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Enabled by its central role in the molecular networks that govern cell function, RNA has
been widely used for constructing components used in biological circuits for synthetic
biology. Nucleic acid nanotechnology, which exploits predictable nucleic acid interactions
to implement programmable molecular systems, has seen remarkable advances in in vitro
nanoscale self-assembly and molecular computation, enabling the production of complex
nanostructures and DNA-based neural networks. Living cells genetically engineered to
execute nucleic acid nanotechnology programs thus have outstanding potential to signifi-
cantly extend the current limits of synthetic biology. This perspective discusses the
recent developments and future challenges in the field of synthetic bionanotechnology.
Thus far, researchers in this emerging area have implemented dozens of programmable
RNA nanodevices that provide precise control over gene expression at the transcriptional
and translational levels and through CRISPR/Cas effectors. Moreover, they have
employed synthetic self-assembling RNA networks in engineered bacteria to carry out
computations featuring up to a dozen inputs and to substantially enhance the rate of
chemical synthesis. Continued advancement of the field will benefit from improved in vivo
strategies for streamlining nucleic acid network synthesis and new approaches for enhan-
cing network function. As the field matures and the complexity gap between in vitro and
in vivo systems narrows, synthetic bionanotechnology promises to have diverse potential
applications ranging from intracellular circuits that detect and treat disease to synthetic
enzymatic pathways that efficiently produce novel drug molecules.

RNA plays a pivotal role in the molecular networks that govern cellular function [1,2], serving as the
template for translation and taking on multiple regulatory and sensing functions to modulate gene
expression. For these reasons, RNA has been widely used for constructing components used in bio-
logical circuits for synthetic biology. RNA devices can provide regulation at the level of transcription
[3,4] or translation [5–7]. Moreover, they can be engineered in the form of riboswitches [8] to regulate
gene expression in response to different small molecules and proteins. Over more than a decade, these
advances in RNA synthetic biology have led to a plethora of RNA-enabled circuits that endow cells
with unnatural functions, enabling them to perform logic [3,4,9,10], detect combinations of small
molecules [11], and even identify cancer cells [12].
In parallel with these developments, the field of nucleic acid nanotechnology, which exploits the

predictable base-pairing properties of DNA and RNA for implementing molecular systems, has seen
remarkable advances in nanoscale self-assembly and molecular computation. Using DNA-based self-
assembly methods, it is now possible to construct three-dimensional structures of virtually any geom-
etry with nanometer-scale resolution using hundreds or even thousands of programmed DNA strands
[13–15]. The use of strand-displacement systems, where single-stranded regions known as toeholds are
used to promote hybridization reactions that release new interaction domains, has enabled test tube
implementations of square root calculators [16] and neural networks [17] capable of pattern recogni-
tion using hundreds of strands [18]. Chemically synthesized DNA and RNA have been transfected
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into fixed zebrafish embryos for multiplexed endogenous RNA imaging [19] and live cells for logic operations
and siRNA activation [20] using strand-displacement reactions. In addition, the Pierce laboratory has focused
on the development of conditional RNAi systems that have potential as programmable drugs activated in
response to RNA inputs [21,22]. While conditional RNAi systems have not been demonstrated in living cells,
they have provided a valuable testbed for studying the effects of RNA degradation, target site accessibility, and
different interaction motifs that could play important roles for in vivo RNA networks.
The fact that these impressive feats of molecular design, assembly, and computation have made use of bio-

molecules suggests that cells themselves can be genetically engineered to take advantage of nucleic acid nano-
technology and significantly expand the existing capabilities of synthetic biology. For instance, nucleic acid
nanostructures assembled in vivo could be used to construct synthetic organelles that localize enzymes and con-
strain reactant flux for highly efficient synthesis of valuable chemicals. Moreover, genetically encoded neural
networks could lead to single cells with the computing power of multiple neurons and the ability to respond
intelligently to changes in environmental conditions. Such information-processing systems also have the long-
term potential for upload into human cells to passively scan the transcriptome and intervene only if cellular
dysfunction is detected by producing a drug or silencing a pathway.
Realizing these synthetic bionanotechnology systems, however, requires addressing multiple technical chal-

