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Introduction 

 Magnetoencephalography (MEG) is a neuroimaging technique that uses an 
array of sensors positioned over the scalp that are extremely sensitive to 
minuscule changes in the magnetic fi elds produced by small changes in the 
electrical activity within the brain. It is, therefore, a direct measurement of 
neural activity. MEG as technique for investigating neural function in the 
brain is not new but was originally pioneered in the late 1960’s. However, it is 
only since the early 1990’s, with the introduction of high-density (200+) 
detector grids covering the whole head, that the full potential of MEG has 
begun to be realized. At the present time, MEG has grown to be a signifi cant 
neuroimaging technique, with an increasing number of users and with the 
number of scientifi c papers utilizing MEG increasing year on year.

The casual reader of this book may well be wondering what the great 
attraction of MEG is. Why bother with MEG when alternative neuroimaging 
techniques, particularly functional magnetic resonance imaging (fMRI) and 
electroencephalography (EEG), exist and seem to be attractive? To begin to 
answer this question, let us consider an example of what the amazingly com-
plicated human brain is actually capable of achieving in a real world situation. 
Imagine driving home from work in your car and suddenly experiencing a car 
in the opposite lane swerving into your lane. You somehow manage to avoid 
a crash but are left wondering how your brain made this possible. 

Consider all of the complex sensory processing, object recognition, eval-
uation, executive planning, cognitive decisions, motor events and strong 
emotions evinced in the previous sequence of events that have occurred in a 
time window of perhaps 750 ms or less. With MEG, the sequence of neural 
events can be readily tracked with at least 750 snapshots of sensor data, from 
which one can reconstruct 750 three-dimensional plots of current distribution 
in the brain. In fMRI, neural activation in this same time window, indirectly 
measured via local changes in the level of blood oxygenation, is typically com-
pressed to one measured brain volume. Although fMRI localizes the active 
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areas with high spatial accuracy, it provides no real-time information of 
neural involvement and is therefore not ideal to track brain activity related to 
the kind of rapid decision-making that made it possible for you to survive the 
near crash. 

This book is aimed at everyone interested in MEG. The reader may wish 
to use MEG because there is a specifi c neuroscience question which they think 
could best be answered with MEG, or because MEG happens to be the func-
tional neuroimaging method that is available. Either way, one needs to be 
aware of the possibilities and limitations of the method in order to produce 
reliable and meaningful results. This book is intended to provide the reader 
with some basic tools for planning and executing MEG experiments and for 
analyzing and interpreting the data. The reader will appreciate this is a rapidly 
evolving fi eld, and the chapters presented here are by no means exhaustive. 
Nevertheless, we hope that the practical approach we have sought in these 
chapters will be helpful when pursuing MEG studies.

The great strength of all neurophysiological methods, EEG as well as 
MEG, is that the detected signal directly refl ects real-time information trans-
fer between neurons. Neural activation induces an electric current that gener-
ates in turn corresponding electric and magnetic fi elds which are measured. 
Analysis of EEG data has traditionally been limited to dealing with the timing 
information available to the electrodes stuck to the scalp as the electric fi eld 
changes at each electrode. However, MEG analysis has, from the onset, sought 
instead to localize the neural sources of electric current within the brain by 
using the time courses of the changes in the magnetic fi eld recorded by an 
array of detectors. The reason for this difference of approach is straightfor-
ward. Electric fi elds (and therefore EEG) are strongly infl uenced by large 
changes of electric conductivity between the brain, skull and scalp, creating 
marked distortion. Currently, it is not feasible to noninvasively determine the 
geometry and conductivity of these different structures accurately and effi -
ciently in individual subjects. The magnetic fi eld (and therefore MEG) are 
affected signifi cantly less by the same structures, causing far less distortion. 
Because of the concentric organization of these physiological structures, con-
ductivity varies primarily along the radial direction. As a result, the magnetic 
fi eld recorded outside of the head is essentially the same as the one that would 
be recorded on the exposed brain surface, making reconstruction far more 
accurate. As always, benefi ts come with cost. MEG is most sensitive to tangen-
tially oriented currents that are located close to the sensors, i.e., in the cortex, 
whereas EEG is equally sensitive to signals from neural sources in any orienta-
tion and potentially can reach to deeper structures. In practice, though, the 
heightened sensitivity of MEG to tangential currents is a great asset in source 
localization, as it markedly simplifi es the ‘inverse problem’, i.e., the complex 
relationship between current sources and electromagnetic fi elds. The electro-
physiological basis of MEG and the basic mathematical formulation are 
described in Chapter 1 (Lopes da Silva).

Knowledge of instrumentation is essential for understanding what is 
actually being measured in MEG and how it is done. For example, one needs 
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to be aware of the different types of detection coils that can be used for record-
ing the MEG data, as this infl uences the appearance of the signals at the sensor 
level. If conclusions are drawn solely based on the sensor signals, without 
proceeding to some form of source reconstruction, it is crucial to know the 
structure of the detector coils. Chapter 2 (Parkkonen) describes the principles 
of MEG hardware, and Chapter 3 (Parkkonen & Salmelin) provides guide-
lines for performing successful measurements. These chapters also discuss the 
important steps involved in preprocessing MEG data, including evaluation of 
possible artifacts and the effects of fi ltering. Chapter 4 (Salmelin & Parkkonen) 
focuses on the design of MEG experiments and considers the selection of 
parameters also with respect to that in behavioral and fMRI neuroimaging 
studies. 

The unique power of MEG is that it combines the localization of active 
brain areas with reasonable spatial accuracy, together with the extraction of 
the time courses of activation in those areas with excellent temporal accuracy. 
Source analysis and reconstruction is now usually an integral part of the anal-
ysis of MEG data. Indeed, decomposition of the MEG sensor signals into 
activity of specifi c neural sources enhances and clarifi es stimulus and task 
effects. Sources of early cortical somatosensory responses, for example, may 
be localized very precisely because of the lack of simultaneous activation from 
elsewhere in the cortex. Relative locations of sources within subjects can also 
be determined fairly accurately, such as the distance between areas in the 
somatosensory cortex that are activated by electrical stimulation of the thumb 
versus little fi nger. It is important to keep in mind that MEG (or EEG) data 
allow estimation of the centre of an active brain area but do not provide 
detailed information about its shape. The precise appearance of the resulting 
activity map is determined by the specifi c analysis method employed.

Chapter 5 (Baillet) outlines the general concepts and assumptions for the 
various approaches that are currently used in MEG source analysis. Many of 
those methods are applicable to EEG data as well or were initially developed 
in that domain. Because of the inverse problem, some constraints are needed 
in order to proceed from the distribution of magnetic fi eld to confi guration 
of neural sources. A widely used and robust approach is to represent the neu-
ral sources by a physiologically plausible and mathematically simple model, 
an equivalent current dipole. Chapter 6 (Salmelin) discusses the practical 
application of this method to analysis of both evoked responses and oscilla-
tory background activity. Chapter 7 (Jensen & Hesse) focuses on another 
approach in which constraints are set to the solution of the inverse problem 
by accepting the result that accounts for the measured signals with the small-
est overall amount of electric current. Chapter 8 (Hämäläinen et al.) illus-
trates a conceptually similar approach, but with minimization of the overall 
power, in which the activity is additionally constrained to the cortex based on 
individual structural magnetic resonance images (MRIs) and the process may 
be further guided by functional MRI (fMRI) activation maps. Chapter 9 
(Gross et al.) details the use of spatial fi lters (‘beamformers’) in the detection 
of interconnected neural networks. Chapter 10 (Pantazis & Leahy) outlines 
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recent advances in performing fMRI-type statistical analysis on distributed 
MEG maps (cf. Chapters 7 to 9) keeping in mind, however, that time courses 
of activity in different brain areas determined from MEG signals are highly 
correlated with each other, which is not the case for the voxel time courses in 
fMRI data. Chapter 11 (Poline et al.) addresses the combined use of different 
neuroimaging techniques. 

Most analysis approaches are initially tested on very simple sensory or 
motor paradigms, with one or maximally two experimental conditions, and 
typically on a single subject. In reality, neuroscience questions can be far more 
complex, usually with multiple experimental conditions in multiple subjects. 
Chapters 5 through 10 touch upon these issues as well. The reader will appre-
ciate that all approaches have their advantages and disadvantages, and the 
choice between different analysis methods in the end should best be deter-
mined by the particular research question of interest. Modeling the sources 
as focal equivalent current dipoles is a mathematically transparent approach, 
with the minimum number of assumptions, but it generally requires manual 
intervention and benefi ts from expertise. Distributed source reconstruction 
approaches tend to be more automated and require less manual intervention 
and may, therefore, be freer from potential analyst bias. Their possible risk 
lies in their mathematical complexity and hidden assumptions. However, it 
should be realized that no method is inherently better than the others and 
none of them can truly circumvent the inverse problem. Ideally, and certainly 
when in doubt, the reader would be well advised to use more than one method 
to analyze MEG data and to compare between them.

Chapters 12 through 15 (Kakigi & Forss; Salmelin; Mäkelä; Kringelbach 
et al.) provide a set of examples of MEG studies ranging from basic sensory 
processing to cognitive tasks, and to the use of MEG in a clinical setting. The 
topics we chose to describe here obviously refl ect only a very small part of the 
various research questions that MEG has been applied to. Nevertheless, we 
hope they will give a general idea of the possibilities of the MEG method.

To conclude, the reader should appreciate that the whole fi eld of MEG 
research is very much a dynamic and growing one. In this book, a selection of 
scientists with long experience in MEG, each with their own view and voice, 
seek to provide some seasoned practical tools for the recording and analysis 
of MEG data and to offer their insights into various conceptual and technical 
issues that continue to be discussed and developed. We hope this will be helpful 
and informative to new MEG users. 

Happy MEG recordings!

Peter Hansen
Morten Kringelbach

Riitta Salmelin

Helsinki and Oxford 
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1

        Magnetoencephalography (MEG) is the technique of measuring the magnetic 
fi elds generated by brain activity, and was pioneered by Cohen (  1968  ). An 
important feature of MEG/EEG is the ability to record varying signals 
generated by the brain in relation to states of activity, whether determined by 
intrinsic processes—e.g., different states of sleep and alertness—or in relation 
to motor acts and sensory events (Hari,   2005  ). In this overview, we will focus 
on the basic physiological and biophysical aspects of how magnetic signals are 
generated in the brain. We start, however, with a brief description of the main 
features of MEG as a method to study brain functions in man.     

1

Electrophysiological Basis of MEG Signals 

Fernando H. Lopes da Silva 

        MEG signals recorded at the scalp are generated by synchronous • 
activity of tens of thousands of neurons  
    Mainly postsynaptic currents in apical dendrites contribute to MEG • 
signals  
    MEG signals are highly sensitive to currents tangential to the skull, • 
originating in the cortical sulci  
    MEG fi elds refl ect the primary neuronal currents directly, with • 
minimum distortion from different layers – brain tissue, skull, scalp – 
with different electric conductivities  
    Estimation of MEG sources implies the construction of computational • 
models of the biophysical sources and of the volume conductor      
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Main Features of MEG 

 MEG provides information about the dynamics of the activities of popula-
tions of neurons of the cerebral cortex. The time resolution capabilities 
of MEG and EEG are unrivalled. Nevertheless, MEG, like EEG, has a basic 
limitation in that the neuronal signals are only recorded from the scalp. 
Consequently, there is no unique solution to the problem of reconstructing 
where exactly the sources of these signals are localized within the brain. This 
problem is commonly referred to as  the inverse problem . The standard 
approach to overcome the non-uniqueness of the inverse problem in MEG/
EEG is to introduce constraints on the possible solutions, in order to exclude 
all solutions except the one that is most suitable to describe the data. Thus, 
the functional localization of brain sources of MEG/EEG signals depends to 
some degree on the models used and on the corresponding assumptions, and 
therefore will have some degree of uncertainty. 

 This contrasts with the spatial accuracy of MRI brain images, where the 
MRI technology affords a truer 3-dimensional reconstruction. It explains 
partly why the development of clinical applications of MEG has been slow, 
since the research on how to optimize estimates of the solutions of the inverse 
problem has been arduous, and has only recently reached a stage where con-
sensual strategies are emerging. These inherent diffi culties, along with the fact 
that MEG needs rather costly facilities, account for the restraint of medical 
specialists in promoting this new methodology, and the hesitation of hospital 
administrators in supporting the necessary investments in material and 
human resources. Nonetheless, MEG has proven a most valuable tool in 
research, not only of neurocognitive processes (Salmelin et al.,   1994  ) but 
also in clinical settings (Van ‘t Ent et al.,   2003  ), as presented further in this 
volume.     

