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Abstract: Surfactants, whose existence has been recognized as early as 2800 BC, have had
a long history with the development of human civilization. With the rapid development of
nanotechnology in the latter half of the 20th century, breakthroughs in nanomedicine and
food nanotechnology using nanoparticles have been remarkable, and new applications have
been developed. The technology of surfactant-coated nanoparticles, which provides new
functions to nanoparticles for use in the fields of nanomedicine and food nanotechnology,
is attracting a lot of attention in the fields of basic research and industry. This review
systematically describes these “surfactant-coated nanoparticles” through various sections in
order: 1) surfactants, 2) surfactant-coated nanoparticles, application of surfactant-coated
nanoparticles to 3) nanomedicine, and 4) food nanotechnology. Furthermore, current progress
and problems of the technology using surfactant-coated nanoparticles through recent research
reports have been discussed.

Keywords: drug delivery system, drug targeting, food science, food packaging, nonionic
surfactants, safety assessment

Introduction

Surfactants have been closely associated to humans for a long time, and these
continue to be a necessity in our lives until now. The earliest report regarding the
presence of surfactants is the record of soapy traces observed in clay cylinders at
the Babylonian archeological site in Mesopotamia in 2800 BC.'* Sumerian tablets
were excavated from the Mesopotamian archeological site in 2200 BC, and its
cuneiform script describes how to make soap from animal fat and ash."? Until the
latter half of the 19th century, soap was reported to be the only artificial surfactant.
However, in Germany after World War I, soap was found unsuitable for hard or
acidic water, and its severe shortage prompted manufacturers to develop new
surfactants to meet market demand, resulting in the development of miscellaneous
surfactants.” For example, the synthesis method of sodium dodecyl sulfate (SDS,
also named as sodium lauryl sulfate [SLS]), one of the most produced and con-
sumed surfactants until present, was first reported in Germany in 1933 (Figure 1).*
Surfactants have been widely used not only in adhesives, coatings, cosmetics,
household detergents, industrial cleaning agents, oil field chemistry, paints, pesti-
cides, plastics, textiles, but also in the fields of food and medicine.’ It was reported
in the year 2000 that 4250k tons of detergent and 1190k tons of fabric softener was
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Figure | Classification of surfactants and structures of the ionic and nonionic surfactants mentioned in this review.

being consumed each year in Western Europe.® The global
consumption of household detergents in 2016 was 73.4
million tons.” Due to its wide range of applications and
high consumption, the global surfactant market was valued
at $43,655 million in 2017 and will reach approximately
$64,408 million by 2025.* In other words, the compound’s
annual growth rate from 2018 to 2025 is expected to

be +5.4%.8

The concept of “Nanotechnology” was introduced by
Richard Feynman in 1959 and named by Norio Taniguchi
in 1974; this technology has been applied to nanoparticles,
which are progressively being used in medicine and food
industries and sometimes referred to as nanomedicine or
food nanotechnology, respectively.”'® Among them, sur-
factant-coated nanoparticles have been attracting attention

in recent years because surfactants provide additional
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functions to nanoparticles. The present review is aimed to
characterize the functions of nanoparticles provided by
surfactants. The applications of surfactants, nanoparticles,
and surfactant-coated nanoparticles in the field of nano-
medicine and food nanotechnology along with some
examples are included here. To systematically understand
the relationship between the surfactants and nanoparticles,
it is necessary to understand each of them individually.
Therefore, this review introduces surfactants, surfactant-
coated nanoparticles, and applications of surfactant-coated
nanoparticles to nanomedicine and food nanotechnology.
Through this review, we hope to visualize the current
development and associated problems of surfactant-coated
nanoparticles, bridge across disciplines, and lay the foun-
dation for the development of new technologies.

Method

To carry out the literature search, Google Scholar, J-STAGE,
MEDLINE, PubMed and Web of Science were employed. The
search was based on key words such as surfactant and absorp-
blood
Alzheimer’s disease/antimicrobial/antioxidant/antiviral/artifi-

tion/accelerated clearance/aggregation/aging/
cial intelligence/bacteria/bioconcentration/blood-brain  bar-
rier/brain uptake/brain/cancer/cationic/cell membrane/cellular
uptake/cholate/cholesterol/circulation/clinical  trials/coating/
DLVO/daily meals/digestive system/drug/drug delivery sys-
tem/EPR/emulsifiers/emulsion/environmental considerations/
environmental pollution/food nanotechnology/food packa-
ging/food quality/food sensing/food technology/gold nanopar-
ticles/health/history/hydrophilic/hydrophobic/inflammation/
inorganic/intravenous/ionic/liposomes/liquid/machine learn-
ing/medical/medicine/mucus  layer/nanoparticles/nanotech-
nology/nanotoxicology/niosomes/nonionic/opsonization/oral/
organic/Ostwald ripening/oxidative  stress/P-glycoprotein/
phospholipid/plant/poloxamer/polyethylene glycol/polymer/
polymeric nanocomposites/polyphenol/polysorbate/process/
quantum dots/reactive oxygen species/reticuloendothelial sys-
tem/SPION/safety/self-assembly/senescence/side effect/silica
nanoparticles/silver nanoparticles/smart food/stability/stealth
effect/supramolecular structures/surfactant-coated nanoparti-
cles/tissue distribution/toxicity/tween/Van der Waals forces/
vesicles/vitamin.

Surfactant

Overview of Surfactant
Surfactants, which is an abbreviation for “surface-active
agents,” are classified as amphiphilic compounds due to

the presence of both hydrophilic and hydrophobic groups
in their chemical structure.'' Depending on the character-
istic of the hydrophilic group, surfactants can be broadly
classified into four types: Cationic surfactants (positively
charged hydrophilic groups), anionic surfactants (negatively
charged hydrophilic groups), zwitterionic surfactants (hav-
ing both positively and negatively charged hydrophilic
groups), and nonionic surfactants (the hydrophilic group
has no charge) (Figure 1).'? Cationic surfactants contain
alkylamine or quaternary ammonium salts in their hydro-
philic groups and can be adsorbed on negatively charged
interfaces such as keratin (a component of skin and hair),
natural fibers, and chemical fibers. They have antistatic and
disinfectant properties, and are used as antistatic agents,
coating agents, disinfectants, and softeners (hair condi-
tioners and fabric softeners). Anionic surfactants contain
carboxylic acid salts, sulfonates, sulfate salts, sulfate esters,
or phosphates in their hydrophilic groups and offer good
detergency, foaming property, foam stability, and penetra-
tion. They are used as foaming agents, paints, protein solu-
bilizers, soaps, and present in various household and
industrial detergents. Zwitterionic surfactants contain car-
boxy betaine, imidazolium betaine, aminoethylglycine salt,
or amine oxide in their hydrophilic groups. They are often
used as auxiliary materials to enhance the effectiveness of
other surfactants or coexisting compounds. For example,
anionic surfactant (sodium bis(2-ethylhexyl) sulfosuccinate
[AOT], which self-assembles into the shape of ellipsoidal
micelles), forms vesicles in the presence of zwitterionic
surfactant (oleyl amidopropyl betaine [OAPB], which self-
assembles into the shape of worm-like micelles [Figure 17)
and salt."® Zwitterionic surfactant (3-[N,N-dimethyltetrade-
[SB3-14] [Figure 1])
enhanced the loadability of natural flavonoid dye (querce-

cylammonio]propane-1-sulfonate

tin) in wool and enhanced its antioxidant properties
(Figure 1).'* Nonionic surfactants have non-dissociable
chemical structures in their hydrophilic groups, such as
amides, alcohols, esters, ethers, or phenols. They are used
in cosmetics, as food emulsifiers, and skin cleansers due to
low irritation and toxicity, which are the most important
advantages associated with their application in nanomedi-
cine and food nanotechnology. There are many reports
available on the order of toxicity of surfactants, which
generally demonstrate that cationic surfactants > anionic
surfactants > zwitterionic surfactants > nonionic surfactants,
although toxicity may vary depending on the chemical
structure.'>'® This is owing to the fact that the hydrophilic
groups of nonionic surfactants do not ionize in aqueous
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solutions, and thus the critical micelle concentration of
nonionic surfactants tends to be much lower than that of
ionic surfactants. Therefore, they are less toxic than ionic
surfactants. The hydrophobic groups of nonionic surfactants
are composed of long-chain fatty acids and water-insoluble
derivatives and are classified as fatty alcohols, esters, ethers,
and block copolymers.’®*' Among the surfactants of one
group, toxicity generally correlates with the ability of sur-
factant molecules to migrate from water to cell membranes.-
22 Therefore, the surfactant that has a longer chain length of
the hydrophobic group and higher hydrophobicity can
easily move to the lipid bilayer composed of phospholipids.
Therefore, these are considered more toxic than highly
hydrophilic surfactants.”> Henceforth, nonionic surfactants
are most frequently used in the fields of nanomedicine and
food nanotechnology. Currently, various nonionic surfac-
tants are commercially available, so consumers can choose
suitable compounds depending on their purpose.

In a system consisting of a single phase, surfactants are
dispersed and equilibrated in the bulk. On the other hand,
surfactants initiate their interactions after modification of
various conditions such as electrolyte concentration, sur-
factant concentration, pH, pressure, temperature, and type
of solvent. This leads to supramolecular self-assembly of
bilayer membrane vesicles, cylindrical micelles, lamellar
phases, spherical micelles, etc.”” In addition, when the
system consists of multiple phases, surfactants stabilize
them due to their inherent physical characteristic of
being localized at the interface (for example, air and
water, oil and water, solid and water) due to their amphi-
pathic chemical structure. In the absence of a surfactant,
the molecules present in the respective aqueous and oil
phases exert high surface tension due to intermolecular
forces (such as hydrogen bonds), and the system is sepa-
rated into different phases. When the surfactant is loca-
lized at the interface, an intermolecular force acts between
the hydrophilic group of the surfactant and water mole-
cule, thereby decreasing interfacial tension and surface
tension leading to formation of supramolecular structures
such as dispersed phase (such as emulsion) and continuous
phase (such as bicontinuous liquid crystals) and a drastic
change in the ratio of surface area to volume. The hydro-
philic-hydrophobic balance (HLB, a parameter that indi-
cates the surfactant’s affinity for water and oil) and the
critical packing parameter (CPP, a parameter that predicts
the surfactant’s self-assembly) are used to predict the
properties of the surfactant.** 2’ The “nanoscale supramo-
lecular structures composed of surfactants” as discussed

above, have been used as templates for the synthesis of

inorganic materials®®*’

enhancement of the activity of
catalysts,>® reaction field of nanoreactors,”’ modulation
of wettability of biological interfaces,** and enhanced oil

recovery from heterogeneous rocks.>

Nonionic Surfactants in the

Pharmaceutical Industry

The advantages of nonionic surfactants such as low cost,
high stability, low toxicity, and amphiphilic nature can be
used as next-generation materials and an alternative to
applications of phospholipid-based nanostructures (hybrid
lipid particles, nanocontainers, nanopores, and
transistors).>* Due to these advantages, the field of nano-
medicine is investigating the use of niosomes (vesicles
composed of nonionic surfactants) instead of liposomes,
which are composed of phospholipids and are widely used
as carriers for drug and gene delivery.®>® Bartelds et al
prepared fluorophore (calcein)-encapsulating niosomes
consisting of nonionic surfactants (polysorbate 80 [poly-
oxyethylene (20) sorbitan monooleate, also named as