lenges. First, the bulk of work in nucleic acid nanotechnology has focused on DNA molecules with exposed
single-stranded domains to initiate reactions [23,24]. DNA in cells typically exists in double-stranded form and
single-stranded DNA is relatively hard to synthesize in vivo. Thus, systems implemented in live cells have mostly
relied on RNA molecular networks, which have distinct properties from their in vitro DNA counterparts. Second,
nucleic acid nanotechnology systems often employ strands with well-defined 50 and 30 ends and partially double-
stranded complexes. In vivo systems implemented with transcribed RNA, however, often require specific sequence
elements at their ends, such as terminator hairpins and 50 untranslated regions. Partially double-stranded com-
plexes between two RNAs are also not guaranteed to assemble in the cell. Third, most self-assembled nucleic acid
nanostructures are formed using annealing procedures [13–15], where the strands are heated to ∼80°C and
slowly cooled so that they reach their thermodynamically optimum assembled state. Most cells would not survive
these temperature treatments and thus in vivo systems are limited to isothermal nucleic acid reactions. They may
also need to integrate cotranscriptional folding pathways, which have been harnessed for in vitro assembly of
RNA origami nanostructures [25]. Fourth, in vivo nucleic acid circuitry must be coupled to an observable cellular
output that is genetically encoded, such as a reporter protein, enzyme, or aptamer, to assess circuit function and
alter cell behavior. Most in vitro circuits rely on DNAs with chemically synthesized fluorophore/quencher pairs
[23] and in other cases DNA aptamers or DNAzymes [26] for output. Accordingly, substantial work in synthetic
bionanotechnology has focused on developing systems that detect cognate RNA sequences or particular RNA
configurations and report their status via fluorescent reporter proteins, enzymes, and aptamers.
One of the earliest major works using genetically engineered cells for RNA nanostructure self-assembly was

reported by the Silver laboratory and employed RNA as a programmable scaffold for proteins [27]. In this
work, Delebecque et al. used a pair of interacting RNA molecules that assembled isothermally in the cytoplasm
to form periodic RNA nanostructures presenting numerous peptide-binding aptamer sites. Split green fluores-
cent protein (GFP) reporters and enzymes fused to RNA-binding peptides were used to assess the assembly of
the RNA nanostructure in vivo. They found that the expression of optimized RNA scaffolds was associated with
an increase in the rate of hydrogen production in a two-enzyme pathway by 48-fold in engineered E. coli cells.
This work has since been extended for scaffolding a four-enzyme pathway [28] and the assembly of genetically
encoded DNA nanostructures has also been demonstrated using reverse transcriptases in E. coli [29].
Beyond structural applications, our laboratory and others have demonstrated the use of synthetic bionano-

technology for sensing and logic in living cells. Much of this work has been enabled by the sequence design
package NUPACK developed for nucleic acid nanotechnology systems [30,31]. NUPACK not only designs
nucleic acid strands that fold into a user-specified secondary structure, but it can also carry out multi-objective
design where multiple strands and their complexes are optimized simultaneously. The latter capability is par-
ticularly important for designing genetically encoded RNA systems where biologically conserved elements, such
as genes, the Shine-Dalgarno sequence, and terminators, must be present on interacting transcripts.
Using NUPACK, we developed a fully de-novo-designed RNA-based prokaryotic translational regulator