Some Basic Notions of Cellular Neurophysiology 

 Neurons generate time-varying electrical currents when activated. These are 
ionic currents generated at the level of cellular membranes; i.e, they consist of 
transmembrane currents. We can distinguish two main forms of neuronal 
activation (Lopes da Silva & van Rotterdam,   2005  ): the fast depolarization of 
the neuronal membranes that results in the action potential mediated by 
sodium and potassium voltage-dependent ionic conductances g 

Na
  and g 

K(DR)
 , 

and the more protracted change of membrane potential due to synaptic acti-
vation mediated by several neurotransmitter systems. The action potential 
consists of a rapid change of membrane potential, such that the intracellular 
potential jumps suddenly from negative to positive, and quickly, in 1 or 2 mil-
liseconds, returns to the resting intracellular negativity. In this way, a nerve 
impulse is generated that has the remarkable property of propagating along 
axons and dendrites without loss of amplitude. The contribution of other 
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ionic conductances to the magnetic fi eld is discussed below, in relation to new 
insights obtained using computer models. 

 Regarding the slower postsynaptic potentials, two main kinds have to be 
distinguished: the excitatory (EPSPs) and the inhibitory (IPSPs) potentials, 
which depend on the type of neurotransmitter and corresponding receptor, 
and their interaction with specifi c ionic channels and/or intracellular second 
messengers. 

 Generally speaking, at the level of a synapse in the case of the EPSP, the 
transmembrane current is carried by positive ions inwards. In the case of the 
IPSP, it is carried by negative ions inwards or positive ions outwards. Thus 
the positive electric current is directed to the extracellular medium in the case 
of an EPSP, and it is directed from the inside of the neuron to the outside in 
the case of an IPSP ( Figure  1–1  ).  

Post-synaptic Extra-cellular Potentials

IPSPEPSP

−

−

+
−

+

−

+
+

Figure 1–1 . Intra- and extracellular current fl ow in an idealized pyrami-
dal neuron due to different types of synaptic activation. EPSP: excitatory 
synapse at the level of the apical dendrite; the generated current of posi-
tive ions fl ows inwards, causing depolarization of the cell. This results in 
an active sink at the level of synapse. The extracellularly measured EPSP 
has a negative polarity at the level of the synapse. At the soma there is a 
passive source, and the potential has a reversed polarity. IPSP: inhibitory 
synapse at the level of the soma. A current of negative ions fl ows inwards 
causing hyperpolarization of the cell; this results in an active source at 
the level of the synapse. The extracellularly measured IPSP has a positive 
polarity at the level of the soma. At the level of the distal apical dendrite 
there is a passive sink, and the potential has a reversed polarity. 
(Adapted from Niedermeyer & Lopes da Silva, 2005). 
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 As a consequence of these currents in the extracellular medium, an active 
sink is generated at the level of an excitatory synapse, whereas an active source 
occurs in the case of an inhibitory synapse. The fl ow of these compensating 
extracellular currents depends on the electrical properties of the local tissue. 
Glial cells occupy an important part of the space between neurons, and are 
coupled to one another by gap junctions. The conductivity of the latter is very 
sensitive to changes in pH on extracellular K +  and Ca 2+  and can therefore be 
modulated under various physiological and pathological conditions (Huang 
et al.,   2005  ). Furthermore, the volume of the extracellular space may change 
under various physiological and pathological conditions, which will also be 
refl ected in changes of tissue conductivity. 

 From the biophysics we may state that there is no accumulation of charge 
anywhere in the medium, in that currents fl owing in or out of the neuronal 
membranes at the active synaptic sites are compensated by currents fl owing 
in the opposite direction elsewhere along the neuronal membrane. This is 
described in more precise terms in the next section. Consequently, in the case 
of an EPSP, in addition to the active sink at the level of the synapse, distrib-
uted passive sources occur along the soma-dendritic membrane. The oppo-
site occurs in the case of an IPSP: in addition to the active source at the level 
of the synapse, distributed passive sinks are formed along the soma-dendritic 
membrane. 

 Therefore we may state that synaptic activity at a given site of the soma-
dendritic membrane of a neuron causes a sink–source confi guration in the 
extracellular medium around the neurons. In the context of the present dis-
cussion, the most important point to take into consideration is the  geometry  
of the neuronal sources of electrical activity that gave rise to the scalp EEG or 
MEG signal. The neurons that give the main contribution to the MEG or the 
EEG are those that form “open fi elds” according to the classic description of 
Lorente de Nó (  1947  ); i.e., the pyramidal neurons of the cortex, since the lat-
ter are arranged in palisades with the apical dendrites aligned perpendicularly 
to the cortical surface ( Figure  1–2  ). This means that longitudinal intracellular 
currents fl ow along dendrites or axons, and thus generate magnetic fi elds 
around them—just as happens in a wire, according to the well known right-
hand rule of electromagnetism (see also FAQ, Q1).  

 Pyramidal neurons of the cortex, with their long apical dendrites, generate 
coherent magnetic fi elds when activated with a certain degree of synchrony. 
We may say that these neurons behave as “current dipoles,” the activity of 
which can be detected by sensors placed at a small distance from the skull. 
Later in this chapter we will consider this issue further in quantitative terms, 
based on recent computational model studies. 

 In order to make the next step toward an understanding of how MEG 
signals recorded outside the skull are generated, we also have to take into 
consideration the folding of the cortex. The fact that the cortex is folded, 
forming gyri and sulci, implies that some populations of neurons have apical 
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dendrites that are perpendicular to the overlying skull, i.e., those that are at 
the top of a gyrus; whereas others are parallel to the skull, i.e., those that are 
on the wall of a sulcus. The point to note in this respect is that the orientation 
of the neurons with respect to the skull infl uences the resulting MEG signal 
recorded outside the skull. In fact the MEG “sees” only those magnetic fi elds 
that have a component perpendicular to the skull. These magnetic fi elds are 
generated by neuronal currents that have a component oriented tangentially 
to the skull. In contrast, those currents that are oriented radially to the skull 
do not generate a magnetic fi eld outside the head ( Figure  1–3  ).      

A Few Basic Notions of Biophysics 

 EEG and MEG signals vary in time, but this variation is relatively slow; hence, 
induction effects can be neglected. This means that Maxwell equations need 
not be applied, and the behavior of the electric and magnetic fi elds can be 
described by the classic Ohm’s, Ampère’s and Coulomb’s laws. For a rigorous 
treatment of the biophysics of the generation of electric and magnetic fi elds in 
the brain   1    one has just to assume that the neural generator, for example a 
synaptic ionic current, is represented by the impressed current density  J

�
   
i
  such 

Closed fields

+

A

B

C

D

−

Spatial Organization of Assemblies of
Neurons in the CNS According to Lorente de Nó (1947) 

Open
and mixed fields

Figure 1–2 . Examples of closed (A, B), open (C) and open–closed (D) fi elds 
according to Lorente de Nó. The isopotential lines resulting from the acti-
vation of the neuronal population are shown on the right side. 
(Adapted from Niedermeyer & Lopes da Silva, 2005). 
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that the total current density fi eld  tJ    consists of  J
�

   
i
  and a passive part (second-

ary current) that obeys Ohm’s law:

   t iJ J E= +
��

s     (1–1)  

 where  σ  is the medium conductivity and  E
��

   is the electric fi eld.  
 Considering that the div  tJ    must be zero, since there is no accumulation 

of charge anywhere in the medium, we may note that

   div divIJ E= −
��� ��

s     (1–2)   

B
B

A

Qr Qd

BB

Q
d

Q
r

0

I

0 0

0

Radial and Tangential sources

VI

Direction ofDirection of
propagationpropagation
Direction of
propagation

Di
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n 
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Figure 1–3 . Schematic drawing of a piece of cortex showing the crown 
of a gyrus and a sulcus. Two cylinders are drawn to indicate the relation 
between the direction of the intracellular current and the resulting mag-
netic fi elds around the apical dendrite. Sources at the top of a gyrus cause 
radial fi elds that are not detectable by MEG. Sources in the fi ssures cause 
tangential fi elds that can be detected at the MEG. 
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 assuming that the medium conductivity  σ  is everywhere constant for simplicity. 
The relation between  E

��
   and the electric potential  V , that is a scalar variable, 

is given by:

   gradE V= −
��

    (1–3)   

 Accordingly, we may write that the electric potential at a given point  0r    
 that results from an impressed current  J

�
   
i
  at a point  r    is given by the follow-

ing integral expression:

   ( ) ( ) ( ) 3
0 1/4 1/iV r div J R d r= − ∫ps     (1–4)  

 where  R  represents the distance between the measuring point  0r    and the 
source location  r   .  

 With respect to the magnetic fi eld  ( )H r    we should note that it is related 
to the magnetic fl ux density fi eld, or induction fi eld,  ( )B r    by the following 
expression:

   ( ) ( )B r H r= m     (1–5)  

 where  μ  is the magnetic permeability.  
 According to the equations for electromagnetism we should note that the 

angular momentum or the curl of a vector fi eld is the amount of “rotation” of 
the vector, which is denoted by the symbol  ∇    (read  del ), such that we may 
write the following relation between the magnetic fi eld  H    and the current  tJ   :

   
tH J∇ × =     (1–6)   

 and since magnetic monopoles don’t exist we may write:

   div 0B =     (1–7)   

 and

   ( )iB J E∇ × = +m s     (1–8)  

 where  μ  is the magnetic permeability.  
 Here we should note that the passive current fi eld  Es    is conservative; 

i.e., it can be derived from the scalar potential  V  as follows:

   ( ) 0E r∇ × =     (1–9)   

 Mathematically, expression (1–7) is equivalent to the statement that B    
can be derived from the vector potential  A    as follows:

   B A= ∇ ×     (1–10)   
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 Combining expressions (1–8), (1–9) and (1–10), we fi nally arrive at 
the expression relating the magnetic vector potential  A    to the impressed 
current  iJ   :

   
( )

3d r
4

iJ r
A

R
= ∫

m
p

    (1–11)   

 assuming an infi nite medium with  μ  and  σ  constant, as has been proven 
theoretically by Plonsey (  1969  ;   1982  ). 

 In this way we may conclude that this biophysical analysis allows to draw 
the conclusion that while the electrical potential  V  depends (expression 1–4) 
on the divergence of the impressed current ( div iJ   ), the magnetic vector 
depends on the impressed current itself  iJ    (expression 1–11). 

 We should note that ‘div  iJ   ’ denotes the current source density (CSD) 
because the divergence of the impressed current density at a certain site on 
the membrane of a cell, is the net current that fl ows per-unit-volume out of 
the medium into the cell. 

 It must be emphasized that the expressions introduced here are based on 
the assumption that the medium is homogenous and infi nite. Of course this 
does not apply to the brain. Indeed, at the microscopic level of one neuron, 
the infl uence of inhomogeneous media with different conductivities cannot 
be neglected, for both electric and magnetic fi elds. Nevertheless, at the mac-
roscopic level, at which commonly EEG and MEG recordings are made, the 
brain may be considered a homogeneous medium, in a fi rst approximation, 
surrounded by layers with different conductivities. In later section we briefl y 
consider this issue of the infl uence of inhomogeneities. 

  Figure  1–4   shows schematically the magnetic and electric fi elds caused by 
a current dipole in a head approximated as a spherical conductor. Both fi elds 

+

−

MEG EEG

Field patterns

Magnetoencephalography versus
Electroencephalography

Figure 1–4 . Field pattern of MEG, on the left, and EEG, on the right, caused 
by a current dipole model source in a concentric 4-layer spherical model 
of a head. The shaded areas indicate the magnetic fl ux out of the head 
(MEG) and the positive potential (EEG). 
(Adapted from Hari, in Niedermeyer & Lopes da Silva, 2005).
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are dipolar but are rotated by 90° with respect to each other. The isocontour 
lines are tighter in the case of the MEG compared with the EEG. This is mainly 
due to the infl uence of the inhomogeneities that smear out the electric potential 
much more than the magnetic fi eld.      