1],

cholesterol).>® And compared their leakage to that of lipo-

tween 80 [Figure sorbitan monostearate, and
somes (consisting of phospholipids and cholesterol) after
25 h of incubation. The results showed that 10% of calcein
leaked from the liposomes, whereas less than 3% of cal-
cein leaked from the niosomes. This indicates that nio-
somes could retain the encapsulated material for a longer
period. Puras et al prepared cationic niosomes consisting
of cationic lipids and nonionic surfactants (polysorbate
80).%” They reported lower toxicity during transfection of
cells with niosomes than with Lipofectamine®, which is
commonly used in gene transfer techniques. In addition,
nonionic surfactants are widely used in protein drug deliv-
ery because they can stabilize proteins against interfacial
tension and minimize the adsorption and aggregation of
proteins at the interface.*®>° Li et al demonstrated that the
presence of nonionic surfactants (polysorbate 80 and
poloxamer 188 [poly(ethylene glycol)-block-poly(propy-
lene glycol)-block-poly(ethylene glycol), also named as
pluronic F68] [Figure 1]) inhibited the irreversible adsorp-
tion of abatacept on silicone oil used as a lubricant for
medical syringes with polysorbate 80 being more
effective.*” Furthermore, poloxamers are used in more
than 70% of commercially available monoclonal antibody
drug delivery due to their ability to inhibit self-assembly

and aggregation of antibodies.*' * Moreover, the use of
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nonionic surfactants as pharmaceutical products is also
being considered. For example, nonoxynol-9 has been
found to have the potential for human immunodeficiency
virus type 1 (HIV-1) infection and as topical disinfectant,
but its efficacy has not been confirmed in -clinical

practice.***

Nonionic Surfactants in the Food Industry
Approximately 75% of the total emulsifiers in the global
food industry are mono- and di-glycerides, widely recog-
nized as nonionic surfactants, either emulsifiers are indust-
rially produced.*® Mono- and di-glycerides have been
widely used as antimicrobial agents, antidegradants, emul-
sifiers, preservatives, and thickeners in food products such
as beverages, ice cream, margarine, and shortening. Mono-
and di-glycerides are also reported to be present in trace
amounts in natural food resources, such as paprika seed
oil, pumpkin seed kernel oil, and watermelon seed kernel
oil, which contain approximately 1% (proportion of total
lipid) monoglycerides, and 0.3% (proportion of total lipid)
diglycerides (Figure 1).*”** The use of nonionic surfac-
tants as food emulsifiers that enhance the absorption of fat-
soluble food ingredients when taken orally is widely
recognized.* It is generally believed that emulsions have
higher digestibility than other forms because they have
more surface area to react with digestive enzymes, such
as lipase. Salvia-Trujillo et al prepared emulsions with
different particle sizes (small: 0.12 um, medium: 0.19
pm, and large: 14 pum) containing lipophilic food compo-
nent (B-carotene), and demonstrated the effect of particle
size on its absorption using a gastrointestinal tract model.>*
The results showed that the rate of digestion of lipids
present in emulsions increased with decreasing particle
size (small = medium > large) along with increased
absorption of B-carotene (small > medium > large). To
understand the mechanism of enhanced absorption, Lu
et al prepared B-carotene encapsulated emulsions contain-
ing sunflower oil with monoglycerides in the range of
0-2% and demonstrated that the uptake of P-carotene
into human colorectal adenocarcinoma (Caco-2) cells
increased as the percentage of monoglycerides increased.”’
They reported the mechanism of reduction in the surface
charge of the emulsion in gastric fluid environment due to
the presence of monoglycerides, which leads to an
increase in the amount of lipase adsorbed onto the surface
of the emulsion and reduction of creaming (a phenomenon
in which thermodynamically unstable emulsions undergo
phase separation over time). The antimicrobial effect of

food ingredients is also known to be enhanced by coex-
istence with monoglycerides. Lee et al. found that the
antimicrobial effect of linolenic acid on Bacillus cereus
and Staphylococcus aureus was enhanced by coexistence
with monoglycerides.>* They reported that the mechanism
was that monoglycerides localized on the cell membrane
of the bacteria enhanced the adhesion of linolenic acid to
the cell membrane. Moreover, monoglycerides have been
confirmed in synthesis-based scientific approaches to
enhance the biological activity of food components. For
example, omega-3 fatty acids are known to have useful
physiological effects such as anti-inflammatory, antioxi-
dant, anticancer, and anti-obesity and are available in the
market as oral supplements, although they are known to be
chemically unstable, difficult to dissolve in water, and
have low absorption. To solve these problems and to
enhance the physiological effects, eicosapentaenoic acid-
monoglyceride, docosahexaenoic acid-monoglyceride, and
docosapentaenoic acid-monoglyceride (in which eicosa-
pentaenoic acid, docosahexaenoic acid, docosapentaenoic
acid were esterified and bound to the sn-1 position of the
glycerol moiety in the monoglyceride structure) have been
studied.* In addition to these applications, nonionic
surfactants are used in a variety of applications in the

food industry and are detailed in other reviews.’”>>°

Surfactant-Coated Nanoparticles

Nanoparticles have been used in the fields of nanomedi-
cine and food nanotechnology to impart a variety of func-
tions to encapsulated compounds. However, depending on
the surface structure, the prepared nanoparticles are diffi-
cult to disperse in water and be aggregated in a short time.
An approach to solve this problem is to allow coexistence
of the prepared nanoparticles and the surfactant so that the
surface of the nanoparticles is covered with the surfactant,
and the nanoparticles are stabilized in the system. These
nanoparticles are called “Surfactant-coated nanoparticles”
(Figure 2A).>7% 1t is important to understand the interac-
tion between the nanoparticles and the surfactant in sur-

factant-coated = nanoparticles  for  their  efficient
performance.
The nanoparticles exert forces on each other.

Orientation interactions (Keesom interactions), dipole
interactions (Debye interactions), and dispersion interac-
tions (London interactions) are collectively called “van der
Waals forces” and are responsible for intermolecular
interactions.’® Van der Waals forces acting between parti-
cles are considered to be caused by the attractive forces
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Figure 2 (A) Typical lllustration of surfactant-coated nanoparticles. (B) Various
organic and inorganic materials used in the core of surfactant-coated nanoparticles.

between the molecules present in each particle and are
expressed by the equation (Figure 3A (1)),°° where Ay is
the Hamaker constant that varies depending on the type of

molecules present in the particles, for example, the value

of Hamaker constant is 6.5x1072° J for poly (lactic-co-
glycolic acid) (PLGA), and in the range of 0.9-3.0x10"? J
for gold.®"%% As the size, shape, and temperature of metal-
lic particles change, the value of the Hamaker constant
also changes due to the change in the dielectric constant.®>
The above equation is approximated to the equation
(Figure 3A (2)) by the Derjaguin approximation by assum-
ing that the distance between the two particles is narrower
than the radius (Figure 3B).% It can be inferred from these
equations that the van der Waals force between particles
becomes weaker as the distance between the particles
increases and becomes stronger as the size of the particles
increases.

The surface charge between particles is also important
as it determines the electrostatic repulsive force. Particles
that are positively or negatively charged in solution form
an ionic atmosphere due to the attraction of counter ions to
the surface of these particles, resulting in the formation of
an electric double layer. When particles come close to each
other, the overlap of the electric double layer leads to a
change in the ion concentration and the repulsive force is

A B
Ay AyR
V= — 1 Vy=——— 2
0=~z (1) 4 12h @)
64nRnkTy® _ .~ GkRKT _ .
R="z € =5 € (3)
VeV, tV, _ AkR GkT en 1 4 h
THTRT T4 ¢ Tk “)
2z%e’n Zelbo)
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G = Ty n_ 2SRV 7) « S VR i)
K3 (ze)’k
V, : Van der Waals force & : Relative permittivity of the 0
Vr : Repulsive electrostatic electrolyte solution
interaction energy & : Permittivity of a vacuum

I/ : Potential energy k :Boltzmann’s constant
h :Distance between particles T :Absolute temperature
R :Radius of particle z

e :Elementary electric charge

: Hamaker constant Py Surface potential

k :Debye—Hiickel parameter z :Bulk concentration

(number density)

: Symmetrical electrolyte
solution of valence

energy (V)

Potential

Attraction

Distance between
particles (h)

Figure 3 (A) Equations of the DLVO theory. (B) Relationship between two particles assuming the DLVO theory. (C) A typical example of potential energy presented in the

DLVO theory.
Notes: (A) Data from Hamley®® and Ohshima.®®
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generated. This phenomenon is called “electrostatic repul-
sive force.”®>% Models of the strength of this electrostatic
repulsive force include Helmholtz, Gouy-Chapman, Stern,
and BDM (Bockris/Devanathan/Muller), each of which
has been formulated.®* One of the most widely used equa-
tions for the electrostatic repulsive force is for colloidal
systems with dispersed nanoparticles (Figure 3A (3)).%
The theory that considers both the “attractive force” of
the van der Waals interaction and the “repulsive force” of
the electrostatic repulsion is called the Derjaguin-Landau-
Verwey-Overbeek (DLVO) theory.®**¢” DLVO theory is
named after the scientists who contributed to its develop-
ment and can explain the coagulation/dispersion state of
particles. In DLVO theory, the stability of a colloid is
defined as the total sum of van der Waals force and
electrostatic repulsion force between particles, and the
total potential energy and is expressed as shown in
Figure 3A (4-7).626:68

A typical example of the DLVO theory is shown in
Figure 3C.°*%%> At high potential energy, the particles are
stable because they repel each other (Figure 3C (i)). As
shown in Figure 3C (ii), if there is a deep secondary
minimum, the particles are in a stable equilibrium state.
As shown in Figure 3C (iii), when the secondary minimum
is shallowly declined the particles gradually aggregate. As
shown in Figure 3C (iv) and (v), if the attractive van der
Waals force is stronger than the electrostatic repulsive
force, the particles will aggregate in a short time. To
elucidate the influence of surfactant adsorption on the
aggregation behavior of nanoparticles, Farrokhbin et al
dispersed three types (amidine latex, silica, and sulfate
latex) of nanoparticles in non-polar solvent (decane) and
added an anionic surfactant (SDS) and assessed the para-
meters for aggregation based on the DLVO theory (shield-
ing distance, surface charge, and van der Waals force).®”
As a result, they reported an increase in inhibition of
aggregation and stabilization of dispersion in a concentra-
tion-dependent manner until the concentration of anionic
surfactant in the system reached a certain concentration.
Espinosa et al also reported that the dispersion of poly
(methyl methacrylate) nanoparticles was stabilized in non-
polar solvents (hexane) when a nonionic surfactant (sorbi-
tan trioleate, also named as Span 85) was present in the
system.”® Although, the DLVO theory is adaptable to
particles of hard materials, however, there are limitation
in its applicability to soft materials such as cells and
lipoproteins, causing different dispersion phenomena in
vivo.”""? Therefore, additional theory will need to be

developed. If there is a difference in the size of the parti-
cles in the system, the smaller particles are incorporated
into the larger particles over time due to the difference in
their surface energies, with the larger particles becoming
larger and the smaller particles disappearing from the
system. This phenomenon is known as “Ostwald ripening”
and is widely recognized as a principle that applies to all
organic and inorganic particles.’”> As mentioned at the
beginning of this section, particle agglomeration is a con-
cern in particle dispersion systems. However, it has been
reported that the presence of a surfactant in the system
induces it to get adsorbed to the surface of the particles
and lowers the speed of ripening by several orders of
magnitude.”* Kiss et al demonstrated the mechanism of
adsorption of nonionic surfactants (pluronic PE6100,
PE6400 and PE6800) on hydrophobic interfaces (blend
film composed of polylactic acid [PLA] and PLGA).”
They reported that highly hydrophilic surfactants could
not adsorb to the hydrophobic interface, while surfactants
with both high and low hydrophilic moieties could adsorb
and distribute effectively to the hydrophobic interface. The
presence of surfactants at the solid interface increased
steric stabilization. When the nanoparticles come close to
each other, the hydrophobic groups of the surfactant on the
surface of the nanoparticles limit the mutual penetration,
resulting in steric hindrance and stabilization. Steric stabi-
lization is different from electrostatic repulsive forces,
such as being unaffected by the electrolyte concentration
of the solvent and adaptable over a wide range of nano-
particle concentrations.”® Santander-Ortega et al studied in
detail the adsorption and stabilization mechanism of non-
ionic surfactants on PLGA nanoparticles and confirmed
that a nonionic surfactant (poloxamer 188) adsorbed to
the interface of PLGA nanoparticles when both of them
coexisted.”” Moreover, they demonstrated that as the
adsorption of nonionic surfactant (poloxamer 188) on the
surface of PLGA nanoparticles increased, the steric stabi-
lity of nanoparticles was greatly increased by the poly-
ethylene oxide framework in nonionic surfactant, and the
parameters of the DLVO theory indicated the formation of
a stable dispersion. Furthermore, surprisingly, they found
that the stabilization mechanism is not only explained by
the DLVO theory and steric stabilization, but also depen-
dent on the repulsive hydration forces to the hydrophilic
interface constructed by nonionic surfactant (poloxamer
188) on the surface of nanoparticles. Since the stabiliza-
tion by the repulsive hydration force is unaffected by the
external salt concentration, the system is also expected to
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be stable in vivo and is attracting attention. Chaudhari et al
and other researchers reported that an anionic surfactant
(SDS) and a nonionic surfactant (poloxamers) had little
effect on the release rate of the encapsulated drug from the
solid dispersions.”*®! Conclusively, surfactants play an
important role in the stabilization of nanoparticles and
there are many applications of surfactant-coated nanopar-
ticles as explained in the next section.

Application of Surfactant-Coated
Nanoparticles in Nanomedicine

Nanomedicine

Nanotechnology is defined as the deliberate design, char-
acterization, production, and application of materials,
structures, devices, and systems by controlling their size
and shape within the nanoscale range.*

Nanomedicine is regarded as “the use of nanoscale mate-
rial properties and physical characteristics for the diagno-
sis and treatment of diseases at the molecular level”.®
According to a report of 2013, 789 clinical trials were in
progress at 241 companies and research institutions, and
363 nanomedicine products and applications were
identified.®> In the field of nanomedicine, surfactants are
often used to impart new functions to nanoparticles.
Recent progress in this field is summarized in Table 1. In
the following sections, nanomedicine based on surfactant-
coated organic and inorganic nanoparticles will be pre-
sented and the properties each nanostructure will be dis-
cussed separately. However, in practice, most approaches
combine multiple materials and properties rather than only
one. Therefore, in the field of nanomedicine, it is neces-
sary to have integrated knowledge and approaches that are
not limited to the respective organic and inorganic fields of
expertise.