called the toehold switch [32] inspired by the toehold-mediated strand-displacement motifs pioneered in
nucleic acid nanotechnology (Figure 1A). In toehold switches, regulation is carried out by a switch RNA that
features a single-stranded toehold domain followed by a hairpin structure and the coding sequence of an
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output gene (Figure 1B). The hairpin structure is engineered to conceal the RNA sequence elements required
for translation initiation, the ribosome binding site (RBS) and the start codon, and thus represses translation of
the output gene. When a cognate trigger RNA is expressed by the cell, it initiates binding through the exposed
toehold domain and proceeds to unwind the hairpin stem in a strand-displacement reaction. The newly
exposed RBS and start codon are then free for ribosome binding, enabling the active translation of the output
gene. The use of a toehold-mediated interaction, as opposed to loop-mediated interactions used in natural
systems, enabled the toehold switches to operate in E. coli with stronger thermodynamics and improved
kinetics, helping them achieve changes in gene expression above 600-fold, a level similar to protein-based regu-
lators and over an order of magnitude improvement compared with previous riboregulators. The design of the
toehold switch allowed the sensors to detect virtually any trigger sequence, which we exploited to detect
endogenous transcripts and construct libraries of dozens of sensors with low cross-talk. Using toehold-mediated
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Figure 1. Toehold-mediated strand-displacement systems implemented in E. coli.

(A) Schematic showing a toehold-mediated nucleic acid interaction. The two-strand complex has an exposed toehold domain

a* that is complementary to the domain a in the input DNA. The input DNA binds to the complex and strand displacement

through domains b and b* leads to release of an output DNA that can be used for downstream DNA reactions. (B) The toehold

switch translational riboregulator [32] employs a 50 toehold domain in the switch RNA to initiate binding with a cognate trigger

RNA. Following binding between the complementary a and a* domains, the switch RNA stem is disrupted revealing the RBS

and start codon. The newly exposed RBS and start codon can then be recognized by the ribosome for translation of the

output gene. (C) Small Transcription Activating RNAs (STARs) use toehold-mediated interactions to bind upstream of a

transcriptional terminator and prevent formation of its stem–loop secondary structure to enable transcription of the downstream

gene. Adapted from Chappell et al. [33] (D) A strand displacement (SD) guide RNA (gRNA) employs a hairpin structure to

prevent Cas12a access to the gRNA handle (h) and spacer (s) sequences. A 50 toehold domain T enables binding by the trigger

RNA and the ensuing strand-displacement reaction exposes both the handle and spacer to enable recognition by Cas12a.

Adapted from Oesinghaus and Simmel [36].
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designs, the Lucks group has also demonstrated that nucleic acid nanotechnology principles can be applied to
transcriptional regulation. Computer-designed Small Transcription Activating RNAs (STARs) employ toehold-
mediated interactions to prevent formation of a transcriptional terminator, enabling programmable control of
downstream transcription (Figure 1C). These devices provided impressive ∼9000-fold activation of gene
expression and lower signal leakage than toehold switches. Translational repressors that turn off gene expres-
sion upon trigger RNA binding via toehold-mediated strand-displacement reactions have also recently been
reported [34,35].
The ability of CRISPR/Cas enzymes to regulate gene expression with a wide dynamic range in hosts ranging

from bacteria to humans has made them an important focus area for synthetic bionanotechnology. Recently
NUPACK has been used for generating several conditional guide RNA implementations for the enzymes Cas9
and Cas12a that respond to binding of a cognate trigger RNA. Siu and Chen demonstrated toehold-mediated
activatable guide RNAs for Cas9 that operated in E. coli [37], while Oesinghaus and Simmel implemented acti-
vatable guide RNAs for Cas12a in the same organism [36] (Figure 1D). The Pierce laboratory developed condi-
tional Cas9 guide RNAs whose function can be turned on or off in response to trigger RNA binding [38].
These systems operated successfully in E. coli and mammalian cells.
Having an established set of orthogonal, genetically encoded systems to detect transcripts in live cells has

