Chapter Seven

From Virtual Teams to Hive Minds: Developing Effective Network Topologies for Neuroprosthetically Augmented Organizations

Abstract. This text develops a model based on network topology that can be used to analyze or engineer the structures and dynamics of an organization in which neuroprosthetic technologies are employed to enhance the abilities of human personnel. We begin by defining *neuroprosthetic supersystems* as organizations whose members include multiple neuroprosthetically augmented human beings. It is argued that the expanded sensory, cognitive, and motor capacities provided by 'posthumanizing' neuroprostheses may enable human beings possessing such technologies to collaborate using novel types of organizational structures that differ from the traditional structures that are possible for unaugmented human beings. The concept of network topology is then presented as a concrete approach to analyzing or engineering such neuroprosthetic supersystems. A number of common network topologies such as chain, linear bus, tree, ring, hub-and-spoke, partial mesh, and fully connected mesh topologies are discussed and their relative advantages and disadvantages noted.

Drawing on the notion of different architectural 'views' employed in enterprise architecture, we formulate a topological model that incorporates five views that are relevant for neuroprosthetic supersystems: the (1) physical and (2) logical topologies of the neuroprosthetic devices themselves; (3) the natural topology of social relations of the devices' human hosts; (4) the topology of the virtual environments, if any, created and accessed by means of the neuroprostheses; and (5) the topology of the brain-to-brain communication, if any, facilitated by the devices. Potential uses of the model are illustrated by applying it to four hypothetical types of neuroprosthetic supersystems: (1) an emergency medical alert system incorporating body sensor networks (BSNs); (2) an array of centrally hosted virtual worlds; (3) a 'hive mind' administered by a central hub; and (4) a distributed hive mind lacking a central hub.

It is our hope that models such as the one formulated here will prove useful not only for engineering neuroprosthetic supersystems to meet functional requirements but also for analyzing the legal, ethical, and social aspects of potential or existing supersystems, to ensure that the organizational deployment of neuroprosthetic technologies does not undermine the wellbeing of such devices' human users or of societies as a whole.

Introduction

The power and sophistication of neuroprosthetic technologies are rapidly increasing. While a growing number of organizations are incorporating advanced technologies relating to social robotics, artificial intelligence, and virtual reality into their business operations, the notion that organizations would implant neuroprosthetic devices in the brains of their workers in order to enhance productivity might appear to be one which – for the moment – exists primarily within the domain of science fiction and futurology. And yet a small number of specialized organizations are already actively seeking to develop advanced neuroprosthetic technologies and deploy them among their personnel, not simply for therapeutic medical purposes but in order to support and enhance their workers' job performance. Chief among these organizations are military agencies and departments who see in advanced neuroprostheses a means of enhancing the health, safety, and effectiveness of soldiers who must operate in highly dangerous circumstances and upon whose work depends the security of entire nations.¹ Moreover, as new noninvasive neuroprosthetic technologies are developed that do not require dangerous and expensive implant surgery, it is expected that the organizational deployment of 'posthumanizing' neuroprostheses will eventually become feasible and desirable for a wider range of organizations such as businesses.²

By their very nature, neuroprosthetic devices create new relationships of communication and control involving their human hosts, the designers and producers of such devices, the medical and IT personnel who maintain them, and the devices themselves. When such devices are purposefully introduced into an organization and deployed among its personnel, they alter in subtle or dramatic ways the manner in which employees interact with one another

¹ Regarding efforts by DARPA (the US military research agency) and other institutions to develop neurotechnologies for increasing soldiers' alertness and reducing their need for sleep, see, e.g., Falconer, "Defense Research Agency Seeks to Create Supersoldiers" (2003); Moreno, "DARPA On Your Mind" (2004); Clancy, "At Military's Behest, Darpa Uses Neuroscience to Harness Brain Power" (2006); and Wolf-Meyer, "Fantasies of extremes: Sports, war and the science of sleep" (2009). Potential military applications of neurotechnologies for human enhancement are also discussed in Schermer, "The Mind and the Machine. On the Conceptual and Moral Implications of Brain-Machine Interaction" (2009); Brunner & Schalk, "Brain-Computer Interaction" (2009); Coker, "Biotechnology and War: The New Challenge" (2004); Graham, "Imagining Urban Warfare: Urbanization and U.S. Military Technoscience" (2008), p. 36; Krishnan, "Enhanced Warfighters as Private Military Contractors" (2015); and Kourany, "Human Enhancement: Making the Debate More Productive" (2013), pp. 992-93.

² At present, for example, cochlear implant surgery can cost between \$40,000-\$100,000 per person, while implantation surgery for deep brain stimulation (DBS) devices can cost between \$35,000-\$100,000 per recipient. See "Cochlear Implant Quick Facts" and Okun, "Parkinson's Disease: Guide to Deep Brain Stimulation Therapy" (2014).

and carry out their roles. This raises the question of how such an organization's formal array of personnel structures, processes, and systems – that is, its organizational architecture³ – will need to be altered in order to adapt to the presence and activity of neuroprosthetically augmented personnel. That is the question to be investigated in this text, using the lens of *network topology*.

We begin by defining neuroprosthetic supersystems as organizations whose members include multiple neuroprosthetically augmented human beings. The concept of network topology is then presented as a valuable approach to analyzing or engineering such supersystems. A number of common network topologies are discussed, and their relative advantages and disadvantages noted. Building on enterprise architecture's notion of architectural 'views,' we next formulate a topological model that incorporates five views that are relevant for neuroprosthetic supersystems. Finally, potential uses of the model are illustrated by applying it to four types of neuroprosthetic supersystems that could hypothetically be established through an organization's deployment of neuroprosthetic technologies. While the model formulated in this text can facilitate the design of neuroprosthetic supersystems that meet an organization's operational requirements, it also provides a tool for analyzing the legal, ethical, and social aspects of such supersystems which can help ensure that any organizational deployment of neuroprosthetic technologies is performed in an appropriate manner that not only safeguards the rights and wellbeing of such devices' human hosts but also advances the organization's larger mission and the welfare of society as a whole.

Defining Neuroprosthetic Supersystems

A neuroprosthesis can be defined as *an artificial device that is integrated into the neural circuitry of a human being.*⁴ Such devices typically support or participate in the sensory, cognitive, or motor processes of their human host;⁵ however, they can also be employed for such ends as gathering real-time data about the host's biological processes and transmitting it to an external computer for medical, archival, or potentially even surveillance purposes.⁶ In

³ Within the 'congruence model' of organizational architecture conceptualized by Nadler and Tushman, structures, processes, and systems constitute the three main elements of an organization that are taken into account. See Nadler & Tushman, *Competing by Design: The Power of Organizational Architecture* (1997), p. 47.

⁴ See Lebedev, "Brain-Machine Interfaces: An Overview" (2014), and Gladden, "Enterprise Architecture for Neurocybernetically Augmented Organizational Systems" (2016).

⁵ See Lebedev (2014).

⁶ See, e.g., Lorence et al., "Transaction-Neutral Implanted Data Collection Interface as EMR Driver: A Model for Emerging Distributed Medical Technologies" (2009); Bonaci et al., "App

principle, neuroprostheses may be either 'invasive' (i.e., surgically implanted in the brain of a human host) or 'non-invasive' (e.g., consisting of an external device worn by a human host); however, significant challenges exist with developing non-invasive technologies that become truly integrated into the neural circuitry of a human being.⁷ Thus, according to the definition used in this text, contemporary neuroprostheses can typically be identified with invasive 'neural implants.'

At present, neuroprosthetic devices are used primarily for therapeutic purposes, as a means of restoring some capacity that is absent as a result of injury or illness: for example, cochlear implants, auditory brainstem implants, and retinal prostheses are used to restore sensory functionality to those who have lost the ability to hear or see; robotic prosthetic limbs are used to replace natural biological limbs that have been amputated; robotic exoskeletons and thought-controlled wheelchairs grant a degree of mobility to the paralyzed; and experimental neural bridges are being developed to restore memory function in individuals who are unable to access their long-term memories due to hippocampal damage.⁸ However, efforts are also underway to develop and deploy 'posthumanizing' neuroprostheses⁹ whose aim is not to restore some capacity that is found in typical human beings but to grant their human

Stores for the Brain" (2015), p. 35; Luber et al., "Non-invasive brain stimulation in the detection of deception: Scientific challenges and ethical consequences" (2009); and Gladden, *The Handbook of Information Security for Advanced Neuroprosthetics* (2015).

⁷ See Gasson, "Human ICT Implants: From Restorative Application to Human Enhancement" (2012), p. 14, and Panoulas et al., "Brain-Computer Interface (BCI): Types, Processing Perspectives and Applications" (2010).

⁸ See, e.g., Ochsner et al., "Human, non-human, and beyond: cochlear implants in socio-technological environments" (2015); Cervera-Paz et al., "Auditory Brainstem Implants: Past, Present and Future Prospects" (2007); Weiland et al., "Retinal Prosthesis" (2005); Viola & Patrinos, "A Neuroprosthesis for Restoring Sight" (2007); Gasson et al., "Human ICT Implants: From Invasive to Pervasive" (2012); Soussou & Berger, "Cognitive and Emotional Neuroprostheses" (2008); and Gladden, "Neural Implants as Gateways to Digital-Physical Ecosystems and Posthuman Socioeconomic Interaction" (2016).

⁹ 'Posthumanizing' technologies can be understood as those that bring about an ecosystem in which entities other than natural biological human beings exist as intelligent agents and social actors that create meaning in the world. Technologies relating to artificial intelligence, artificial life, virtual reality, genetic engineering, and neuroprosthetic augmentation are a catalyst for processes of posthumanization; however, non-technological forces of posthumanization also exist. For more details, see Ferrando, "Posthumanism, Transhumanism, Antihumanism, Metahumanism, and New Materialisms: Differences and Relations" (2013); Herbrechter, *Posthumanism: A Critical Analysis* (2013); Miah, "A Critical History of Posthumanism" (2008); Birnbacher, "Posthumanity, Transhumanism and Human Nature" (2008); and Gladden, *Sapient Circuits and Digitalized Flesh: The Organization as Locus of Technological Posthumanization* (2016).

hosts sensory, cognitive, and motor capacities that far exceed those that are possible for natural biological human beings.¹⁰

A neuroprosthetic device can, in itself, be understood as a type of 'system.' The human host of a neural implant is also a type of system, as is the hybrid biological-electronic entity that is created when a neuroprosthetic device becomes integrated into the neural circuitry of its human host. And finally, a group of human beings who possess neuroprosthetic devices can collectively form a system. Use of the word 'system' when discussing such technologies and their implementation can thus be ambiguous. For purposes of clarity, within this text we will use the term 'neuroprosthetic device' to refer to a neuroprosthesis, 'host-device system' to refer to a neuroprosthetically augmented human being, and 'neuroprosthetic supersystem' to refer to a collection of neuroprosthetically augmented human beings. The creation and maintenance of effective neuroprosthetic devices and host-device systems involves fields such as computer science, biology, biomedical engineering, neurosurgery, and bioethics. The creation and maintenance of effective neuroprosthetic supersystems, on the other hand, relies just as strongly on such disciplines as network design, enterprise architecture, organizational design, and management cybernetics. This text explores one aspect of the design and management of neuroprosthetic supersystems by formulating a topological model that can be used to analyze the structure and behavior of neuroprosthetic supersystems and to design architectures for such supersystems that optimize desired characteristics from functional, financial, legal, ethical, and other perspectives.

The Organization of Neuroprosthetic Supersystems as Multi-Agent Systems

An organization such as a business or government agency can be understood as a specialized type of multi-agent system composed of autonomous intelligent agents. Historically, such agents have primarily been human beings, although some organizations (such as ranches or military units) have long incorporated non-human agents such as trained dogs or horses in certain roles. Today, organizations increasingly incorporate social robots, chatbots, and other artificial agents that perform specialized functions: while such artificial agents may not appear in an organization's formal (human) personnel structure, they must be taken into account by any cybernetic analysis of the organization's internal processes of communication and control.

¹⁰ See, e.g., McGee, "Bioelectronics and Implanted Devices" (2008); Warwick & Gasson, "Implantable Computing" (2008); Gasson (2012); Gladden, "Neural Implants as Gateways" (2016); and Gladden, "Enterprise Architecture for Neurocybernetically Augmented Organizational Systems" (2016).

There are many different ways in which an organization's agents might be grouped and their interactions arranged in an effort to maximize the organization's efficiency and productivity. Horling and Lesser note that the range of potential organizational forms available to contemporary organizations includes hierarchies (which can be either simple, uniform, or multi-divisional), holarchies (or 'holonic organizations'), coalitions, teams, congregations, societies, federations (or 'federated systems'), matrix organizations, compound organizations, and sparsely connected graph structures (which may either possess statically defined elements or be an 'adhocracy').¹¹ Such structures have been developed over time to suit the unique characteristics of the key members that constitute contemporary organizations - i.e., natural biological human beings. However, for organizations that deploy posthumanizing neuroprosthetic technologies among their personnel, new types of organizational structures are expected to become feasible - or perhaps even necessary. For example, an organization that is composed of neuroprosthetically augmented human members may be able to link them by means of a decentralized network that enables the direct sharing of thoughts and emotions between members' minds, allowing information to be disseminated instantaneously and decisions to be made in a collective manner that is not possible for conventional human organizations.¹² However, the fact that such new types of personnel structures may become technologically possible does not necessarily mean that they are desirable or appropriate from an operational, financial, legal, or ethical perspective. The planning and evaluation of organizational structures for neuroprosthetic supersystems can be supported by the use of models that highlight critical aspects of such structures.

¹¹ See Horling & Lesser, "A Survey of Multi-Agent Organizational Paradigms" (2004), and Gladden, *Posthuman Management: Creating Effective Organizations in an Age of Social Robotics, Ubiquitous AI, Human Augmentation, and Virtual Worlds* (2016), p. 122.

¹² Regarding the potential creation of hive minds and neuroprosthetically facilitated collective intelligences, see, e.g., McIntosh, "The Transhuman Security Dilemma" (2010); Roden, *Posthuman Life: Philosophy at the Edge of the Human* (2014), p. 39; and Gladden, "Utopias and Dystopias as Cybernetic Information Systems: Envisioning the Posthuman Neuropolity" (2015). For a classification of different kinds of potential hive minds, see Chapter 2, "Hive Mind," in Kelly, *Out of Control: The New Biology of Machines, Social Systems and the Economic World* (1994); Kelly, "A Taxonomy of Minds" (2007); Kelly, "The Landscape of Possible Intelligences" (2008); Yonck, "Toward a standard metric of machine intelligence" (2012); and Yampolskiy, "The Universe of Minds" (2014). For critical perspectives on hive minds, see, e.g., Maguire & McGee, "Implantable brain chips? Time for debate" (1999); Bendle, "Teleportation, cyborgs and the posthuman ideology" (2002); and Heylighen, "The Global Brain as a New Utopia" (2002).

Fig 1: An overview of basic types of network topologies, including the (A) chain (or line), (B) linear bus, (C) tree, (D) ring, (E) hub-and-spoke (or star), (F) fully connected mesh, and (G) partial mesh topologies, along with depictions of (H) multiple incomplete networks that fail to connect all of the nodes and (I) a complete lack of connections between nodes. In some topologies, one or more nodes are highlighted to indicate their special roles, including the endpoints in the (A) chain and (B) linear bus topologies, the root node in the (C) tree topology, the hub in the (E) hub-and-spoke topology, and those nodes that are excluded from any networks in the case of (H) multiple incomplete networks.

An Overview of Network Topology

One useful approach to analyzing or engineering neuroprosthetic supersystems within an organization employs the concept of network topology. Network topology is often utilized in planning and managing collections of computer hardware such as file servers, local area networks that link desktop computers, or an organization's infrastructure of Wi-Fi routers. However, network topology is also employed in many other contexts, such as analysis of the social relationships that exist within a human population or the design of approval procedures for financial transactions within an organization.¹³ For our purposes, the relevant characteristic of network topology is its ability to provide a simplified schematic representation of the complex dynamics of a system's internal behaviors by depicting the system as a set of objects or components (here referred to as 'nodes') that are related to one another through a set of links or 'connections' that allow one node to control, communicate with, or otherwise impact another. Figure 1 presents an overview of several elementary network topologies that are found within a wide range of settings, both within the natural world and in artificial systems.

Each type of network topology possesses its own unique strengths and weaknesses. Different topologies might be selected for use within a network, depending on whether its engineer prioritizes speed, efficiency, ease of maintenance, resilience, security, cost minimization, or other characteristics. We can consider each of these basic network topologies in more detail.

A chain (or line) topology links all of the nodes in a series. A message sent from one endpoint node to the other endpoint node must travel through all of the other nodes in order to reach its destination. For a network containing a large number of nodes, the quantity of communications traffic passing through the central nodes and connections can be quite high in comparison to the traffic experienced at the ends of the chain. Severing a connection anywhere along the chain will create at least one pair of nodes that are no longer able to communicate; disabling an interior (non-endpoint) node will have the same effect.

A linear bus topology employs a backbone transmission mechanism (or 'bus') that connects two endpoint nodes, with all of the other nodes also connecting directly to the bus. A message that is transmitted into the bus by a given node will be simultaneously received by all other nodes.