Surfactant-Coated Organic Nanoparticles

in Nanomedicine

During disease treatment, the administered molecule
(drug) can exhibit a therapeutic effect only when it reaches
the target site of action, such as an area of inflammation or
a cancer tissue. However, when a free drug is administered
into the bloodstream, its therapeutic efficacy is severely
limited due to various problems including premature
degradation, expulsion of the drug due to the reticuloen-
dothelial system (RES, also called the mononuclear pha-
gocyte system [MPS]), degradation due to instability of
the drug, poor dispersibility, and poor accumulation at the

site of action. The resulting non-selective tissue distribu-
tion of drugs is a major factor responsible for drug toxicity
(for example, dose-limiting toxicity [DLT]).** Organic
nanoparticles, which are widely used in the field of nano-
medicine, have potential to overcome the above problems
because they can impart a variety of advantages to the
encapsulated substances.® For example, organic nanopar-
ticles encapsulating anticancer drugs, genes, and proteins
can be delivered selectively to the target site of action or
specific cells while protecting the encapsulation from
degradation and RES; such a technology increases thera-
peutic efficacy and reduces side effects and is called a
“drug delivery system”.%*® The constituents of the
organic nanoparticles used in the drug delivery system
are selected to be non-toxic or low-toxic to living organ-
isms, and typical examples include biodegradable poly-
mers (chitosan, gelatin, hyaluronic acid, PLGA, poly
[alkyl cyanoacrylate], and poly-e-caprolactone), solid
lipids (cetyl palmitate, cholesterol, palmitic acid, stearic
acid, and tristearin), and proteins (albumin, collagen, glia-
din, legumin, protamine and silk) (Figure 2B).*°' A
number of methods for preparing organic nanoparticles
have been reported, and the related mechanism has been
reviewed in detail by Anton et al.”* For example, the
emulsification solvent evaporation technique (polymer-
and lipophilic drug-containing organic solvent is dispersed
in surfactant-containing water to form an oil in water [O/
W] emulsion as a template of nanoparticles, and then
evaporated to precipitate polymeric nanoparticles contain-
ing the drug dispersed into the system) is widely used to
prepare nanoparticles composed of biodegradable poly-
mers, and the microemulsion method (oil phase containing
low melting temperature lipid and lipophilic drug is dis-
persed in surfactant-containing water to form O/W micro-
emulsion as a template of nanoparticles, which is then
rapidly cooled to precipitate drug-containing solid lipid
nanoparticles) is widely used to prepare nanoparticles
composed of solid lipids.”®** The preparation of PLGA
nanoparticles by solvent evaporation technique is widely
used, and the most commonly used surfactant in the pre-
paration process is polyvinyl alcohol (PVA).”* Pisami et al
used three different surfactants (PVA, sodium cholate [SC]
[Figure 1], sodium taurocholate [TC], [Figure 1]) in the
preparation of PLGA nano/micro particles encapsulating
lipophilic substances (perfluorooctyl bromide [PBOB]) by
solvent evaporation technique (dichloromethane was used
as the organic phase) and compared their detail of preci-
pitation process by confocal

optical microscopy,
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Abbreviations: BJ5ta cells, hTERT-immortalized foreskin fibroblast cells; Cé cells, rat glioma cells; CRL-2522 cells, human fibroblast cell lines; Caco-2 cells, human colorectal adenocarcinoma cells; Colo-205 cells, human colon

adenocarcinoma cells; DDAB, dodecyltrimethylammonium bromide; EVA, poly(ethylene-co-vinyl acetate); H-Ras 5RP7 cells, H-ras transformed carcinogenic rat embryo fibroblast cell lines; HEK293 cells, human embryonic kidney cells

293; Hela cells, human cervical carcinoma cells; KB cells, human epidermoid carcinoma cells; L929 cells, mouse fibroblast-like cells; MCF-7 TAX30 cells, MCF-7 docetaxel-resistant sublines; MCF-7 cells, human breast cancer cells; MDA-

MB-231 cells, human breast cancer cells; MDCK cells, Madin-Darby canine kidney cells; NIH/3T3 cells, mouse fibroblast-like cells; NPs, nanoparticles; PCL, poly(e-caprolactone); PEG, polyethylene glycol; PLA, poly lactic acid; PLGA, poly

(lactic-co-glycolic acid); PMMA, Poly(methyl Methacrylate); SK-MES-1 cells, human Lung squamous cell carcinoma cells; SKBR3, human breast adenocarcinoma cells; poloxamer, copolymer of polyoxyethylene and polyoxypropylene;

poloxamine, polyalkoxylated symmetrical block polymers of ethylene diamine; polysorbate, polyoxyethylene sorbitan monooleate.

microscopy and transmission electron microscopy
(TEM).** The results showed that in the TC group, the
precipitated particles showed acorn shaped (PBOB and
PLGA individuals precipitated independently) morphol-
ogy, while in the PVA group, both acorn and core-shell
shaped morphologies were precipitated. As the reason for
the difference in particle deposition morphology, they
found that PVA forms a stable phase at the dichloro-
methane-water interface but has properties that prevent
PLGA molecules from adsorbing to the interface, while
TC does not allow other chemical species to adsorb at the
interface. On the other hand, in the SC group, a mixed
interface of PLGA molecules and surfactant was formed
during particle formation, and particles with a core-shell
shaped morphology were stably deposited in the system.
Therefore, they concluded that when preparing particles by
solvent evaporation technique, core-shell morphology was
obtained if PLGA molecules could be adsorbed on the
mixed interface, otherwise acorn shaped morphology was
obtained. The coexistence of different surfactants may be
useful in the formation of particles. Ramirez et al reported
that when PLGA nanoparticles were prepared by the sol-
vent evaporation technique, the presence of not only PVA
but also other surfactant (SDS) leads to steric stabilization
in the systems, resulting in the precipitation of PLGA
nanoparticles with a smaller particle size than those pre-
pared by PVA alone.”” Such findings suggest that surfac-
tants play a critical role in the preparation of nanoparticles.
The prepared nanoparticles were administered in vivo after
their stability, interactions with proteins and cells have
been thoroughly investigated in vitro.”®

Surface Charge and Protein Adsorption

The charge on the surface of the nanoparticles has an impor-
tant influence on their intracellular localization. Compared to
anionic and nonionic charged nanoparticles, cationic charged
nanoparticles exhibit higher cellular uptake due to their
enhanced adhesion to the surface of negatively charged
cells by electrostatic attraction.”” *° It has also been reported
that cationic charged nanoparticles incorporated into cells
have the ability of endosomal escape. Lipid nanoparticles
composed of ionized amine lipids with a pKa of 67 and
tertiary amines have an electrically neutral surface charge in
the blood (pH 7.4) but become cationic in the endosomal
environment (pH < 6.5) after they are taken up into the cell.
As a result, cationic charged nanoparticles fuse with the
negatively charged endosomal membrane and release encap-
sulated drugs into the cytoplasm.'®*'%? By this mechanism,
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cationic surfactants such as cetyltrimethylammonium bro-
mide (CTAB) and didodecyldimethylammonium bromide
(DDAB) are used to provide a positive charge to the surface
of nanoparticles (Figure 1). Fay et al prepared cationic
charged surfactant-coated nanoparticles (PLGA nanoparti-
cles encapsulating plasmid DNA covered with cationic sur-
factant [DDAB]) and assessed their transfection efficiency
into murine macrophage (RAW 264.7) cells, and observed an
increase in cellular uptake and endosomal escape; transfec-
tion was achieved with a one thousandth amount of plasmid
DNA compared to that of commonly used transfection
reagent Lipofectamine™.'® In addition, cationic charged
nanoparticles showed a stronger immune response than anio-
nic charged and nonionic nanoparticles, which have attracted
attention in recent years for the development of vaccines and
application in the field of immunotheraphy.'**'% Kedmi et al
prepared cationic charged surfactant-coated nanoparticles
(small interfering RNA [siRNA] encapsulated in solid lipid
nanoparticles coated with a cationic surfactant [1, 2-dioleoyl-
3-trimethylammonium-propane (DOTAP)]) and observed
the activation of the innate immune system in C57BL/6
mice.'% The results showed a 10- to 75- fold higher induc-
tion of type 1 helper (Thl) cytokine expression than the
control particles (weakly anionic charged). However, catio-
nic charged nanoparticles are more likely to disrupt cell
membrane integrity and cause damage to mitochondria and
lysosomes than anionic charged and nonionic nanoparticles,
which raises concerns about their side effects.'”’ It has also
been reported that the surface of cationic nanoparticles is
prone to non-specific adsorption of albumin and alpha-1B-
glycoprotein.'*®'% Furthermore, as mentioned in section
“Overview of Surfactant” of this review, the cationic surfac-
tant itself has potential toxicity; approaches to avoid this
toxicity have been reported, for example, Gossmann et al
observed reduced side effects when the surface of PLGA
nanoparticles coexisted with nonionic polymers (polyethy-
lene glycol [PEG]) and cationic surfactant (DDAB) in vitro.-
"9 The RES is actively involved in the phagocytosis of
macrophages in the spleen, bone marrow, and liver.''" '
Nanoparticles administered into the bloodstream bind to
proteins and antigens called opsonin, forming a corona (a
complex of nanoparticles, proteins, and antigens), which is
taken up by macrophages. This phenomenon is called “opso-
nization”, and the process involves apolipoprotein, albumin,
fibrinogen, immunoglobulins, and complement
components.''* The opsonized nanoparticles interact with
receptors on the surface of macrophages and are transported
to phagosomes and fused with lysosomes for degradation or

elimination from the body.''! It has been reported that PLGA
nanoparticles, which are not coated with any surfactant, are
opsonized by non-specific adsorption of plasma proteins on
their surface, which leads to their degradation in the body
(Figure 4A).""> Moreover, targeting ligands present on the
surface of the nanoparticles are masked by opsonization,
which reduces their targeting ability. Salvati et al prepared
silica nanoparticles modified with transferrin on its surface as
a targeting ligand for receptor (transferrin receptor) on cancer
cells and reported that the opsonized form of these nanopar-

ticles lost their targeting ability.''

Hence, it is critical to
avoid opsonization for effective targeting ability of nanopar-
ticles in vivo and to reach the target site of action.
Furthermore, it has been discovered that the nanoparticles
coated with nonionic surfactants, such as poloxamers, avoid
opsonization and predation by macrophages (this phenom-
enon is also called as “stealth effect”) (Figure 4B). Currently,
PEG modification of nanoparticles is the most widely used
method to impart stealth effect to nanoparticles, but the
continuous administration of PEG-modified nanoparticles
has raised concerns about the accelerated blood clearance
(ABC) phenomenon (an immune response-induced mechan-
ism to remove PEG-modified nanoparticles from the body).-
77119 gy et al synthesized PEGylated surfactant by
conjugation of surfactant (cholesteryl methyl amide) to
PEG.'?° They have reported that nanoemulsions composed
of PEGylated surfactant showed weak ABC phenomenon in
male Wistar rats. In the future, the properties of surfactants
will be pursued more deeply, and surfactants that can modify
the function of PEG and weaken the ABC phenomenon will
be found. Jain et al prepared iron-encapsulated PLGA nano-
particles by optimizing the surface modification with a non-
ionic surfactant (poloxamer 188) using adsorption isotherm
models (Langmuir, BET, Freundlich, Henderson, and Halsey
models)."*' The uptake of these surfactant-coated nanoparti-
cles into murine macrophage (RAW 264.7) cells was com-
pared with that of bare nanoparticles. The results revealed no
cellular uptake of surfactant-coated nanoparticles after one
hour of incubation. Liao et al prepared surfactant-coated
nanoparticles composed of retinoic hydroxamic acid coated
with nonionic surfactants (poloxamer 184 and 188) and
observed their anticancer activity in subcutaneous melanoma
(A375) mouse model.'"** They reported that surfactant-
coated nanoparticles exhibited a stealth effect in the body
of mice, and showed enhanced anticancer activity due to
increased accumulation in cancer cells and decreased accu-
mulation in the liver during the 16 h observation period,
compared to bare nanoparticles. The principle mechanism
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Figure 4 Behavior and fate of surfactant-coated nanoparticles in the blood stream.
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* : Apolipoprotein E * : Opsonization related compound

Notes: (A) Bare nanoparticles. (B) Poloxamer 188 coated nanoparticles. (C) Polysorbate 80 coated nanoparticles.