The Contribution of Neuronal Models: In Vitro and 
Computational Models 

 Early studies using  in vitro  preparations allowed the simultaneous measure-
ment of both the electric and magnetic fi elds generated by neuronal activity. 
A calculation of the magnetic fi eld around an axon was performed by Swinney 
and Wikswo (  1980  ) using a preparation whereby an isolated axon was kept in 
a bath with saline,  in vitro , and was stimulated electrically. They found that 
the magnetic fi eld resulted from the intracellular current fl owing inside the 
axon in the axial direction, whereas the contribution of the transmembrane 
current was negligible, and that of the return passive-current fl ows in the 
medium was very small. Relative to the intracellular current, the former was 
estimated to be only 10 −11  and the latter 10 −2 . Plonsey (  1982  ) similarly calcu-
lated a value of 10 −7  for the ratio between the secondary current sources and 
the primary current. 

 Some computational modeling studies have analyzed the relationship 
between the activity of neuronal sources and the resulting magnetic fi elds. An 
original approach was followed by van Rotterdam (  1987  ), who developed an 
algorithm to calculate electric and magnetic fi elds generated by populations 
of neurons with various geometrical arrangements. This was implemented by 
sampling the tissue volume using a 3-dimensional lattice, where the sampling 
distance corresponds to the uncertainty in the measurements. The electric 
and magnetic fi elds are calculated for each node as the output of a linear feed-
back system, using the impressed currents originating at some level along the 
soma-dendritic membranes as the input. By way of a feedback loop, the refl ec-
tion phenomena at the boundaries between media of different conductivity 
are taken into account. However, with this model only very simplifi ed neu-
ronal sources were analyzed; for example, a population of pyramidal cells 
arranged regularly so that they can be simulated by a half-circular layer of 
impressed current vectors. 

 More realistic models have been proposed by Yoshio Okada and col-
leagues. These authors adapted the detailed compartmental models of Traub 
and collaborators (  1994  ;   1991  ) and applied them to a section of a hippocam-
pal slice kept in an  in vitro  bath, while measuring simultaneously the intracel-
lular electric potentials of CA3 pyramidal cells, the extracellular fi eld potentials, 
and the magnetic fi elds, using four detection coils connected to supercon-
ducting quantum interference devices (SQUIDs). The coils were placed 2 mm 
above the slice, and were arranged as shown in  Figure  1–5  . The slice was elec-
trically stimulated with different confi gurations of stimulating electrodes, in 
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order to elicit different kinds of evoked activities. Measured electric and 
magnetic activities,  in vitro , were compared with the theoretical results of the 
computer model ( Figure  1–6  ). In essence the model consisted of 100 excit-
atory pyramidal and 20 inhibitory neurons. Each cell was simulated as a set of 
19 compartments (8 compartments for the basal dendrites, 1 for the soma, 
and 10 for the apical dendrites). In addition, different types of synaptic inputs 
were simulated (glutamatergic and GABAergic) and 6 types of active ion-
gated conductances. According to Murakami et al. (  2006  ), the intracellular 
current of a given compartment  k  is the vector quantity  ( )kQ t ILdr=   , where 
 I  is the current along the longitudinal axis of the neuron,  L  is the length of a 
compartment and  dr    is the unit direction vector for the compartment. In the 
model, the component of the magnetic fi eld normal to the slice surface was 
computed at the center of the detection coils. The spatial distribution of the 
evoked magnetic fi eld generated by the pyramidal neurons above the slice 
was dipolar, and it appeared to be dominated by the longitudinal current 
in each neuron: this corresponds to the impressed current  iJ   of equation 1–11. 
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Figure 1–5 . Longitudinal hippocampal slice preparation and experimental 
arrangement (C, D) for electrical stimulation and recording fi eld poten-
tials and magnetic fi elds. Above: two anatomical fi elds of the  Cornus
Ammonis (CA1 and CA3) are shown, along with a slice of CA3 where pyra-
midal cells are schematically indicated with 3 layers: s.o., stratum oriens;
s.p., stratum pyramidale; s.r.,  stratum radiale. C: measurement set-up: The 
slice is placed in a bath, and stimulating and recording electrodes are 
placed from below; magnetic fi elds are recorded using 4 coils connected 
to SQUIDs (SQs) placed 2 mm above the slice, as shown in more detail in 
D. A and B: The orientation of the magnetic fi elds caused by an intracel-
lular current fl owing from the soma/basal dendrites to the apex (A) and 
in the opposite direction (B) are schematically illustrated. 
(Adapted from Murakami et al. 2002).
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The simulations showed, among other effects, that the magnetic fi eld corre-
sponding to the evoked initial spike was directed into the slice at SQ-2 and 
out of the slice at SQ-4 ( Figure  1–5  ), which indicates that the intracellular 
current is directed from the basal to the apical dendrites of the pyramidal 
neurons. The slow wave that follows the spike shows the opposite polarity, 
indicating that it is generated by an intracellular current in the reversed direc-
tion ( Figure  1–6  ). This model allows one to analyze different patterns of den-
dritic branching, and how the distribution of the density of ion channels 
along the soma-dendritic membrane may be refl ected in the magnetic fi elds. 
Interestingly, this experimental and modeling study showed that sodium 
spikes can be detected magnetically and electrically in this preparation. 
Murakami et al. (  2002  ) suggest even that sodium spikes would be also detect-
able in EEG and MEG recorded from the scalp, “if the geometry of the distri-
bution of neurons is favorable”. However, this condition is most likely not 
suffi cient, because a high degree of synchrony is also necessary for spikes of 
this kind to be recordable at the scalp.   

Somatic stimulation Apical stimulation

SQ-2

SQ-4

SQ-2

8 pt

+

50 msa

b

SQ-4

Data

Model

Figure 1–6 . Magnetic fi elds recorded from the CA3 hippocampal slice as 
indicated in Figure 1–5, and results obtained with a computer model of 
a population of pyramidal cells. The magnetic fi elds recorded from SQ2 
and SQ4 are shown for two conditions: on the left, after stimulation at 
the level of the soma; on the right, after stimulation at the level of the 
apical dendrites. Positivity (defl ection upwards) indicates magnetic fi eld 
directed out of the bath. Note the general similarity of the waveforms of 
the experimental and the theoretical results. Note also the difference in 
polarity between early and late components. 
(Adapted from Murakami et al. 2002).
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 Subsequently, Murakami et al. (  2003  ) investigated, along the same lines, 
the relative contribution of different ionic conductances to the MEG and EEG 
signals. Surprisingly, they showed that the relatively slow conductances g 

Ca
  

and g 
K(Ca)

  generate intracellular currents that are one order of magnitude 
larger than the currents associated with g 

Na
  and g 

K(DR)
.  Furthermore, the con-

tribution of the former currents was also stronger than that of synaptic cur-
rents; but this may depend on the fact that in this model, synaptic activity was 
only generated in one compartment along the soma-dendritic membrane, 
which is not a very realistic scenario. 

 More recently, Murakami et al. (  2006  ) applied the same kind of approach 
to a more complex brain structure, the neocortex. This study is particularly 
relevant because it may yield some results that may help to interpret EEG and 
MEG recordings from the scalp. These authors constructed a computer 
model, based on that proposed by Mainen and Sejnowski (  1996  ), of the four 
main types of cortical neurons taking into account their realistic shapes. Each 
neuron is described as a three-dimensional compartmental model, where 
each compartment has its typical geometric dimensions, passive electrical 
properties (membrane capacitance and resistance, intracellular resistance), 
and fi ve voltage-dependent ionic conductances. The quantitative values of 
these variables were taken from the literature. For example, the maximal 
sodium conductance g 

Na
  was assumed to be 40 pS μm −2  based on the measure-

ments of Stuart and Sakman (  1994  ), but several values were used in a trial-
and-error way to reproduce experimental results. Neuronal activity was 
obtained by stimulating each neuron with an intracellular current injected at 
the soma. As in the hippocampal model, the intracellular current is the vector 
quantity  ( )kQ t ILdr=   . 

 The magnitude of this quantity is the current dipole moment, and is 
represented by  Q . The population  Q  for a group of pyramidal neurons was 
calculated by computing the sum of the dot product   2    of each current dipole, 
and the unit vector orthogonal to the cortical surface. The same was done for 
the stellate cells, with a modifi cation due to the fact that these neurons are 
differently oriented. Taking the cortical population as a whole, the primary 
current (that corresponds to  iJ   in the notation used previously) is equivalent 
to the population  Q , and the secondary currents (corresponding to the pas-
sive current given by  E

�
s    in equation 1–1) can be computed from Q given the 

properties of the volume conductor. In this model, the magnetic fl ux density 
fi eld  B   is assumed to be generated by the tangential component of  Q , with 
respect to the inner skull surface, and the electric fi eld is due to both the tan-
gential and radial components. This implies that  B    is mainly caused by neu-
ronal activity in sulci, since  Q  is directed perpendicularly to the pial surface, 
whereas both radial and tangential components contribute to the electric 
fi eld. This investigation led to another result of practical interest, namely it 
gave some direct indications about how to interpret the magnitude of the 
magnetic fi elds recorded in man. According to the model, the overall magni-
tude of Q for the activity of pyramidal neurons of layers V and II/III is on the 
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order of 0.29 – 0.90 pAm. Apparently this value deviates appreciably from 
that estimated previously for a cell by Hämäläinen et al. (  1993  ), which was 
just 0.02pAm. That larger value, however, is of the same order of magnitude 
as values estimated for hippocampal pyramidal neurons (0.2 pAm per cell in 
CA1 and 0.17 pAm per cell in CA3; see Kyuhou and Okada,   1993   and Okada 
et al.,   1997  ). Murakami et al. (  2006  ) point out that assuming a Q of 0.2 pAm 
per cortical pyramidal neuron, a population of 50,000 synchronously active 
cells would generate a fi eld with a magnitude of 10nAm, which corresponds 
precisely to the value measurable from the human cortex according to 
Hämäläinen et al. (  1993  ). Assuming that a cortical minicolumn with a diam-
eter of 40μm contains 100 cells (Mountcastle,   1997  ), the cortical surface that 
would correspond to 50.000 cells should form a patch of about 0.63 mm 2  in 
area. If this cortical patch had a circular form, its diameter would be about 
0.9 mm (for more details see FAQ, Q5). 

 In order to translate a cortical surface to a number of cortical cells, in 
which the synchronous activity is responsible for the signal measured, one 
must have a good estimate of the density of pyramidal cells in the cortex. 
These kinds of estimates, however, are rather imprecise, and those based on 
the quantitative computational models described above are to be preferred. 

 We have already discussed the possibility of spikes contributing to the 
magnetic fi eld measured at a distance. This computer model offers more 
insight into this issue. According to the calculations performed in the model, 
a sodium spike corresponds to a Q with the magnitude of 1pAm. Therefore, 
to reach the measurable value of 10nAm, it would be suffi cient that 10,000 
neurons generate such spikes synchronously. Although this is not impossible, 
as these authors note, it is unlikely to occur outside situations of forced 
synchronization, since there is considerable jitter in the ongoing cortical neu-
ronal activity (de Munck et al.,   1992  ). This model study revealed, in addition, 
two particularly interesting and unexpected results: fi rst, the activity of basal 
dendrites may contribute signifi cantly to the MEG and EEG signals; second, 
the magnitude of Q was unexpectedly large for a spiny cell, since it was esti-
mated to be 0.27pAm, whereas it was only 0.06 for an aspiny cell. Nevertheless, 
we cannot conclude that spiny cells will make an important contribution to 
MEG signals, since the dendrites of these neurons are not oriented parallel 
to each other (as are those of pyramidal neurons) but have quite variable 
orientations.     

The Transfer of Magnetic Signals from the Brain to the Skull 

 We have assumed until now that the electric and magnetic fi elds are gener-
ated in a homogeneous, isotropic and infi nite medium. However, this is not 
what happens in the brain. At the macroscopic level we have to distinguish 
different layers with different electric properties in the medium: white and 
gray matter, meninges and cerebrospinal fl uid, skull, and scalp. Also, at the 
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microscopic level the organization of the tissue is far from homogeneous. The 
extracellular space appears to be constituted by a complex mesh that has been 
called by Nicholson (  1980  ) the “extracellular jungle.” Furthermore, extracel-
lular shifts of ionic concentrations, the role of glial cells and gap junctions, all 
must be taken into account. Nonetheless, to model the electric and magnetic 
phenomena as measured from the scalp, a macroscopic description is, in gen-
eral, adequate. It is not within the scope of this chapter to deal with the math-
ematics of how electric and magnetic fi elds are infl uenced by the boundaries 
between media with different conductivities. We will consider only whether, 
and if so, how, the magnetic phenomena are affected by the existence of layers 
with different conductivities. 