A tree topology is a hierarchical structure including a single root node with connections that branch like the boughs of a tree. Travelling away from the

¹³ For an overview of network topology in the context of designing and maintaining computer networks, see, e.g., Robertazzi, *Networks and Grids: Technology and Theory* (2007), and Sosinsky, *Networking Bible* (2009). For a discussion of network topology in the context of social networks, see McCulloh et al., *Social Network Analysis with Applications* (2013).

root node, a given 'parent' node may have any number of 'child' nodes, but a given child node will have only a single parent. For any two nodes, there will be a single shortest path connecting them; messages sent between the two nodes may need to travel a short or long distance, depending on (for example) whether the nodes lie along the same branch or are the endpoints of different branches that split all the way back at the root node.

A ring topology creates a closed circuit linking all of the nodes. In typical implementations of ring networks for computers, the messages sent between nodes only travel in a single direction; in that sort of arrangement, severing a connection anywhere will render at least some of the nodes unable to communicate with one another. In a ring that utilizes bidirectional communication, severing a single connection will increase the distance between some of the nodes and the time needed for messages to travel between them, but it will not leave any of the nodes unable to communicate with others.

A hub-and-spoke (or star) topology utilizes as a single node as a hub through which all messages must pass. This model allows for effective centralized control of communications: the hub node may decide which messages are allowed to pass between which nodes. However, the hub also represents a single point of failure: if the hub is disabled, all communication between the remaining hubs is completely severed. A major issue in the design of hub-and-spoke networks is determining exactly where to locate the hub in order to maximize efficiency, security, or other characteristics of the network; Figure 2 depicts such a scenario. Numerous approaches have been developed for using artificial intelligence to optimize the position of hubs within large hub-and-spoke networks.²⁴

Fig 2: Two different ways in which a hub-and-spoke (or star) network could be constructed to connect the same set of nodes by utilizing different hub placements.

A fully connected mesh topology enables direct communication between every pair of nodes in the network. Such a network is highly efficient, insofar

¹⁴ See, e.g., Alumur & Kara, "Network hub location problems: The state of the art" (2008).

as a message between any two nodes always travels along the shortest possible path. Such a network is also maximally robust and resilient: even if many of a node's connections were to be severed, it would retain the ability to exchange messages with every other node in the network, as long as at least one of its connections remained intact. However such networks require the creation and maintenance of a large and complex infrastructure of connections.

A partial mesh topology incorporates a variety of topologies to create a network that includes some subregions that are fully connected meshes but which – as a whole – is not fully connected. Some areas of the network may be rich in connections, while other nodes (such as those that are less important or which generate or receive less communication traffic) may only have direct connections to a limited number of other nodes. Use of such a topology allows a network to enjoy some of the benefits of efficiency and resilience found in a fully connected mesh topology but without the creation of such a complex infrastructure of connections.

It is also possible for nodes to comprise multiple incomplete networks; in such an arrangement, at least some of the nodes within a system possess connections with other nodes, but there are also some pairs of nodes that are not able to communicate with one another. Such an arrangement might be purposefully implemented (e.g., in order to maximize security by isolating some nodes from the network), or it might arise unintentionally (e.g., as a result of damage to nodes or connections that severs some of the network's internal communication paths).

It is also possible for there to be a **complete lack of connections** between any nodes in the system. This means that nodes cannot communicate with one another or control one another's activities.

The Roles of Network Topologies in Neuroprosthetic Supersystems

The relationships of an organization's human members cannot typically be fully and accurately represented using just a single network topology. For example, Figure 3 presents an overview of a hypothetical organization that includes seven employees: it illustrates the fact that the network topology of the relationships between the organization's members takes on a very different form depending on whether one analyzes the relationships through the lens of the organization's formal personnel structure, the communication enabled by its email system, or the face-to-face interaction that the employees experience in the workplace.

Fig 3: Three ways in which the network topology of the relationships of an organization's employees may be represented by using different perspectives. The employees can be viewed according to (A) the official personnel structure governing their decision-making authority and reporting relationships, (B) the fact that any employee may communicate with any other by means of the organization's email system, or (C) the fact that the employees work in two different buildings in different countries, which divides the employees into two groups of persons that can interact face-to-face among themselves but not with workers in the other facility.

Enterprise Architecture and Organizational Views

The discipline of enterprise architecture (EA) emerged in the 1980s and 1990s as a response to the fact that organizations deploying new computerized information systems were failing to realize expected gains in productivity and efficiency – in large part, because the acquisition of such systems was not guided by the organizations' larger business strategies and the systems were not being effectively integrated into the organizations' existing structure and dynamics.¹⁵ Enterprise architecture seeks to facilitate the successful integration of such new information technologies into an organization by generating 'alignment' between the organization's electronic information systems, human resources, business processes, workplace culture, mission and strategy, and external ecosystem, which increases the organization's ability to manage complexity, resolve internal conflicts, and adapt proactively to environmental change.¹⁶

Enterprise architecture formalizes different ways of viewing an organization's network topologies through the concept of 'viewpoints' and the preparation of documents known as 'views.'¹⁷ A number of models exist that define

¹⁵ See Magoulas et al., "Alignment in Enterprise Architecture" (2012), p. 89, and Hoogervorst, "Enterprise Architecture: Enabling Integration, Agility and Change" (2004), p. 16.

¹⁶ Regarding different types of alignment generated by EA, see Chan & Reich, "IT alignment: what have we learned?" (2007); Magoulas et al. (2012); and Gladden, "Enterprise Architecture for Neurocybernetically Augmented Organizational Systems" (2016).

¹⁷ For a more detailed exposition of the fundamentals of enterprise architecture, see Chapter 5 of this work.

different views. For example, Kruchten's '4+1' model was developed primarily to support the practice of software design, although it has been influential within the field of EA more broadly: as a means of analyzing the components and internal relationships of an information system, it defines the *logical view* (which employs the perspective of end-user functionality), *process view* (which focuses on communication, integration, and other system behaviors and dynamics), *development view* (which is prepared from the perspective of the design, implementation, and management of software), and *physical view* (which focuses on the deployment and interconnection of hardware components).¹⁸ Similarly, the Siemens EA Framework described by Rohloff explicitly formulates the three perspectives of *component, communication*, and *distribution* views.¹⁹ The generic EA framework that we present in Chapter 5 of this text (and which builds on the approaches of Kruchten and Siemens) incorporates three primary perspectives on architecture domains: the *component, interaction*, and *membership* views.²⁰

Defining a Model of Relevant Views for Neuroprosthetic Supersystems

It is possible to define at least five topological views that are relevant for analyzing, designing, and maintaining neuroprosthetic supersystems. Two of these relate primarily to the neuroprosthetic devices themselves:

- The physical neuroprosthetic device topology reflects the physical connections that exist between the neuroprostheses possessed by different human hosts within the organization. Such physical connections may be hardwired (e.g., utilizing generic Cat 5 Ethernet or fiber optic cables), may be wireless (e.g., utilizing radio-based Wi-Fi or Bluetooth, infrared, or laser transmissions), or may combine wired and wireless components.
- The logical neuroprosthetic device topology reflects the ways in which the software or other control processes within the supersystem allow its neuroprostheses to communicate with one another. This may dif-

¹⁸ See Kruchten, "The 4+1 view model of architecture" (1995), and Part 8.1 of *ArchiMate®* 2.1 Specification (2015).

¹⁹ See Rohloff, "Framework and Reference for Architecture Design" (2008), pp. 5-6.

²⁰ In our generic EA framework, the component view highlights all of the entities that together constitute the enterprise, including employees, physical facilities, computing devices, vehicles, products, and financial, material, and informational resources, as well as the capacities and internal processes that these entities possess. The interaction view highlights the network topology of the ways in which these entities are connected to one another and the processes (such as those of communication and control) by which they interact. The membership view highlights the boundaries and occupants of those spatiotemporal regions (such as physical buildings, countries, time zones, or virtual environments) within which organizational elements are located or operate and of those functional or conceptual groupings (such as corporate departments or project teams) to which elements belong or to whose authority they are subject. See Chapter 5 of this text for more details.

fer from the devices' physical topology. For example, consider a situation in which each of a supersystem's neuroprostheses has the physical capacity to transmit radio signals to and receive radio signals from any other neuroprosthesis in the supersystem, however each device's built-in security software only processes an incoming message and delivers it to the device's host if the message was sent by a neuroprosthesis belonging to that host's direct supervisor or to a direct subordinate. In this case, the neuroprostheses' physical topology would constitute a fully connected mesh, but the logical topology would take the form of a hierarchical tree topology.

Three other relevant views relate primarily to the devices' human hosts, in their role as embodied and embedded intelligences and social actors:

- The human hosts' natural social topology reflects social relations between individual human beings within the organization that are not dependent on neuroprosthetic devices. Such relations may already have existed prior to individuals' neuroprosthetic augmentation or may have been developed after their augmentation but without the facilitation of neuroprostheses; they might continue to exist even if the supersystem's neuroprostheses were disabled.
- The topology of the neuroprosthetically facilitated virtual environment reflects the 'inhabitants' of the virtual environments, if any, that are created by means of the neuroprostheses and which provide an opportunity for social interaction among the human hosts who spend time in such an environment – even if they do not, in practice, directly interact with one another within that venue.²¹ Such immersive virtual environments might include shared virtual spaces that are created temporarily to facilitate the completion of a team's particular tasks, or they might be persistent and massively multiuser virtual worlds that fill a general organizational role.
- The topology of neuroprosthetically facilitated brain-to-brain communication reflects the lines of communication, if any, that are established within the supersystem directly between the brains of human hosts by means of their neuroprostheses.²² Such communication might

²² Regarding such possibilities, see, e.g., Rao et al., "A direct brain-to-brain interface in humans" (2014), and Gladden, "Utopias and Dystopias as Cybernetic Information Systems" (2015).

²¹ For a practical overview of virtual teams, see Zofi, *A Manager's Guide to Virtual Teams* (2012), and Settle-Murphy, *Leading Effective Virtual Teams: Overcoming Time and Distance to Achieve Exceptional Results* (2012). Various aspects of virtual organizations are discussed in Fairchild, *Technological Aspects of Virtual Organizations: Enabling the Intelligent Enterprise* (2004); *Virtual Organizations: Systems and Practices*, edited by Camarinha-Matos et al. (2005); and Shekhar, *Managing the Reality of Virtual Organizations* (2016). The broader implications of long-term immersion in virtual reality environments are discussed in Bainbridge, *The Virtual Future* (2011); Heim, *The Metaphysics of Virtual Reality* (1993); and Koltko-Rivera, "The potential societal impact of virtual reality" (2005).

conceivably take a number of forms, from the simple hands-free composition and sending of text messages by means of participants' thoughts to the full integration of hosts' sensory experiences, memories, and volitions in order to fashion a 'hive mind' possessing a shared will.

Additional types of views are certainly possible and may be critical for particular types of systems and organizational contexts. However, taken together, the five basic views described above provide a robust representation of the network topologies of a neuroprosthetic supersystem that can be useful for such diverse purposes as system design and engineering, system management, information security planning, and ethical analysis.

The Dynamic Nature of Neuroprosthetic Topologies

When analyzing or engineering network topologies for neuroprosthetic supersystems, it should be noted that a network may change its topology periodically or even continually. For example, hosts' access to virtual environments may be added or removed as needed, in order to enforce information security policies²³ or minimize resource consumption. Some networks utilize *ad hoc* and dynamically reconfigurable topologies that can be updated as needed to reflect a network's change in membership, purpose, or operational context. Networks may incorporate artificially intelligent control mechanisms that autonomously detect changing internal or environmental conditions and adapt the network's design (e.g., by relocating the position of a logical hub) according to fixed rules; other networks may possess configurations that were not intentionally designed but which were developed through the use of evolutionary algorithms that optimize desirable performance characteristics.²⁴

Applying the Topological Model to Hypothetical Neuroprosthetic Supersystems

In order to illustrate the role of the five basic topological views in describing a neuroprosthetic supersystem, below we use the views to depict the neuroprosthetic supersystems of four very simple hypothetical organizations.

²³ For example, the InfoSec principle of purposefully structuring access for least functionality and least privilege is discussed in *NIST Special Publication 800-53, Revision 4: Security and Privacy Controls for Federal Information Systems and Organizations* (2013), pp. F-71-F-73, F-179.

²⁴ Regarding such approaches to networks in various contexts, see, e.g., Gen et al., *Network Models and Optimization: Multiobjective Genetic Algorithm Approach* (2008); *Adaptive Networks: Theory, Models and Applications*, edited by Gross & Sayama (2009); LoBello & Toscano, "An adaptive approach to topology management in large and dense real-time wireless sensor networks" (2009); and *Self-Organizing Networks (SON): Self-Planning, Self-Optimization and Self-Healing for GSM, UMTS, and LTE*, edited by Ramiro & Hamied (2012).

Scenario 1: An Emergency Medical Alert System

Figure 4 depicts the five basic topological views as applied to a neuroprosthetically enabled medical alert system. Each member of the organization possesses a neuroprosthetic device that monitors its host's biological processes and medical condition by means of a body sensor network (BSN) comprising numerous implanted sensors. If a host should experience a debilitating injury or sudden illness that renders him or her unconscious, that host's neuroprosthesis detects that occurrence and transmits a medical alert and call for help that is communicated simultaneously to all of the other hosts' devices by means of a shared bus. The human hosts all interact periodically with one another through non-neuroprosthetic social channels, and the neuroprosthetic network does not create a shared virtual environment or enable direct brain-to-brain communication.

Fig 4: A neuroprosthetic network that provides an emergency medical alert system. The devices themselves are linked through a physical (A) and logical (B) bus; their human hosts all interact periodically with one another through non-neuroprosthetic social channels (C). The neuroprostheses do not create a shared virtual world (D) or provide direct brain-to-brain communication (E).

Scenario 2: Centralized Hosting of Multiple Virtual Worlds

Figure 5 depicts the use of neuroprosthetic devices to create a set of virtual worlds that are administered by a single host's neuroprosthesis. Each of the organization's human members has access to one of two virtual worlds, depending on his or her organizational role – except for the host of the neuroprosthesis serving as the system's hub, who has access to both virtual worlds. All of the hosts interact with one another in their shared physical workplace. The neuroprosthetic network also allows each human host to mentally compose and send text messages to any other host, thus enabling a basic form of brain-to-brain communication. Disabling of the hub neuroprosthesis would shut down the virtual environments and brain-to-brain communication.

Fig 5: A neuroprosthetic network in which a single device serves as the hub of physical (A) and logical (B) hub-and-spoke networks in order to maintain two distinct virtual environments (D) and enable brain-to-brain communication (E) among all hosts – who also interact socially in their shared physical workplace (C).

Scenario 3: A Hive Mind with a Central Hub

Figure 6 depicts the use of neuroprosthetic devices to fashion a 'hive mind' whose human members share memories, emotions, and desires to create a collective entity with a common will. In this case, one neuroprosthetic device serves as the physical hub for the network, allowing all of the other devices to communicate with one another through it. Some of the network's human hosts interact with one another in their physical workplace, but others are physically isolated and interact only by means of the neuroprosthetic network. The neuroprostheses allow direct brain-to-brain communication between hosts, but do not override or interfere with the hosts' natural biological sensory systems in order to create a shared virtual world.

Fig 6: A neuroprosthetic supersystem that links its human members to create a centralized hive mind. One neuroprosthesis serves as the physical hub in a hub-and-spoke topology (A) to create a fully connected logical mesh including all devices (B). The network creates direct brain-to-brain communication (E) but not a shared virtual environment (D) for its human members, only some of whom enjoy social relations in the physical workplace (C).

Scenario 4: A Distributed Hive Mind Lacking a Central Hub

Figure 7 depicts the use of neuroprosthetic devices to create a decentralized hive mind that lacks a central physical or logical hub: any new device joining the network establishes direct physical and logical connections with all other devices, and the disabling of a node or severing of individual connections does not imperil the functioning of the network as a whole. The network's human members do not interact socially in the primary physical world and do not have access to a shared virtual environment; however, by means of the neuroprosthetic network they are able to share their internal monologues,²⁵ imaginings, and volitions to forge collective decisions.

Fig 7: A neuroprosthetically facilitated hive mind whose neuroprostheses all enjoy direct physical (A) and logical (B) connections with one another. The network's human hosts do not interact socially in the primary physical world (C) and do not inhabit a shared virtual environment (D); however, their brains communicate directly in a fully connected mesh (E).

²⁵ For an overview of such cognitive processes, see "The Internal Monologue" in Butler, *Rethink-ing Introspection* (2013), pp. 119-47.

Conclusion

For most contemporary organizations, the notion of intentionally integrating posthumanizing neuroprosthetic technologies into the workplace has no relevance as a strategic, operational, or tactical possibility. However, for the select group of specialized organizations (such as military departments) that are actively seeking to develop and deploy such technologies among their personnel, complex questions are emerging that relate not only to such devices' biological and technological elements but also to their organizational aspects. For example, how can such technologies be most effectively incorporated into an organization's personnel structures, business processes, and information systems? In this text, we have investigated one facet of that question by developing a model based on the concepts of network topology and enterprise architecture's technique of analyzing an organization through the lens of different formalized 'views.' Our model incorporates five views whose uses we have explored by applying the model to four types of neuroprosthetic supersystems that might be established through the deployment of neuroprosthetic technologies. While such a model can be of immediate use for those organizations that are considering the possibility of implementing posthumanizing neuroprosthetic technologies - or that are already actively working to deploy them - it may also be of use to policymakers, social scientists, ethicists, and others who are seeking to understand the implications of organizations' potential exploitation of neuroprosthetic technologies and to establish the parameters for their use, in order to ensure that such technologies are employed in ways that are consistent with the rights of their human users and which benefit rather than harm the organizations deploying them and human society as a whole.