by which poloxamer-coated nanoparticles exerted a stealth
effect is due to the influence of PEG and polyoxyethylene
oxide (PEO) moieties in chemical structure of poloxamer.-
123.124 gurfactants and polymers with PEG, PEO, and poly-
propylene oxide (PPO) moieties are known to inhibit the
adsorption of opsonins by building a hydrophilic barrier on
the surface of the nanoparticles and by free movement and
steric hindrance due to the construction of a polymer brush
structure.'?>'?® This stealth effect has been observed not
only with poloxamers but also with other nonionic surfac-
tants having PEG and/or PEO moieties. For example, Zhao
et al prepared surfactant-coated nanoparticles (gold nanopar-
ticles covered with a nonionic surfactant [polysorbate 80])
and reported that adsorption of opsonization-related sub-
stances (bovine serum albumin [BSA], fibrinogen, y-globu-
lins, immunoglobulin G [IgG], and lysozyme) on surfactant-

coated nanoparticles in phosphate buffer was inhibited, and
no aggregation was observed for 24 hours.'*’ On the other
hand, there is a theory of the mechanism of the stealth effect
of nonionic surfactants related to change in the conformation
of the opsonins attached to the surfactant. Torcello-Gomez
et al prepared surfactant-coated nanoparticles (polystyrene
nanoparticles covered with a nonionic surfactant [poloxamer
188]) and confirmed their adhesive dynamics with IgG,
which is a typical example of opsonin.'*® They reported
that the adhesion of IgG on the surface of surfactant-coated
nanoparticles was only slightly inhibited compared to bare
nanoparticles, and 80% of the surface area was covered by
IgG. However, the conformation of IgG that adhered to
nonionic surfactants changed, suggesting that the suppres-
sion of opsonization is not due to adhesion but due to con-
formational changes in IgG. Although imparting the stealth
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effect to the nanoparticles by using nonionic surfactants is
easy and bears low cost, but the potential problems need to be
solved. One of such problem is the possibility of detachment
from the
unexpected side effects in vivo; the physiological effects of

of surfactants nanoparticles and causes
the autoxidized and hydroxylated products of nonionic sur-
factants, and their complement activation in vivo are largely
unknown.”®!3!"133 One way to address these concerns might
be to optimize the interaction between the encapsulated drug
and the materials of the nanoparticles. Gagliardi et al com-
pared zein and PLGA as suitable materials for the prepara-
tion of nanoparticles encapsulating lipophilic flavonoid
(rutin)."** The results showed that the interaction between
rutin and zein exhibited longer drug release kinetics in the
zein group compared to the PLGA group, and this effect was
most effectively demonstrated when sodium deoxycholate
monohydrate (SD) was used in the preparation of
nanoparticles. In the future, more useful surfactant-coated
nanoparticles will be developed by further optimizing the
compatibility of the encapsulated drug, nanoparticle mate-
rial, and coating surfactant.

Active and Passive Targeting

In addition to the adsorption and surface modification of
the nanoparticles, the particle size is a major factor gov-
erning the behavior of nanomedicine. It is generally
accepted that the desired particle size for solid particles
administered as drugs for circulation in the bloodstream is
10-200 nm (Figure 5A)."*> Particles smaller than 100 nm
in size are known to avoid phagocytosis by the RES and
have been reported to circulate in the bloodstream for a
relatively long time.*"'*® On the other hand, since the
diameter of capillaries in the body is 3-9 um, particles
larger than that size can clog capillaries and unintention-
ally accumulate in organs with large surface areas of
capillaries, such as the lungs.'*® Kutscher et al found that
particles with a size of 6 pm or larger accumulated in the
lungs for more than a week when polystyrene microparti-
cles of different particle sizes (2, 3, 6, and 10 pm) were
administered intravenously to rats."*’ In addition, particles
larger than 400 nm in size were captured by splenic filtra-
tion, and then removed and degraded by red pulp
macrophages.'*' Conversely, it has been also reported
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recent success in drug delivery. Clin Transl Med. 2017;6(1):44. doi:10.1186/s40169-017-0175-0.'** (D) Adapted from Advanced Drug Delivery Reviews, 143,
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that too small particle size can make it difficult to circulate
in the bloodstream. Particles smaller than 15 nm are fil-
tered out of the bloodstream by the kidneys and removed
from the bloodstream.'** As the average effective pore
size of normal vascular endothelial cell is approximately
5 nm, some reports suggest that particles with a size
smaller than 5 nm leak out of vascular endothelial cells
and accumulate at unintentional sites, causing them to
disappear from the bloodstream in a short time.'*
Particle size is also important in the development of can-
cer-targeting drug delivery systems. One of the most
recognized cancer-targeting effects is the enhanced perme-
ability and retention (EPR) effect, which was reported by
Matsumura and Maeda in 1986."** The following two
phenomena are collectively referred to as the EPR effect:
(1) the presence of gaps in the new blood vessels around
the tumor due to an incomplete vascular endothelial sys-
tem, which allows nanoparticles to pass through the vessel
wall and accumulate in the tissue; and (2) long-term accu-
mulation of nanoparticles in the tumor tissue due to insuf-
ficient intratumoral exclusion system consisting of
immature lymphoid tissue in cancer cells than in normal
cells (Figure 5B). The EPR effect is referred to as “passive
targeting” because it does not require surface modification
with targeting ligand. The EPR effect is reported to be
exhibited by particles having size of 100-400 nm.'*
Based on this mechanism, a number of studies on cancer
targeting chemotherapy using nanoparticles with a particle
size of 400 nm or less have been reported to date.'*'°
On the other hand, many researchers believe that EPR
effect alone is not sufficient to achieve cancer-targeting
therapeutic effect of nanoparticles, and further enhance-
ment is required, as observed in some gastric and pancrea-
tic cancers.'”' Sindhwani et al reported in 2020 that the
accumulation of nanoparticles in solid tumors is domi-
nated via trans-endothelial pathways than by EPR effects,
which has attracted much attention.'>” In addition to the
EPR effect, “active targeting” has been widely attempted
to further enhance the therapeutic effects of nanoparticles.
Active targeting refers to the modification of nanoparticles
with targeting ligands (antibodies, aptamers, carbohy-
drates, macromolecules, proteins, and small molecules)
for cancer cell-specific targets (antigens, lipid components,
receptors, or proteins on the cell membrane). The drug
encapsulated in the nanoparticles modified with the target-
ing ligand accumulates around the tumor tissue by the
EPR effect (passive targeting) and is delivered and accu-

mulated at the target site of cancer cells through response,

affinity, and binding by the molecular site, shape, and
stimulation (such as pH, temperature, and ultrasound)
(Figure 5C and D).">*'** Tumors with a volume of less
than 100 mm> have insufficient vascular endothelial gaps
and are recognized as less effective for drug accumulation
via EPR effect, while active targeting is regarded as effec-
tive in treating such small tumors and other diseases.'’
Acharya et al prepared rapamycin-encapsulated PLGA

nanoparticles.'°

They reported that when their surface
was modified with epidermal growth factor receptor
monoclonal antibodies (EGFR mAb) (passive targeting +
active targeting), their uptake into malignant breast cancer
(MCF-7) cells was 13-fold higher than that of bare (pas-
sive targeting only) nanoparticles. Poom et al prepared
PEG nanomicelles containing anticancer drug (paclitaxel)
and reported that the accumulation of paclitaxel in rat
tumor tissue decreased to 1% ID/g of tissue after 3 days
when the PEG nanomicelles were administered (passive
targeting only), whereas the drug accumulation of more
than 5% ID/g of tissue was maintained even after 5 days
when the PEG nanomicelles modified with folate ligands
were administered (passive targeting + active targeting).'>’
However, excessive surface modification of nanoparticles
with targeting ligands is thought to result in poor targeting
to cancer cells due to the following factors: (1) decrease in
the stealth effect due to the reduced surface exposure of
molecular sites such as PEG, PEO, and PPO, (2) decrease
in the EPR effect with the increase in particle size, (3)
reduced diffusion of nanoparticles in cancer tissue, (4)
decrease in the ability to bind to cancer cell-specific targets
due to steric hindrance between targeting ligands, and (5) a
decrease in the number of particles taken up by increasing
the receptor occupancy per particle (Figure 5D).'%®
Therefore, it is suggested to optimize the density of the
targeting ligands for specific cancer cell targeting for max-
imum interaction between nanoparticles and target cells.
Recently, several nanomedicine products based on nano-
particles have been approved by the Food and Drug
Administration (FDA).">%!'%*  Although the field of
research on nanoparticle-based drug delivery systems is
developing rapidly, there are many concerns that need to
be considered in the future, especially when nanoparticles
are not distributed within the tumor microenvironment

depending on the condition of cancer,'®!

expression of
surface receptors varies depending on the diversity of
cancer (for example, active targeting not working well
for cancer stem cells),'®% and acquisition of drug resistance

in cancer.'®
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Brain Targeting

Even if a substance is proven effective in treating brain
tumors, neurodegenerative diseases and central nervous
system diseases, to the most important challenge is to
deliver it to the brain. Effective therapeutic antibodies
are being developed to target brain diseases, however,
brain delivery approach for these antibodies while main-
taining their shape has yet to be developed.'®*
Nanotechnology is potentially used to protect encapsulated
substances. Establishing technologies for transporting
nanoparticles to the brain is one of the greatest obstacles
in the field of nanomedicine. The major obstacle is the
presence of the blood-brain barrier (BBB), which exists
between the central nervous system and the blood, and
greatly restricts the transport of substances to the brain.
Substances circulating in the bloodstream can only pass
through the BBB if these are (1) hydrophobic molecules of
weight below 450 Da or (2) transported via endogenous
transporters present in the BBB.'®>!%® Therefore, regard-
less of the type of material used to prepare nanoparticles; it
is difficult for them to reach the brain by simply injecting
them intravenously in their original state. On the other
hand, it has been reported that nonionic surfactant (for
example, polysorbate 80)-coated nanoparticles with active
targeting function could reach the brain; although the
detailed mechanism of transport of nanoparticles into the
brain by modification with polysorbate 80 is still unclear.
The current prevailing theory is that apolipoprotein
adsorption at the polysorbate 80 site of surfactant-coated
nanoparticles circulating in the bloodstream that crosses
the BBB

(Figure 4C).'"°”'°® The use of nonionic surfactants such

through  receptor-mediated transcytosis
as polysorbate 80 may also help nanoparticles to accumu-
late in the brain for a long time due to their inhibitory
effect on P-glycoprotein (Pgp/ABCBI1, a mechanism of
foreign body efflux in the brain).'*®>!”® Other substances
that use this mechanism of brain transport are poly (butyl
cyanoacrylate) (PBCA) and PLGA.""" Wilson et al pre-
pared surfactant-coated nanoparticles (rivastigmine-encap-
sulated PBCA nanoparticles coated with polysorbate 80)
and quantitatively evaluated their transport to the brain.'”
They administered surfactant-coated nanoparticles to a
group of rats via tail vein injection and reported a four-
fold increase in the concentration of rivastigmine in the
brain one hour after administration compared to the group
receiving free drug. Tahara et al prepared surfactant-coated
nanoparticles PLGA

(coumarin-6 encapsulated

nanoparticles coated with polysorbate 80) and quantita-
tively evaluated their transport to the brain.'”® They
reported that the surfactant-coated nanoparticles adminis-
tered to a group of rats via tail vein injection showed a
two-fold increase in the concentration of coumarin-6 in the
brain one hour after administration, compared to a group
of rats being administered bare nanoparticles (without
surfactant coating). Furthermore, they reported that the
increased transport to the brain was specific only to the
nanoparticles coated with polysorbate 80, and similar
result was not demonstrated by chitosan or other nonionic
surfactants (poloxamer 188). The transport of surfactant-
coated nanoparticles into the brain has also been studied
using surfactants other than polysorbate 80, such as poly-
oxyethylene esters of 12-hydroxystearic acid (Solutol®
HS15, BASF corporation, Ludwigshafen, Germany) and
D-alpha-tocopherol polyethylene glycol 1000 succinate,
however, the mechanism of their transport is not clear.-
174175 Many studies on brain transport of surfactant-coated
nanoparticles have reported only blood concentration and
brain accumulation, but it is also important to evaluate the
drug accumulation in other non-specific organs. Miyazawa
et al prepared surfactant-coated nanoparticles (PLGA
nanoparticles encapsulated with B-carotene and coated
with polysorbate 80), and quantitatively evaluated their
accumulation in the brain and other organs in rats via tail
vein administration.'”® They reported that the surfactant-
coated nanoparticles administered group showed higher
drug accumulation in the lungs (350-fold higher concen-
tration compared to the group of bare nanoparticles) than
in the brain after one hour of administration. A similar
phenomenon has been reported in the study by Troster
et al, who prepared polymethyl methacrylate resin nano-
particles coated with various nonionic surfactants (poly-
sorbates [20, 60, and 80], poloxamers [184, 188, 338, 407,
and 908], and polyoxyethylene lauryl ether [Brij 35]) and
administered them to rats via tail vein to compare their
accumulation in organs over time.'”” In their report, com-
pared to the bare nanoparticles, the particles coated with
polysorbate 80 had an approximately 11-fold increase in
accumulation in the lungs and a nine-fold increase in
accumulation in the brain after 30 min of administration.
They also reported that approximately half of the particles
that had accumulated in the lungs migrated to the liver two
hours after administration. Therefore, increasing drug con-
centrations at the target site of action can enhance the
desired therapeutic effect, but significant toxicity may
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also occur because of the increased drug accumulation in
non-specific organs.