opened up new possibilities for cellular computing systems. Recently, we have reported RNA-based logic circuits
[39] that can take advantage of predictable RNA–RNA interactions to evaluate Boolean logic in E. coli and are
considerably more genetically compact than equivalent protein-based circuits. These ribocomputing circuits
employ toehold switches, strand-displacement, and RNA self-assembly to encode AND, OR, and NOT logic
functions that operate successfully in the cytoplasm (Figure 2A). NOT logic expressions are implemented via anti-
sense RNAs that bind to and deactivate trigger RNAs. AND logic expressions employ assemblies of input RNAs
to form a functional RNA trigger that can be detected by toehold switches. The central processing element of the
ribocomputing devices is an extended transcript called a gate RNA that features multiple toehold switch hairpin
modules arrayed upstream and in-frame of a common reporter protein. The gate transcript can activate transla-
tion in response to cognate RNAs from each toehold switch hairpin and thus implements OR logic. Using ribo-
computing devices, we successfully implemented several multi-input logic operations and ultimately evaluated the
complex disjunctive normal form expression (A1 AND A2 AND NOT A1*) OR (B1 AND B2 AND NOT B2*)
OR (C1 AND C2) OR (D1 AND D2) OR (E1 AND E2). This 12-input expression represents one of the most
complex synthetic logic expressions realized in a living cell. RNA-based AND logic devices have also been imple-
mented using STARs with the formation of a two-strand small RNA complex harnessed to activate transcription
[33] (Figure 2B). A similar strategy has been applied using a conditional Cas12a guide RNA and a pair of
cognate trigger RNAs to implement Cas12a-mediated transcriptional repression [36] (Figure 2C). In addition,
translational repressor systems have been incorporated into ribocomputing devices for multi-input logic. These
repressor-based RNA circuits enable efficient implementations of the universal NAND and NOR logic operations
as well as the expression NOT((A1 AND A2) OR (B1 AND B2)) in E. coli [34].
Outside of the cell, toehold switches have also been incorporated into portable diagnostic devices for detec-

tion of infectious disease. These tests make use of cell-free transcription–translation systems embedded into
paper substrates to detect amplified transcripts using genetically encoded pathogen-specific toehold switches
[40]. The resulting paper-based diagnostics employ convenient isothermal reactions, provide test results that
can be read by eye using an enzymatic reaction, and cost ∼$3 per sample [41,42].
Despite recent progress in synthetic bionanotechnology, there remains a substantial gap between the com-

plexity of nucleic acid systems implemented in vitro compared with those realized in living cells. For DNA
nanostructures, tile approaches have been used to assemble nanostructures consisting of 66 unique tiles at
physiological 37°C temperatures in vitro [43]. In contrast, genetically encoded DNA nanostructures with at
most four unique tiles have been assembled in E. coli [29]. For molecular computing, a neural network capable
of recognizing nine handwritten digits was implemented using strand-displacement circuitry in vitro [18]. This
system was implemented using a set of 205 processing and output species that interact with 100 potential input
DNAs specifying the character shape. The most complex ribocomputing device deployed in E. coli consisted of
12 potential input RNAs and a single gate RNA, which combined five toehold switch modules and GFP for
processing and output [39] (Figure 2A).
Fortunately, the gap between in vitro and in vivo systems provides a clear roadmap marking the capabilities

required to extend the limits of synthetic bionanotechnology. Some critical future advances and research direc-
tions include:
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Efficient RNA circuit synthesis: More complex circuits will require larger numbers of unique RNA species to
be transcribed in vivo. Given the short length of DNA/RNA species employed in the most complex in vitro cir-
cuits, the use of promoter/terminator pairs to encode each species is an inefficient means of genetic encoding.
Accordingly, future circuits will benefit from the use of efficient self-cleaving ribozymes [44] or programmed
RNA cleavage sites [45] to divide long transcripts into the required circuit components (Figure 3A). On the
other hand, in vivo RNA systems could employ alternative strategies where multiple processing elements are
incorporated into a single transcript, analogous to the gate RNAs in ribocomputing devices [34,39]. Along
these lines, single-stranded DNA and RNA folding schemes [25,46] can be used to assemble intracellular
nanostructures. Successful implementation of systems featuring such long transcripts will benefit by integrating
our growing understanding of cotranscriptional folding processes into the design process [47].
Enhanced signal processing: DNA components that implement signal amplification, rectification, threshold-