References

- Ablett, Ruth, Shelly Park, Ehud Sharlin, Jörg Denzinger, and Frank Maurer. "A Robotic Colleague for Facilitating Collaborative Software Development." *Proceedings of Computer Supported Cooperative Work (CSCW 2006)*. ACM, 2006.
- Adaptive Networks: Theory, Models and Applications, edited by Thilo Gross and Hiroki Sayama. Springer Berlin Heidelberg, 2009.
- Advances in Neuromorphic Memristor Science and Applications, edited by Robert Kozma, Robinson E. Pino, and Giovanni E. Pazienza. Dordrecht: Springer Science+Business Media, 2012.
- Ahlemann, Frederik, Eric Stettiner, Marcus Messerschmidt, Christine Legner, Kunal Mohan, and Daniel Schäfczuk. "People, adoption and introduction of EAM." In *Strategic Enterprise Architecture Management*, pp. 229-263. Springer Berlin Heidelberg, 2012.
- Aier, Stephan. "The Role of Organizational Culture for Grounding, Management, Guidance and Effectiveness of Enterprise Architecture Principles." *Information Systems and E-Business Management* 12, no. 1 (2014): 43-70.
- Alumur, Sibel, and Bahar Y. Kara. "Network hub location problems: The state of the art." *European journal of operational research* 190, no. 1 (2008): 1-21.
- Amputation, Prosthetic Use, and Phantom Limb Pain: An Interdisciplinary Perspective, edited by Craig Murray. New York: Springer Science+Business Media, 2010.
- Andersen, Peter A., and Janis F. Andersen. "Measures of Perceived Nonverbal Immediacy." In *The Sourcebook of Nonverbal Measures: Going Beyond Words*, edited by Valerie Manusov. Mahwah, NJ: Lawrence Erlbaum Associates, Inc., 2005.
- Anderson, Walter Truett. "Augmentation, symbiosis, transcendence: technology and the future(s) of human identity." *Futures* 35, no. 5 (2003): 535-46.
- Anderson, Michael L. "Embodied cognition: A field guide." *Artificial intelligence* 149, no. 1 (2003): 91-130.
- Andrew, Alex M. "The decade of the brain: further thoughts." *Kybernetes* 26, no. 3 (1997): 255-264.
- Ankarali, Z.E., Q.H. Abbasi, A.F. Demir, E. Serpedin, K. Qaraqe, and H. Arslan. "A Comparative Review on the Wireless Implantable Medical Devices Privacy and Security." In 2014 EAI 4th International Conference on Wireless Mobile Communication and Healthcare (Mobihealth), 246-49, 2014. doi:10.1109/MOBIHEALTH.2014.7015957.
- ANSI/IEEE 1471-2000, IEEE Recommended Practice for Architectural Description for Software-Intensive Systems. IEEE Computer Society, 2000.
- ArchiMate® 2.1 Specification. Berkshire: The Open Group, 2013.

- Ariely, D., and G.S. Berns. "Neuromarketing: The Hope and Hype of Neuroimaging in Business." *Nature Reviews Neuroscience* 11, no. 4 (2010): 284-92.
- Austerberry, David. *Digital Asset Management*. Second edition. Burlington, MA: Focal Press, 2013.
- Ayaz, Hasan, Patricia A. Shewokis, Scott Bunce, Maria Schultheis, and Banu Onaral. "Assessment of Cognitive Neural Correlates for a Functional Near Infrared-Based Brain Computer Interface System." In Foundations of Augmented Cognition. Neuroergonomics and Operational Neuroscience, edited by Dylan D. Schmorrow, Ivy V. Estabrooke, and Marc Grootjen, 699-708. Lecture Notes in Computer Science 5638. Springer Berlin Heidelberg, 2009.

Baars, Bernard J. In the Theater of Consciousness. New York, NY: Oxford University Press, 1997.

- Baddeley, Alan. "The episodic buffer: a new component of working memory?" *Trends in cognitive sciences* 4, no. 11 (2000): 417-23.
- Baddeley, Alan. "Working memory: theories, models, and controversies." Annual review of psychology 63 (2012): 1-29.
- Bainbridge, William Sims. The Virtual Future. London: Springer, 2011.
- Băjenescu, Titu-Marius, and Marius I. Bâzu. Reliability of Electronic Components: A Practical Guide to Electronic Systems Manufacturing. Springer Berlin Heidelberg, 1999.
- Baranyi, Péter, Adam Csapo, and Gyula Sallai. "Synergies Between CogInfoCom and Other Fields." In Cognitive Infocommunications (CogInfoCom). Springer International Publishing, 2015.
- Barfield, Woodrow. *Cyber-Humans: Our Future with Machines*. Springer Science+Business Media, 2015.
- Barile, S., J. Pels, F. Polese, and M. Saviano. "An Introduction to the Viable Systems Approach and Its Contribution to Marketing." *Journal of Business Market Management* 5(2) (2012): 54-78.
- Bean, Sally. "Re-Thinking Enterprise Architecture Using Systems and Complexity Approaches." Journal of Enterprise Architecture 6, no. 4 (2010).
- Beer, Stafford. Brain of the Firm. Second edition. New York: John Wiley, 1981.
- Bekey, G.A. Autonomous Robots: From Biological Inspiration to Implementation and Control. Cambridge, MA: MIT Press, 2005.
- Bendle, Mervyn F. "Teleportation, cyborgs and the posthuman ideology." *Social Semiotics* 12, no. 1 (2002): 45-62.
- Bergey, John, Stephen Blanchette, Jr., Paul Clements, Mike Gagliardi, John Klein, Rob Wojcik, and Bill Wood. "U.S. Army Workshop on Exploring Enterprise, System of Systems, System, and Software Architectures." Technical Report CMU/SEI-2009-TR-008 / ESC-TR-2009-008. Hanscom AFB, MA: Software Engineering Institute, 2009.
- Berner, Georg. *Management in 20XX: What Will Be Important in the Future A Holistic View.* Erlangen: Publicis Corporate Publishing, 2004.
- Bhunia, Swarup, Abhishek Basak, Seetharam Narasimhan, and Maryam Sadat Hashemian. "Ultralow Power and Robust On-Chip Digital Signal Processing for Closed-Loop Neuro-Prosthesis." In *Implantable Bioelectronics: Devices, Materials, and Applications*, edited by Evgeny Katz. Weinheim: Wiley-VCH, 2014.
- Birnbacher, Dieter. "Posthumanity, Transhumanism and Human Nature." In *Medical Enhancement and Posthumanity*, edited by Bert Gordijn and Ruth Chadwick, pp. 95-106. The International Library of Ethics, Law and Technology 2. Springer Netherlands, 2008.

- Bischoff, Stefan, Stephan Aier, and Robert Winter. "Use It or Lose It? The Role of Pressure for Use and Utility of Enterprise Architecture Artifacts." In 2014 IEEE 16th Conference on Business Informatics, vol. 2, pp. 133-140. IEEE, 2014.
- Black, Michael J., Elie Bienenstock, John P. Donoghue, Mijail Serruya, Wei Wu, and Yun Gao. "Connecting brains with machines: the neural control of 2D cursor movement." In Proceedings of the 1st International IEEE/EMBS Conference on Neural Engineering, pp. 580-83, 2003.
- Blank, S. Catrin, Sophie K. Scott, Kevin Murphy, Elizabeth Warburton, and Richard JS Wise. "Speech production: Wernicke, Broca and beyond." *Brain* 125, no. 8 (2002): 1829-38.
- Bogue, Robert. "Brain-Computer Interfaces: Control by Thought." Industrial Robot: An International Journal 37, no. 2 (2010): 126-32.
- Boly, Melanie, Anil K. Seth, Melanie Wilke, Paul Ingmundson, Bernard Baars, Steven Laureys, David B. Edelman, and Naotsugu Tsuchiya. "Consciousness in humans and non-human animals: recent advances and future directions." *Frontiers in Psychology* 4 (2013).
- Bonaci, T., R. Calo, and H. Chizeck. "App Stores for the Brain." *IEEE Technology and Society Magazine*, 1932-4529/15 (2015): 32-39.
- Borkar, Shekhar. "Designing reliable systems from unreliable components: the challenges of transistor variability and degradation." *Micro, IEEE* 25, no. 6 (2005): 10-16.
- Bostrom, Nick. "Human Genetic Enhancements: A Transhumanist Perspective." In *Arguing About Bioethics*, edited by Stephen Holland, pp. 105-15. New York: Routledge, 2012.
- Bostrom, Nick, and Anders Sandberg. "Cognitive Enhancement: Methods, Ethics, Regulatory Challenges." *Science and Engineering Ethics* 15, no. 3 (2009): 311-41.
- Boucharas, Vasilis, Marlies van Steenbergen, Slinger Jansen, and Sjaak Brinkkemper. "The Contribution of Enterprise Architecture to the Achievement of Organizational Goals: A Review of the Evidence." In *Trends in Enterprise Architecture Research*, 1-15. Springer, 2010.
- Braddon-Mitchell, David, and John Fitzpatrick. "Explanation and the Language of Thought." Synthese 83, no. 1 (April 1, 1990): 3-29.
- Bradford, David L., and W. Warner Burke. *Reinventing Organization Development: New Approaches to Change in Organizations*. John Wiley & Sons, 2005.
- Brain-Computer Interfaces: Principles and Practice, edited by Jonathan R. Wolpaw and Elizabeth Winter Wolpaw. New York: Oxford University Press, 2012.
- Brandt, Thomas. Vertigo: Its Multisensory Syndromes. Springer Verlag London, 2003.
- Breazeal, Cynthia. "Toward sociable robots." *Robotics and Autonomous Systems* 42 (2003): 167-75.
- "Bridging the Bio-Electronic Divide." Defense Advanced Research Projects Agency, January 19, 2016. http://www.darpa.mil/news-events/2015-01-19. Accessed May 6, 2016.
- Brunner, Peter, and Gerwin Schalk. "Brain-Computer Interaction." In Foundations of Augmented Cognition. Neuroergonomics and Operational Neuroscience, edited by Dylan D. Schmorrow, Ivy V. Estabrooke, and Marc Grootjen, 719-23. Lecture Notes in Computer Science 5638. Springer Berlin Heidelberg, 2009.
- Brunner, P., L. Bianchi, C. Guger, F. Cincotti, and G. Schalk. "Current Trends in Hardware and Software for Brain-Computer Interfaces (BCIs)." *Journal of Neural Engineering* 8, no. 2 (2011): 25001.
- Bublitz, J.C. "If Man's True Palace Is His Mind, What Is Its Adequate Protection? On a Right to Mental Self-Determination and Limits of Interventions into Other Minds." In *Technologies* on the Stand: Legal and Ethical Questions in Neuroscience and Robotics, edited by B. Van Den Berg and L. Klaming. Nijmegen: Wolf Legal Publishers, 2011.

- Buckl, Sabine, Christian M. Schweda, and Florian Matthes. "A Situated Approach to Enterprise Architecture Management." In 2010 IEEE International Conference on Systems, Man and Cybernetics, 587-92. IEEE, 2010.
- Buckl, Sabine, Florian Matthes, and Christian M. Schweda. "A Viable System Perspective on Enterprise Architecture Management." In *IEEE International Conference on Systems, Man and Cybernetics*, 2009. SMC 2009, 1483-88. IEEE, 2009.
- Butler, Jesse. Rethinking Introspection. Palgrave Macmillan UK, 2013.
- C4ISR Architecture Framework Version 2.0. C4ISR Architecture Working Group (AWG), US Department of Defense, December 18, 1997. http://www.afcea.org/education/courses/archfwk2.pdf. Accessed December 4, 2016.
- Cadle, James, Debra Paul, and Paul Turner. Business Analysis Techniques: 72 Essential Tools for Success. Swindon: British Informatics Society Limited, 2010.
- Caetano, Artur, António Rito Silva, and José Tribolet. "A Role-Based Enterprise Architecture Framework." In Proceedings of the 2009 ACM Symposium on Applied Computing, pp. 253-58. ACM, 2009.
- Cahill, Larry, and Michael T. Alkire. "Epinephrine enhancement of human memory consolidation: interaction with arousal at encoding." *Neurobiology of learning and memory* 79, no. 2 (2003): 194-98.
- Callaghan, Vic. "Micro-Futures." Presentation at Creative-Science 2014, Shanghai, China, July 1, 2014.
- Calverley, D.J. "Imagining a non-biological machine as a legal person." AI & SOCIETY 22, no. 4 (2008): 523-37.
- Cameron, Oliver G. Visceral Sensory Neuroscience: Interoception. Oxford University Press, 2001.
- Campbell, Lyle. Historical Linguistics. Third edition. The MIT Press, 2013.
- Cane, Sheila, and Richard McCarthy. "Measuring the Impact of Enterprise Architecture." *Issues in Information Systems* 8, no. 2 (2007): 437-42.
- Castronova, Edward. "Theory of the Avatar." CESifo Working Paper No. 863, February 2003. http://www.cesifo.de/pls/guestci/download/CESifo+Working+Papers+2003/CESifo+Working+Papers+February+2003+/cesifo_wp863.pdf. Accessed January 25, 2016.
- Cervera-Paz, Francisco Javier, and M. J. Manrique. "Auditory Brainstem Implants: Past, Present and Future Prospects." In *Operative Neuromodulation*, edited by Damianos E. Sakas and Brian A. Simpson, 437-42. Acta Neurochirurgica Supplements 97/2. Springer Vienna, 2007.
- Chafe, Chris, and Sile O'Modhrain. "Musical muscle memory and the haptic display of performance nuance." In *Proceedings of the 1996 International Computer Music Conference*, pp. 1-4. Stanford: Stanford University, 1996.
- Chan, Yolande E., and Blaize Horner Reich. "IT alignment: what have we learned?" *Journal of Information technology* 22, no. 4 (2007): 297-315.
- Chang, Chia-Ke, Yu-Jung Li, and Chih-Cheng Lu. "RFID applied in recognition and identification for dental prostheses." In *Computerized Healthcare (ICCH)*, 2012 International Conference on, pp. 43-45. IEEE, 2012.
- Christen, Markus, and Sabine Müller. "Current status and future challenges of deep brain stimulation in Switzerland." Swiss Medical Weekly (2012): 142:w13570. doi:10.4414/smw.2012.13570.
- "Chronic Pain and Spinal Cord Stimulation (SCS): Frequently Asked Questions." Boston Scientific, 2013. http://www.pae-eu.eu/wp-content/uploads/2015/03/NM-135814-AA-INTL-Spectra-Backgrounder_Final.pdf. Accessed December 8, 2016.

- Church, George M., Yuan Gao, and Sriram Kosuri. "Next-generation digital information storage in DNA." *Science* 337, no. 6102 (2012): 1628.
- Clancy, Frank. "At Military's Behest, Darpa Uses Neuroscience to Harness Brain Power." Neurology Today 6, no. 2 (2006): 4-8.
- Clark, S.S., and K. Fu. "Recent Results in Computer Security for Medical Devices." In Wireless Mobile Communication and Healthcare, edited by K.S. Nikita, J.C. Lin, D.I. Fotiadis, and M.-T. Arredondo Waldmeyer, pp. 111-18. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 83. Springer Berlin Heidelberg, 2012.
- Clark, Andy. "Systematicity, structured representations and cognitive architecture: A reply to Fodor and Pylyshyn." In *Connectionism and the Philosophy of Mind*, pp. 198-218. Springer Netherlands, 1991.
- Clark, Andy. Natural-born cyborgs: Minds, Technologies, and the Future of Human Intelligence. Oxford: Oxford University Press, 2004.
- Clarke, Arthur C. "Hazards of Prophecy: The Failure of Imagination." In Profiles of the Future: An Inquiry into the Limits of the Possible, revised edition. Harper & Row, New York, 1973.
- Clausen, J. "Conceptual and Ethical Issues with Brain-hardware Interfaces." *Current Opinion in Psychiatry* 24, no. 6 (2011): 495-501.
- Claussen, Jens Christian, and Ulrich G. Hofmann. "Sleep, Neuroengineering and Dynamics." Cognitive Neurodynamics 6, no. 3 (May 27, 2012): 211-14.
- A Clinical Guide to Transcranial Magnetic Stimulation, edited by Paul E. Holtzheimer and William McDonald. New York: Oxford University Press, 2014.
- Clowes, Robert W. "The Cognitive Integration of E-Memory." *Review of Philosophy and Psychology* 4, no. 1 (January 26, 2013): 107-33.
- "Cochlear Implant Quick Facts." American Speech-Language-Hearing Association. http://www.asha.org/public/hearing/Cochlear-Implant-Quick-Facts/. Accessed December 8, 2016.
- "Cochlear Implants." National Institute on Deafness and Other Communication Disorders (NIDCD), May 3, 2016. https://www.nidcd.nih.gov/health/cochlear-implants. Accessed December 8, 2016.
- Coeckelbergh, Mark. "From Killer Machines to Doctrines and Swarms, or Why Ethics of Military Robotics Is Not (Necessarily) About Robots." *Philosophy & Technology* 24, no. 3 (2011): 269-78.
- Cognitive Psychology. Second edition. Edited by Nick Braisby and Angus Gellatly. Oxford: Oxford University Press, 2012.
- Coker, Christopher. "Biotechnology and War: The New Challenge." *Australian Army Journal* vol. II, no. 1 (2004): 125-40.
- Collins, Allison, and Norm Schultz. "A review of ethics for competitive intelligence activities." Competitive Intelligence Review 7, no. 2 (1996): 56-66.
- *Coma Science: Clinical and Ethical Implications*, edited by Steven Laureys, Nicholas D. Schiff, and Adrian M. Owen. New York: Elsevier, 2009.
- Comai, Alessandro. "Global code of ethics and competitive intelligence purposes: an ethical perspective on competitors." *Journal of Competitive Intelligence and Management* 1, no. 3, 2003.
- Comas and Disorders of Consciousness, edited by Caroline Schnakers and Steven Laureys. Springer-Verlag London, 2012.