While polysorbates and poloxamers have been reported
to perform such useful functions, there are concerns about
their side effects that cause cell membrane damage and
cytotoxicity.'”® Recently, potential surfactants other than
poloxamer and polysorbate have been discovered for brain
targeting. For example, Jeong et al prepared surfactant-
coated nanoparticles (PLGA nanoparticles encapsulated
with recombinant human erythropoietin [rhEPO] and
coated with sodium cholate or polysorbate 80) and eval-
uated their cellular uptake (human neuroblastoma [SH-
SYS5Y] cells) and evaluated inhibition rate of glutamate-
induced neurotoxicity.'”” The results showed that the
sodium cholate-coated nanoparticle group was taken up
by SH-SYS5Y cells and further reduced glutamate-induced
neurotoxicity with less toxicity than the polysorbate 80-
coated group. They also examined the efficacy of these
nanoparticles in vivo experimental stroke model mice and
reported that the symptoms were reduced.'®° It is expected
that a variety of surfactants targeting the brain will be
developed in the future. In recent years, the importance
of “inter-organ communication,” which considers treat-
ment based on the interaction of the drug with entire
body’s organs, and not just the individual organ has been
recognized; this concept will also be essential for the

development of surfactant-coated nanoparticles.'®'

Surfactant-Coated Inorganic

Nanoparticles in Nanomedicine

Various types of inorganic materials have been used in
nanomedicine. In this section, nanoparticles composed of
gold and silicon, which have been specially studied, and
the applications of inorganic nanoparticles in quantum
dots and magnetic resonance imaging (MRI) are mainly
discussed (Figure 2B).

Gold Nanoparticles

Gold nanoparticles are one of the most widely used inor-
ganic nanoparticles in nanomedicine due to their ease of
preparation, high dispersion, low toxicity, and stability
(Figure 2B). And several studies of surfactant-coated
gold nanoparticles have been conducted (Table 1). Gold
nanoparticles have a long history of research, and the first
report on the preparation method by Michael Faraday in
1857 used chloroauric acid solution.'®* A typical method
for the preparation of gold nanoparticles is the Turkevich
method (method of reducing Au** and Au” to Au’, which

is the electrical state of nanoparticles, using trisodium
citrate), which was reported in 1951 and is still widely
used today.'®*'®* Subsequently, various preparation meth-
ods based on chemical reduction of gold ions in the solu-
tion have been developed, and gold nanostructures of
various shapes (such as nanobowls, nanocages, nanocubes,
nanopyramids, nanorods, nanospheres, nanoshells, nanos-
tars, and nanowires) have become available and have been
studied 185187

Nanoparticles composed of transition elements such as

and developed into nanomedicine.
gold have an optical property called surface plasmon reso-
nance (SPR). SPR is a phenomenon in which plasma
oscillation on the surface of a transition element generates
an electric field around it, and this electric field resonates
with light, resulting in strong absorption and scattering of
light at a specific wavelength. This property has been used
to study the enhanced Raman imaging of transition-ele-
ment nanoparticles. The absorption maximum of SPR
depends on the type of transition element present in the
nanoparticles.'® Since enhanced Raman imaging directly
detects molecular vibrations, the dynamics of biomole-
cules in living cells can be observed label-free. This
advantage has led to the use of gold nanoparticles for
molecular imaging of living cells and elucidation of the
functions of biomolecules.!8>'°° Furthermore, since the
extinction coefficient of gold nanoparticles is more than
1000 times higher than that of organic dyes, photothermal
treatment using the photothermic properties of SPR is also
being investigated.'”"'"*> Furthermore, the photothermic
properties of gold nanoparticles leads to a thermoelastic
expansion that is converted into a photoacoustic wave with
increase in temperature. This property has also been used
in research on photoacoustic imaging.'**'** The synthesis
of gold nanoparticles is not limited to chemical
approaches, but the synthesis of gold nanoparticles using
living organisms such as algae, bacteria, and plants (bio-
based method) is a topic. In general, the bio-based method
is regarded as having the advantages of not using harmful
chemicals in the synthesis process and being low cost.'”
In addition to the advantages of the bio-based method
described above, the use of cultured cell lines to synthesize
gold nanoparticles may be less toxic than bio-based
method that use bacteria composed of substances that
may cause inflammation (surface of synthesized nanopar-
ticle by using bacteria is coated by substances [lipopoly-
saccharides and endotoxins] derived from bacteria). It is
also expected to enable in-situ synthesis of gold nanopar-
ticles inside the tumor for photochemotherapy. Singh et al

https:

3964

Dove!

International Journal of Nanomedicine 2021:16


https://www.dovepress.com
https://www.dovepress.com

International Journal of Nanomedicine downloaded from https://www.dovepress.com/ by 108.53.209.149 on 20-Jun-2021

For personal use only.

Dove

Miyazawa et al

confirmed in detail the mechanism by which nanostruc-
tures of gold nanoparticles are formed by human breast
cancer (MCF7) cells from the medium containing gold
(IIT) chloride hydrate.'® They found that the cells were
stressed by the presence of low doses of gold ions, result-
ing in a reversible state of cellular senescence. For this
stress, under serum containing medium (Dulbecco’s
Modified Eagles Medium (DMEM) supplemented with
10% fetal bovine serum (FBS)), the cells became
unstressed state and gold nanoparticles with rounded
facets (single and agglomerated) were deposited. On the
other hand, in serum-free medium, the cells were in a
stressed state and released various secretions outside the
cells. Among these secretions, the presence of gold-bind-
ing proteins significantly affected the crystal growth of
gold nanoparticles, and gold nanoparticles with sharp
facets (triangular and hexagonal) were deposited. They
further synthesized gold nanoribbons by incubating
human breast cancer (MCF7) cells with gold (III) chloride
hydrate.'”” They confirmed that the gold nanoribbons
synthesized by this method had anisotropic and high
aspect ratio and showed more efficient energy conversion
effect than spherical gold nanoparticles or gold nanorods.
The molecular dynamic simulation and supported with
experimental photothermal therapy shown useful applica-
tion of these nanomaterials into nanomedicine for promot-
ing the growth of fibroblast, imaging agent,'® drug carrier
with improved bioavailability in vitro'®® and in vivo.?*
Currently, there are no medical devices for imaging of
gold nanoparticles that can be used for clinical applica-
tions, and further development of this technology is war-
ranted. On the other hand, some clinical uses of gold
nanoparticles themselves include Aurimune® (CYT-6091;
CytImmune Sciences, Rockville, MD, USA), which is
designed to deliver tumor necrosis factor (TNF-a) to
tumor sites, and AuroShell® (Nanospectra Biosciences
Inc., Houston, TX), which is designed to enhance the
efficacy of near-infrared laser therapy; both of them have
been developed as gold nanomedicine products and are in

clinical trials.?°!-2%2

Silica Nanoparticles

Silica nanoparticles are inorganic solids that are ubiquitously
present in the human body (Figure 2B).>** Silanol groups on
the surface of silica can be easily modified by targeting ligands
such as small molecules, carbohydrates, antibodies, aptamers,
proteins, and polymers. Therefore, fluorescent compound-
encapsulated silica nanoparticle with active targeting function

on its surface has been studied as bioimaging probes and
photodynamic therapy for cancer treatment.”***% The typical
methods for the preparation of silica nanoparticles are the
Stober method, which includes adding acid or alkali to an
alkoxysilane solution to progress hydrolysis and polyconden-
sation reactions, and the reverse micelle method, which
includes adding an alkaline solution and a surfactant in a
hydrophobic organic solvent to form a reverse micelle, and
then adding an alkoxysilane solution to proceed with the
hydrolysis and polycondensation reactions.?***"7 Attempts
have also been made to reduce the toxicity of highly toxic
nanoparticles, such as metals by using the properties of silica.
Igbal et al reported that coating the surface of superparamag-
netic iron oxide nanoparticles (SPION), which are used as MRI
contrast agents, with silica greatly reduced their cytotoxicity
while maintaining their function as MRI contrast agents.”” On
the other hand, mesoporous silica nanoparticles composed of
porous silica, are relatively new materials whose synthesis was
reported by Yanagisawa et al and Mobil Research and
Development Corporation in the early 1990s, respectively.-
209210 Ty mical preparation method of mesoporous silica nano-
particles includes preparation of a porous structure by using a
structure surfactant as a

supramolecular containing

template. The size and shape of the pores can be manipulated
to some extent, depending on the preparation conditions.*"’
Mesoporous silica nanoparticles have the following character-
istics: (1) pores of 2-30 nm can be prepared with uniform size
and distribution, (2) a large pore volume of approximately
1 cm® g ' can be achieved, (3) they have a high density of
silanol groups on their surfaces, and (4) they have a chemically
stable silica framework; these characteristics are likely to be
beneficial for their use in nanomedicine.”'? Although there
have been concerns that the chemical structure of silica tends
to become unstable in water and humid environments and that
the silanol groups on the silica surface induce hemolysis, but
the mesoporous silica nanoparticles with a smaller contact area
of silanol groups with red blood cells have been found to be
less prone to hemolysis than other silica nanoparticles.*'* 2
Urata et al prepared an ethylene-bridged silsesquioxane frame-
work containing mesoporous silica nanoparticles to stabilize
the skeletal structure and to inhibit the exposure of silanol
groups, resulting in decreased hemolysis from 10% to a few
percent and further stabilized the skeletal structure compared to

ordinary mesoporous silica nanoparticles in vitro.?'®
Doxorubicin and paclitaxel have been known to be synergistic
due to their different anticancer mechanisms. However, it has
been difficult to prepare a stable single nanoparticle containing

both drugs because of their different physicochemical
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properties. To solve this problem, Yan et al reported the pre-
paration of mesoporous silica nanoparticles with doxorubicin
being present inside the pores, and a derivative of paclitaxel to
the surface of the particles and further coated the surface with
polystyrene sulfonate.?'” The prepared nanoparticles success-
fully released both the drugs according to the pH and redox
status of the cancer cells in vitro. Although research on silica-
based nanomedicine continues to make great progress, one of
the reasons why it has not yet reached clinical trials may be its
potential toxicity, which has not been dispelled. While the
toxicity of crystalline silica particles due to occupational expo-
sure is widely recognized, the potential toxicity of silica is
considered proportional to its crystallinity, and therefore it is
believed that amorphous silica particles are low in toxicity.*'®
Currently, epidemiological studies have not yet reached to a
clear conclusion, and the safety of silica-based materials needs
to be further confirmed.?'® In recent years, a field of nanome-
dicine called “nanotheranostics” has been developed for the
diagnosis and treatment of diseases at the same time, and the
development of bio-imaging probes is under intense investiga-
tion in this field.?***** The fluorescence imaging technology
using quantum dots, which enables to visualize the behavior of
individual cells in vivo and to treat them at the same time, has
23 Quantum dots, which

are colloids of semiconducting nanoparticles approximately

been attracting attention (Figure 2B).

2-50 nm in size, have fluorescent properties compared to
fluorophores: negligible fluorescence photobleaching in
response to the excitation light, a broader excitation spectrum,
and a sharper emission peak.”****> Quantum dots with large
particle sizes have a small band gap and emit red light, while
quantum dots with small particle sizes emit blue light owing to
their quantum confinement effect. Therefore, the light absorp-
tion and fluorescence emission wavelengths are shifted to the
shorter wavelengths with higher energy as the particle size
decreases. Due to these fluorescent properties, quantum dots
can be used with a single light source to simultaneously excite
and visualize target cells labeled with various types of quantum
dots. The use of quantum dots has enabled imaging that was
difficult to achieve with fluorophores including cytometric

227,228

imaging,*® lymph node mapping, imaging of cancer

stem cells,””® and imaging of circulating tumor cells.**
However, since quantum dots are composed of semiconductor
materials, side effects of heavy metals and their residues (sele-
nium, cadmium, and lead) in living organisms are a major
concern.”'**? The shape of the nanoparticles is also related
to cytotoxicity as shown in a study by Yamamoto et al that
dendritic titanium dioxide particles with dendritic shape have

higher cytotoxicity than spindle and spherical shapes.”*® If

quantum dots are to be used clinically in the future, these
potential risks will need to be eliminated in advance.
Recently, research and development of quantum dots com-
posed of less toxic carbon, silicon, and germanium has
initiated.>**>*® Shen et al prepared surfactant-coated nanopar-
ticles (quantum dots composed of silicon covered with polox-
amer 407) and determined whether they could be used for the
imaging of mitochondria in human umbilical vein endothelial
cells (HUVECs) using confocal microscopy.”>” As a result,
they reported that the MitoTracker™ (commonly used fluoro-
phore for fluorescent staining of mitochondria) faded in 80
seconds, whereas surfactant-coated nanoparticles accumulated
in the mitochondria with low toxicity for further use in living
cells, and also maintained nearly constant fluorescence inten-
sity for 30 min.