 It is sometimes argued that these layers affect the EEG but not the MEG 
signal; in other words, that these inhomogeneous media would be transpar-
ent to MEG signals. This is, however, not entirely accurate. In general, 
the magnetic induction fi eld  B    only depends on the rotation of the current 
fi eld, as shown above, and that the passive current fi eld  Es   , being conserva-
tive, has no infl uence on the vector magnetic potential  A   . In a volume 
conductor with varying conductivity, however, the passive current fi eld can 
also have rotational components at the boundaries of media with different 
conductivities. A rigorous mathematical treatment of this matter is given by 
van Rotterdam (  1987  ).     

Frequently Asked Questions 

  Q 1. What does it mean, at the cellular level, that in MEG the current usually 
fl ows away from the cortical surface?  

 In the cortex, the main neuronal population that contributes to the magnetic 
fi eld is formed by the pyramidal cells. Let us compare this situation with the 
example shown in  Figure  1–5   for a hippocampal slice. Here we see that the 
magnetic fi eld of the initial spike peak was directed  into  the slice at SQ-2 and 
 out of  the slice at SQ-4. The fl ow of the intracellular current, which resulted 
from stimulation at the level of the soma, was from the hippocampal slice 
surface (s.o.), i.e., the basal side of the pyramidal neurons, to the deep layers 
(s.r.), i.e., their apical side. This follows from the “right-hand rule” for the 
induced magnetic fi eld. The latter states that magnetic fi eld lines around a 
long wire that carries an electric current form concentric circles around the 
wire; the direction of the magnetic fi eld is perpendicular to the wire and is in 
the direction the fi ngers of the right hand would curl if one wrapped them 
around the wire with the thumb in the direction of the current. In this exam-
ple, the slow wave that follows the spike shows the opposite polarity, indicat-
ing that it is generated by an intracellular current in the reversed direction, 
from the apical to the basal side. In the case of the neocortex, the situation 
differs from that of the hippocampus in its geometry, since the cortical pyra-
midal cells, contrary to those of the hippocampus, have apical dendrites 
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oriented toward the cortical surface, and the soma and basal dendrites are in 
deeper layers. A positive current would fl ow from the pial surface to deep 
layers, as the consequence of an excitatory synaptic stimulation at the level of 
the apical dendrites. This is not, however, the only possible interpretation, as 
will be discussed further in the next question. 

  Q 2. On the basis of the direction of fi elds in MEG, or the polarity of scalp 
potentials in EEG, can one say something about whether we record excitatory or 
inhibitory PSPs?  

 In general, this question cannot be answered in a simple way. Different con-
fi gurations of EPSPs and IPSPs can give rise to magnetic fi elds with the same 
direction, or to electric potentials with the same polarity at the cortical sur-
face. The reason is that an EPSP arising in the apical dendrites, or an IPSP 
arising in the soma or basal dendrites, may result in an intracellular current 
with the same orientation. In the former case there is an intracellular current 
carried by positive ions from the apex to the base of a pyramidal cell; in the 
latter, there is an intracellular current carried by negative ions from the base 
to the apex, which is equivalent to a positive current in the opposite direction. 
In both cases one would have a sink at the apex and a source at the base. Thus, 
in order to be able to give an unambiguous reply to this question one would 
need to have additional information about the  site  along the pyramidal cell 
where the current is initiated. 

  Q 3. Can we state as a rule that the direction of current fl ow is from the cortical 
surface to the depth of the cortex?  

 In general, we cannot. As described in the answer to Q 2. above, one can have 
situations where the direction of the intracellular currents reverses. For exam-
ple, in the case of the experimental studies in hippocampal slices (Murakami 
et al.,   2002  ) we may observe, in a response to electrical stimulation of pyrami-
dal cells, an initial component of the magnetic fi eld due to a current directed 
from the basal to the apical sites, followed by a second component due to 
reversed currents ( Figure  1–6  ). It is likely that the same process may occur in 
the neocortex. For example, the MEG evoked responses, elicited by stimula-
tion of the tibial nerve in man, show, as a function of time, a rotation of the 
magnetic fi eld patterns (Hari et al.,   1996  ). This rotation may depend on 
changes of the cortical areas being activated, but also on changes in the direc-
tion of intracellular currents of the pyramidal cells in one particular cortical 
area that is engaged in these responses. It should be noted, 
however, that the major part of the electric currents that cause a fi eld that is 
measurable at a distance fl ows perpendicular to the cortical surface. 

  Q 4. How many neurons, synchronously active, are necessary to generate a 
recordable signal in the human MEG?  

 A precise answer to this quantitative question cannot be given. Nonetheless, 
recent model studies suggest the likely order of magnitude. Murakami and 
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Okada (  2006  ) computed that the current dipole of cortical pyramidal cell is in 
the order of 0.2 pAm/cell. Considering that, according to Hämäläinen et al. 
(  1993  ), the weakest measurable cortical signals are on the order of 10nAm, we 
may assume that such magnetic fi elds can be produced by about 50,000 cells 
synchronously active. 

  Q 5. How large is the cortical area within which neurons must be synchronously 
active to produce a measurable MEG signal at the scalp?  

 To answer this, we must take into consideration the estimates of the quantita-
tive distribution of neurons in the cortex. First, it is important to understand 
some classic concepts about cortical organization. The cortex is organized 
according to the columnar principle as proposed by Mountcastle in the 1970s 
(see review, Mountcastle,   1997  ), which means that the basic unit of the mature 
neocortex is the  minicolumn : “a narrow chain of neurons extending vertically 
across the cellular layers II/VI, perpendicular to the pial surface,” having a 
cross-section with a diameter of about 50μm. A minicolumn in primates con-
tains about 80 to 100 neurons, although this number may vary between areas; 
in the striate cortex the cell density appears to be 2.5 times larger. Many mini-
columns are bound together by short-range horizontal connections, sharing 
“static and physiological dynamic properties” and thus forming what has 
been denominated  cortical columns  or  cortical modules  (Mountcastle,   1997  ). 
These columns, in the somatic sensory cortex, contain about 80 minicolumns 
and are roughly hexagonal with a width of about 300–400μm (Favorov & 
Diamond,   1990  ). Of course, these numbers are just estimates. Nonetheless, 
based on these estimates we can attempt to give a rough answer to the ques-
tion formulated here. Assuming that a column with a diameter of 40μm con-
tains 100 cells, the cortical surface that would correspond to 50,000 cells 
should form a patch with about 0.63 mm 2  in area. If this cortical patch had a 
circular form, then its diameter would be about 0.9 mm. It should be noted 
that this columnar cortical organization is encountered throughout the sen-
sory and motor cortex, albeit with some peculiarities depending on cortical 
area and sensory/motor modality as reviewed by Buxhoeveden and Casanova 
(  2002  ). Interestingly, these authors note that from a functional perspective, 
cortical columns may exist in different dynamic states. They coined the term 
“physiological macrocolumn” to indicate a set of cortical columns that coop-
erate in a given functional state or process. These physiological macrocol-
umns must be considered as dynamic ensembles consisting of a number of 
columns that may vary as a function of time. In the context of the present 
question, it is important to note that neurons in separate columns can present 
oscillatory synchronous activities, mediated by tangential and recurrent con-
nections between different columns (Freiwald et al.,   1995  ; Gray et al.,   1989  ). 

  Q 6. Can action potentials make a signifi cant contribution to MEG signals?  

 The most common answer to this question is that the contribution of action 
potentials is minimal compared to that of synaptically meditated activity and 
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other slow waves. There are two reasons for this. First, the infl uence of action 
potentials on recordings at a distance attenuates much more strongly than 
postsynaptic potentials. Second, the probability that action potentials of dif-
ferent cells synchronize precisely is rather low, since action potentials are very 
short and there is always a considerable jitter between the discharges of differ-
ent cells. Nevertheless, Murakami and Okada (  2006  ) in their computer study 
showed that sodium spikes may have dipolar moments considerably stronger 
than previously thought. Assuming that the dipolar moment of a spike of a 
cell is about 1pAm, 10,000 perfectly synchronized neurons could produce a 
fi eld on the order of 10nAm, which corresponds to the strength of a measur-
able cortical generator. This would, however, imply that these action poten-
tials should be perfectly synchronized—which may be the case during epilep-
tiform spike discharges, but is not likely to occur under normal conditions. 
Nevertheless, synchronized population action potentials may contribute to 
very-high-frequency MEG signals on the order of 600 Hz (Curio et al.,   1994   
and Hashimoto et al.,   1996  ). Ikeda et al. (  2002  ) detected such MEG 
signals outside the pig brain, elicited by peripheral electrical stimulation; 
these authors showed that the high-frequency oscillations consisted of a 
presynaptic component generated by the specifi c thalamocortical axonal 
terminals in layer IV, and another postsynaptic component due to activation 
of cortical neurons. 

  Q 7. Is it possible to record, outside the head, MEG signals generated by deep 
subcortical sources?  

 In considering this question as applied to human MEG recording, we should 
note that not all types of magnetic sensors have the same sensitivity to distant 
sources. In descending order of sensitivity to the depth of sources, magne-
tometers are most sensitive, followed by fi rst-order axial gradiometers, sec-
ond-order gradiometers and, fi nally, planar gradiometers ( Figure  1–7  ). Planar 
gradiometers have maximum sensitivity to sources directly under them, i.e., 
superfi cial cortical sources (Hämäläinen,   1995  ), which makes them less sensi-
tive to artifacts and distant disturbances.  

 Experimental evidence supporting a direct answer to this question has 
been provided by Hashimoto et al. (  1996  ), who recorded, in pigs, somatosensory 
evoked magnetic fi elds (SEFs) that were generated by neuronal populations at 
the level of the thalamus. It should be noted that the latter were elicited by 
electrical stimulation of peripheral structures, causing a high degree of 
synchronous neuronal activity. This indicates that deep-lying structures in 
the brain can generate suffi ciently strong MEG signals to be detectable at a 
distance from the brain surface, at least in the pig head. 

 In addition, studies using MEG arrays with partial head coverage in 
humans have suggested the presence of generators of the P3 component of 
auditory evoked responses in deep-lying source areas, including the hip-
pocampus (Okada et al.,   1983  ), and thalamus (Rogers et al.,   1991  ). However, 
in these studies the evidence is indirect, since the localization of the sources 
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was estimated using approximate source models, in order to obtain estimates 
of solutions to the non-unique electromagnetic inverse problem. It should be 
added that Ioannides et al. (  1995  ) identifi ed generators for the same kind of 
evoked responses in amygdala and hippocampus, which were made plausible 
when the results obtained in normal subjects using magnetic fi eld tomography 
were compared with those obtained from a patient who had undergone lobec-
tomy, which removed these structures. Furthermore, Tesche and Karhu 
(  2000  ) estimated hippocampal oscillatory activities based on surface MEG, 
using an elaborate signal analysis algorithm. Finally, it should be noted that if 
adequate prior knowledge exists of the location of the electrical sources, then 
spatial fi ltering techniques like beam formers or signal space projection can 
enable us to reconstruct temporal changes of electrical activities at these deep-
lying source locations. 

  Q 8. Is it possible to record DC MEG or EEG? And if so, what would be the physi-
ological meaning?  