- Communication in the Age of Virtual Reality, edited by Frank Biocca and Mark R. Levy. Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers, 1995.
- Computer Synthesized Speech Technologies: Tools for Aiding Impairment, edited by John Mullennix and Steven Stern. Hershey, PA: Medical Information Science Reference, 2010.
- Conant, Roger C., and W. Ross Ashby. "Every Good Regulator of a System Must Be a Model of That System." International journal of systems science 1, no. 2 (1970): 89-97.
- Content of Premarket Submissions for Management of Cybersecurity in Medical Devices: Guidance for Industry and Food and Drug Administration Staff. Silver Spring, MD: US Food and Drug Administration, 2014.
- Converging Technologies for Improving Human Performance: Nanotechnology, Biotechnology, Information Technology and Cognitive Science, edited by William Sims Bainbridge. Dordrecht: Springer Science+Business Media, 2003.

Cornwall, Warren. "In Pursuit of the Perfect Power Suit." Science 350, issue 6258 (2015): 270-73.

- Cory, Jr., Gerald A. "Language, Brain, and Neuron." In *Toward Consilience*, pp. 193-205. Springer US, 2000.
- Cosgrove, G.R. "Session 6: Neuroscience, brain, and behavior V: Deep brain stimulation." Meeting of the President's Council on Bioethics. Washington, DC, June 24-25, 2004. https://bioethicsarchive.georgetown.edu/pcbe/transcripts/june04/session6.html. Accessed June 12, 2015.
- Coughlin, Thomas M. Digital Storage in Consumer Electronics: The Essential Guide. Burlington, MA: Newnes, 2008.
- Crane, Andrew. "In the company of spies: When competitive intelligence gathering becomes industrial espionage." *Business Horizons* 48, no. 3 (2005): 233-40.
- Cummings, James J., and Jeremy N. Bailenson. "How immersive is enough? A meta-analysis of the effect of immersive technology on user presence." *Media Psychology* 19, no. 2 (2016): 272-309.
- Curtis, H. Biology. Fourth edition. New York: Worth, 1983.
- "Cybersecurity for Medical Devices and Hospital Networks: FDA Safety Communication." US Food and Drug Administration, June 13, 2013. http://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm356423.htm. Accessed May 3, 2016.
- Cybersociety 2.0: Revisiting Computer-Mediated Communication and Community, edited by Steven G. Jones. Thousand Oaks: Sage Publications, 1998.
- The Cyborg Experiments: The Extensions of the Body in the Media Age, edited by Joanna Zylinska. London: Continuum, 2002.
- Cytowic, Richard E. Synesthesia: A Union of the Senses. Springer-Verlag New York, 1989.
- Daft, Richard L. Management. Mason, OH: South-Western / Cengage Learning, 2011.
- Daft, Richard L., Jonathan Murphy, and Hugh Willmott. *Organization Theory and Design*. Andover, Hampshire: Cengage Learning EMEA, 2010.
- Daigle, K.R. "Manipulating the Mind: The Ethics of Cognitive Enhancement." Thesis, M.A. in Bioethics. Wake Forest University, 2010. https://wakespace.lib.wfu.edu/handle/10339/30407. Accessed May 8, 2016.
- Dandamudi, Sivarama P. Introduction to assembly language programming: from 8086 to Pentium processors. Springer Science+Business Media New York, 1998.
- Davies, Theresa Claire. Audification of Ultrasound for Human Echolocation. Dissertation, Ph.D. in Systems Design Engineering. Waterloo, Ontario: University of Waterloo, 2008.

- Davis, Simon, Keith Nesbitt, and Eugene Nalivaiko. "A systematic review of cybersickness." In *Proceedings of the 2014 Conference on Interactive Entertainment*, pp. 1-9. ACM, 2014.
- De Graaf, Maartje MA, and Somaya Ben Allouch. "Exploring influencing variables for the acceptance of social robots." *Robotics and Autonomous Systems* 61, no. 12 (2013): 1476-86.
- De Melo-Martín, Inmaculada. "Genetically Modified Organisms (GMOs): Human Beings." In Encyclopedia of Global Bioethics, edited by Henk ten Have. Springer Science+Business Media Dordrecht. Version of March 13, 2015. doi: 10.1007/978-3-319-05544-2_210-1. Accessed January 21, 2016.
- Deep Brain Stimulation for Parkinson's Disease, edited by Gordon H. Baltuch and Matthew B. Stern. Boca Raton: CRC Press, 2007.
- Dellon, Brian, and Yoky Matsuoka. "Prosthetics, exoskeletons, and rehabilitation." *IEEE Robotics and Automation magazine* 14, no. 1 (2007): 30.
- Denning, Tamara, Alan Borning, Batya Friedman, Brian T. Gill, Tadayoshi Kohno, and William H. Maisel. "Patients, pacemakers, and implantable defibrillators: Human values and security for wireless implantable medical devices." In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, 917-26. ACM, 2010.
- Denning, Tamara, Yoky Matsuoka, and Tadayoshi Kohno. "Neurosecurity: Security and Privacy for Neural Devices." *Neurosurgical Focus* 27, no. 1 (2009): E7.
- Digital Ecosystems: Society in the Digital Age, edited by Łukasz Jonak, Natalia Juchniewicz, and Renata Włoch. Warsaw: Digital Economy Lab, University of Warsaw, 2016.
- DoD Architecture Framework Version 2.02. US Department of Defense, August 2010. http://dodcio.defense.gov/Portals/o/Documents/DODAF/DoDAF_v2-02_web.pdf. Accessed December 4, 2016.
- Dormer, Kenneth J. "Implantable electronic otologic devices for hearing rehabilitation." In *Handbook of Neuroprosthetic Methods*, edited by Warren E. Finn and Peter G. LoPresti, pp. 237-60. Boca Raton: CRC Press, 2003.
- Drummond, Katie. "Pentagon Preps Soldier Telepathy Push." Wired, May 14, 2009. https://www.wired.com/2009/05/pentagon-preps-soldier-telepathy-push/. Accessed December 5, 2016.
- Dudai, Yadin. "The Neurobiology of Consolidations, Or, How Stable Is the Engram?" Annual Review of Psychology 55 (2004): 51-86.
- Dumas II, Joseph D. Computer Architecture: Fundamentals and Principles of Computer Design. Boca Raton: CRC Press, 2006.
- Edlinger, Günter, Cristiano Rizzo, and Christoph Guger. "Brain Computer Interface." In Springer Handbook of Medical Technology, edited by Rüdiger Kramme, Klaus-Peter Hoffmann, and Robert S. Pozos, 1003-17. Springer Berlin Heidelberg, 2011.
- *Electroreception*, edited by Theodore H. Bullock, Carl D. Hopkins, Arthur N. Popper, and Richard R. Fay. New York: Springer Science+Business Media, 2005.
- "Employee Tenure Summary." Washington, DC: US Department of Labor, Bureau of Labor Statistics, September 22, 2016. http://www.bls.gov/news.release/tenure.nro.htm. Accessed November 9, 2016.
- *Epinephrine in the Central Nervous System*, edited by Jon M. Stolk, David C. U'Prichard, and Kjell Fuxe. Oxford University Press, 1988.
- Ericsson, K. Anders, and Neil Charness. "Expert performance: Its structure and acquisition." American Psychologist 49, no. 8 (1994): 725-47.

- tive, November 10, 2003. http://www.govexec.com/defense/2003/11/defense-research-
- Farina, Dario, and Oskar Aszmann. "Bionic limbs: clinical reality and academic promises." Sci-
- tors+needed+brain+stimulation+surgery+expand/8054047/story.html. Accessed December
- and Budget, January 29, 2013. https://www.whitehouse.gov/sites/default/files/omb/as-
- Standardized Tests to Evaluate the Reliability of Data Transport in Wireless Medical Systems." In Sensor Systems and Software, edited by Francisco Martins, Luís Lopes, and Hervé Paulino, pp. 137-45. Lecture Notes of the Institute for Computer Sciences, Social Informat-
- New Materialisms: Differences and Relations." Existenz: An International Journal in Philoso-
- cation of path direction during walking." Multisensory research 28, no. 1-2 (2015): 195-226.
- "FIPA Device Ontology Specification." Foundation for Intelligent Physical Agents (FIPA), May 10, 2002. http://www.fipa.org/assets/XC00091D.pdf. Accessed February 9, 2015.
- Fleischmann, Kenneth R. "Sociotechnical Interaction and Cyborg-Cyborg Interaction: Transforming the Scale and Convergence of HCI." The Information Society 25, no. 4 (2009): 227-35

- Fountas, Kostas N., and J. R. Smith. "A Novel Closed-Loop Stimulation System in the Control of Focal, Medically Refractory Epilepsy." In *Operative Neuromodulation*, edited by Damianos E. Sakas and Brian A. Simpson, 357-62. Acta Neurochirurgica Supplements 97/2. Springer Vienna, 2007.
- Frewer, Lynn J., Ivo A. van der Lans, Arnout RH Fischer, Machiel J. Reinders, Davide Menozzi, Xiaoyong Zhang, Isabelle van den Berg, and Karin L. Zimmermann. "Public perceptions of agri-food applications of genetic modification – A systematic review and meta-analysis." *Trends in Food Science & Technology* 30, no. 2 (2013): 142-52.
- Frewer Lynn, Jesper Lassen, B. Kettlitz, Joachim Scholderer, Volkert Beekman, and Knut G. Berdal. "Societal aspects of genetically modified foods." *Food and Chemical Toxicology* 42, no. 7 (2004): 1181-93.
- Friedenberg, Jay. Artificial Psychology: The Quest for What It Means to Be Human. Philadelphia: Psychology Press, 2008.
- Friedman, Batya, and Helen Nissenbaum. "Bias in Computer Systems." In Human Values and the Design of Computer Technology, edited by Batya Friedman, pp. 21-40. CSL Lecture Notes 72. Cambridge: Cambridge University Press, 1997.
- Fritz, Robert. Corporate Tides: The Inescapable Laws of Organizational Structure. San Francisco: Berret-Koehler, 1996.
- Fukuyama, Francis. Our Posthuman Future: Consequences of the Biotechnology Revolution. New York: Farrar, Straus, and Giroux, 2002.
- *The Future of Bioethics: International Dialogues*, edited by Akira Akabayashi, Oxford: Oxford University Press, 2014.
- Gallego, Juan Álvaro, Eduardo Rocon, Juan Manuel Belda-Lois, and José Luis Pons. "A neuroprosthesis for tremor management through the control of muscle co-contraction." *Journal of neuroengineering and rehabilitation* 10, no. 1 (2013): 1.
- Gammelgård, Magnus, Mårten Simonsson, and Åsa Lindström. "An IT Management Assessment Framework: Evaluating Enterprise Architecture Scenarios." *Information Systems and E-Business Management* 5, no. 4 (2007): 415-35.
- Garg, Anant Bhaskar. "Embodied Cognition, Human Computer Interaction, and Application Areas." In Computer Applications for Web, Human Computer Interaction, Signal and Image Processing, and Pattern Recognition, pp. 369-74. Springer Berlin Heidelberg, 2012.
- Gasson, M.N. "Human ICT Implants: From Restorative Application to Human Enhancement." In Human ICT Implants: Technical, Legal and Ethical Considerations, edited by Mark N. Gasson, Eleni Kosta, and Diana M. Bowman, pp. 11-28. Information Technology and Law Series 23. T. M. C. Asser Press, 2012.
- Gasson, M.N. "ICT implants." In *The Future of Identity in the Information Society*, edited by S. Fischer-Hübner, P. Duquenoy, A. Zuccato, and L. Martucci, pp. 287-95. Springer US, 2008.
- Gasson, M.N., Kosta, E., and Bowman, D.M. "Human ICT Implants: From Invasive to Pervasive." In *Human ICT Implants: Technical, Legal and Ethical Considerations*, edited by Mark N. Gasson, Eleni Kosta, and Diana M. Bowman, pp. 1-8. Information Technology and Law Series 23. T. M. C. Asser Press, 2012.
- Gen, Mitsuo, Runwei Cheng, and Lin Lin. *Network Models and Optimization: Multiobjective Genetic Algorithm Approach*. Springer-Verlag London Limited, 2008.
- Gene Therapy of the Central Nervous System: From Bench to Bedside, edited by Michael G. Kaplitt and Matthew J. During. Amsterdam: Elsevier, 2006.
- Gill, Satinder P. "Socio-Ethics of Interaction with Intelligent Interactive Technologies." AI & SOCIETY 22, no. 3 (October 26, 2007): 283-300.

- Giustozzi, Emilie Steele, and Betsy Van der Veer Martens. "The new competitive intelligence agents: 'Programming' competitive intelligence ethics into corporate cultures." *Webology* 8, no. 2 (2011): 1.
- Gladden, Matthew E. "The Artificial Life-Form as Entrepreneur: Synthetic Organism-Enterprises and the Reconceptualization of Business." In *Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems*, edited by Hiroki Sayama, John Rieffel, Sebastian Risi, René Doursat and Hod Lipson, pp. 417-18. The MIT Press, 2014.
- Gladden, Matthew E. "Cryptocurrency with a Conscience: Using Artificial Intelligence to Develop Money that Advances Human Ethical Values." *Annales: Ethics in Economic Life* 18, no. 4 (2015): 85-98.
- Gladden, Matthew E. "Cybershells, Shapeshifting, and Neuroprosthetics: Video Games as Tools for Posthuman 'Body Schema (Re)Engineering'." Keynote presentation at the Ogólnopolska Konferencja Naukowa Dyskursy Gier Wideo, Facta Ficta / AGH, Kraków, June 6, 2015.

Gladden, Matthew E. "The Diffuse Intelligent Other: An Ontology of Nonlocalizable Robots as Moral and Legal Actors." In Social Robots: Boundaries, Potential, Challenges, edited by Marco Nørskov, pp. 177-98. Farnham: Ashgate, 2016.

- Gladden, Matthew E. "Enterprise Architecture for Neurocybernetically Augmented Organizational Systems: The Impact of Posthuman Neuroprosthetics on the Creation of Strategic, Structural, Functional, Technological, and Sociocultural Alignment." Thesis project, MBA in Innovation and Data Analysis. Warsaw: Institute of Computer Science, Polish Academy of Sciences, 2016.
- Gladden, Matthew E. "From Stand Alone Complexes to Memetic Warfare: Cultural Cybernetics and the Engineering of Posthuman Popular Culture." Presentation at the 50 Shades of Popular Culture International Conference. Facta Ficta / Uniwersytet Jagielloński, Kraków, February 19, 2016.
- Gladden, Matthew E. *The Handbook of Information Security for Advanced Neuroprosthetics*. Indianapolis: Synthypnion Academic, 2015.
- Gladden, Matthew E. "Implantable Computers and Information Security: A Managerial Perspective." In Posthuman Management: Creating Effective Organizations in an Age of Social Robotics, Ubiquitous AI, Human Augmentation, and Virtual Worlds. Second edition, pp. 285-300. Indianapolis: Defragmenter Media, 2016.
- Gladden, Matthew E. "Information Security Concerns as a Catalyst for the Development of Implantable Cognitive Neuroprostheses." In 9th Annual EuroMed Academy of Business (EMAB) Conference: Innovation, Entrepreneurship and Digital Ecosystems (EUROMED 2016) Book of Proceedings, edited by Demetris Vrontis, Yaakov Weber, and Evangelos Tsoukatos, pp. 891-904. Engomi: EuroMed Press, 2016.
- Gladden, Matthew E. "Leveraging the Cross-Cultural Capacities of Artificial Agents as Leaders of Human Virtual Teams." Proceedings of the 10th European Conference on Management Leadership and Governance, edited by Visnja Grozdanić, pp. 428-35. Reading: Academic Conferences and Publishing International Limited, 2014.
- Gladden, Matthew E. "Managerial Robotics: A Model of Sociality and Autonomy for Robots Managing Human Beings and Machines." International Journal of Contemporary Management 13, no. 3 (2014): 67-76.
- Gladden, Matthew E. "Managing the Ethical Dimensions of Brain-Computer Interfaces in eHealth: An SDLC-based Approach." In 9th Annual EuroMed Academy of Business (EMAB) Conference: Innovation, Entrepreneurship and Digital Ecosystems (EUROMED 2016) Book of

References • 283

Proceedings, edited by Demetris Vrontis, Yaakov Weber, and Evangelos Tsoukatos, pp. 876-90. Engomi: EuroMed Press, 2016.

- Gladden, Matthew E. "Neural Implants as Gateways to Digital-Physical Ecosystems and Posthuman Socioeconomic Interaction." In *Digital Ecosystems: Society in the Digital Age*, edited by Łukasz Jonak, Natalia Juchniewicz, and Renata Włoch, pp. 85-98. Warsaw: Digital Economy Lab, University of Warsaw, 2016.
- Gladden, Matthew E. "Neuromarketing Applications of Neuroprosthetic Devices: An Assessment of Neural Implants' Capacities for Gathering Data and Influencing Behavior." In 9th Annual EuroMed Academy of Business (EMAB) Conference: Innovation, Entrepreneurship and Digital Ecosystems (EUROMED 2016) Book of Proceedings, edited by Demetris Vrontis, Yaakov Weber, and Evangelos Tsoukatos, pp. 905-18. Engomi: EuroMed Press, 2016.
- Gladden, Matthew E. "Organization Development and the Robotic-Cybernetic-Human Workforce: Humanistic Values for a Posthuman Future?" In Posthuman Management: Creating Effective Organizations in an Age of Social Robotics, Ubiquitous AI, Human Augmentation, and Virtual Worlds. Second edition, pp. 239-55. Indianapolis: Defragmenter Media, 2016.