Other Inorganic Nanoparticles
Nanomedicine is also used in MRI, which is an impor-
tant imaging technique in contemporary medicine. MRI
is used clinically to observe signals of hydrogen ions
("H) contained in water molecules (H,O), and adipose
tissues (CH, CH,, and CHj). The magnetization of
hydrogen ions in a static magnetic field is excited by
the magnetic resonance (MR) phenomenon when irra-
diated with radiofrequency magnetic waves (radiofre-
quency [RF] pulses). MRI detects the relaxation time
for these excited hydrogen ions to return to the ground
state. The Tl relaxation time of hydrogen ions is
observed to be greatly shortened by the presence of
surrounding transition elements (Cr**, Cr**, Mn**, Mn®
* Fe**, and Fe’") and lanthanides (Gd*" and Dy’"), and
MRI contrast agent containing nanoparticles composed
of these elements have been studied (Figure 2B).238:239
(Resovist®™,

Germany),

For example, ferucarbotran Bayer

Healthcare, Leverkusen, ferumoxides
(Feridex®, Bayer Healthcare, Leverkusen, Germany),
erumoxtran-10 (Combidex®™, AMAG Pharma, Waltham,
MA), and NC100150 (Clariscan®, Nycomed, Ziirich,
Switzerland), which are composed of SPION, have
been used in clinical practice as MRI contrast agent
nanoparticles.”*° On the other hand, metal ions in MRI
contrast agent nanoparticles have the potential risk of
disrupting the redox balance in vivo by reacting with
hydrogen peroxide to produce reactive oxygen species
(ROS), and oxidizing vitamins and proteins, which are
antioxidants present in the body; this leads to the pro-
gression and development of the disease.”*' The accu-

mulation of inorganic nanoparticles in monocytes,
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macrophages, and tissues can also cause inflammation;
nanoparticles such as silica, gold, silver, carbon, iron,
zinc, and titanium, have been reported to induce the
production of various proinflammatory cytokines (inter-
leukin [IL]-1B, IL-6, IL-12, IL-23, and TNF-0), and
ROS activated (M)
macrophages.”*> These pro-inflammatory

associated with classically
cytokines
increase the expression of P-glycoprotein in various
organs in vivo, and prevent likely functions of the
nanoparticles.”***** Radomski et al also reported that
carbon nanoparticles interact with platelets and vascular
endothelial cells, resulting in localized inflammation in
vivo.>** Further studies are needed to avoid the potential
health with

nanoparticles.

risks  associated such  inorganic

Other Nanostructures in Nanomedicine
This review focuses on “nanoparticles” among various
nanostructures (carbon nanotubes,

dendrimers, lipo-

somes, micelles, nanographenes, nanorobots, and

nanosheets) used in the field of nanomedicine.
Properties and applications of other nanostructure that
could not be presented in this review have been reviewed

in detail in other reports.?**>°°

Application of Surfactant-Coated
Nanoparticles in Food
Nanotechnology

Food Nanotechnology

The development in the field of nanotechnology has been
remarkable, and interest in its application in the global food
industry has increased greatly in recent years due to its
potential to add new properties and functions to existing
food The
“Nanotechnology Research: Applications in Nutritional

products. international symposium
Sciences” was held at Experimental Biology 2009, focusing
on the application of nanotechnology to food and nutrition,
and this field was widely recognized.”' Although a definition
of nano-based technologies in the field of food and nutrition
has not yet been established, the application of nanoscale
material properties to the food and nutrition industry is gen-
erally named as “food nanotechnology”.>>*>** Currently,
there are no established global rules regarding the applica-
tions of food nanotechnology, however, the Organization for
Economic Cooperation and Development (OECD) launched
a sponsorship program for testing of nanomaterials in 2007,
and the FDA issued four guidance documents on the use of

nanotechnology in animal products, cosmetics, food, and
other products in 2014-2015.%>* In the field of food nano-
technology, the approach of nanoparticles is considered to

have the potential to be applied in various technologies, such

257

.. 2 .. .12 . g .
as pesticides,”>> antimicrobial,>® anti-solidification,**’ plant

genetic engineering,>* detection of foodborne pathogens, >’

261

food processing,?* development of functional foods,**! pur-

2 extension of food

252-254,264,265

ification of drinking water,”®
preservation,”®> and texture improvement
(Figure 6). Surfactant-coated nanoparticles have been widely
used in the field of food nanotechnology. Recent progress of
surfactant-coated nanoparticles in this field is summarized in
Table 2. Surfactant-coated organic and inorganic nanoparti-
cles in food nanotechnology will be discussed separately in
the following sections.

Agrichemical delivery Anti-caking agents

Food preservation

Nanoencapsulation of

Genetic engineering flavors and aromas

Pesticides
Nanoemulsions

Sensors to monitor soil conditions

Agriculture Processing

Food nanotechnology

Nutrition Products

Drinking water Antimicrobials

purification
UV protection
Functional foods
Condition monitors

Mineral and vitamin fortification ;
Contaminant sensors

Nutrient delivery Active food packaging

International Journal of Nanomedicine 2021:16

Sensory characteristics Security
of supplements
Figure 6 The potential applications of food nanotechnology.
Notes: Data from Martirosyan.?*®
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Figure 7 lllustration of the relationships between diseases, free radicals, reactive
oxygen species, and aging in the body, and its regulation by antioxidants from food
source.

Notes: Data from Miyazawaz‘” and Adapted from Elsevier Books, 191, Fajardo AM,

Bisoffi M, Chapter 18 - Curcumin analogs, oxidative stress, and prostate cancer,
267

191-202, Copyright 2014, with permission from Elsevier.

Surfactant-Coated Organic Nanoparticles
in Food Nanotechnology

Smart Food

Food components are supplied to the human body on a
daily basis via oral intake, and are maintained in the body
at optimal concentrations in various tissues for life sup-
port. However, their concentrations fluctuate due to var-
ious disorders such as disease and aging, leading to the
disruption of the redox balance in the body. Certain types
of diseases and obesity also increase the amount of ROS
produced in the human body, resulting in accelerated aging
and disease progression (Figure 7). 7227 It is recog-
nized that the concentration of antioxidants in human
blood decreases with aging. Mecocci et al measured the
concentrations of various antioxidants (a-carotene, f-car-
otene, B-cryptoxanthin, lutein, zeaxanthin, all-trans lyco-
pene, lycopene total, retinol, ascorbic acid, uric acid, o-
tocopherol, thiols, plasma superoxide dismutase [SOD],
red blood cells [RBCs] SOD, glutathione peroxidase
[GPX] and nicotinamide adenine dinucleotide phosphate
[NADPH]) in the blood of healthy subjects under 60,
61-80, 81-99, and over 100 years of age, and reported
that several food-derived antioxidants (a-carotene, [3-car-
otene, B-cryptoxanthin, lutein, zeaxanthin, all-trans lyco-
pene, lycopene total, ascorbic acid and uric acid) tended to
decrease with age (Figure 8). *°® It is hoped that these
problems can be overcome by daily dietary intake of food-
derived antioxidants to achieve longevity (Figure 7).
Research on the inhibition of disease progression and

development by daily intake of food components has
been widely conducted. For example, it has been reported
that the blood of dementia patients with Alzheimer’s dis-
ease has higher concentrations of RBCs with high levels of
phospholipid hydroperoxides in their lipid membranes
(also named as “aged RBCs” which are responsible for
poor oxygenation and deterioration of blood rheology)
compared to healthy subjects.’® "% Since the presence
of these aged RBCs are considered to be one of the causes
of the progression and onset of Alzheimer’s disease, food
ingredients that prevent the peroxidation of red blood cell
membrane lipids are expected. Nakagawa et al reported
that daily intake of polar carotenoid (astaxanthin [6 or 12
mg/day] or lutein [9.67 mg/day]) capsules for more than
two weeks suppressed the appearance of aged RBCs in
human blood.?’>*”* Obesity is regarded as a low-grade
inflammatory disease.”’> Miyazawa et al reported that 20
weeks of simultaneous intake of polyphenol (curcumin
[1 g/kg diet in this study], which is abundant in turmeric)
and alkaloid (piperine [50 mg/kg diet in this study], enhan-
cer of curcumin’s bioavailability, which is abundant in
pepper) reduced inflammation (interleukin [IL]-1B and
keratinocyte chemoattractant/growth-regulated oncogene
chemokines [KC/GRO] in plasma) and body fat in obese
under caloric restriction model (C57BL/6) mice.?’® Gregor
et al reported that a 3-week intake of a vitamin E analog
(rice bran tocotrienol [5 or 10 mg/day]) reduced triglycer-
ide and phospholipid hydroperoxide levels in the blood
and liver in F344 rats.”’” Vitamin C has been around for
100 years since its discovery. Its prevailing theory of its
mechanism of anticancer effect was due to cytotoxicity
caused by hydrogen peroxide (H,O,) produced by the
oxidation of vitamin C (ascorbic acid) in extracellular
environment.”’® On the other hand, Yun et al reported in
2014 a new theory in which the oxidized product of
ascorbic acid (dehydroascorbic acid) is taken up by cancer
cells via glucose transporter (GLUT) and inhibit the pro-
duction of adenosine triphosphate (ATP) and lead the cell
death to cancer.””’ Since this report, there has been a surge
of interest in elucidating more detailed mechanisms of the
anticancer effects of vitamin C.**%**! As introduced in
section “Food Nanotechnology” in this review, nanotech-
nology has been expected to have a variety of applications
in the fields of basic research and industry of foods. Not
only that, attempts to maximize the useful effects of var-
ious food ingredients such as those described above using
also  attracted  attention.

nanotechnology  have

Nanotechnology is being developed to encapsulate food

International Journal of Nanomedicine 2021:16

3977

Dove:


https://www.dovepress.com
https://www.dovepress.com

International Journal of Nanomedicine downloaded from https://www.dovepress.com/ by 108.53.209.149 on 20-Jun-2021

For personal use only.

Miyazawa et al

Dove

a-carotene B-carotene B-cryptoxanthin
0.2 1.2 0.6
1
goas g g 05
2 @ 0.8 £
Ko} LB a 0.4
: 0.1 :, 0.6 203
° S04 T 0.2
} 0.1 l
0 n m O
61-80 81-99 <100 61-80 81-99 <100 <60 61-80 81-99 <100

Age (years old)

Lutein

mol/L

Age (years old)

Zeaxanthin

05 02
© 0.4 © 0.16 © 0.4
£ £ £
803 8012 &o3
o j- [
202 5 0.08 S02
£
201 =0.04 g. 0.1
0 0 0

Age (years old)

All-trans lycopene

61-80 81-99
Age (years old)

<100

61-80
Age (years old)

81-99 <100 61-80 81-99

Age (years old)

<100

Lycopene total Vitamin C Uric acid
12 70 400

1 60

-] s £ 300
£ T

Eos £ 50 g .
2 240 2200
Sos <30 s
004 ° ]
E E20 E 100

0 0 0

61-80 81-99 <100 61-80 81-99 <100 <60 61-80 81-99 <100

Age (years old)

Age (years old)

Age (years old)

Figure 8 Age-related decrease in plasma concentrations of antioxidants from food source.

Notes:Data from Mecocci .2

components into organic nanoparticles to perform various
functions. This attempt to improve human health was
named “Smart food” by Martinez-Ballesta et al.?®*%%
The components of the nanoparticles used in smart food
are selected to have low toxicity in living organisms.
Typical examples include polymers (chitosan, collagen,
gelatin, hyaluronic acid, and PLGA), solid lipids (choles-
terol, palmitic acid and stearic acid), and proteins (milk
protein, nisin, and zein) (Figure 2B).2# 2% 1t will be of
great significance if this smart food can extend healthy life
expectancy through daily dietary habits. Davis et al
reported a decrease of nearly half in the content of useful
antioxidants in crops in 1999 compared to 1950.*” From
the perspective of the food crisis, there will be great value

in this smart food that can efficiently supply nutrients to
the body.

Application of Food Nanotechnology in the Digestive
System

Encapsulating food ingredients into nanoparticles extends
their shelf life and protects them from degradation in the
digestive system.”®* 2% Dietary patterns, food matrix, and

passage through the gastrointestinal tract were often
important factor for food nanotechnology. These factors
may have a major impact on nanoparticle characteristics,
behavior, and toxicity.?" As described briefly in section
“Nonionic Surfactants in the Food Industry” in this review,
the presence of surfactants occupies an important position
in this mechanism of digestion and absorption. In complex
of in vivo digestive system, not yet have an integrated
knowledge of how the different types of surfactants used
in surfactant-coated nanoparticles affect the above factors.
However, these are important for understanding of the
absorption and metabolism of nanoparticles, and their
necessity has also been suggested in other reviews.??* 2%
The orally administered nanoparticles are known to avoid
various digestive enzymes (such as amylase, lipase, and
pepsin) and the highly acidic environment of the stomach
(pH 1-3), reach the small intestinal epithelium, and are
absorbed into the body (Figure 9). *>*>?% As a result, the
bioavailability of the encapsulated food components in the
nanoparticles is improved.”***°' The balance between the
hydrophilic and hydrophobic nature of the nanoparticle
interface and the digestive system is an important factor
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Figure 9 The digestive stages after oral administration and the mechanisms of in vivo uptake of surfactant-coated nanoparticles through the small intestine.