 There are a number of physical limitations (electrode impedances, electrode 
polarization, skin/electrolyte junction) that do not allow recording of EEG 
signals down to 0 Hz, which would correspond to real DC, or “direct cur-
rent.” With MEG, environmental low-frequency noise also imposes limita-
tions, with similar consequences. The aim, however, is not to record down to 
a real DC level of 0 Hz but to extend the effective frequency band to very low 
frequencies in the order of 0.1 Hz. (For a discussion of misconceptions of 
what “DC” means in electroencephalography see Niedermeyer’s footnote in 
Speckmann and Elger,   2005  ). The recording of ultraslow MEG/EEG signals 
can be achieved using appropriate techniques, for example as discussed for 
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Figure 1–7 . Strength (vertical axis) of a magnetic fi eld (arbitrary units) as 
function of the depth (horizontal axis) for different types of magnetic 
sensors: (i) magnetometer; (ii) fi rst-order axial gradiometer; (iii) second-
order axial gradiometer; (iv) planar fi gure-of-eight gradiometer. 
(Adapted from Hari, in Niedermeyer & Lopes da Silva, 2005).
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EEG by Vanhatalo et al. (  2005  ) and for MEG by Burghoff et al. (  2004  ). 
Phenomena such as the Contingent Negative Variation (CNV) fi rst described 
by Walter et al. (  1964  ), and the Bereitschaftspotential (readiness potential) 
fi rst described by Kornhuber and Deecke (  1965  ), are typical examples of very 
slow shifts of electric potential or of magnetic fi elds that can be recorded using 
appropriate recording and analysis techniques. During slow-wave sleep, EEG 
ultraslow frequency components of around 0.5 Hz have been recorded 
(Achermann and Borbely,   1997  ; Amzica and Steriade,   1997  ; Massimini and 
Amzica,   2001  ; Mölle et al.,   2002  ) and the same is the case with MEG (Simon 
et al.,   2000  ). These components correspond to the ultraslow oscillations 
found in cat neocortex during sleep, or anaesthesia, recorded intracellularly 
from cortical neurons in layers II to VI. These oscillations consist of pro-
longed depolarizing and hyperpolarizing components, and have been ana-
lyzed in detail by Steriade and collaborators (  2006  ). The study of ultraslow 
oscillations in MEG and EEG is an active area of research, in conditions rang-
ing from studies of peri-infarct depolarisations in stroke patients, and cortical 
spreading depression in migraine patients (Leistner et al.,   2006  ), to record-
ings of preterm neonates (Vanhatalo et al.,   2005  ). The underlying neurophys-
iological mechanisms of ultraslow shifts of cortical activity are well known in 
respect to the changes in neuronal membrane potentials caused by increases 
of CO 

2
  tension and hypoxia in cerebral tissue (Speckmann and Elger,   2005  ), 

and basic mechanisms of spreading depression in neurons and glial cells have 
been put in evidence (Kager et al.,   2002  ; Somjen,   2001  ).     

General Conclusions 

 In this overview we have briefl y covered some of the basic concepts of neuro-
physiology and biophysics that are important in understanding how magnetic 
and electric fi elds are generated in the brain, and give rise to measurable sig-
nals at the scalp. A number of recent experimental and modeling studies have 
provided new insights in this respect. The approach outlined here is that of 
quantitative neurophysiology, in which the forward problem of MEG/EEG is 
modeled. We currently have a comprehensive set of methodologies that allow 
estimation of MEG/EEG signals measured at a distance, namely at the level of 
the scalp, given a number of sources of electrical/magnetic activity at the 
cellular level. In this context, the combination of neurophysiology and com-
putational models appears to be essential. The forward problem, however, 
becomes more complex when we take into consideration the 3-dimensional 
geometry of neuronal sources within the cortex and its convoluted structure. 
For instance, when we state that to reach a MEG signal with the magnitude of 
10nAm it is necessary that 50,000 pyramidal neurons are synchronously active 
(since each cortical pyramidal neuron has a Q of 0.2 pAm), the forward prob-
lem is not completely solved. In fact, the estimate will be different depending 
on (i) how these 50,000 neurons are distributed within the cortex, (ii) how 
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the cortex is oriented in relation to the pial surface, and on (iii) the degree of 
synchrony. Such data are not readily available for most phenomena of inter-
est, and investigations at the level of the neocortex, combining basic neuro-
physiology with computer models of the forward problem with simultaneous 
MEG/EEG recordings and structural/functional (fMRI) data, are therefore 
necessary for a fuller understanding. Ongoing work using these methodologies 
remains an active esearch area.     
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Notes     

    1    For a more extensive mathematical treatment of this subject the reader may 
consult Lopes da Silva, & van Rotterdam (  2005  ) and Plonsey (  1969  ).   

    2    The dot product can be defi ned for two vectors  X    and  Y    by

  cosX Y X Y⋅ = ⋅ θ     

   where θ is the angle between the vectors and  X    is the norm. It follows 
immediately that  0X Y⋅ =    if is  X    perpendicular to  Y   . The dot product 
therefore has the geometric interpretation as the length of the projection of 
 X    onto the unit vector  Y    when the two vectors are placed so that their tails 
coincide.      
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Introduction 

 This chapter reviews the methods and technology required for magnetoen-
cephalographic (MEG) measurements. 

 The magnetic fi elds due to neural activity are extremely weak, thus the 
task of measuring them is challenging both in terms of required sensitivity, 
and also in the ability to suppress interference several orders of magnitude 
stronger than the signals of interest. Therefore, an appropriate combination 
of multiple techniques, both physical and computational, is required to make 
MEG measurements feasible. 

2

Instrumentation and Data Preprocessing 

Lauri Parkkonen

       Feasible detection of the weak MEG signals is currently possible only • 
with superconducting SQUID sensors  
    Ambient magnetic fi elds are several orders of magnitude stronger • 
than MEG. Therefore, magnetic shielding and interference suppres-
sion systems are mandatory  
    MEG results are often visualized on anatomical MRIs, which requires • 
bringing the two modalities in the same coordinate system  
    Pre-processing techniques such as averaging and fi ltering in time and • 
space are required to boost the low signal-to-noise ratio of MEG     
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 Prior to analysis, MEG data often undergoes several preprocessing steps. 
These include noise reduction, artifact detection and removal, fi ltering, and 
averaging. 

 The physics and mathematics in this chapter are kept relatively simple to 
serve readers with various backgrounds. New concepts are described verbally 
rather than by equations. The mathematically inclined reader may refer to the 
cited text-books and reviews for a more thorough mathematical treatment of 
the subtopics.      

Instrumentation

Review of Relevant Electromagnetic Concepts    

     • Electric current  is the fl ow of charge carriers. The strength of the 
current  I  is measured in Amperes (A).  
    All currents generate a  • magnetic fi eld  around them. A magnetic fi eld 
is a vector fi eld; it has a direction at each point in space. The fi eld vec-
tor can be expressed as components, e.g., as the fi eld strength to the  x , 
 y  and  z -directions of the 3-dimensional space. Two distinct quantities 
are referred to as magnetic fi elds: the magnetizing fi eld or auxiliary 
magnetic fi eld  H  (measured in Amperes/meter), and the magnetic 
fl ux density or magnetic induction  B  (measured in Teslas), commonly 
called the magnetic fi eld.  
     • Magnetic fl ux  is the net magnetic fi eld through a given surface (taking 
into account only the fi eld component perpendicular to the surface). 
Magnetic fl ux  f  is a scalar quantity and its unit is Weber (Wb).  
     • Spatial derivative  of the magnetic fi eld is the rate of change of the fi eld 
along a certain direction. It is measured as Teslas per meter (T/m). 
If all spatial derivatives are zero, the fi eld is said to be homogeneous. 
Field derivative is a tensor quantity; there are 9 fi rst-order derivatives 
(3 fi eld components × 3 directions of the derivatives) at each point 
in space. For example, the derivative of the  z -component along the 
 x -direction at location  r  is denoted as ∂ B   

z
  ( r )/∂ x .  

    A time-varying magnetic fl ux induces an electromotive force (a • 
voltage) in the circuit. Similarly, a circuit moving in a magnetic fi eld 
experiences an electromotive force.  
    Magnetic  • permeability  indicates the extent to which a material 
magnetizes when subjected to an external magnetic fi eld. Permeability 
μ is the ratio of the internal and applied fi elds. Permeability of vacuum 
relates the magnetization  M  and the magnetizing fi eld  H  to the 
magnetic fi eld:  B  = μ 

0
  ( H  +  M ).  

     • Ferromagnetic  materials remain magnetic after being exposed to 
a magnetic fi eld (“permanent magnets”). They usually have a high 
permeability.  
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     • Paramagnetic  materials amplify applied fi elds (permeability larger 
than unity); however, they do not retain the magnetization.  
     • Diamagnets  also react to applied fi elds, but by weakening them.         

MEG Signal Strength 

 To motivate the development and use of the relatively complex and costly 
MEG instrumentation, let us compare the strength of the MEG signals to 
some ambient magnetic fi elds. As shown in  Figure  2–1  , magnetic fi elds due to 
brain activity are 8–9 orders of magnitude (about one billion times) smaller 
than the Earth’s static magnetic fi eld, which orients the compass needle. Even 
the magnetic noise, (mostly generated by various electric devices and moving 
magnetic objects) encountered in a typical laboratory environment is often 
more than a thousand times stronger than any magnetic signal due to the 
activity of neurons in the brain.       

Sensors

Superconductivity

 In order to understand the physical principles behind the sensors employed in 
all modern MEG systems, we should familiarize ourselves with a remarkable 
property exhibited by certain materials: when cooled down to a suffi ciently low 
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Adapted from Hämäläinen et al., ( 1993).
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temperature, these materials lose electrical resistance completely, i.e., they 
become  superconductors . An electric current fl ows in these materials without 
“friction” and when arranged to circulate in a loop, the current does so infi -
nitely, provided that the low temperature is maintained. This perpetual current, 
like any electric current, generates a magnetic fi eld. The converse is also true 
with superconductors: an applied static magnetic fi eld gives rise to a continuous 
 shielding current  on the surface of a superconductor, which in turn generates a 
magnetic fi eld exactly cancelling the impinging external fi eld, thus preventing 
the external fi eld from entering the superconducting material. Superconductors 
are thus perfect  diamagnets ; external magnetic fi elds cannot penetrate them, 
except to a very shallow  penetration depth  of typically less than 100 nm. 

 The characteristic transition temperature, or  critical temperature T  
c
 , at 

which the material switches from the normal to the superconducting state, 
depends on the material and is typically below 20 Kelvin (−253°C). A typical 
material utilized in MEG sensors is niobium with  T  

c
  = 9.2 K. Other common 

superconductors are lead ( T  
c
  = 7.2 K) and mercury ( T  

c
  = 4.2 K). The most 

commonly employed coolant to achieve these very low temperatures is liquid 
helium, whose boiling point is 4.2 K or −269°C. 

 The required extraordinarily low temperatures and associated thermal 
isolation have effectively prevented the wide-spread use of superconductors, 
despite their exploitable properties. Therefore, the discovery of compounds — 
consisting primarily of copper and oxygen — with much higher  T  

c
 ’s in the 

1980’s evoked great interest. These high-temperature, or high- T  
c
 , supercon-

ductors have critical temperatures up to 134 K, or −139°C, and thus allow 
inexpensive liquid nitrogen (boiling point 77 K) to be used as the coolant. 
Unfortunately, the high- T  

c
  materials are in crystalline form, and are therefore 

diffi cult to manufacture reliably as wires or fi lms to be used in MEG sensors. 
In addition, until now the noise levels attained with high- T  

c
  sensors are too 

high for practical MEG work. 
 The transition between the normal and superconducting states is not 

only governed by the temperature. Superconductors also have a characteristic 
 critical fi eld B  

c
  (typically ranging between 1 mT and 100 T) and a  critical cur-

rent I  
c
 ; exceeding either of these limits reverts the material to the normal state, 

even if the temperature is kept well below the critical value. Thus, supercon-
ductors do not withstand arbitrarily large magnetic fi elds, nor electric currents, 
passing through them. These three quantities ( T  

c
 ,  B  

c
  and  I  

c
 ) have a complex 

interdependence; e.g., the critical fi eld diminishes when the temperature of 
the material rises and approaches the critical value. 

 The BCS theory by Bardeen, Cooper and Schrieffer (  1957  ) explains the 
transition to the superconducting state as pairing of the electrons, which are 
normally responsible for electrical conduction as inviduals, but in a supercon-
ductor as  Cooper pairs , governed by a common macroscopic wavefunction.   1    

 The wavefunction describing the electron pairs in a superconducting ring 
has to be continuous around the ring. It can be shown that this condition leads 
to the quantization of the magnetic fl ux threading the ring; the fl ux can only 



28 MEG: An Introduction to Methods

assume a value equal to an integral number of a  fl ux quantum  Φ 
0
  = 2.07 Weber. 

The applied fi eld gives rise to a shielding current  I  
s
  (inducing a fl ux Φ =  LI  

s
  

where  L  is the inductance of the ring) that maintains a constant fl ux  n ·Φ 
0
  

through the ring. If the shielding current exceeds the critical current  I  
c
 , a fl ux 

quantum may “slip” into the ring, elevating the fl ux to ( n  + 1)·Φ 
0
  and lower-

ing the shielding current accordingly. With this in mind, it is possible to 
understand many of the qualitative characteristics of the SQUID sensors 
employed in MEG systems.    