Gladden, Matthew E. Posthuman Management: Creating Effective Organizations in an Age of Social Robotics, Ubiquitous AI, Human Augmentation, and Virtual Worlds. Second edition. Indianapolis: Defragmenter Media, 2016.

- Gladden, Matthew E. Sapient Circuits and Digitalized Flesh: The Organization as Locus of Technological Posthumanization. Indianapolis: Defragmenter Media, 2016.
- Gladden, Matthew E. "The Social Robot as 'Charismatic Leader': A Phenomenology of Human Submission to Nonhuman Power." In Sociable Robots and the Future of Social Relations: Proceedings of Robo-Philosophy 2014, edited by Johanna Seibt, Raul Hakli, and Marco Nørskov, pp. 329-39. Frontiers in Artificial Intelligence and Applications 273. IOS Press, 2014.
- Gladden, Matthew E. "Utopias and Dystopias as Cybernetic Information Systems: Envisioning the Posthuman Neuropolity." *Creatio Fantastica* nr 3 (50) (2015).

Gockley, Rachel, Allison Bruce, Jodi Forlizzi, Marek Michalowski, Anne Mundell, Stephanie Rosenthal, Brennan Sellner, Reid Simmons, Kevin Snipes, Alan C. Schultz, and Jue Wang.
"Designing Robots for Long-Term Social Interaction." In 2005 *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005)*, pp. 2199-2204. 2005.

- Goldstein, E. Bruce. *Sensation and Perception*. Ninth edition. Belmont, CA: Wadsworth / CEN-GAGE Learning, 2014.
- Goleman, Daniel. "What Makes a Leader?" Harvard Business Review 82 (1) (2004): 82-91.
- Goodman, H. Maurice. *Basic Medical Endocrinology*. Fourth edition. Burlington, MA: Academic Press, 2009.
- Graham, Stephen. "Imagining Urban Warfare: Urbanization and U.S. Military Technoscience." In *War, Citizenship, Territory*, edited by Deborah Cowen and Emily Gilbert. New York: Routledge, 2008.

Greve, Andrea, and Richard Henson. "What We Have Learned about Memory from Neuroimaging." In *The Wiley Handbook on the Cognitive Neuroscience of Memory*, edited by Donna Rose Addis, Morgan Barense, and Audrey Duarte, pp. 1-20. Malden, MA: John Wiley & Sons Ltd., 2015.

- Grottke, M., H. Sun, R.M. Fricks, and K.S. Trivedi. "Ten fallacies of availability and reliability analysis." In *Service Availability*, pp. 187-206. Lecture Notes in Computer Science 5017. Springer Berlin Heidelberg, 2008.
- Gunkel, David J. The Machine Question: Critical Perspectives on AI, Robots, and Ethics. Cambridge, MA: The MIT Press, 2012.

- Gutnick, Tamar, Ruth A. Byrne, Binyamin Hochner, and Michael Kuba. "Octopus vulgaris uses visual information to determine the location of its arm." *Current Biology* 21, no. 6 (2011): 460-62.
- Haki, Mohammad Kazem, Christine Legner, and Frederik Ahlemann. "Beyond EA Frameworks: Towards an Understanding of the Adoption of Enterprise Architecture Management." *ECIS* 2012 Proceedings, 2012.
- Hameroff, Stuart, and Roger Penrose. "Consciousness in the universe: A review of the 'Orch OR' theory." *Physics of Life Reviews* 11, no. 1 (2014): 39-78.
- Han, J.-H., S.A. Kushner, A.P. Yiu, H.-W. Hsiang, T. Buch, A. Waisman, B. Bontempi, R.L. Neve, P.W. Frankland, and S.A. Josselyn. "Selective Erasure of a Fear Memory." *Science* 323, no. 5920 (2009): 1492-96.
- Hand, Eric. "Maverick scientist thinks he has discovered magnetic sixth sense in humans." *Science*, June 23, 2016. doi:10.1126/science.aaf5803. Accessed December 8, 2016.
- Handbook of Cloud Computing, edited by Borko Furht and Armando Escalante. New York: Springer, 2010.
- Handbook of Psychology, Volume 6: Developmental Psychology, edited by Richard M. Lerner, M. Ann Easterbrooks, and Jayanthi Mistry. Hoboken: John Wiley & Sons, Inc., 2003.
- Hanson, R. "If uploads come first: The crack of a future dawn." Extropy 6, no. 2 (1994): 10-15.
- Haraway, Donna. *Simians, Cyborgs, and Women: The Reinvention of Nature*. New York: Routledge, 1991.
- Hargrove, Levi J., Ann M. Simon, Aaron J. Young, Robert D. Lipschutz, Suzanne B. Finucane, Douglas G. Smith, and Todd A. Kuiken. "Robotic leg control with EMG decoding in an amputee with nerve transfers." *New England Journal of Medicine* 369, no. 13 (2013): 1237-42.
- Harman, Gilbert. Thought. Princeton: Princeton University Press, 1973.
- Hatfield, B., A. Haufler, and J. Contreras-Vidal. "Brain Processes and Neurofeedback for Performance Enhancement of Precision Motor Behavior." In *Foundations of Augmented Cognition. Neuroergonomics and Operational Neuroscience*, edited by Dylan D. Schmorrow, Ivy V. Estabrooke, and Marc Grootjen, pp. 810-17. Lecture Notes in Computer Science 5638. Springer Berlin Heidelberg, 2009.
- Haykin, Simon. *Neural Networks and Learning Machines*. Third edition. New York: Pearson Prentice Hall, 2009.
- Hayles, N. Katherine. *How We Became Posthuman: Virtual Bodies in Cybernetics, Literature, and Informatics.* Chicago: University of Chicago Press, 1999.
- Heim, Michael. The Metaphysics of Virtual Reality. New York: Oxford University Press, 1993.
- Henderson, John C., and H. Venkatraman. "Strategic alignment: Leveraging information technology for transforming organizations." *IBM systems journal* 32, no. 1 (1993): 472-84.
- Herbrechter, Stefan. *Posthumanism: A Critical Analysis*. London: Bloomsbury, 2013. [Kindle edition.]
- Herzberg, Frederick. "One more time: How do you motivate employees." In *The Leader-Manager*, edited by John N. Williamson, pp. 433-48. New York: John Wiley & Sons, Inc., 1986.
- Heylighen, Francis. "The Global Brain as a New Utopia." In *Renaissance der Utopie. Zukunftsfiguren des 21. Jahrhunderts*, edited by R. Maresch and F. Rötzer. Frankfurt: Suhrkamp, 2002.
- Hochmair, Ingeborg. "Cochlear Implants: Facts." MED-EL, September 2013. http://www.medel.com/cochlear-implants-facts. Accessed December 8, 2016.

- Hoffmann, Klaus-Peter, and Silvestro Micera. "Introduction to Neuroprosthetics." In Springer Handbook of Medical Technology, edited by Rüdiger Kramme, Klaus-Peter Hoffmann, and Robert S. Pozos, pp. 785-800. Springer Berlin Heidelberg, 2011.
- Højsgaard, Hjalte. "Market-Driven Enterprise Architecture." *Journal of Enterprise Architecture* 7, no. 1 (2011), 28.
- Hoogervorst, Jan. "Enterprise Architecture: Enabling Integration, Agility and Change." International Journal of Cooperative Information Systems 13, no. 03 (2004): 213-33.
- Horling, Bryan, and Victor Lesser. "A Survey of Multi-Agent Organizational Paradigms." *The Knowledge Engineering Review* 19, no. 04 (2004): 281-316.
- Howard, Robert. "The CEO as Organizational Architect: An Interview with Xerox's Paul Allaire." *Harvard Business Review* 70 (5) (1992): 106-21.
- Hutchinson, Douglas T. "The quest for the bionic arm." Journal of the American Academy of Orthopaedic Surgeons 22, no. 6 (2014): 346-51.
- Iacob, Maria-Eugenia, Lucas O. Meertens, Henk Jonkers, Dick A.C. Quartel, Lambert J.M. Nieuwenhuis, and M.J. Van Sinderen. "From Enterprise Architecture to Business Models and Back." Software & Systems Modeling 13, no. 3 (2012): 1059-83.
- Implantable Biomedical Microsystems: Design Principles and Applications, edited by Swarup Bhunia, Steve Majerus, and Mohamad Sawan. Oxford: William Andrew, 2015.
- Implantable Neuroprostheses for Restoring Function, edited by Kevin Kilgore. Cambridge: Woodhead Publishing, 2015.
- Implantable Sensor Systems for Medical Applications, edited by Andreas Inmann and Diana Hodgins. Woodhead Publishing, 2013.
- Information Storage and Management: Storing, Managing, and Protecting Digital Information in Classic, Virtualized, and Cloud Environments. Second edition. Edited by Somasundaram Gnanasundaram and Alok Shrivastava. Indianapolis: John Wiley & Sons, Inc., 2012.
- ISO 15704:2000, Industrial automation systems Requirements for enterprise-reference architectures and methodologies. ISO/TC 184/SC5. Geneva: ISO, 2000.
- ISO 19439:2006, Enterprise integration Framework for enterprise modelling. ISO/TC 184/SC5. Geneva: ISO, 2006.
- ISO 27799:2016, Health informatics Information security management in health using ISO/IEC 27002. ISO/TC 215. Geneva: ISO, 2016.
- ISO/IEC 15288:2002, Systems engineering System life cycle processes. ISO/IEC JTC 1/SC 7. Geneva: ISO, 2002.
- ISO/IEC 7498-1:1994, Information technology Open Systems Interconnection Basic Reference Model: The Basic Model. ISO/IEC JTC 1. Geneva: ISO, 1994.
- ISO/IEC/IEEE 42010:2010, Systems and software engineering Architecture description. ISO/IEC JTC 1/SC 7. Geneva: ISO, 2011.
- Johar, Swati. Emotion, Affect and Personality in Speech: The Bias of Language and Paralanguage. SpringerNature, 2016.
- Josselyn, Sheena A. "Continuing the Search for the Engram: Examining the Mechanism of Fear Memories." *Journal of Psychiatry & Neuroscience : JPN* 35, no. 4 (2010): 221-28.
- Jürgens, Uta, and Danko Nikolić. "Ideaesthesia: conceptual processes assign similar colours to similar shapes." *Translational Neuroscience* 3, no. 1 (2012): 22-27.
- Kalat, James W. *Biological Psychology*. Ninth edition. Belmont, CA: Thomson Wadsworth, 2007.

- Kanda, Takayuki, and Hiroshi Ishiguro. Human-Robot Interaction in Social Robotics. Boca Raton: CRC Press, 2013.
- Kandjani, Hadi, Peter Bernus, and Lian Wen. "Enterprise Architecture Cybernetics for Complex Global Software Development: Reducing the Complexity of Global Software Development Using Extended Axiomatic Design Theory." In 2012 IEEE Seventh International Conference on Global Software Engineering, pp. 169-73. IEEE, 2012.
- Kaplan, Robert S., and David P. Norton. The Strategy-Focused Organization: How Balanced Scorecard Companies Thrive in the New Business Environment. Boston: Harvard Business School Press, 2001.
- Katz, Gregory. "The hypothesis of a genetic protolanguage: An epistemological investigation." Biosemiotics 1, no. 1 (2008): 57-73.
- Kazienko, Przemysław, Radosław Michalski, and Sebastian Palus. "Social Network Analysis as a Tool for Improving Enterprise Architecture." In Agent and Multi-Agent Systems: Technologies and Applications, edited by James O'Shea, Ngoc Thanh Nguyen, Keeley Crockett, Robert J. Howlett, and Lakhmi C. Jain, pp. 651-60. Lecture Notes in Computer Science 6682. Springer Berlin Heidelberg, 2011.
- Keenan, James F. "Enhancing Prosthetics for Soldiers Returning from Combat with Disabilities." ET Studies 4, no. 1 (2013): 69-88.
- Kelly, Kevin. "A Taxonomy of Minds." The Technium, February 15, 2007. http://kk.org/thetechnium/a-taxonomy-of-m/. Accessed January 25, 2016.
- Kelly, Kevin. "The Landscape of Possible Intelligences." The Technium, September 10, 2008. http://kk.org/thetechnium/the-landscape-o/. Accessed January 25, 2016.
- Kelly, Kevin. Out of Control: The New Biology of Machines, Social Systems and the Economic World. Basic Books, 1994.
- Kerr, Paul K., John Rollins, and Catherine A. Theohary. "The Stuxnet Computer Worm: Harbinger of an Emerging Warfare Capability." Congressional Research Service, 2010.
- Kim, Kwang Jin, Xiaobo Tan, Hyouk Ryeol Choi, and David Pugal. *Biomimetic Robotic Artificial Muscles*. Singapore: World Scientific Publishing Co. Pte. Ltd., 2013.
- Kinicki, Angelo, and Brian Williams. *Management: A Practical Introduction*. Fifth edition. New York: McGraw Hill, 2010.
- KleinOsowski, A., Ethan H. Cannon, Phil Oldiges, and Larry Wissel. "Circuit design and modeling for soft errors." IBM Journal of Research and Development 52, no. 3 (2008): 255-63.
- Koene, Randal A. "Embracing Competitive Balance: The Case for Substrate-Independent Minds and Whole Brain Emulation." In *Singularity Hypotheses*, edited by Amnon H. Eden, James H. Moor, Johnny H. Søraker, and Eric Steinhart, pp. 241-67. The Frontiers Collection. Springer Berlin Heidelberg, 2012.
- Kohno, T., T. Denning, and Y. Matsuoka. "Security and Privacy for Neural Devices." Neurosurgical Focus 27 (2009): 1-4.
- Koltko-Rivera, Mark E. "The potential societal impact of virtual reality." Advances in virtual environments technology: Musings on design, evaluation, and applications 9 (2005).
- Koops, B.-J., and R. Leenes. "Cheating with Implants: Implications of the Hidden Information Advantage of Bionic Ears and Eyes." In *Human ICT Implants: Technical, Legal and Ethical Considerations*, edited by Mark N. Gasson, Eleni Kosta, and Diana M. Bowman, pp. 113-34. Information Technology and Law Series 23, T. M. C. Asser Press, 2012.

- 05 5 (2013): 981-98. doi:10.1007/s12152-011-9115-7. Routledge, 2015. 50. IEEE, 2001. (March 28, 2014): 99-110.
 - Kosta, E., and D.M. Bowman, "Implanting Implications: Data Protection Challenges Arising from the Use of Human ICT Implants." In Human ICT Implants: Technical, Legal and Ethical Considerations, edited by Mark N. Gasson, Eleni Kosta, and Diana M. Bowman, pp. 97-112. Information Technology and Law Series 23. T. M. C. Asser Press, 2012.
 - Kostov, Aleksander, and Mark Polak. "Parallel man-machine training in development of EEGbased cursor control." IEEE Transactions on Rehabilitation Engineering 8, no. 2 (2000): 203-
 - Kourany, J.A. "Human Enhancement: Making the Debate More Productive." Erkenntnis 79, no.
 - Kowalewska, Agata. "Symbionts and Parasites Digital Ecosystems." In Digital Ecosystems: Society in the Digital Age, edited by Łukasz Jonak, Natalia Juchniewicz, and Renata Włoch, pp. 73-84. Warsaw: Digital Economy Lab, University of Warsaw, 2016.
 - Kraemer, Felicitas. "Me, Myself and My Brain Implant: Deep Brain Stimulation Raises Questions of Personal Authenticity and Alienation." Neuroethics 6, no. 3 (May 12, 2011): 483-97.
 - Krishnan, Armin. "Enhanced Warfighters as Private Military Contractors." In Super Soldiers: The Ethical, Legal and Social Implications, edited by Jai Galliott and Mianna Lotz. London:
 - Krishnan, Armin. "From Psyops to Neurowar: What Are the Dangers?" ISAC-ISSS 2014 Annual Conference on Security Studies. University of Texas, Austin, Texas, November 16, 2014. http://web.isanet.org/Web/Conferences/ISSS%20Austin%202014/Archive/b137347c-6281-466d-b9e7-ef7e0e5d363c.pdf. Accessed May 8, 2016.
 - Kruchten, Philippe B. "The 4+1 view model of architecture." IEEE software 12, no. 6 (1995): 42-
 - Kshirsagar, Sumedha, Chris Joslin, Won-Sook Lee, and Nadia Magnenat-Thalmann. "Personalized Face and Speech Communication over the Internet." In Proceedings of IEEE Virtual Reality 2001, edited by Haruo Takemura and Kiyoshi Kiyokawa, pp. 37-44. Los Alamitos, CA:
 - Kusek, Kristen. "The \$3 Million Suit: Wyss Institute Wins DARPA Grant to Further Develop its Soft Exosuit." Harvard Gazette, September 11, 2014. http://news.harvard.edu/gazette/story/2014/09/the-3-million-suit/. Accessed December 5, 2016.
 - Kyllonen, Patrick C., and Raymond E. Christal. "Reasoning ability is (little more than) workingmemory capacity?!" Intelligence 14, no. 4 (1990): 389-433.
 - LaFleur, Karl, Kaitlin Cassady, Alexander Doud, Kaleb Shades, Eitan Rogin, and Bin He. "Quadcopter control in three-dimensional space using a noninvasive motor imagery-based braincomputer interface." Journal of neural engineering 10, no. 4 (2013): 046003.
 - Lamm, Ehud, and Ron Unger. Biological Computation. Boca Raton: CRC Press, 2011.
 - Land, Martin Op 't, Erik Proper, Maarten Waage, Jeroen Cloo, and Claudia Steghuis. "Positioning Enterprise Architecture." In Enterprise Architecture, pp. 25-47. The Enterprise Engineering Series. Springer Berlin Heidelberg, 2009.
 - Lebedev, M. "Brain-Machine Interfaces: An Overview." Translational Neuroscience 5, no. 1
 - Leder, Felix, Tillmann Werner, and Peter Martini. "Proactive Botnet Countermeasures: An Offensive Approach." In The Virtual Battlefield: Perspectives on Cyber Warfare, volume 3, edited by Christian Czosseck and Kenneth Geers, pp. 211-25. IOS Press, 2009.
 - Leed, Maren. Offensive Cyber Capabilities at the Operational Level: The Way Ahead. Washington, DC: Center for Strategic and International Studies, 2013.