Notes: (A-1) Transcellular route, through the M cells. (A-2) Transcellular route, through the enterocyte. (B) Paracellular route. (C) Persorption route. Data from these published
i 318295 49

studies

responsible for absorption into the body, and hydrophilic ~ Maisel et al prepared polystyrene nanoparticles coated

coating on the surface of hydrophobic nanoparticles has  with a hydrophilic polymer (PEG) and confirmed their

297-299

been widely accepted to increase their absorption. localization to the small intestine in ex vivo studies in
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mice.’® The results showed that bare nanoparticles
(unmodified nanoparticles) accumulated in the mucosal
layer of the small intestine, whereas the PEG-coated nano-
particles reached closer to the small intestinal villi with a
homogeneous distribution. Bourganis et al demonstrated a
similar phenomenon in a transwell model using porcine
mucosa.’’! It has also been reported that coating the sur-
face of nanoparticles with hydrophilic natural polysacchar-
ides (chitosan) also increase the absorption of food
components. This nanoparticle coating enhances mucosal
adhesion and protects the nanoparticles from acidic envir-
onment and digestive enzymes.’**>% The digestive sys-
tem is constantly secreting mucus, and a 15.5 + 4.5 ym
thick mucus barrier (pH 5.5-7.5) physically blocks micro-
organisms and hydrophobic substances entering the intest-
inal tissues.>**>° This mucus forms a hydrogel (primarily
composed of water and lipids, mucin, nucleic acids, and
proteins) with a mucin skeleton cross-linked by hydropho-
bic interactions and disulfide bonds.>’ Therefore, the
nanoparticles that reach the small intestine must have the
ability to penetrate the mucus barrier to reach the intestinal
tissues and be absorbed into the body. It has been discov-
ered that the surfactant-coated nanoparticles can pass
through the mucus layer to reach the intestinal tissues
(Figure 6A). Ensign et al reported that pretreatment with
a nonionic surfactant (poloxamer 407) uniformly dispersed
mucus-adherent nanoparticles (polystyrene nanoparticles)
in the mucus while maintaining the barrier function of the
mucus to herpes simplex virus type-1 (HSV-1).>°® In sup-
port of this result, Xin et al confirmed that cationic

surfactant (SDS) and nonionic surfactants (poloxamers
[188, 407], polysorbate 80)-pretreated ileum of rats
showed enhanced penetration of PLGA nanoparticles into
the intestinal epithelium at 30 min of administration, com-
pared to the bare nanoparticles group.’®” Nanoparticles
coated with a nonionic surfactant (poloxamer 407) are
known to inhibit the interaction between the core of par-
ticles and mucus components. Yang et al prepared surfac-
407-coated
fluorescently tagged PLGA nanoparticles) and estimated

tant-coated  nanoparticles  (poloxamer
their penetration in the human mucosa.’'’ The results
showed that less than 1% of bare nanoparticles were dis-
persed in the mucus layer within 30 min observation time,
while 60-80% of the surfactant-coated nanoparticles were
dispersed in the mucus layer. They also reported that this
effect was exerted by coating with poloxamer 407, regard-
less of the type of nanoparticles.

When the nanoparticles pass through the mucus layer,
as described above, they reach the small intestine. In the
small intestine, three pathways are being reported related
to the 9A-C).

(Figure 9A): Transcellular route, which involves the pro-

passage of nanoparticles (Figure

cess of transcytosis via intestinal epithelial cells. Particles
present in the intestinal lumen are thought to be endocy-
tosed into small intestinal epithelial cells via four different
caveola-

mechanisms: clathrin-mediated endocytosis,

mediated endocytosis, and

295,311

micropinocytosis,

phagocytosis. In general, transcytosis via small

intestinal epithelial cells has been reported to be easier

312,313

for particles with smaller size. Rejman et al

Nanostructures from natural source

Organic nanostructures in food
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coated triglyceride droplets.
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Characteristics: Characteristics: liquid droplets Clusters Df aggregated
clusters of protein coated by emulsifiers or solid polysaccharide molecules.
and minerals. particles.
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protein molecules.
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Characteristics: small solid
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From nutritional
its, and
casings
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Characteristics: iron oxide
nanoparticles used to protect the
food degradation with iron. J

Characteristics: silver nanoparticles
used as antimicrobials in coating and
packaging of foods.
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dry mixes

From candies, chewing
gums, bakery goods, and
milk powders

Silicon dioxide Titanium dioxide

Characteristics: titanium dioxide
nanoparticles are used as whitening
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Characteristics: silicon dioxide
nanoparticles used to control
physical properties. )

Figure 10 A wide variety of nanoscale materials potentially present in foods from both natural and artificial sources.

Notes: Data from McClements and Xiao.?'
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demonstrated the uptake mechanism and intracellular
accumulation of fluorescent latex beads with a particle
size of 50-1000 nm into non-phagocytic B16 melanoma
cells.*" They found that particles less than 200 nm in size
were taken up into the cells via clathrin-mediated endocy-
tosis, while particles more than 200 nm in size were taken
up into the cells via caveola-mediated endocytosis. There
are two routes possible for uptake, one through the M cells
(Figure 9A-1) and the other through the enterocyte
(Figure 9A-2). Compared to enterocytes, M cells are less
protected by the mucus barrier and are therefore easier for
nanoparticles to reach, but their total area is only about 1%
of the total absorbed surface area of the gut.??>?'"
(Figure 9B): Paracellular route, which involves the trans-
portation through the gaps between small intestinal epithe-
lial cells. The intercellular gap is said to be between 30
and 100 A, with a total area of only 0.1% of the total
absorbed surface area of the gut.*'® Furthermore, only a
few solid nanoparticles are considered to pass through this
route, because the majority of nanoparticles are blocked by
the presence of tight junctions between epithelial cells.
(Figure 9C): Persorption mechanism, which involves a
passage through the gap formed in the epithelium by the
extrusion of dead intestinal cells from the epithelial layer
of the small intestine.’'” Although the persorption
mechanism is considered to allow nanoparticles to pass
through in their native state, however due to the small
number of research reports, their detailed mechanism is
still largely unknown. Nanoparticles are thought to pass
through the small intestinal epithelium from either of the
above routes and are subsequently transported into the
lymph and bloodstream (Figure 9A—C). Lamson et al
reported that when negatively charged silica nanoparticles
were administered orally to mice, these bound to integrins
in small intestinal epithelial cells, induced relaxation of
tight junctions, and increased intestinal permeability,
which prompted the protein migration further into the
bloodstream.*'® The mechanism involves the binding of
negatively charged silica nanoparticles (<100 nm) to integ-
rins present on epithelial cell surface receptors, thereby
stimulating various signaling pathways (Akt, PAK, Raf
and Src pathways) that activate the enzyme myosin light
chain kinase (MLCK). Activated MLCK phosphorylates
the myosin portion of the cytoskeleton and exerts tension
on the tight junctions, then leading them to open. The gaps
in the tight junctions opened in this way allow the passage
of macromolecules without causing cell damage
(Figure 9B). Furthermore, they confirmed the effect of

insulin (model protein) on blood glucose levels in
C57BL/6 mice in which tight junctions were opened by
oral administration of above negatively charged silica
nanoparticles. The results reported that the orally adminis-
tered insulin (10 U/kg) group showed hypoglycemia for
several hours longer than the subcutaneously injected insu-
lin (1 U/kg) group. Other institutions have reported that
ultrasound-induced cavitation temporarily weakens the
barrier function of the intestinal tract and increases the
absorption of drugs (hydrocortisone, insulin, mesalamine)
from the small intestine.*'® A variety of surfactants have
been used in the preparation of “smart foods,” and many
studies on “smart foods” using surfactant-coated nanopar-
ticles have been reported (Table 2). However, there are
few reports on the effect of different surfactants on absorp-
tion and metabolism in vivo. Although the latter could not
be included in this review, future studies are of vital
importance for such integrated information.

Along with the uptake of the nanoparticles, their dis-
persibility in the intestinal lumen before reaching the
intestinal mucosa may have a significant impact on the
absorption of the food components encapsulated in nano-
particles. Harigae et al prepared PLGA nanoparticles
encapsulating curcumin (a polyphenol compound) and
compared its oral absorption (area under the curves
[AUCs] of curcumin and its main metabolite [curcumin
glucuronide]) with the control group of free curcumin in
rats.>*® The results revealed that high concentrations of
curcumin glucuronide were present in the blood in case of
PLGA nanoparticle-treated group compared to the control
group, but the blood concentrations of curcumin were
lower in both groups. Furthermore, they confirmed the
transport mechanism of curcumin in PLGA nanoparticles
to mixed micelles in a human colorectal adenocarcinoma
(Caco-2) cell transwell model. As a result, the major factor
responsible for the enhanced absorption of curcumin glu-
curonide in bile acid micelles from PLGA nanoparticles
was the high dispersibility of the PLGA nanoparticles in
the solution, instead of the pathways described above
(Figure 9A—C) or metabolic resistance. It is generally
believed that orally administered nutritional components
are taken up from the small intestine and transferred to the
liver via the portal vein or through the mesenteric lymph
nodes, which are subsequently transported to various
organs via the lymphoid network and bloodstream.*?'
There are only a few studies available on the behavior of
nanoparticles, either metabolism or modification, during
their uptake from the small intestine and transfer to the
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Notes: Modified from Singh AV, Rosenkranz D, Ansari MHD, etal Artificial intelligence and machine learning empower advanced biomedical material design to toxicity

prediction. Advanced Intelligent Systems. 2020;2:2000084.%”°

lymph and bloodstream. Itaya et al compared the uptake of
curcuminoids-encapsulated PLGA nanoparticles and free
curcuminoids into human monocytic leukemia (THP-1)
cells.*** The results confirmed that only curcumin was
selectively taken up among the curcuminoids in both
groups, suggesting that curcuminoids are released from
PLGA nanoparticles and taken up by the cells after
becoming educt. Further investigation of the detailed
uptake mechanism revealed that curcuminoids with a
higher affinity for albumin (a major transport protein in
the blood), were less likely to be taken up by monocytes.
Yan et al supported this phenomenon and elucidated that
when albumin adheres to the surface of disulfide-stabilized
poly (methacrylic acid) nanoporous particles, the nanopar-
ticles are evaded from macrophage uptake.*** Future stu-
dies are necessary to elucidate the phenomenon of orally

administrated nanoparticles in the blood and its further
interaction with the blood components through quantita-

tive measurements.

Application of Food Nanotechnology to New
Packaging Technologies

The development of new packaging technologies for food
products is important for ensuring food safety.>>¢*°"-*%3 The
packaging requirements like to allow desirable outside air to
pass through depends on the type of foods and beverages to
be packaged. For example, carbonated beverage packaging
needs to minimize the ingress of oxygen and the loss of
carbon dioxide.>** In case of fruits and vegetables that
require breathing, packaging techniques are required to
exchange outside air according to each type. For potatoes,
tomatoes and apples, gas transfer of 1-2% of O,, 15-20% of
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CO,, and 25-30% of ethylene, respectively is required for
their storage.”* As a food packaging material, polymeric
nanocomposites with organic nanoparticles dispersed in a
polymeric matrix can be more precisely manipulated for
strength and selective permeability of outside air than the
traditional packaging materials used in the past, such as
metal, ceramic, paper, and plastic.>*® Poverenov et al devel-
oped alginate nanoparticle-dispersed chitosan polymeric
nanocomposites and reported that when coated on fresh-cut
melons, it protected against dehydration and ethanol eva-
poration for 15 days while maintaining selective permeability
of the outside air, ideal for storage.’*’ Azeredo et al devel-
oped thin films of polymeric nanocomposites containing
15% cellulose nanofibers and 18% glycerol as food plastici-
zers and reported that they exhibited ductility and hydropho-
bicity while maintaining higher strength than synthetic
polymers such as low-density polyethylene and
polypropylene.**® Furthermore, the film is biodegradable
and environmental friendly. Surfactants are used as disper-
sants for organic nanoparticles in the manufacturing stage of
polymeric nanocomposites.*>*>" Despite the development
of polymeric nanocomposites, there are few reports available
on the safety of long-term ingestion,*** which needs to be
considered.

