk 1 = Rk 2. For
deriving the optimum input rate for the MISO channel with
correlated inputs, we solve the optimization problem in (73)
again. For simplicity, we assume that Rk 1 = Rk 2 = Rk .
Moreover, the rate of common part of inputs is described
by Rk 0, that we have Rk 0 = A × Rk , where A = ρ

1−ρ . Thus,
the I (QT ; X T ) is concave with respect to Rk , since its second
derivative is negative as ∂2 I (QT ;X T )

∂ Rk
2 = −(2+A)2

(2+A)Rk+Rn
. Hence,

we solve the problems ∂ I (QT ;X T )
∂ Rk 1

= 0 and ∂ I (QT ;X T )
∂ Rk 2

= 0
to obtain the optimum input rates. These optimum rates are
derived as:

Rk
∗ = 1

2
(R + Rn) e

−1+ 1
1−ρ

Rn
R log

(
1+ R

Rn

)

− 1

2
Rn . (75)

Fig. 5 shows that the capacity of MISO axonal channels
reduces with increasing the correlation coefficient of the
inputs. Thus, redundancy decreases the capacity of axonal
channels. Although redundancy reduces the capacity of axonal
channel, it is necessary to overcome the unreliability of axonal
transmission, especially for thin axons. Fig. 6 compares the
capacity of MISO axonal channel with independent inputs and
the capacity of MISO axonal channel with correlated inputs
(ρ = 0.1) for different rate of axonal noise. We can see that
the difference between the capacity of the both types of MISO
axonal channels is clearer when the rate of noise is low. On the
other hand, when the rate of noise is high, the both types of
MISO axonal channels behave similarly.

V. CONCLUSION

In this paper, we derived the capacity of the axonal channel
in different scenarios. We showed the capacity of axonal
channels is a function of the average and maximum rate of the
inputs. We provided a closed form expression for the capacity
of axonal channel with different inputs rates for various sce-
narios such as SISO, MISO with independent inputs and MISO
with correlated inputs. As a result, we noticed that the capacity
of MISO axonal channels reduces with increasing the correla-
tion coefficient of the inputs. Thus, redundancy decreases the
capacity of axonal channels. Moreover, we expressed axonal
channels can reach to their maximum capacity by assigning
optimum rates to their inputs. In this regard, we presented
a closed form formulation for the optimum rate of inputs in
different scenarios.
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