- Li, S., F. Hu, and G. Li, "Advances and Challenges in Body Area Network." In *Applied Informatics and Communication*, edited by J. Zhan, pp. 58-65. Communications in Computer and Information Science 22. Springer Berlin Heidelberg, 2011.
- Lilley, Stephen. Transhumanism and Society: The Social Debate over Human Enhancement. Springer Science & Business Media, 2013.
- Lin, James C. "Hearing microwaves: The microwave auditory phenomenon." *IEEE Antennas and Propagation Magazine* 43, no. 6 (2001): 166-68.
- Lind, Jürgen. "Issues in agent-oriented software engineering." In Agent-Oriented Software Engineering, pp. 45-58. Springer Berlin Heidelberg, 2001.
- Lindström, Åsa, Pontus Johnson, Erik Johansson, Mathias Ekstedt, and Mårten Simonsson. "A Survey on CIO Concerns – Do Enterprise Architecture Frameworks Support Them?" Information Systems Frontiers 8, no. 2 (2006).
- Ling, Geoffrey SF, Peter Rhee, and James M. Ecklund. "Surgical innovations arising from the Iraq and Afghanistan wars." *Annual review of medicine* 61 (2010): 457-68.
- Linsenmeier, Robert A. "Retinal Bioengineering." In *Neural Engineering*, edited by Bin He, pp. 421-84. Bioelectric Engineering. Springer US, 2005.
- Liu, Hanjun, and Manwa L. Ng. "Electrolarynx in voice rehabilitation," Auris Nasus Larynx 34, no. 3 (2007): 327-32.
- Liu, Kecheng, Lily Sun, Dian Jambari, Vaughan Michell, and Sam Chong. "A Design of Business-Technology Alignment Consulting Framework." In Advanced Information Systems Engineering, edited by Haralambos Mouratidis and Colette Rolland, pp. 422-35. Lecture Notes in Computer Science 6741. Springer Berlin Heidelberg, 2011.
- Lloyd, David. "Biological Time Is Fractal: Early Events Reverberate over a Life Time." Journal of Biosciences 33, no. 1 (March 1, 2008): 9-19.
- LoBello, Lucia, and Emanuele Toscano. "An adaptive approach to topology management in large and dense real-time wireless sensor networks." *IEEE Transactions on Industrial Informatics* 5, no. 3 (2009): 314-24.
- Logan, Lynne Romeiser. "Rehabilitation techniques to maximize spasticity management." *Topics in stroke rehabilitation* 18, no. 3 (2011): 203-11.
- Lohn, Andrew J., Patrick R. Mickel, James B. Aimone, Erik P. Debenedictis, and Matthew J. Marinella. "Memristors as Synapses in Artificial Neural Networks: Biomimicry Beyond Weight Change." In *Cybersecurity Systems for Human Cognition Augmentation*, edited by Robinson E. Pino, Alexander Kott, and Michael Shevenell, pp. 135-50. Springer International Publishing, 2014.
- Longuet-Higgins, H.C. "Holographic Model of Temporal Recall." *Nature* 217, no. 5123 (1968): 104.
- Lorence, Daniel, Anusha Sivaramakrishnan, and Michael Richards. "Transaction-Neutral Implanted Data Collection Interface as EMR Driver: A Model for Emerging Distributed Medical Technologies." *Journal of Medical Systems* 34, no. 4 (March 20, 2009): 609-17.
- Luber, B., C. Fisher, P.S. Appelbaum, M. Ploesser, and S.H. Lisanby. "Non-invasive brain stimulation in the detection of deception: Scientific challenges and ethical consequences." *Behavioral Sciences and the Law* 27, no. 2 (2009): 191-208.
- Lune, Howard. Understanding Organizations, Cambridge: Polity Press, 2010.
- Lyon, David. "Beyond Cyberspace: Digital Dreams and Social Bodies." In *Education and Society*, third edition, edited by Joseph Zajda, pp. 221-38. Albert Park: James Nicholas Publishers, 2001.

References • 289

- Ma, Jianhua, Kim-Kwang Raymond Choo, Hui-huang Hsu, Qun Jin, William Liu, Kevin Wang, Yufeng Wang, and Xiaokang Zhou. "Perspectives on Cyber Science and Technology for Cyberization and Cyber-Enabled Worlds." In 2016 IEEE 14th International Conference on Dependable, Autonomic and Secure Computing, 14th International Conference on Pervasive Intelligence and Computing, 2nd International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), pp. 1–9. IEEE, 2016.
- Ma, Wei Ji, Masud Husain, and Paul M. Bays. "Changing concepts of working memory." *Nature neuroscience* 17, no. 3 (2014): 347-56.
- MacLennan, Elzavita, and Jean-Paul Van Belle. "Factors Affecting the Organizational Adoption of Service-Oriented Architecture (SOA)." *Information Systems and E-Business Management* 12, no. 1 (January 5, 2013): 71-100.
- MacVittie, Kevin, Jan Halámek, Lenka Halámková, Mark Southcott, William D. Jemison, Robert Lobel, and Evgeny Katz. "From 'cyborg' lobsters to a pacemaker powered by implantable biofuel cells." *Energy & Environmental Science* 6, no. 1 (2013): 81-86.
- Magnetic Stimulation in Clinical Neurophysiology. Second edition. Edited by Mark Hallett and Sudhansu Chokroverty. Philadelphia: Elsevier Butterworth Heinemann, 2005.
- Magoulas, Thanos, Aida Hadzic, Ted Saarikko, and Kalevi Pessi. "Alignment in Enterprise Architecture: A Comparative Analysis of Four Architectural Approaches." *Electronic Journal Information Systems Evaluation* 15, no. 1 (2012).
- Maguire, Gerald Q., and Ellen M. McGee. "Implantable brain chips? Time for debate." *Hastings Center Report* 29, no. 1 (1999): 7-13.
- Maitra, Amit K. "Offensive cyber-weapons: technical, legal, and strategic aspects." *Environment Systems and Decisions* 35, no. 1 (2015): 169-82.
- Mak, Stephen. "Ethical Values for E-Society: Information, Security and Privacy." In *Ethics and Policy of Biometrics*, edited by Ajay Kumar and David Zhang, 96-101. Lecture Notes in Computer Science 6005. Springer Berlin Heidelberg, 2010.
- Mangun, George R. *The Neuroscience of Attention: Attentional Control and Selection*. Oxford University Press, 2012.
- Martin, Richard, and Edward Robertson. "A Comparison of Frameworks for Enterprise Architecture Modeling." In *Conceptual Modeling - ER 2003*, edited by Il-Yeol Song, Stephen W. Liddle, Tok-Wang Ling, and Peter Scheuermann. Lecture Notes in Computer Science 2813. Springer Berlin Heidelberg, 2003.
- Mascarenhas, S., R. Prada, A. Paiva, and G.J. Hofstede. "Social Importance Dynamics: A Model for Culturally-Adaptive Agents." In *Intelligent Virtual Agents*, pp. 325-38. Lecture Notes in Computer Science no. 8108. Springer Berlin Heidelberg, 2013.
- McCullagh, P., G. Lightbody, J. Zygierewicz, and W.G. Kernohan, "Ethical Challenges Associated with the Development and Deployment of Brain Computer Interface Technology." *Neuroethics* 7, no. 2 (July 28, 2013): 109-22.
- McCulloh, Ian A., Helen L. Armstrong, and Anthony N. Johnson. *Social Network Analysis with Applications.* Hoboken, NJ: John Wiley & Sons, Inc., 2013.
- McGaugh, James L., and Benno Roozendaal. "Role of adrenal stress hormones in forming lasting memories in the brain." *Current opinion in neurobiology* 12, no. 2 (2002): 205-10.
- McGee, E.M. "Bioelectronics and Implanted Devices." In *Medical Enhancement and Posthumanity*, edited by Bert Gordijn and Ruth Chadwick, pp. 207-24. The International Library of Ethics, Law and Technology 2. Springer Netherlands, 2008.

- McGrath, Michael J., and Cliodhna Ní Scanaill. "Regulations and Standards: Considerations for Sensor Technologies." In *Sensor Technologies*, pp. 115-35. Apress, 2013.
- McIntosh, Daniel. "The Transhuman Security Dilemma." *Journal of Evolution and Technology* 21, no. 2 (2010): 32-48.
- Mehlman, Maxwell J. Transhumanist Dreams and Dystopian Nightmares: The Promise and Peril of Genetic Engineering. Baltimore: The Johns Hopkins University Press, 2012.
- Mercanzini, André, and Philippe Renaud. Microfabricated Cortical Neuroprostheses. Boca Raton: CRC Press, 2010.
- Merkel, R., G. Boer, J. Fegert, T. Galert, D. Hartmann, B. Nuttin, and S. Rosahl. "Central Neural Prostheses." In *Intervening in the Brain: Changing Psyche and Society*, pp. 117-60. Ethics of Science and Technology Assessment 29. Springer Berlin Heidelberg, 2007.
- Mezzanotte, Sr., Dominic M., and Josh Dehlinger. "Enterprise Architecture: A Framework Based on Human Behavior Using the Theory of Structuration." In Software Engineering Research, Management and Applications 2012, edited by Roger Lee, pp. 65-79. Studies in Computational Intelligence 430. Springer Berlin Heidelberg, 2012.
- Miah, Andy. "A Critical History of Posthumanism." In *Medical Enhancement and Posthumanity*, edited by Bert Gordijn and Ruth Chadwick, pp. 71-94. The International Library of Ethics, Law and Technology 2. Springer Netherlands, 2008.
- Miller, Kai J., and Jeffrey G. Ojemann. "A Simple, Spectral-Change Based, Electrocorticographic Brain–Computer Interface." In *Brain-Computer Interfaces*, edited by Bernhard Graimann, Gert Pfurtscheller, and Brendan Allison, pp. 241-58. The Frontiers Collection. Springer Berlin Heidelberg, 2009.
- Miller, Jr., Gerald Alva. "Conclusion: Beyond the Human: Ontogenesis, Technology, and the Posthuman in Kubrick and Clarke's 2001." In *Exploring the Limits of the Human through Science Fiction*, pp. 163-90. American Literature Readings in the 21st Century. Palgrave Macmillan US, 2012.
- Min Neo, Hui, and Romain Fonsegrives. "For these 'cyborgs,' keys are so yesterday." AFP / Yahoo! Tech, September 4, 2015. https://www.yahoo.com/tech/cyborgs-keys-yesterday-114442441.html. Accessed December 8, 2016.
- "Mind over Mouth? Study Could Lead to Communicating via Thoughts." UCI News, August 13, 2008. https://news.uci.edu/briefs/mind-over-mouth-study-could-lead-to-communicating-via-thoughts/. Accessed December 5, 2016.
- Mitcheson, Paul D. "Energy harvesting for human wearable and implantable bio-sensors." In Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, pp. 3432-36. IEEE, 2010.
- Mizraji, Eduardo, Andrés Pomi, and Juan C. Valle-Lisboa. "Dynamic Searching in the Brain." Cognitive Neurodynamics 3, no. 4 (June 3, 2009): 401-14.
- Møller, Aage R. Sensory Systems: Anatomy and Physiology. Third edition. Aage R Møller, 2014.
- Moravec, Hans. *Mind Children: The Future of Robot and Human Intelligence*. Cambridge: Harvard University Press, 1990.
- Moreno, Jonathan. "DARPA On Your Mind." Cerebrum vol. 6 issue 4 (2004): 92-100.
- Moxon, David. Memory. Oxford: Heinemann Educational Publishers, 2000.
- Mubin, Omar, Christoph Bartneck, Loe Feijs, Hanneke Hooft van Huysduynen, Jun Hu, and Jerry Muelver. "Improving speech recognition with the robot interaction language." *Disruptive Science and Technology* 1, no. 2 (2012): 79-88.

Mubin, Omar, Joshua Henderson, and Christoph Bartneck. "Talk ROILA to your Robot." In Proceedings of the 15th Conference on International conference on multimodal interaction, pp. 317-18. ACM, 2013.

Mueller, Scott. Upgrading and Repairing PCs, 20th Edition. Indianapolis: Que, 2012.

- Mulhauser, Gregory R. "On the end of a quantum mechanical romance." Psyche 2, no. 5 (1995).
- Murphy, Robin. Introduction to AI Robotics. Cambridge, MA: The MIT Press, 2000.
- Muscolino, Joseph E. Kinesiology: The Skeletal System and Muscle Function. Third edition. St. Louis: Elsevier, 2017.
- Nadler, David, and Michael Tushman. *Competing by Design: The Power of Organizational Architecture.* Oxford University Press, 1997. [Kindle edition.]
- Nakakawa, Agnes, Patrick van Bommel, and H. A. Erik Proper. "Quality Enhancement in Creating Enterprise Architecture: Relevance of Academic Models in Practice." In Advances in Enterprise Engineering II, edited by Erik Proper, Frank Harmsen, and Jan L. G. Dietz, pp. 109-33. Lecture Notes in Business Information Processing 28. Springer Berlin Heidelberg, 2009.
- The Nature of Time: Geometry, Physics and Perception, edited by Rosolino Buccheri, Metod Saniga, and William Mark Stuckey. Springer Science+Business Media Dordrecht, 2003.
- Nayar, Pramod K. An Introduction to New Media and Cybercultures. Chichester: John Wiley & Sons Ltd., 2010.
- Negoescu, R. "Conscience and Consciousness in Biomedical Engineering Science and Practice." In International Conference on Advancements of Medicine and Health Care through Technology, edited by Simona Vlad, Radu V. Ciupa, and Anca I. Nicu, pp. 209-14. IFMBE Proceedings 26. Springer Berlin Heidelberg, 2009.
- Neubauer, André, Jürgen Freudenberger, and Volker Kühn. *Coding Theory: Algorithms, Architectures and Applications*. Chichester: John Wiley & Sons Ltd., 2007.
- Neuper, Christa, and Gert Pfurtscheller. "Neurofeedback Training for BCI Control." In Brain-Computer Interfaces, edited by Bernhard Graimann, Gert Pfurtscheller, and Brendan Allison, pp. 65-78. The Frontiers Collection. Springer Berlin Heidelberg, 2009.
- *Neuroimaging and Memory*, edited by Jonathan K. Foster. Hove, East Sussex: Psychology Press Ltd., 1999.
- The Neuroscience of Sleep, edited by Robert Stickgold and Matthew P. Walker. London: Elsevier, 2009.
- Neuweiler, Gerhard. "Evolutionary aspects of bat echolocation." *Journal of Comparative Physiology A* 189, no. 4 (2003): 245-256.
- Niku, Saeed B. Introduction to Robotics: Analysis, Control, Applications. Second edition. Hoboken: John Wiley & Sons, Inc., 2011.
- NIST Special Publication 1800-1b: Securing Electronic Health Records on Mobile Devices: Approach, Architecture, and Security Characteristics. Leah Kauffman, editor-in-chief. Gaithersburg, MD: National Institute of Standards & Technology, 2015.
- NIST Special Publication 800-100: Information Security Handbook: A Guide for Managers. Edited by P. Bowen, J. Hash, and M. Wilson. Gaithersburg, MD: National Institute of Standards & Technology, 2006.
- NIST Special Publication 800-53, Revision 4: Security and Privacy Controls for Federal Information Systems and Organizations. Joint Task Force Transformation Initiative. Gaithersburg, MD: National Institute of Standards & Technology, 2013.
- Niven, Jeremy E. "Invertebrate neurobiology: Visual direction of arm movements in an octopus." *Current Biology* 21, no. 6 (2011): R217-R218.