SQUID

 The weakness of the cerebral magnetic fi elds necessitates a very sensitive 
magnetic fi eld detector. The sensors that measure magnetic fi elds in devices 
such as a video tape recorder or an electronic compass are far from being 
sensitive enough for MEG. The only sensor that provides suffi cient sensitivity 
for practical MEG work is the SQUID, or Superconducting Quantum 
Interference Device. To fully understand the internal workings of a SQUID 
requires an elaborate quantum mechanical treatment beyond the scope of 
this book. However, equipped with the phenomenological descriptions of 
superconductivity given in the previous section, we can elucidate the operat-
ing principles of a SQUID. 

 Let us consider a superconducting ring placed in a magnetic fi eld. As 
described in the previous section, the fi eld induces a shielding current around 
the ring, and this current depends on the applied fi eld. Thus, the shielding 
current would provide an indirect measure of the applied magnetic fi eld. 
However, that current cannot be readily measured, since a conventional 
current measurement would destroy the continuous superconducting loop 
and the fl ux quantization would disappear. If the ring is broken by a very thin 
layer of an electrical insulator, the electron pairs may still tunnel through the 
insulator even if there is no electric fi eld driving them to do so; this phenom-
enon was theoretically predicted by Brian D. Josephson (  1962  ), later awarded 
the Nobel Prize in physics. These  Josephson junctions , or  weak links , allow for 
an interference of the wavefunctions describing the electron pairs, and this 
interference gives rise to a measurable physical quantity, namely a dynamic, 
fl ux-dependent resistance across the SQUID. If we feed a constant bias cur-
rent  I  

B
  through the SQUID, changes in the applied magnetic fl ux will alter the 

average voltage measured over the SQUID; see Figure   2–2  .  
 The dynamic resistance depends on the applied fl ux in a nonlinear way; 

changing the fl ux threading the ring exactly by an integral number of fl ux 
quanta does not alter the resistance, although any other change does. This 
periodic relationship is also manifested in the  characteristic curve , that is, the 
voltage-vs-fl ux function of a SQUID; changing the fl ux by one fl ux quantum 
does not change the SQUID output; see  Figure  2–3b  . Thus, with a SQUID one 
cannot measure the absolute fl ux and, hence, not the absolute magnetic fi eld, 
but only its variation in time.  
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 The fi rst SQUIDs were designed and made by James Zimmerman (  1970  ) 
in the late 1960s. At that time, most SQUIDs comprised only a single Josephson 
junction because fabricating a properly working junction took a great deal of 
care and effort. This kind of SQUID is read via an inductive coupling to an 
external circuit operating at radio frequencies. Hence, these single-junction 
SQUIDs are called rf-SQUIDs. Later, when manufacturing processes devel-
oped in the semiconductor industry allowed a relatively cheap “mass produc-
tion” of Josephson junctions, the two-junction dc-SQUID became more 
popular, as it outperforms the rf-SQUID in many respects—most impor-
tantly, by having a lower noise level and by allowing much simpler electronics 
and minimal crosstalk between channels. All these factors are indispensable 
for MEG, and thus all modern MEG systems are equipped solely with 
dc-SQUIDs.       

Negative feedback 

 The periodic response of the SQUID to the variation of the applied fl ux, as 
shown in  Figure  2–3  , prevents us from using the SQUID output directly as a 
measure of the magnetic signal of interest; changes larger than half a fl ux 
quantum would lead to ambiguous results. Therefore, in MEG systems, the 
SQUIDs are operated in a  fl ux-locked loop  by providing them a feedback sig-
nal that cancels the effect of the signal we are measuring. In other words, the 
output of the SQUID is held constant by artifi cially generating an additional 
magnetic fl ux that “undoes” the effect of the actual fl ux to be measured. It is 
easy to see that this additional artifi cial signal, or feedback signal, depends 
directly on the signal to be measured; it only has the opposite sign and hence 
the term  negative feedback . 

 By using negative feedback, the SQUID is locked to a certain  operating 
point  as illustrated in  Figure  2–4b  ; changes in the measured signal only 
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Figure 2–2 . A dc-SQUID with two Josepson junctions. (a) A schematic illus-
tration of the SQUID loop in the magnetic fi eld  Ba which causes magnetic 
fl ux Φa in the SQUID loop.  (b) A modern thin fi lm dc-SQUID and the signal 
coil on top of the SQUID loop.
Adapted from Hämäläinen et al., ( 1993).
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deviate the SQUID output slightly from the operating point until the  feedback 
controller  reacts and adjusts the negative feedback signal accordingly to again 
perfectly cancel the measured signal. Thus, the signal that the MEG system 
outputs and stores into a computer is not the SQUID output as such, but the 
inverted negative feedback signal, which linearly tracks the true measured 
signal, even if it undergoes variations larger than a fl ux quantum.     

Sensor Coils 

 To optimize the sensitivity, SQUIDs are made rather small, typically less than 
1 mm in outer diameter. Due to the small surface area, SQUIDs have rather 
poor coupling to the magnetic fi eld. In MEG applications, SQUIDs cannot be 
used as they are; the coupling must be enhanced with  fl ux transformers  that 
“squeeze” more magnetic fl ux into the SQUID loop by collecting it from a 
much larger area. This is not a drawback, since the use of fl ux transformers 
allows us to measure different components of the magnetic fi eld without 
changing the SQUID geometry. 

 Like SQUIDs, the fl ux transformers are made of superconducting mate-
rial. They comprise a  pick-up coil  closest to the brain, an optional, more 
distant  compensation coil , and a  signal coil  on top of the SQUID loop 
( Figure  2–4a,c  ). These coils are typically connected in series so that the net 
shielding current induced by the magnetic fi elds at the pick-up and compen-
sation coils circulates through the signal coil, and thus generates a magnetic 
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Figure 2–3 . Characteristic curves of a dc-SQUID. (a) SQUID output voltage 
as a function of the bias current IB fed through the SQUID, and  (b) as a 
function of the applied fl ux Φa. The maximum change in the output volt-
age ΔV for different fl ux values is the  modulation depth of the SQUID. It 
depends on the bias current and peaks when IB = 2· Ic. The extremities of 
the curve family in (a) correspond to fl ux values that are an integral num-
ber of quanta, or just in between ( n is an integer). 
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fi eld and fl ux to the SQUID loop. Because of superconductivity, fl ux trans-
formers work also at DC, whereas normal transformers do not, since a static 
magnetic fi eld does not induce currents in normal, stationary conductors. 

 The simplest confi guration is a  magnetometer : a single pick-up coil and 
no compensation coil ( Figure  2–5a  ). This setup measures the magnetic fi eld 
component along the direction perpendicular to the surface of the pick-up 
coil, usually denoted as  B 

z
  . While being very sensitive to nearby sources, such 

as neural currents in the brain, a magnetometer is sensitive also to sources far 
away. To decrease the sensitivity to distant sources, one may add a compensa-
tion coil that measures mostly the interfering signal; this confi guration is a 
 gradiometer  (see  Figure  2–5b,c  ), which measures a spatial gradient of a mag-
netic fi eld component rather than the fi eld component itself. The underlying idea 
is that the far-away interference sources manifest themselves as homogeneous 
magnetic fi elds, i.e., the fi eld is about the same at close-by spatial locations. 
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Figure 2–4 . (a) The principle of a fl ux transformer, which picks up the fi eld 
due to a neural current (green arrow) and couples it to a SQUID (blue 
ring). (b) Illustration of the operating points at which the SQUIDs locks 
when used in a fl ux-locked loop, and  (c) a simplifi ed block diagram of the 
sensor electronics (utilizing direct readout) of one MEG channel. 
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Thus, the interference fi eld at the pick-up coil and compensation coil is about 
the same. When those coils are wound in opposite directions, the interference 
fi elds produce no net shielding current, and thus do not couple to the SQUID, 
making the sensor blind to sources distant enough to be seen as homoge-
neous fi elds.  

 The two coils of a gradiometer can be arranged in several ways to sensi-
tize the sensor for different spatial derivatives of the fi eld. Perhaps the most 
intuitive confi guration is shown in  Figure  2–5c  , where the coils are along the 
same radial axis, but the pick-up coil is typically 5 cm closer to the head. This 
is called an  axial gradiometer  and it measures the change of the radial fi eld 
component along the radius. 

 Another option is to place the coils side-by-side in the same plane to 
form a  planar gradiometer  ( Figure  2–5b  ). Both of these arrangements are 
insensitive to homogeneous fi elds but their responses to nearby sources are 
very different; the signal from an axial gradiometer peaks for sources around 
the rim of the sensor while planar gradiometers give the maximum signal for 
sources right beneath them. Formally, these spatial sensitivity patterns can be 
described with the concept of  lead fi eld . It is a fi ctitious vector fi eld whose 
value at a spatial location gives the direction of the current that yields the 
maximal output at that location, and the gain with which the source current 
affects the output of the sensor. Thus, each sensor type, or pick-up coil geom-
etry, has a specifi c lead fi eld, some of which are illustrated in  Figure  2–6  . 
Knowing the lead fi eld  L   

i
   of the  i ’th sensor, the output of that sensor,  b 

i
  , can 

be expressed mathematically as

  
( ) p .i iG

b dG= ∫ L r  j
 

 (2–1)     

 where the integration is carried out throughout the volume  G  where currents 
can fl ow, and  r  points to the center of the integration element  dG .   

(a) (c)

(b)

(d)

dA

dA

x

y

z

Figure 2–5 . Flux transformer geometries: (a) magnetometer,  (b) planar 
gradiometer,  (c) axial gradiometer.  (d) Integrating the fl ux that threads a 
planar gradiometer measuring dBz/dx; see the text for details. 
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 The lead fi eld can be estimated by virtually scanning the volume  G  with a 
set of three orthogonal unit-strength test current dipoles. At each spatial loca-
tion, the signals elicited by the  x ,  y  and  z -directed dipoles are the correspond-
ing components of the lead fi eld vector at that location. Assuming that we can 
calculate the total magnetic fi eld  B ( r ) at location  r  due to a current dipole in 
a conducting volume, the output of the  i ’th channel is

  
( ) ( )

1

N

i k k kA
k

b d w
=

= ⋅ ≈ ⋅∑∫ B r A B r n
 

 (2–2)     

 where the integral is calculated over the surface  A  of the pick-up and compen-
sation coils, taking the winding direction of the coil into account, and with  
r  pointing to the center of the surface patch  dA  (see  Figure  2–5d  ); the approx-
imation by  N  points involves the unit normal vectors  n   

k
   and surface areas  w 

k
   

associated with each point  k .  
 Lead fi elds have practical relevance also when interpreting MEG data 

visually.  Figure  2–7   shows auditory evoked responses measured with an array 
comprising only magnetometer sensors, and with a similar array of planar 
gradiometers. In this experiment, there was signifi cant activity only in the left 
and right auditory cortices at about 100 ms after the presentation of a short 
tone. For the source in either auditory cortex, there is a group of magnetom-
eters showing a positive defl ection (fi eld coming out of the head), another 
group with a negative defl ection (fi eld going into the head). The magnetom-
eters right above the underlying source current do not show any signal. The 
situation is quite the opposite for the planar gradiometers shown in the same 
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Axial gradiometer dBz/dz

Planar gradiometer
x

z
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Figure 2–6 . Lead fi elds of a magnetometer/axial gradiometer, and two 
orthogonal planar gradiometers with the fi eld components they mea-
sure. The lead fi elds of magnetometers and axial gradiometers are not 
shown separately, as they are very similar. The directions  x and  y are in the 
plane of the paper as shown by the coordinate axis, while the z direction 
points towards the reader. When the sensors are arranged into a roughly 
spherical array, the approximate radial direction  r in the sphere is often 
used instead of z.
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Figure; they peak just on top of the neural current. Thus, knowing the sensi-
tivity pattern of the sensors is essential for the correct interpretation of the 
data. Proper source modeling algorithms, to be discussed in the subsequent 
chapters, take the different lead fi elds automatically into account, so that the 
source currents can be localized correctly. Nevertheless, for the human 
observer who wants to get a rough idea of the source locations, or needs to 
disentangle the contributions of different neural sources at the sensor level, 
understanding the sensitivity pattern is essential.      