ing, and annihilation are important elements in neural network circuits [17,18]. Parallel systems that function
effectively in vivo will need to be developed to implement circuits that operate with comparable complexity in
living cells. RNA signal amplification systems in which an input RNA is used catalytically are also valuable for
detection of low-copy transcripts (Figure 3B) and have recently been applied to live-cell RNA imaging in E. coli
[48]. Such catalytic systems should also minimize the likelihood that synthetic RNA networks will interfere
with the endogenous transcriptome.
RNase mitigation strategies: Genetically encoded in vivo RNA circuits have generally been limited to a single

strand-displacement step [39], whereas sophisticated in vitro networks can require five or more sequential
strand-displacement steps [18], which requires increased reaction time. RNA systems in living cells will likely
need to incorporate techniques like tRNA scaffolds [49], self- cleaving ribozyme sites [44], circularized

A B

C

Figure 2. RNA-based logic circuits that regulate gene expression in E. coli.

(A) Ribocomputing devices make use of RNA self-assembly and strand-displacement reactions for in vivo logic. Antisense

interactions and formation of multi-arm junctions are used for NOT and AND operations, respectively. OR logic is performed by

a gate RNA with multiple toehold switch modules integrated upstream of the output gene. These basic interaction motifs can

be integrated into complex logic expressions, such as a 12-input disjunctive normal form expression that was successfully

executed in live cells. Adapted from Green et al. [39] (B) STARs can be used to implement two-input AND logic using a pair of

small RNAs that hybridize to one another to prevent the formation of a transcriptional terminator secondary structure. Adapted

from Chappell et al. [33] (C) Conditional SD gRNAs can be activated using a pair of cognate trigger RNAs that hybridize to one

another. Formation of the two-strand trigger complex generates a sequence that can interact with the SD gRNA via strand

displacement to enable recognition by dCas12a, a version of Cas12a with abrogated DNase activity. The resulting

gRNA/dCas12a complex can then be used to repress reporter gene expression. Adapted from Oesinghaus and Simmel [36].

© 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology and distributed under the Creative Commons

Attribution License 4.0 (CC BY).

511

Emerging Topics in Life Sciences (2019) 3 507–516
https://doi.org/10.1042/ETLS20190100

D
ow

nloaded from
 http://portlandpress.com

/em
ergtoplifesci/article-pdf/3/5/507/869722/etls-2019-0100c.pdf by guest on 24 D

ecem
ber 2021

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


transcripts [50], or computationally designed tertiary structures [51] to reduce degradation by RNases and
prolong their lifetimes (Figure 3C). Since protective elements can require base pairing between the 50 and 30

ends of the transcript, new RNA–RNA interaction schemes may be necessary if the protection methods pre-
clude or impede toehold-mediated interactions.
Enhanced specificity and bandwidth: In principle, the use of RNA for in vivo signal processing could enable

networks with hundreds or even thousands of unique RNAs to function simultaneously in the cell.
Implementing systems with maximum bandwidth will require RNA circuitry with specificity down to the
single-nucleotide level. In vitro toehold exchange probes and related systems have demonstrated impressive

A B

C

E

D

Figure 3. Critical future capabilities and research directions for synthetic bionanotechnology.

(A) More complex RNA-based logic circuitry demands improved methods to synthesize RNA circuit components. Self-cleaving

ribozymes can be used to generate isolated RNA components post-transcriptionally without assistance from proteins.

(B) Enhanced signal processing capabilities in vivo will be required to engineer cells with more sophisticated synthetic

functions. Circuits that treat endogenous transcripts as catalysts and provide amplification are essential for systems that will

interface with the native transcriptome. (C) RNase mitigation strategies are valuable for implementing RNA-based circuits that

require sequential strand-displacement reactions. RNA circularization using pairs of self-cleaving ribozymes and endogenous

ligases can prolong RNA lifetime by imparting exoribonuclease resistance. (D) RNA-based devices with enhanced sequence

specificity can increase circuit bandwidth and enable genetically encoded monitoring systems that are only activated when a

specific mutation is identified. (E) Expanded libraries of RNA aptamers and peptides that bind to one another will be important