- Noran, Ovidiu. "A Mapping of Individual Architecture Frameworks (GRAI, PERA, C4ISR, CI-MOSA, ZACHMAN, ARIS) onto GERAM." In *Handbook on Enterprise Architecture*, edited by Peter Bernus, Laszlo Nemes, and Günter Schmidt, pp. 65-210. International Handbooks on Information Systems. Springer Berlin Heidelberg, 2003.
- Nouvel, Pascal. "A Scale and a Paradigmatic Framework for Human Enhancement." In *Inquiring into Human Enhancement*, edited by Simone Bateman, Jean Gayon, Sylvie Allouche, Jérôme Goffette, and Michela Marzano, pp. 103-18. Palgrave Macmillan UK, 2015.
- Novaković, Branko, Dubravko Majetić, Josip Kasać, and Danko Brezak. "Artificial Intelligence and Biorobotics: Is an Artificial Human Being our Destiny?" In Annals of DAAAM for 2009 & Proceedings of the 20th International DAAAM Symposium "Intelligent Manufacturing & Automation: Focus on Theory, Practice and Education," edited by Branko Katalinic, pp. 121-22. Vienna: DAAAM International, 2009.
- Null, Linda, and Julia Lobur. *The Essentials of Computer Organization and Architecture*. Second edition. Sudbury, MA: Jones and Bartlett Publishers, 2006.
- Obaid, M., I. Damian, F. Kistler, B. Endrass, J. Wagner, and E. André. "Cultural Behaviors of Virtual Agents in an Augmented Reality Environment." In *Intelligent Virtual Agents*, pp. 412-18. Lecture Notes in Computer Science no. 7502. Springer Berlin Heidelberg, 2012.
- Ochsner, Beate, Markus Spöhrer, and Robert Stock. "Human, non-human, and beyond: cochlear implants in socio-technological environments." *NanoEthics* 9, no. 3 (2015): 237-50.
- Okun, Michael S. "Parkinson's Disease: Guide to Deep Brain Stimulation Therapy." Second edition. National Parkinson Foundation, 2014. http://www.parkinson.org/sites/default/files/Guide_to_DBS_Stimulation_Therapy.pdf. Accessed December 8, 2016.
- Olson, Eric T. "Personal Identity." *The Stanford Encyclopedia of Philosophy* (Fall 2015 Edition), edited by Edward N. Zalta. http://plato.stanford.edu/archives/fall2015/entries/identity-personal/. Accessed January 17, 2016.
- Osterwalder, Alexander, and Yves Pigneur. Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers. John Wiley & Sons, 2010.
- *The Oxford Handbook of Philosophy of Perception*, edited by Mohan Matthen. Oxford: Oxford University Press, 2015.
- Panno, Joseph. *Gene Therapy: Treating Disease by Repairing Genes*. New York: Facts on File, 2005.
- Panoulas, Konstantinos J., Leontios J. Hadjileontiadis, and Stavros M. Panas. "Brain-Computer Interface (BCI): Types, Processing Perspectives and Applications." In *Multimedia Services in Intelligent Environments*, edited by George A. Tsihrintzis and Lakhmi C. Jain, pp. 299-321. Smart Innovation, Systems and Technologies 3. Springer Berlin Heidelberg, 2010.
- Park, M.C., M.A. Goldman, T.W. Belknap, and G.M. Friehs. "The Future of Neural Interface Technology." In *Textbook of Stereotactic and Functional Neurosurgery*, edited by A.M. Lozano, P.L. Gildenberg, and R.R. Tasker, pp. 3185-3200. Heidelberg/Berlin: Springer, 2009.
- Parker, Donn B. "Toward a New Framework for Information Security." In *The Computer Security Handbook*, fourth edition, edited by Seymour Bosworth and M. E. Kabay. John Wiley & Sons, 2002.
- Patel, Rajeev, Robert J. Torres, and Peter Rosset. "Genetic engineering in agriculture and corporate engineering in public debate: risk, public relations, and public debate over genetically modified crops." *International journal of occupational and environmental health* 11, no. 4 (2005).
- Patil, P.G., and D.A. Turner. "The Development of Brain-Machine Interface Neuroprosthetic Devices." In *Neurotherapeutics* 5, no. 1 (January 1, 2008): 137-46.

- Patoine, Brenda. "Progress Report 2010: Deep Brain Stimulation The 2010 Progress Report on Brain Research." The Dana Foundation, January 2010. http://www.dana.org/Publications/ReportDetails.aspx?id=44348. Accessed December 8, 2016.
- Payr, S., and Trappl, R. "Agents across Cultures." In *Intelligent Virtual Agents*, pp. 320-24. Lecture Notes in Computer Science 2792. Springer Berlin Heidelberg, 2003.
- Pazzaglia, Mariella, and Marco Molinari. "The embodiment of assistive devices from wheelchair to exoskeleton." *Physics of Life Reviews* 16 (2016): 163-75.
- Pearce, David. "The Biointelligence Explosion." In *Singularity Hypotheses*, edited by A.H. Eden, J.H. Moor, J.H. Søraker, and E. Steinhart, pp. 199-238. The Frontiers Collection. Berlin/Heidelberg: Springer, 2012.
- Peigneux, Philippe. "Neuroimaging Studies of Sleep and Memory in Humans." In *Sleep, Neuronal Plasticity and Brain Function*, edited by Peter Meerlo, Ruth M. Benca, and Ted Abel, pp. 239-68. Springer Berlin Heidelberg, 2015.
- Pérez Ríos, José. "Systems Thinking, Organisational Cybernetics and the Viable System Model." In Design and Diagnosis for Sustainable Organizations, pp. 1-64. Springer Berlin Heidelberg, 2012.
- Peterson, David J. The Art of Language Invention: From Horse-Lords to Dark Elves, The Words Behind World-Building. New York: Penguin Books, 2015.
- Pino, Robinson E., and Alexander Kott. "Neuromorphic Computing for Cognitive Augmentation in Cyber Defense." In Cybersecurity Systems for Human Cognition Augmentation, edited by Robinson E. Pino, Alexander Kott, and Michael Shevenell, pp. 19-46. Springer International Publishing, 2014.
- Polcar, Jiri, and Petr Horejsi. "Knowledge Acquisition and Cyber Sickness: A Comparison of VR Devices in Virtual Tours." *MM Science Journal* (June 2015): 613-16.
- Pollatsek, Alexander. "The Role of Sound in Silent Reading." In *The Oxford Handbook of Reading*, edited by Alexander Pollatsek and Rebecca Treiman, pp. 185-201. New York: Oxford University Press, 2015.
- Postmarket Management of Cybersecurity in Medical Devices: Draft Guidance for Industry and Food and Drug Administration Staff. Silver Spring, MD: US Food and Drug Administration, 2016.
- Prestes, E., J.L. Carbonera, S. Rama Fiorini, V.A.M. Jorge, M. Abel, R. Madhavan, A. Locoro, et al. "Towards a Core Ontology for Robotics and Automation." *Robotics and Autonomous Systems* 61, no. 11 (November 2013): 1193-1204.
- Pribram, K.H. "Prolegomenon for a Holonomic Brain Theory." In Synergetics of Cognition, edited by Hermann Haken and Michael Stadler, pp. 150-84. Springer Series in Synergetics 45. Springer Berlin Heidelberg, 1990.
- Pribram, K.H., and S.D. Meade. "Conscious Awareness: Processing in the Synaptodendritic Web – The Correlation of Neuron Density with Brain Size." *New Ideas in Psychology* 17, no. 3 (December 1, 1999): 205-14.
- Primer on the Autonomic Nervous System. Third edition. Edited by David Robertson, Italo Biaggioni, Geoffrey Burnstock, Phillip A. Low, and Julian F.R. Paton. London: Academic Press, 2012.
- Principe, José C., and Dennis J. McFarland. "BMI/BCI Modeling and Signal Processing." In *Brain-Computer Interfaces*, pp. 47-64. Springer Netherlands, 2008.
- "Products and Procedures." Medtronic, 2016. http://professional.medtronic.com/pt/neuro/dbsmd/prod/index.htm. Accessed December 8, 2016.

"Prosthetics: Sponsor." Johns Hopkins Applied Physics Laboratory. http://www.jhuapl.edu/prosthetics/program/sponsor.asp. Accessed December 5, 2016.

Proudfoot, Diane. "Software Immortals: Science or Faith?" In Singularity Hypotheses, edited by Amnon H. Eden, James H. Moor, Johnny H. Søraker, and Eric Steinhart, pp. 367-92. The Frontiers Collection. Springer Berlin Heidelberg, 2012.

Putnam, Hilary. Reason, Truth and History. Cambridge: Cambridge University Press, 1981.

Radvansky, Gabriel A. Human Memory. Second edition. New York: Routledge, 2016.

Ramirez, S., X. Liu, P.-A. Lin, J. Suh, M. Pignatelli, R.L. Redondo, T.J. Ryan, and S. Tonegawa. "Creating a False Memory in the Hippocampus." *Science* 341, no. 6144 (2013): 387-91.

Rao, R.P.N., A. Stocco, M. Bryan, D. Sarma, T.M. Youngquist, J. Wu, and C.S. Prat. "A direct brain-to-brain interface in humans." *PLoS ONE* 9, no. 11 (2014).

Rao, Umesh Hodeghatta, and Umesha Nayak. The InfoSec Handbook. New York: Apress, 2014.

Regalado, Antonio. "Engineering the perfect baby." *MIT Technology Review* 118, no. 3 (2015): 27-33-

Rehm, M., André, E., and Nakano, Y. "Some Pitfalls for Developing Enculturated Conversational Agents." In Human-Computer Interaction: Ambient, Ubiquitous and Intelligent Interaction, pp. 340-48. Lecture Notes in Computer Science 5612. Springer Berlin Heidelberg, 2009.

Rehm, M., Y. Nakano, E. André, T. Nishida, N. Bee, B. Endrass, M. Wissner, A.A. Lipi, and H. Huang, "From observation to simulation: generating culture-specific behavior for interactive systems." AI & SOCIETY vol. 24, no. 3 (2009): 267-80.

Reynolds, Dwight W., Christina M. Murray, and Robin E. Germany. "Device Therapy for Remote Patient Management." In *Electrical Diseases of the Heart*, edited by Ihor Gussak, Charles Antzelevitch, Arthur A. M. Wilde, Paul A. Friedman, Michael J. Ackerman, and Win-Kuang Shen, pp. 809-25. Springer London, 2008.

Robertazzi, Thomas G. Networks and Grids: Technology and Theory. Springer-Verlag New York, 2007.

Robinett, W. "The consequences of fully understanding the brain." In Converging Technologies for Improving Human Performance: Nanotechnology, Biotechnology, Information Technology and Cognitive Science, edited by M.C. Roco and W.S. Bainbridge, pp. 166-70. National Science Foundation, 2002.

Roden, David. Posthuman Life: Philosophy at the Edge of the Human. Abingdon: Routledge, 2014.

Rodriguez, Ana Maria. Autism Spectrum Disorders. Minneapolis: Twenty-First Century Books, 2011.

Rohloff, Michael. "Framework and Reference for Architecture Design." In *AMCIS 2008 Proceedings*, 2008. http://citeseerx.ist.psu.edu/viewdoc/down-

load?doi=10.1.1.231.8261&rep=rep1&type=pdf. Accessed October 21, 2015.

Rookes, Paul, and Jane Willson. *Perception: Theory, Development and Organisation*. London: Routledge, 2000.

Roosendaal, Arnold. "Implants and Human Rights, in Particular Bodily Integrity." In Human ICT Implants: Technical, Legal and Ethical Considerations, edited by Mark N. Gasson, Eleni Kosta, and Diana M. Bowman, pp. 81-96. Information Technology and Law Series 23. T. M. C. Asser Press, 2012.

Rosenbaum, David A. Human Motor Control. Second edition. Burlington, MA: Elsevier, 2010.

References • 295

- Rotter, Pawel, Barbara Daskala, and Ramon Compañó. "Passive Human ICT Implants: Risks and Possible Solutions." In *Human ICT Implants: Technical, Legal and Ethical Considerations*, edited by Mark N. Gasson, Eleni Kosta, and Diana M. Bowman, pp. 55-62. Information Technology and Law Series 23. T. M. C. Asser Press, 2012.
- Rowlands, Mark. Can Animals Be Moral? Oxford: Oxford University Press, 2012.
- Royakkers, Lambèr, and Rinie van Est. "A literature review on new robotics: automation from love to war." *International journal of social robotics* 7, no. 5 (2015): 549-70.
- Rozhok, Andrii. Orientation and Navigation in Vertebrates. Springer-Verlag Berlin Heidelberg, 2008.
- Rugg, Michael D., Jeffrey D. Johnson, and Melina R. Uncapher. "Encoding and Retrieval in Episodic Memory: Insights from fMRI." In *The Wiley Handbook on the Cognitive Neuroscience* of *Memory*, edited by Donna Rose Addis, Morgan Barense, and Audrey Duarte, pp. 84-107. Malden, MA: John Wiley & Sons, 2015.
- Rutherford, Andrew, Gerasimos Markopoulos, Davide Bruno, and Mirjam Brady-Van den Bos. "Long-Term Memory: Encoding to Retrieval." In *Cognitive Psychology*, second edition, edited by Nick Braisby and Angus Gellatly, pp. 229-65. Oxford: Oxford University Press, 2012.
- Rutten, W. L. C., T. G. Ruardij, E. Marani, and B. H. Roelofsen. "Neural Networks on Chemically Patterned Electrode Arrays: Towards a Cultured Probe." In *Operative Neuromodulation*, edited by Damianos E. Sakas and Brian A. Simpson, pp. 547-54. Acta Neurochirurgica Supplements 97/2. Springer Vienna, 2007.
- Rynes, Sara L., Barry Gerhart, and Kathleen A. Minette. "The importance of pay in employee motivation: Discrepancies between what people say and what they do." *Human Resource Management* 43, no. 4 (2004): 381-94.
- Saha, S.K. Introduction to Robotics. New Delhi: Tata McGraw-Hill Publishing Company Limited, 2008.
- Sakas, Damianos E., I. G. Panourias, B. A. Simpson, and E. S. Krames. "An Introduction to Operative Neuromodulation and Functional Neuroprosthetics, the New Frontiers of Clinical Neuroscience and Biotechnology." In *Operative Neuromodulation*, edited by Damianos E. Sakas and Brian A. Simpson, pp. 2-10. Acta Neurochirurgica Supplements 97/1. Springer Vienna, 2007.
- Salvini, Pericle, Cecilia Laschi, and Paolo Dario. "From robotic tele-operation to tele-presence through natural interfaces." In *The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics*, 2006. BioRob 2006, pp. 408-13. IEEE, 2006.
- Sanchez, Justin C. Neuroprosthetics: Principles and Applications. Boca Raton: CRC Press, 2016.
- Sandberg, Anders. "Ethics of brain emulations." *Journal of Experimental & Theoretical Artificial Intelligence* 26, no. 3 (2014): 439-57.
- Sandor, Christian, Martin Fuchs, Alvaro Cassinelli, Hao Li, Richard Newcombe, Goshiro Yamamoto, and Steven Feiner. "Breaking the Barriers to True Augmented Reality." arXiv preprint, *arXiv:1512.05471 [cs.HC]*, December 17, 2015. http://arxiv.org/abs/1512.05471. Accessed January 25, 2016.
- Sasse, Martina Angela, Sacha Brostoff, and Dirk Weirich. "Transforming the 'weakest link' a human/computer interaction approach to usable and effective security." *BT technology journal* 19, no. 3 (2001): 122-31.
- Sayood, Khalid. Introduction to Data Compression. Waltham, MA: Morgan Kaufmann, 2012.
- Sayrafian-Pour, K., W.-B. Yang, J. Hagedorn, J. Terrill, K. Yekeh Yazdandoost, and K. Hamaguchi. "Channel Models for Medical Implant Communication." *International Journal of Wireless Information Networks* 17, no. 3-4 (December 9, 2010): 105-12.

- Schermer, Maartje. "The Mind and the Machine. On the Conceptual and Moral Implications of Brain-Machine Interaction." *NanoEthics* 3, no. 3 (December 1, 2009): 217-30.
- Schwartz, Bennett L. Memory: Foundations and Applications. Second edition. Thousand Oaks, CA: SAGE Publications, Inc., 2014.
- "Security Risk Assessment Framework for Medical Devices." Washington, DC: Medical Device Privacy Consortium, 2014.
- Self-Organizing Networks (SON): Self-Planning, Self-Optimization and Self-Healing for GSM, UMTS, and LTE, edited by Juan Ramiro and Khalid Hamied. Chichester: John Wiley & Sons Ltd., 2012.
- Sensory Evolution on the Threshold: Adaptations in Secondarily Aquatic Vertebrates, edited by J.G.M. Thewissen and Sirpa Nummela. Berkeley: University of California Press, 2008.
- Settle-Murphy, Nancy M. Leading Effective Virtual Teams: Overcoming Time and Distance to Achieve Exceptional Results. Boca Raton: CRC Press, 2012.
- Shahinpoor, Mohsen, Kwang J. Kim, and Mehran Mojarrad. Artificial Muscles: Applications of Advanced Polymeric Nanocomposites. Boca Raton: Taylor & Francis, 2007.
- Shekhar, Sandhya. Managing the Reality of Virtual Organizations. Springer India, 2016.
- Sherwood, Lauralee. *Fundamentals of Human Physiology*. Fourth edition. Belmont, CA: Brooks/Cole, 2012.
- Shoniregun, Charles A., Kudakwashe Dube, and Fredrick Mtenzi. "Introduction to E-Healthcare Information Security." In *Electronic Healthcare Information Security*, pp. 1-27. Advances in Information Security 53. Springer US, 2010.
- Siegel, Allan, and Hreday Sapru. Essential Neuroscience. Baltimore: Lippincott Williams & Wilkins, 2006.
- Siewert, Charles. "Consciousness and Intentionality." *The Stanford Encyclopedia of Philosophy* (Fall 2011 Edition), edited by Edward N. Zalta. http://plato.stanford.edu/ar-chives/fall2011/entries/consciousness-intentionality/.
- Siewiorek, Daniel, and Robert Swarz. *Reliable Computer Systems: Design and Evaluation*. Second edition. Burlington: Digital Press, 1992.
- Sloman, Aaron. "Some Requirements for Human-like Robots: Why the recent over-emphasis on embodiment has held up progress." In *Creating brain-like intelligence*, pp. 248-77. Springer Berlin Heidelberg, 2009.
- Smith, C.U.M., Biology of Sensory Systems. Second edition. Chichester: John Wiley & Sons Ltd., 2008.
- Smolensky, Paul. "The constituent structure of connectionist mental states: A reply to Fodor and Pylyshyn." The Southern Journal of Philosophy 26, no. S1 (1988): 137-61.
- Snider, Greg S. "Cortical Computing with Memristive Nanodevices." *SciDAC Review* 10 (2008): 58-65.
- Snyder, Allan W., Elaine Mulcahy, Janet L. Taylor, D. John Mitchell, Perminder Sachdev, and Simon C. Gandevia. "Savant-like skills exposed in normal people by suppressing the left fronto-temporal lobe." *Journal of integrative neuroscience* 2, no. o2 (2003): 149-58.
- Snyder, Allan. "Explaining and inducing savant skills: privileged access to lower level, less-processed information." *Philosophical Transactions of the Royal Society of London B: Biological Sciences* 364, no. 1522 (2009): 1399-1405.
- Social Robots and the Future of Social Relations, edited by Johanna Seibt, Raul Hakli, and Marco Nørskov. Amsterdam: IOS Press, 2014.