Sensor Arrays 

 The fi rst MEG measurements with SQUIDs (Cohen,   1972  ) were done with a 
single-channel instrument. While this is suffi cient for the mere detection of 
the signal, a proper mapping requires multiple measurements at distinct spa-
tial locations. Such mapping can be done even with a single-channel system 
by repeating the measurement multiple times with the measurement probe at 
different locations. This is not only cumbersome and time-consuming, but 
also prevents studying, e.g., induced synchronization between two brain 
areas. During the 1980s several MEG systems with the number of channels 
ranging up to 37, covering approximately one lobe of the brain at a time, were 
developed. In 1992, the fi rst whole-head MEG system, comprising 122 planar 

100 ms

Magnetometers Planar gradiometers

Left Left

Back Back

Front Front

Right
Right

Figure 2–7 . Auditory evoked magnetic fi elds as seen by a magnetometer 
and a planar gradiometer sensor array (only one direction of the planar 
gradiometers is shown). The largest defl ections are highlighted, and the 
source currents in the brain are shown schematically by the green arrows. 
Magnetometer signals exhibit two maxima with opposite signs, some-
what off the active brain region, while the planar gradiometer signals 
show a single peak on top of the source. 
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gradiometer channels, was introduced (Ahonen et al.,   1993b  ) and since then, 
the MEG market has been dominated by whole-head systems. 

 Several factors and trade-offs are to be considered in the design of the 
sensor array. For example, larger pick-up coils yield higher signal-to-noise 
ratios (considering only the intrinsic system noise), but the larger the loops 
the fewer of them fi t on the head surface. In addition, the distance from the 
most superfi cial neural sources sets a limit on the highest spatial frequencies 
present at the pick-up coils; thus, packing the sensors more densely increases 
the spatial resolving power of the array only up to a limit. Instead of increasing 

Figure 2–8 . Commercial MEG systems. (a) The Elekta Neuromag®system 
(Elekta Oy, Helsinki, Finland) features 306 channels on 102 planar sensor 
elements (b), each comprising a magnetometer measuring Bz and two 
orthogonal planar gradiometers measuring dBz/dx and  dBz/dy. (c) The 
Magnes®3600 WH system (4-D Neuroimaging, San Diego, CA, USA) incor-
porates 248 magnetometers ( Bz) or axial gradiometers ( dBz/dz) depend-
ing on the confi guration.  (d) MEGvision (Yokogawa Electric Corp., Tokyo, 
Japan) comprises 160 axial gradiometer channels. 
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the density of sensors that measure one particular fi eld component, one can 
measure multiple independent components of the fi eld at each sensor loca-
tion to increase the total information captured by the array (Ahonen et al., 
  1993a  ). 

 The optimal size of the pick-up coil depends also on the noise level of the 
SQUID: lower SQUID noise allows a reduction in the size of the pick-up coil 
without an adverse effect on the signal-to-noise ratio for a given source. 
Strictly speaking, this is true only if we assume the instrument to be the sole 
source of noise in the measurement. In practice, the “brain noise,” i.e., the 
brain activity not of interest, dominates among the noise sources, which 
complicates the pick-up loop optimization further. 

 The coverage of the sensor array is another diffi cult optimization task. 
A sensor helmet as extended as possible would be optimal in capturing the 
neuromagnetic fi elds; however, practical limitations exist—for example, the 
MEG device should not severely limit the visual fi eld of the subject. The overall 
size of the array should also be optimized to fi t a high percentage of the popu-
lation while minimizing the average distance from the sensors to the scalp.     

Dewar and Cryogenics 

 The distance between the sensor coils and the head surface should be minimized 
to maximize the neuromagnetic fi eld at the pick-up coils. Further, the coils 
must be superconducting, i.e., their temperature should remain below the 
critical value while the head surface is at body temperature. Maintaining this 
high temperature difference (about 300 K or °C) across a relatively small 
distance of 2–3 cm without excessive use of the coolant requires elaborate 
thermal isolation. A special container called  Dewar , after the inventor James 
Dewar, comprises two concentric vessels with a vacuum jacket and radiation 
shields in between. The vacuum prevents heat conduction from the outside to 
the inside vessel, and the shields block thermal radiation. The sensors reside 
in the inner vessel   2    immersed in the coolant (liquid helium,  T  = 4.2 K). An 
MEG Dewar has to be strictly nonmagnetic not to distort the fi elds being 
measured.   3    The Dewars are usually built of glass-fi bre composites which are 
magnetically transparent. Unfortunately, helium atoms slowly diffuse to the 
vacuum through the glass-fi bre wall of the inner vessel. Therefore, the outer 
surface of the inner vessel is usually covered with a medium that absorbs the 
helium atoms. 

 Despite the extreme thermal isolation, there is still heat leakage, albeit 
small, into the inner vessel, causing the liquid helium to slowly evaporate. The 
gaseous helium exits the Dewar along an  exhaust line  which guides the gas out 
of the system and the magnetically shielded room. The helium gas is either 
collected into pressurized containers for reliquifi cation, or just let out into the 
open air outside of the building. The feasibility of re-collection depends on 
the local price of liquid helium, and is seldom profi table for just one MEG 
system alone. 
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 A typical whole-head MEG system boils 10–20 liters of liquid helium per day. 
The helium reservoir of the Dewar is usually 70–90 liters, thus a refi ll is 
required 1–3 times a week to keep the system operational. Liquid helium is 
transferred from a storage Dewar by means of a vacuum-isolated  siphon . The 
storage Dewar is pressurized by gaseous helium to “push” the liquid along the 
siphon into the MEG Dewar. Some liquid evaporates when cooling the siphon 
from room temperature down to 4.2 K. Typically, up to 10 liters of liquid per 
transfer should be budgeted for such losses. 

 Care should be taken to do the refi lls in time. If all liquid helium has 
evaporated and the temperature of the inner vessel thus starts to increase, the 
helium atoms trapped in the absorbant are released in the vacuum due to 
their increased thermal energy, and they start contributing to the heat 
conduction from the outer to the inner vessel. In such an event, the Dewar 
usually cannot be cooled down simply by transferring liquid helium; instead, 
the vacuum jacket has to be re-evacuated fi rst.     

Gantry

 The mechanical system supporting the Dewar is called the  gantry . It often 
allows adjusting the elevation and angle of the Dewar to accomodate subjects 
of different heights and in different measurement positions, such as seated or 
supine. Alternatively, the height adjustment can be addressed by moving the 
seat up/down. The gantry should be very rigid, since even minute movements 
of the sensors in the remanent fi eld inside the shielded room gives rise to 
artifacts.     

Sensor array
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(conventional thermal insulator)
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radiation shields

Outer vessel
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helium gas

Transfer siphon (fixed)
for liquid helium

Connection to
electronics

Figure 2–9 . Schematic cross section of a Dewar employed in an MEG system. 
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Electronics 

 The output signal of a SQUID sensor has to be processed extensively before it 
is possible, or feasible, to store it. The following paragraphs illustrate the 
required steps, implemented in hardware and software of a MEG system. 
A more detailed treatment of this topic is available, e.g., in Clarke and 
Braginski (  2004  ). 

 A SQUID is a challenging signal source due to its low output impedance; 
the output voltage is so low that the voltage noise levels of even the best amplifi ers 
available today clearly exceed that of the SQUID. Thus, additional measures 
are required to prevent the preamplifi er from contributing more noise than 
the SQUID itself does. To this end, the output impedance of the SQUID 
should be stepped up to better match the input impedance of the amplifi er. 
Such matching can be achieved by two techniques: (i) using a transformer 
between the SQUID and amplifi er, and (ii) feeding back the amplifi er output 
to the SQUID via the feedback coil, which effectively increases the SQUID 
output impedance. The transformer of the fi rst option—as any transformer—
works only when the SQUID outputs an ac signal, which generally is not the 
case. However, by adding a periodic magnetic fl ux component ±Φ 

0
  to the 

total fl ux applied to the SQUID, the output is guaranteed to be alternating. This 
approach is known  as fl ux modulation . The modulation frequency is typically 
100–200 kHz. The real input signal is recovered by demodulating the ampli-
fi ed output. 

 The feedback scheme (the second option) does not require a transformer 
nor fl ux modulation and is thus called  direct readout  (Seppä et al.,   1991  ; 
Clarke and Braginski,   2004  ). The proper amount of feedback depends on the 
gains of the amplifi er and SQUID; in practice, the feedback has to be adjust-
able to attain optimal noise performance. The direct readout is simpler to 
implement than fl ux modulation and it is less prone to electronics-based 
cross-talk between channels; however, occasional tuning might be required 
for best performance. 

 After amplifi cation (and possible demodulation), the SQUID signal is 
conveyed to the feedback controller, which adjusts the negative feedback to 
the SQUID (see above discussion) to optimally null the changes at the SQUID 
output. As explained earlier, this negative feedback loop effectively linearizes 
the fl ux-to-voltage response of the SQUID. The signal to be processed further 
is the feedback, not the SQUID output. The feedback controller can be imple-
mented either in the hardware, using analog electronics (“analog fl ux-locked 
loop”), or in the software, employing analog-to-digital and digital-to-analog 
converters and a digital signal processor or comparable digital circuitry (“digital 
fl ux-locked loop”). 

 Modern MEG devices often include the option to measure EEG in addition 
to MEG. The EEG electronics include preamplifi ers with rather stringent require-
ments for the noise level, as the electric signals on the scalp are typically on the 
order of a few microvolts only. For the safety of the subject, the electric ground 
of the preamplifi er should be fl oating so that no excessive currents can pass 
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through the EEG electrodes and amplifi ers, should any electric system connected 
to the subject break and supply dangerously high voltages. The preamplifi er 
ground is, therefore, often referred to as the  isolated ground , or iso-ground. The 
required galvanic isolation is provided either by a special isolation unit, or by 
converting the EEG signal to a digital form already in the preamplifi er and using 
an optic fi ber to convey the samples to subsequent processing stages. 

 In addition to the MEG and EEG signal processing, complete MEG systems 
also feature electronics for driving the head-position tracking coils and the 
artifi cial sources in a phantom, and for monitoring the level of liquid helium 
in the MEG Dewar.     

Data Acquisition 

 With the advent of digital SQUID electronics, the boundary between the 
electronics and data acquisition became fuzzy; traditionally, the acquisition 
system sampled and stored the amplifi ed and fi ltered analog signals from the 
electronics, whereas nowadays the conversion to the digital domain happens 
much earlier on the signal path, and many of the acquisition system tasks are 
handled by the main electronics. The theoretical background remains the 
same: sampling theory and relevant performance criteria are reviewed briefl y 
in the following paragraphs.       

Frequency Range and Dynamics of MEG Signals 

 The bulk of the MEG activity occurs in the conventional  Berger bands , defi ned 
by Hans Berger in 1920s after his fi rst EEG measurements (Berger,   1929  ). 
MEG responses typically contain frequencies up to about 100 Hz with a grad-
ual fall-off towards higher frequencies as shown in  Figure  2–10  . More recently, 
the higher frequency bands, up to 700 Hz, have also received attention follow-
ing the discovery of certain fast oscillatory responses measured directly on the 
cortex, and also noninvasively by EEG and MEG. The 600-Hz burst response 
to electric nerve stimulation (Curio,   2000  ; Hashimoto,   2000  ; Okada et al., 
  2005  ) contains probably the highest-frequency oscillatory components so far 
detected by MEG. Responses from peripheral nerves, generated by compound 
action potentials and not much studied by magnetic measurements, extend 
above 1 kHz in frequency content. Generally, for MEG and EEG, as for most 
physical systems, it appears that the higher the frequency, the weaker the 
signal. The 600-Hz response, for example, is hidden in the noise due to the 
background brain activity and instrumentation, and can be recovered only by 
averaging hundreds of responses to a specifi c stimulus type.  

 The ratio of the maximum to the minimum signal amplitude, or the 
 dynamic range , is rather low in the MEG signals that really originate in 
the brain; however, the residuals of the environmental interference, as well as 
the artifactual signals from the subject, may exceed the brain signals by orders 
of magnitude. 
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 The dynamic range  D  is often expressed in decibels as

  [ ] max
10

min

dB 20 dB log
B

D
B

= ⋅
 

 (2–3)     

 where  B  
max

  and  B  
min

  are the maximum and minimum magnetic signal ampli-
tudes, respectively, usually given as rms (root-mean-square) values.  