for positioning proteins on intracellular RNA scaffolds for new enzymatic pathways and synthetic organelles. Such RNA/peptide

pairs should be small in size, orthogonal, and bind with high affinity.
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specificity [52–54]. Intracellular systems with these capabilities could also be used to monitor the emergence of
mutations as cells evolve or as cancer develops (Figure 3D).
Expanded RNA/peptide binding libraries and enclosed nanostructures: Genetically encoded RNA nanostruc-

tures that assemble in vivo can act as programmable scaffolds directing the assembly of proteins and enzymes
within the cell to establish new enzymatic pathways (Figure 3E). As the complexity of these nanostructures
increases, connecting elements between RNA and protein are required to ensure that such ribonucleoprotein
complexes assemble as needed into organelle-like structures. Expanded libraries of RNA aptamers that bind to
short peptides are essential for these purposes. It is critical that these RNA/peptide pairs exhibit orthogonal
binding properties, high affinity, and are compact to minimize their potential impact on RNA assembly and
protein function. Recent studies have also demonstrated [55,56] that enzyme proximation is insufficient to
explain the activity enhancements observed for enzymes scaffolded by nucleic acid nanostructures and that
factors such as local pH and reduced substrate diffusion can yield long-term improvements in pathway activity.
Thus, future efforts should also focus on reducing substrate diffusion by implementing enclosed structures, pos-
sibly with the assistance of membrane lipids and proteins, and by constructing ‘virtual compartments’ that
establish attractive interactions between substrate molecules and the nanostructured scaffold [55].
In conclusion, nucleic acid nanotechnology is providing synthetic biologists with a powerful set of molecular

tools that can be harnessed to provide living cells with new functions. Genetically encoded nucleic acids have
thus far been used in vivo to construct nanostructures that lead to enhanced enzymatic activity, sensors that
detect diverse transcripts, and logic devices that process up to a dozen different input molecules. In the coming
years, it is likely that future major developments will arise from RNA circuitry powered by sequential strand-
displacement reactions, which will enable critical signal amplification and rectification capabilities, and related
systems that will interface directly with endogenous transcripts to monitor and manipulate cell state. Such
systems can be deployed by bacteria in the environment for monitoring, reporting, and remediation efforts, or
even those housed in the gut where they can respond to gastrointestinal ailments or changes in nutrition.
Increasingly sophisticated in vivo nucleic acid assembly methods will be harnessed to position larger numbers
of enzymes and to fabricate synthetic organelles that replicate the compartmentalization afforded by natural
systems. In the absence of effective compartmentalization schemes, however, efforts should be directed toward
pathways in which reactants cannot be lost to diffusion. Possible targets include signaling proteins [57] along
with nonribosomal peptide synthetases and polyketide synthases [58], which could enable biosynthesis of
entirely new molecules with therapeutic potential. Lastly, genetically encoded RNA systems will increasingly
move into mammalian cells, where they can ultimately be deployed to improve human health. Synthetic biona-
notechnology thus has a host of promising potential applications in areas such as industrial chemical produc-
tion, environmental monitoring, and medicine that rely on the ability of living cells to replicate and execute
carefully engineered nucleic acid nanotechnology programs. The success of these future efforts will hinge on
our ability to devise sophisticated nucleic acid systems that can be genetically encoded and are sufficiently
robust to operate in the complex and dynamic intracellular environment.

Summary
• Nucleic acid nanotechnology is providing synthetic biologists with a powerful set of molecular

tools that can be harnessed to provide living cells with new functions.

• Genetically encoded nucleic acids have been used in vivo to construct nanostructures to scaf-
fold enzymes, sensors that detect diverse transcripts, and logic devices that process up to a
dozen different input molecules.

• It is likely future major developments will arise from RNA networks powered by sequential
strand-displacement reactions, increasingly sophisticated in vivo nucleic acid assembly
methods, and further development of circuitry for mammalian cells.

• These future efforts will require multiple new capabilities including improved methods for
expressing nucleic acid networks and novel techniques for enhancing network stability, sensi-
tivity, specificity, and function.
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