The antimicrobial activity of natural products such as
mushrooms in food packaging may help to overcome the
food industry challenges of food contamination and spoi-
lage by bacteria. Mushrooms synthesize a variety of meta-
bolites
antibacterial,

with antitumor, antiviral, anti-inflammatory,

activities.>*

antifungal, and anti-yeast
Therefore, there is a growing need for bioprospecting of
mushrooms.*** And mushrooms are also known to pro-
duce multidrug resistance inhibitors that enhance the activ-
ity of antimicrobial compounds, and the synergy with
silver nanoparticles dramatically improves resistant micro-
organisms and their antimicrobial activity. This use of
mushrooms for application of food nanotechnology to
new packaging technologies is thoroughly reviewed in
the report by Pandey et al in 2020.>** The application of
nanotechnology to food packaging to maintain food qual-

ity will become even more important in the future.**>

Surfactant-Coated Inorganic
Nanoparticles in Food Nanotechnology
Food nanosensing, which uses inorganic nanoparticles for
sensing of food (adulterant sensing, artificial smell and
taste sensing, bacterial toxin sensing, brand protection

and product authenticity, freshness sensing, pathogenic
bacteria sensing), plays an important role in better food
quality and safety evaluation.’*® Karatapanis et al reported
that silica-modified magnetite nanoparticles coated with
cationic surfactants can be used as adsorbents for Cu(Il),
Ni(II), Co(II), Cd(II), Pb(IT) and Mn(II).**” The detection
limits of these elements in aqueous solution were 4.7, 9.1,
9.5, 2.3, 7.4, and 15.3 ng/L, respectively. Zahid et al
developed an electrochemical sensor with a surfactant (1-
(2, 4-dinitrophenyl)-dodecanoylthiourea (DAN), which
has soil fertility enhancing characteristics) immobilized
at the interface to detect Hg (II) in drinking water with a
detection limit of 0.64 pug/L.**® These sensing of food
using nanoparticles has been described in detail in other
reviews.>**>40

Among the inorganic nanoparticles used in food nano-
technology, silver nanoparticles are the most widely used
in the food industry due to their antimicrobial properties.
Approximately 55.4% of all consumer products using
nanoparticles in the market are made with silver
nanoparticles.*' In addition, several countries are already
using silver nanoparticles as antimicrobial agents in food
supplements and food packaging materials.*** When silver
nanoparticles reach the bacterial cell surface, they form
irregularly shaped pits on the membrane surface, reducing
the barrier function of lipopolysaccharides present on the
cell surface, and thereby altering the membrane
permeability.®** Subsequently, silver cation (Ag") is gen-
erated by protons and enzymes present in the bacterial cell,
causing an increase in oxidative stress due to ROS and
inhibition of deoxyribonucleic acid (DNA) replication,
leading to bacterial cell death.>****> Costa et al prepared
an alginate film containing silver nanoparticles and
reported that coating it on fresh-cut carrots protected the
carrots from dehydration and microbial spoilage and
extended the shelf life from four days (in non-additive
group) to 70 days.**® Hedayati et al prepared surfactant-
coated nanoparticles (gum Arabic containing silver nano-
particles and a nonionic surfactant (glyceryl monostearate
[Figure 1]). **’ They reported that coating green bell
pepper with this product protected the antioxidant (vitamin
C) in the green bell pepper from dehydration and micro-
bial spoilage and maintained marketable quality even after
21-days of storage. Since silver nanoparticles need to be in
a dispersed state to exert their antibacterial effect, the
approach of coating their surface with a non-ionic surfac-
tant and dispersing them in a system is widely used.
Kvitek et al prepared surfactant-coated nanoparticles
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(silver nanoparticles coated with SDS or polysorbate 80)
and confirmed their antimicrobial activity.’*® Results
showed that coating with both surfactants had increased
antimicrobial activity of silver against 10 strains of bac-
teria compared to bare nanoparticles, and the SDS-coated
nanoparticles exhibited more potency. In addition to silver
nanoparticles, zinc oxide nanoparticles are used as supple-
ments, antibacterial agents, and anti-browning agents.**’
Li et al reported the use of zinc oxide nanoparticles as an
anti-browning agent for food products.®>® They developed
a polyvinyl chloride nanoparticles containing zinc oxide
(ZnO), and when Fuji apples were coated with it, the
activity of polyphenol oxidase and pyrogallol peroxidase
was suppressed, resulting in reduced formation of malon-
dialdehyde (reduced from 74.9 nmol/g (untreated group) to
53.9 nmol/g) and decrease in the browning index (reduced
from 31.7 (untreated group) to 23.9), after 12-days.
Several studies on the use of silver nanoparticles and
their potential application for antiviral effects have also
been reported. Huy et al reported that silver nanoparticles
were not toxic to normal cells (human rhabdomyosarcoma
cell line), while they exhibited toxicity to a non-enveloped
virus (poliovirus) in vitro.*>" Sreekanth et al also reported
that the preparation of silver nanoparticles using terpenoid
and flavonoid mixtures extracted from the roots of ginseng
by green synthesis and showed toxicity to the influenza A
virus, while they did not exhibit toxicity to assumed nor-
mal cells (Madin-Darby canine kidney [MDCK] cell
line).*>>* Antoine et al reported that zinc oxide nanoparti-
cles greatly inhibited herpes simplex virus type 2 (HSV-2)
infection of the reproductive organs in female BALB/c

353

mice and reduced mortality.””” Gurunathan et al reviewed

in 2020 the possibility that antiviral potential of inorganic
nanoparticles might be a fight against coronaviruses.*>
Other inorganic nanoparticles such as those containing
iron oxide (supplements and colorants), titanium dioxide
(food additives), silica (anti-caking agents and flavors),
food

nanotechnology.?***> 37 It is believed that surfactants

and selenium (supplements) are wused in
can also be used for these inorganic nanoparticles other
than silver nanoparticles to further enhance their functions
in the future. On the contrary, Gram-negative bacteria such
as Escherichia coli 013, Pseudomonas aeruginosa
CCM3955, and Escherichia coli CCM3954 gradually
acquire resistance to inorganic nanoparticles.*>® In addi-
tion, silver, titanium dioxide, zinc oxide, and silica nano-
particles reach the colon after oral administration, and

their antimicrobial properties can affect the intestinal

microbiota and aggravate the immune response of the
gut-associated lymphoid tissue.>>® New technologies in
food nanotechnology are expected to overcome these cur-
rent concerns.

Nanoparticles Originally Contained in
Food

Humans consume food products containing nanoscale sub-
stances on daily basis. There are numerous nanostructures
(such as emulsion, nanoparticles and micelles, and colloids)
composed of proteins, carbohydrates, and lipids that exist in
the food matrix. For example, milk contains nanostructures
such as casein micelles (50-300 nm in diameter), whey
protein (4-6 nm in diameter), and lactose (0.5 nm in dia-
meter). A wide variety of nanoscale materials, from both
natural and artificial sources, might be present in foods
(Figure 10).*°' Several studies have been conducted on
these nanostructures present in food; beer (containing
microplastics),”® chewing gum (containing titanium
dioxide),*®" chicken meat (containing silver nanoparticles),-
392 drink products (containing silver, gold, copper, iridium,
palladium, platinum, silicon, and zinc nanomate:rials),363
drinking water (containing titanium dioxide, silver, and
gold nanoparticles),’** and honey (containing non-pollen
particles).>®® Zhang et al used atomic force microscopy to
examine the nanostructure of pectin in cherries and found a
close relationship between its structure and fruit firmness.**
Dang et al also reported that cooking and processing of foods
can change their nanostructures, which further changes the
physical properties of the foods.*®” It has been reported that
ferritin nanoparticles contained in plant-based foods are
taken up from small intestinal epithelial cells and used as a
source of iron in the body.>*® Nanostructures are also pro-
duced during oral ingestion, for example, orally ingested
foods can be physically (emulsification, mastication, and
peristalsis) and chemically (acidic pH environment and inter-
action with various digestive enzymes) stimulated in various
organs of the digestive system, some of which are miniatur-
ized to the nanoscale. It is believed that the food components
(amino acids, inorganic salts, monosaccharides, polyphenols,
and vitamins) are miniaturized in this way and reaches the
small intestine, where they are subsequently absorbed.?*!*!
Some nanoparticles are formed in the digestive organs by
chemical precipitation. For example, when food-derived cal-
cium and phosphate ions are present in the small intestine,
calcium phosphate nanoparticles are deposited.’® Thus,

nanoparticles are present in many food products, however,
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the “nanostructures that are not purpose-designed and are
originally contained in food”, as described in this section,
considered as the of food

are not products

nanotechnology.®®’

Safety of Nanoparticles in the Food
Industry

The safety of nanoparticles in food industry is an
important concern that cannot be ignored. Many stu-
dies have claimed that nanoparticles may migrate from
packaging materials into food, then taken up and accu-
mulated in the human body via oral intake.’’® In addi-
tion, nanoscale pesticide residues present in food and
other foreign substances that have contaminated the
food products during their manufacturing process are
unintentional contaminants. Distinguishing such con-
taminants from the nanoparticles prepared by food
nanotechnology or nanoparticles originally contained
in food or food-derived nanoparticles is important for
food quality, safety, and environmental considerations.
Inorganic nanoparticles that may be contaminated in
the food include transition metals (for example, silver,
iron, titanium, and zinc), alkali earth metals (calcium
and magnesium), and non-metals (selenium and sili-
cate). In developed countries, it is estimated that
more than 10'? inorganic nanoparticles are taken into

the human body per day.”!

Some nanoparticles are
also unintentionally contaminated in animal and plant
breeding environments. For example, Lin et al exam-
ined the transfer and accumulation of two types of
nanostructures (C70 fullerene and multiwalled carbon
their

environment.’’? Rice seedlings were grown in a germi-

nanotubes) into plants through growing
nation culture medium containing C70 fullerene or
multiwalled carbon nanotubes for two weeks. Then,
they were transplanted into the soil and grown to
maturity. Rice seeds were taken from the first genera-
tion of plants grown in this manner, and the second
generation was grown in a nanoparticle-free germina-
tion buffer. They found that C70 fullerenes were pre-
sent in the first generation of seeds grown in an
environment containing nanoparticles for a long period.
The presence of C70 fullerene was also observed in the
leaves of the second generation grown from the C70
fullerene-accumulating seeds obtained in the first gen-
eration. In contrast, the plants grown in the germina-

tion culture medium containing multi-walled carbon

nanotubes did not show their accumulation in either
first or second generation. This suggests that C70 full-
erene and multiwalled carbon nanotubes accumulate
differently in the plant body depending on their nanos-
tructures. Such uptake of nanoparticles into plants has
also been studied with metal nanoparticles such as
gold, silver and silica.’’>”®> The nanostructures have
the potential risk of exposure and accumulation
through various routes in the human body, such as
unintentional inhalation and dermal contact.’’® At this
stage, the types and amounts of nanostructures present
in the environment, their accumulation in plants and
animals, and the risk of pollution in the food supply
are not yet well understood, which is very important
considering the use of nanoparticles in food industry.
Bieberstein et al assessed consumer inclination towards
purchase of products of food nanotechnology in France
and Germany, focusing on two applications: “nano
vitamin” and “nano packaging.” The results reported
that consumers in both countries tended to be reluctant
to accept food nanotechnology.’’” These trends are due
to unresolved concerns about the safety of products of
food nanotechnology, which needs to be assessed
through research that is more extensive.

Conclusions and Outlook

Surfactants have a long history of use by humans, and
various products have been made that make use of their
properties. Moreover, the surfactant-coated nanoparticles
demonstrated the crucial importance of surfactants in the
fields of nanomedicine and food nanotechnology. In both
fields, it has been demonstrated that surfactants can further
enhance the functions of the nanoparticles. Various
approaches that take advantage of the synergistic effects
of nanoparticles and surfactants have the potential to cre-
ate many useful new technologies in the future, although
challenges are yet to be overcome, including safety of
nanoparticles and surfactants. There are many cases
where technologies that are highly effective in vitro do
not work well in vivo because of unexpected problems that
arise when applied to humans. While new technologies are
being developed everyday, the rapid development of nano-
medicine and food nanotechnology has also ignited con-
sumer concerns. Current information on nanoparticles and
surfactants is insufficient to overcome these concerns.
Therefore, continuing research is needed to obtain reliable
information in the future. Recently, advances in machine
learning and artificial intelligence immensely decoded and
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empowered, the cell-nanomaterial interaction modelling,
which gave modern to nanomedicine to predict the biosaf-

378,379 380,381 to

ety and efficacy and in-silico methods
potentially decipher the quantitative nanostructure activ-
ity-relationship (Nano-QSAR). In 2010, the two timelines
(nanoparticles and artificial intelligence) merged as artifi-
cial intelligence was applied to the task of identifying and
predicting of grouping according to their properties, inter-
action, and toxicity of nanoparticles (Figure 11). *”° The
fields of nanoparticles and artificial intelligence will con-
tinue to complement each other. There will be significant
progress in research field of surfactant-coated nanoparti-
cles as the develop of these technologies. This review is
not limited to either nanomedicine or food nanotechnol-
ogy, but is intended to be of interest to people in both
fields and to bridge these fields. We hope that this review
will serve as an impetus for the development of new

technologies in interdisciplinary fields.
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