- Social Robots from a Human Perspective, edited by Jane Vincent, Sakari Taipale, Bartolomeo Sapio, Giuseppe Lugano, and Leopoldina Fortunati. Springer International Publishing, 2015.
- Social Robots: Boundaries, Potential, Challenges, edited by Marco Nørskov. Farnham: Ashgate Publishing, 2016.
- Sohl-Dickstein, Jascha, Santani Teng, Benjamin M. Gaub, Chris C. Rodgers, Crystal Li, Michael R. DeWeese, and Nicol S. Harper. "A device for human ultrasonic echolocation." *IEEE Transactions on Biomedical Engineering* 62, no. 6 (2015): 1526-34.
- Sosinsky, Barrie. Networking Bible. Indianapolis: Wiley Publishing Inc., 2009.
- Soussou, Walid V., and Theodore W. Berger. "Cognitive and Emotional Neuroprostheses." In *Brain-Computer Interfaces*, pp. 109-23. Springer Netherlands, 2008.
- "Spinal Cord Stimulation." American Association of Neurological Surgeons, October 2008. http://www.aans.org/Patient%20Information/Conditions%20and%20Treatments/Spinal%20Cord%20Stimulation.aspx. Accessed December 8, 2016.
- Spohrer, Jim. "NBICS (Nano-Bio-Info-Cogno-Socio) Convergence to Improve Human Performance: Opportunities and Challenges." In Converging Technologies for Improving Human Performance: Nanotechnology, Biotechnology, Information Technology and Cognitive Science, edited by M.C. Roco and W.S. Bainbridge, pp. 101-17. Arlington, VA: National Science Foundation, 2002.
- Srinivasan, G. R. "Modeling the cosmic-ray-induced soft-error rate in integrated circuits: an overview." *IBM Journal of Research and Development* 40, no. 1 (1996): 77-89.
- Stahl, B. C. "Responsible Computers? A Case for Ascribing Quasi-Responsibility to Computers Independent of Personhood or Agency." *Ethics and Information Technology* 8, no. 4 (2006): 205-13.
- Stallings, William. Cryptography and Network Security: Principles and Practice. Seventh edition. Harlow: Pearson Education Limited, 2017.
- Starr, Cecie, and Beverly McMillan. Human Biology. Eleventh edition. Boston: Cengage Learning, 2016.
- Stelzer, Dirk. "Enterprise Architecture Principles: Literature Review and Research Directions." In Service-Oriented Computing. ICSOC/ServiceWave 2009 Workshops, pp. 12-21. Springer, 2010.
- Stieglitz, Thomas. "Restoration of Neurological Functions by Neuroprosthetic Technologies: Future Prospects and Trends towards Micro-, Nano-, and Biohybrid Systems." In Operative Neuromodulation, edited by Damianos E. Sakas, Brian A. Simpson, and Elliot S. Krames, pp. 435-42. Acta Neurochirurgica Supplements 97/1. Springer Vienna, 2007.
- Streib, James T. *Guide to Assembly Language: A Concise Introduction*. Springer-Verlag London Limited, 2011.
- "Studies Find Disparities in Use of Deep Brain Stimulation." Parkinson's Disease Foundation, January 29, 2014. http://www.pdf.org/en/science_news/release/pr_1391019029. Accessed December 8, 2016.
- Sundberg, Hakan P. "Building the Enterprise Architecture: A Bottom-Up Evolution?" In Advances in Information Systems Development, edited by Wita Wojtkowski, W. Gregory Wojtkowski, Jože Zupancic, Gabor Magyar, and Gabor Knapp, 287. Springer US, 2007.
- "Surgeons Publish Study on Auditory Brainstem Implant Procedure." The Hearing Review, May 22, 2015. http://www.hearingreview.com/2015/05/surgeons-publish-study-auditory-brainstem-implant-procedure/. Accessed December 8, 2016.

- Synaesthesia: Theoretical, artistic and scientific foundations, edited by María José de Córdoba Serrano, Dina Riccò, and Sean A. Day. Granada: International Foundation Artecittà Publishing, 2014.
- Szoldra, P. "The government's top scientists have a plan to make military cyborgs." *Tech Insider*, January 22, 2016. http://www.techinsider.io/darpa-neural-interface-2016-1. Accessed May 6, 2016.
- Talan, J. "DARPA: On the Hunt for Neuroprosthetics to Enhance Memory." *Neurology Today* 14, no. 20 (2014): 8-10.
- Tang, Hao, Yun Fu, Jilin Tu, Mark Hasegawa-Johnson, and Thomas S. Huang. "Humanoid audio-visual avatar with emotive text-to-speech synthesis." *IEEE Transactions on multimedia* 10, no. 6 (2008): 969-81.
- *Targeted Muscle Reinnervation: A Neural Interface for Artificial Limbs*, edited by Todd A. Kuiken, Aimee E. Schultz Feuser, and Ann K. Barlow. Boca Raton: CRC Press, 2014.
- Tarín, C., L. Traver, P. Martí, and N. Cardona. "Wireless Communication Systems from the Perspective of Implantable Sensor Networks for Neural Signal Monitoring." In Wireless Technology, edited by S. Powell and J.P. Shim, pp. 177-201. Lecture Notes in Electrical Engineering 44. Springer US, 2009.
- Taylor, N. R., and J. G. Taylor. "The Neural Networks for Language in the Brain: Creating LAD." In *Computational Models for Neuroscience*, edited by Robert Hecht-Nielsen and Thomas McKenna, pp. 245-65. Springer London, 2003.
- Taylor, Annette Kujawski, "Hyperthymesia." In *Encyclopedia of Human Memory*, edited by Annette Kujawski Taylor, pp. 547-50. Santa Barbara: Greenwood, 2013.
- Taylor, Dawn M. "Functional Electrical Stimulation and Rehabilitation Applications of BCIs." In *Brain-Computer Interfaces*, pp. 81-94. Springer Netherlands, 2008.
- Taylor, Dawn M., Stephen I. Helms Tillery, and Andrew B. Schwartz. "Direct cortical control of 3D neuroprosthetic devices." *Science* 296, no. 5574 (2002): 1829-32.
- Teng, Santani, and David Whitney. "The acuity of echolocation: spatial resolution in the sighted compared to expert performance." *Journal of visual impairment & blindness* 105, no. 1 (2011): 20-32.
- Tennison, Michael N., and Jonathan D. Moreno. "Neuroscience, Ethics, and National Security: The State of the Art." *PLOS Biology*, March 20, 2012. http://dx.doi.org/10.1371/journal.pbio.1001289. Accessed December 5, 2016.
- Thanos, Solon, P. Heiduschka, and T. Stupp. "Implantable Visual Prostheses." In *Operative Neuromodulation*, edited by Damianos E. Sakas and Brian A. Simpson, pp. 465-72. Acta Neurochirurgica Supplements 97/2. Springer Vienna, 2007.
- Thornton, Stephanie. Understanding Human Development: Biological, Social and Psychological Processes from Conception to Adult Life. New York: Palgrave Macmillan, 2008.
- Thorpe, Julie, Paul C. van Oorschot, and Anil Somayaji. "Pass-thoughts: authenticating with our minds." In *Proceedings of the 2005 Workshop on New Security Paradigms*, pp. 45-56. ACM, 2005.
- TOGAF[®] Version 9.1. Berkshire: The Open Group, 2011.
- Tomas, David. "Feedback and Cybernetics: Reimaging the Body in the Age of the Cyborg." In *Cyberspace, Cyberbodies, Cyberpunk: Cultures of Technological Embodiment*, edited by Mike Featherstone and Roger Burrows, pp. 21-43. London: SAGE Publications, 1995.
- Transcranial Magnetic Stimulation in Clinical Psychiatry, edited by Mark S. George and Robert H. Belmaker. Washington, DC: American Psychiatric Publishing, Inc., 2007.

Treffert, Darold A. "Accidental Genius." Scientific American 311, no. 2 (2014): 52-57.

- Treffert, Darold A. "The savant syndrome: an extraordinary condition. A synopsis: past, present, future." *Philosophical Transactions of the Royal Society of London B: Biological Sciences* 364, no. 1522 (2009): 1351-57.
- Troyk, Philip R., and Stuart F. Cogan. "Sensory Neural Prostheses." In *Neural Engineering*, edited by Bin He, pp. 1-48. Bioelectric Engineering. Springer US, 2005.
- Turner, Patrick, John Gøtze, and Peter Bernus. "Architecting the Firm Coherency and Consistency in Managing the Enterprise." In *On the Move to Meaningful Internet Systems: OTM 2009 Workshops*, edited by Robert Meersman, Pilar Herrero, and Tharam Dillon, pp. 162-71. Lecture Notes in Computer Science 5872. Springer Berlin Heidelberg, 2009.
- Upper Motor Neurone Syndrome and Spasticity: Clinical Management and Neurophysiology, second edition, edited by Michael P. Barnes and Garth R. Johnson. Cambridge: Cambridge University Press, 2008.
- Van den Berg, Bibi. "Pieces of Me: On Identity and Information and Communications Technology Implants." In *Human ICT Implants: Technical, Legal and Ethical Considerations*, edited by Mark N. Gasson, Eleni Kosta, and Diana M. Bowman, pp. 159-73. Information Technology and Law Series 23. T. M. C. Asser Press, 2012.
- Van der Raadt, Bas and Hans van Vliet. "Assessing the Efficiency of the Enterprise Architecture Function." In Advances in Enterprise Engineering II, edited by Erik Proper, Frank Harmsen, and Jan L. G. Dietz, 63. Lecture Notes in Business Information Processing 28. Springer Berlin Heidelberg, 2009.
- Van der Torre, Leendert, Marc M. Lankhorst, Hugo ter Doest, Jan T. P. Campschroer, and Farhad Arbab. "Landscape Maps for Enterprise Architectures." In Advanced Information Systems Engineering, edited by Eric Dubois and Klaus Pohl. Lecture Notes in Computer Science 4001. Springer Berlin Heidelberg, 2006.
- Van Drongelen, Wim, Hyong C. Lee, and Kurt E. Hecox. "Seizure Prediction in Epilepsy." In *Neural Engineering*, edited by Bin He, pp. 389-419. Bioelectric Engineering. Springer US, 2005.
- Vänni, Kimmo J., and Annina K. Korpela. "Role of Social Robotics in Supporting Employees and Advancing Productivity." In Social Robotics, pp. 674-83. Springer International Publishing, 2015.
- Versace, Massimiliano, and Ben Chandler. "The Brain of a New Machine." *IEEE spectrum* 47, no. 12 (2010): 30-37.
- Vinciarelli, A., M. Pantic, D. Heylen, C. Pelachaud, I. Poggi, F. D'Errico, and M. Schröder.
 "Bridging the Gap between Social Animal and Unsocial Machine: A survey of Social Signal Processing." *IEEE Transactions on Affective Computing* 3:1 (January-March 2012): 69-87.
- Viola, M. V., and Aristides A. Patrinos. "A Neuroprosthesis for Restoring Sight." In Operative Neuromodulation, edited by Damianos E. Sakas and Brian A. Simpson, pp. 481-86. Acta Neurochirurgica Supplements 97/2. Springer Vienna, 2007.
- Virtual Organizations: Systems and Practices, edited by Luis M. Camarinha-Matos, Hamideh Afsarmanesh, and Martin Ollus. Boston: Springer Science+Business Media, 2005.
- Wallach, Wendell, and Colin Allen. *Moral machines: Teaching robots right from wrong*. Oxford University Press, 2008.
- Warwick, K. "The Cyborg Revolution." Nanoethics 8 (2014): 263-73.
- Warwick, K., and M. Gasson. "Implantable Computing." In *Digital Human Modeling*, edited by Y. Cai, pp. 1-16. Lecture Notes in Computer Science 4650. Berlin/Heidelberg: Springer, 2008.

- Weiland, James D., Wentai Liu, and Mark S. Humayun. "Retinal Prosthesis." Annual Review of Biomedical Engineering 7, no. 1 (2005): 361-401.
- Weinberger, Sharon. "Pentagon to Merge Next-Gen Binoculars with Soldiers' Brains." Wired, May 1, 2007. https://www.wired.com/2007/05/binoculars/. Accessed December 5, 2016.
- Weiss, Simon, and Robert Winter. "Development of Measurement Items for the Institutionalization of Enterprise Architecture Management in Organizations." In *Trends in Enterprise Architecture Research and Practice-Driven Research on Enterprise Transformation*, edited by Stephan Aier, Mathias Ekstedt, Florian Matthes, Erik Proper, and Jorge L. Sanz, pp. 268-83. Lecture Notes in Business Information Processing 131. Springer Berlin Heidelberg, 2012.
- Wells, M.J. Octopus: Physiology and Behaviour of an Advanced Invertebrate. Springer Netherlands, 1978.
- Westlake, Philip R. "The possibilities of neural holographic processes within the brain." *Biological Cybernetics* 7, no. 4 (1970): 129-53.
- White, Stephen E. "Brave new world: Neurowarfare and the limits of international humanitarian law." *Cornell International Law Journal* 41 (2008): 177.
- Widge, A.S., C.T. Moritz, and Y. Matsuoka. "Direct Neural Control of Anatomically Correct Robotic Hands." In *Brain-Computer Interfaces*, edited by D.S. Tan and A. Nijholt, pp. 105-19. Human-Computer Interaction Series. London: Springer, 2010.
- Wiener, Norbert. Cybernetics: Or Control and Communication in the Animal and the Machine, second edition. Cambridge, MA: The MIT Press, 1961. [Quid Pro ebook edition for Kindle, 2015.]
- Wilkinson, Jeff, and Scott Hareland. "A cautionary tale of soft errors induced by SRAM packaging materials." IEEE Transactions on Device and Materials Reliability 5, no. 3 (2005): 428-33.
- Williams, Theodore J., and Hong Li. "PERA and GERAM Enterprise Reference Architectures in Enterprise Integration." In *Information Infrastructure Systems for Manufacturing II*, edited by John J. Mills and Fumihiko Kimura, pp. 3-30. IFIP – The International Federation for Information Processing 16. Springer US, 1999.
- Wilson, Margaret. "Six views of embodied cognition." Psychonomic bulletin & review 9, no. 4 (2002): 625-36.
- Wise, Kensall D., Amir M. Sodagar, Ying Yao, Mayurachat Ning Gulari, Gayatri E. Perlin, and Khalil Najafi. "Microelectrodes, microelectronics, and implantable neural microsystems." *Proceedings of the IEEE* 96, no. 7 (2008): 1184-1202.
- Wise, Kensall D., D. J. Anderson, J. F. Hetke, D. R. Kipke, and K. Najafi. "Wireless implantable microsystems: high-density electronic interfaces to the nervous system." *Proceedings of the IEEE* 92, no. 1 (2004): 76-97.
- Woisetschläger, David M. "Consumer Perceptions of Automated Driving Technologies: An Examination of Use Cases and Branding Strategies." In *Autonomous Driving*, pp. 687-706. Springer Berlin Heidelberg, 2016.
- Wolf-Meyer, Matthew. "Fantasies of extremes: Sports, war and the science of sleep." *BioSocieties* 4, no. 2 (2009): 257-71.
- Wooldridge, M., and N. R. Jennings. "Intelligent agents: Theory and practice." The Knowledge Engineering Review, 10(2) (1995): 115-52.
- Yampolskiy, Roman V. "The Universe of Minds." arXiv preprint, arXiv:1410.0369 [cs.AI], October 1, 2014. http://arxiv.org/abs/1410.0369. Accessed January 25, 2016.
- Yonck, Richard. "Toward a standard metric of machine intelligence." World Future Review 4, no. 2 (2012): 61-70.

- Zebda, Abdelkader, S. Cosnier, J.-P. Alcaraz, M. Holzinger, A. Le Goff, C. Gondran, F. Boucher, F. Giroud, K. Gorgy, H. Lamraoui, and P. Cinquin. "Single glucose biofuel cells implanted in rats power electronic devices." *Scientific Reports* 3, article 1516 (2013).
- Zhao, QiBin, LiQing Zhang, and Andrzej Cichocki. "EEG-Based Asynchronous BCI Control of a Car in 3D Virtual Reality Environments." *Chinese Science Bulletin* 54, no. 1 (January 11, 2009): 78-87.
- Zofi, Yael. *A Manager's Guide to Virtual Teams*. New York: American Management Association, 2012.
- Zullo, Letizia, German Sumbre, Claudio Agnisola, Tamar Flash, and Binyamin Hochner. "Nonsomatotopic organization of the higher motor centers in octopus." *Current Biology* 19, no. 19 (2009): 1632-36.