 The brain-signal dynamic range as seen by MEG is diffi cult to quantify, 
since the largest brain responses are typically associated with neurological 
pathologies. The MEG sensors pick up both brain and interference signal, and 
this combination may span a dynamic range of several tens of decibels. 
Although the residual interference is usually not of interest, the MEG system 
has to be able to represent such signals, since the post-measurement noise 
compensation methods rely on a faithful picture of not only the brain signals 
but of the interference as well.     

Temporal Sampling and Amplitude Quantization 

 Most physical quantities, including magnetic fi eld and its derivatives, are 
represented by a temporally continuous signal, that is, the signal has a value 
at every point in time. If there is a limit to the rate at which the signal can vary, 
all available information is retained by considering the amplitude of the con-
tinuous signal only at certain intervals. Indeed, it can be shown that it is suf-
fi cient to sample the continuous signal at a rate that is twice the frequency of 
any component of the signal, and yet to perfectly reconstruct the original sig-
nal from the discrete samples. This important result is known as the  sampling 
theorem . It should be stressed here that all signal components, whether of 
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interest or noise, must be below half the sampling rate; as a result of the 
sampling process, those signals that are above will fold along the frequency 
axis to appear as lower frequencies. This undesirable phenomenon, called 
 aliasing , can be avoided by low-pass fi ltering the signal before sampling to 
ensure that there is no signal above half the sampling rate, or the  Nyqvist 
frequency . This low-pass fi ltering just prior to sampling to avoid aliasing is 
often referred to as  anti-alias fi ltering .  Figure  2–11   illustrates sampling of 
continuous signals.  

 Given the MEG signal frequencies and the Nyqvist condition described 
above, the sampling rates range between 300 Hz and 4 kHz. It is often desir-
able to temporally oversample the signal of interest to avoid the non-idealities 
of the anti-alias fi lters such as phase distortion and the fi nite fall-off rate, and 
also to allow for an easier reconstruction of the original signal by linearly 
interpolating the values between the samples instead of using the optimal, but 
computationally expensive, sinc interpolation. 

 Converting a signal from the analog to digital domain involves the 
discretization of the signal amplitude as well. This process is often referred to 
as  quantization , since the graded analog amplitude values are represented 
with a fi nite number of amplitude bins. The height of each amplitude bin, or 
the quantization step size, determines how faithfully the amplitude of the 
original signal can be represented in the digital domain. A smaller step size 
allows more precise reconstruction of the signal, but also requires more bits 
and thus more storage space to encode the steps. Assuming a certain step size, 
the signal dynamics determines how many such steps are required in the 
quantization. 

 Practically all quantizers utilized in MEG/EEG data acquisition systems 
are linear and memoryless, i.e., the quantization step size does not depend on 
the signal amplitude (see  Figure  2–12  ) nor does the output depend on its 
previous values. Analyzing the dynamics of such a quantizer is straightfor-
ward if we assume that the signal amplitude has a uniform probability 
distribution when considering the amplitudes that would fall within a single 
quantization step. Let  L  be the number of steps of size Δ and  q ( t ) the quanti-
zation error, i.e., the difference between the original and quantized signals. 
This error can be considered as an uncorrelated noise source even though  
q ( t ) is a deterministic function of the input signal. The variance of the quan-
tization error

  ( )2 2
q qq p q dq

∞

−∞
= ∫s

 
 (2–4)     

 where  p 
q
  ( q ) is the probability distribution of the error term, which can be 

assumed to be uniform provided that the input signal does not exceed the 
normal range of the quantizer; the probability density function is thus 

  ( ) 1/ /2,

0 otherwise.q

q
p q

⎧ Δ ≤ Δ
= ⎨

⎩  

 (2–5)     
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Figure 2–11 . (a) Conversion of a timevarying analog signal to its digital 
counterpart. (b) The temporal waveform and  (c) the spectrum of the 
band-limited continuous signal. (d) The sampled temporal waveform and 
(e) its spectrum, which shows also the aliased images. The original spec-
trum, and hence the original temporal waveform, can be recovered from 
the samples by (f) a reconstruction fi lter which suppresses the aliased 
images. Functions in lower and upper case refer to the time and frequency 
domain representations, respectively.  fs denotes the sampling frequency, 
and Ts = 1/ fs is the corresponding sampling period, i.e., the time interval 
between two consecutive samples. 
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 Substituting this into Equation (2–4), the variance   2 2 /12.q = Δs     
 The signal-to-noise ratio of a quantizer is typically expressed in 

decibels 

  [ ]
2

10 2
SNR dB 10 dB log x

q

= ⋅ s
s

  (2–6)     

 where   2
xs    is the variance of the input signal. For an input signal with a uni-

form distribution 

  ( ) ( )1/ / 2,

0 otherwise
x

L x L
p x

Δ ≤ Δ⎧
= ⎨

⎩
  (2–7)      

the SNR is   2 2 2 /12x L= Δs    . Substituting the variances into Equation (2–6) 
yields 

  10 10SNR 20 dB log 20 dB log 2 6.02 dB/bitNL N= ⋅ = ⋅ ≈ ⋅   (2-8)     

 where  N  is the number of bits required to encode  L  quantization steps. Thus, 
to accomodate a dynamic range of 60 dB, we need 60 dB/6.02 dB/bit ≈ 10 bits 
for each sample. Modern MEG systems employ 16–32 bits per sample to allow 
for dynamic ranges in excess of 96 dB.   

 Until now, we have considered temporal sampling and amplitude quan-
tization as separate processes; however, high temporal sampling rate can be 
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Figure 2–12 . Amplitude quantization. (a) The transfer characteristics of a 
uniform quantizer with L = 7 amplitude steps, input x and output y. (b) The 
corresponding quantization error q as a function of the input amplitude x.
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traded for a larger dynamic range provided that there is some uncorrelated 
noise on top of the signal. This perhaps counterintuitive effect is best explained 
with an example; consider a slowly varying signal with an amplitude 1.7 at 
some point in time. When this signal is fed to a quantizer whose step size 
Δ = 1, the quantizer output will be 2 since the value 1.7 falls into the bin 
[1.5, 2.5] centered around 2. On the other hand, if broadband noise (whose 
variance is larger than the step size) is added to the input signal, and this 
signal is sampled at a rate which is several times higher than what is required 
by the sampling theorem, the quantizer output is 2 for most of the samples, 
1 almost as often, and may, less frequently, also assume other values if 
the noise variance is large. The average of multiple such samples approaches 
1.7 without a limit when the number of samples tends to infi nity. Thus, tem-
poral  oversampling  is able to extend the dynamic range at the small-signal 
end. When the sampling rate is dropped, i.e., the signal is  downsampled , 
additional accuracy is gained; it can be shown that downsampling by a factor 
 F  yields

  ds 2logN F=   (2-9)     

 bits in the small-signal end, provided that the original signal contains enough 
wideband noise.  

 Averaging trials (see previous section) has the very same effect; the average 
signal can show brain responses whose amplitude is smaller than the quantiza-
tion step size of the raw signal, provided that the implementation of the averager 
is such that it preserves the emerging “sub-bits.” In other words: if the quantiza-
tion step is much smaller than the system noise amplitude in the frequency band 
of interest, the step size does not limit the smallest discernible brain response, 
since averaging is required anyway to recover the response amid noise.      

Acquired Signals 

 The number of MEG channels in todays whole-head systems ranges from 
100 to 300. The data acquisition system samples all these channels in parallel. 

 The MEG systems do not only acquire MEG data; many MEG devices 
feature a built-in EEG system to be used for simultaneous MEG/EEG mea-
surements. The EEG systems have channels for scalp EEG, and some also for 
intracranial EEG, for monitoring muscular (electromyogram or EMG) and 
cardiac (electrocardiogram or ECG) activity, as well as eye movements and 
blinks (electrooculogram or EOG). The amplitudes of these electric signals 
range from the sub-microvolt-level scalp EEG to the millivolt peak ampli-
tudes of ECG. To optimally acquire all these signals, the EEG systems typically 
have an adjustable gain, or sensitivity, separately for each input channel. The 
EEG systems operated with MEG typically have 32–128 channels. 

 The timing of the stimuli given to the subject, and the subject’s behav-
ioral button-press responses, are usually recorded by special  trigger channels . 
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MEG systems typically include 8–32 independent trigger lines, or bits, which 
are encoded on one or more trigger channels. 

 MEG experiments may also involve recording additional signals from the 
subject such as the gaze direction (provided by an eye tracker), position of 
fi ngers or limbs, or speech. These can be acquired using the auxiliary analog 
inputs provided by most MEG systems. 

 All the above input signals are usually sampled synchronously at the same 
sampling rate and stored into a single data fi le. Common sampling rate usu-
ally implies equivalent low-pass or anti-alias fi ltering of all signal; however, 
the trigger signals are sampled without fi ltering. Since fi ltering involves a 
delay, the trigger signals must be shifted accordingly in time, or the trigger 
event timing has to be compensated mathematically off-line to ensure perfect 
synchronization of all acquired signals.    

Acquisition Modes 

 Raw MEG/EEG signals can be recorded either continuously or as epochs. In 
the continuous mode, trigger signals are recorded together with MEG/EEG—
but triggers do not affect the timing of the recording itself. In the  epoch mode , 
the trigger events control the extraction of predefi ned windows of raw data, 
and these windows are stored consecutively in the fi le. The epoch mode yields 
smaller fi les, since the uninteresting periods between the events are not stored. 
However, the discontinuities at the epoch boundaries may give rise to prob-
lems when processing the recording. 

 For evoked response studies, many MEG systems can accumulate the 
average response in the course of the measurement and provide the operator 
with a display of the average during data collection. This capability is referred 
to as  on-line averaging , and it is useful as a quality assurance method during 
the measurement, even if an off-line average calculated from the continuous 
or epoch mode recording would serve as the primary output data. 

  Figure  2–13   illustrates the three data collection modes described above.      

Interference Suppression 

 As discussed earlier in this chapter, MEG signals are several orders of magni-
tude weaker than the ambient magnetic noise due to sources like powerlines, 
electric appliances, and traffi c. Detecting MEG signals in a magnetically silent 
environment is already challenging, and doing it in normal surroundings is 
even more so. Suffi cient suppression of environmental magnetic interference 
involves a combination of multiple methods. The mostly widely applied tech-
niques are briefl y reviewed in this section.     

Magnetically Shielded Rooms 

 The traditional, and still the most important, means to protect MEG against 
environmental interference is to employ a passive  magnetically shielded room . 
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The shielding properties of such a room at low frequencies are attributable to 
the high-permeability  mu-metal  (an alloy consisting mostly of nickel and 
iron) which provides the impinging magnetic fi eld with a low-reluctance path 
along the walls of the room, thus reducing the fi eld strength within the room. 
At higher frequencies the shielding relies on the eddy currents fl owing in a 
high-conductivity material, usually aluminium. To allow both shielding 
methods to work effi ciently, the walls are typically made of a combination of 
mu-metal and aluminium plates (Kelhä et al.,   1982  ). 

 Practical shielded rooms employ multiple such shells, or layers, to 
increase the shielding factor, particularly at low frequencies. This effect is evi-
dent in  Figure  2–14  , which illustrates typical shielding factors attained with 
different constructions of the walls. Most shielded rooms comprise either 2 or 
3 shells. Recently, single-shell light-weight shielded rooms, supported by 
active compensation systems, have been successfully employed with MEG 
(De Tiège et al.,   2008  ).   
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Figure 2–13 . Data collection modes provided by MEG systems. The raw 
MEG/EEG signals can be stored either (a) continuously,  (b) in short 
windows about a trigger event (epoch mode), or (c) as on-line aver-
ages. Often the continuous or epoch mode and on-line averaging can be 
engaged simultaneously. Here, the simulated experiment involves two 
different stimuli whose onsets are marked by triggers A and B, and 
accordingly, two sets of average responses are computed. 
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 The inside dimensions of a shielded room are typically 4 × 3 × 2.5 meters 
( length  ×  width  ×  height ). Accounting for the thick walls and the space needed 
around the room, a standard two-layer room requires at least 15m 2  of fl oor 
space, excluding the space for the electronics, stimulators, patient prepara-
tion and operator’s area, which all have to be in the immediate vicinity of the 
shielded room. 

 Multi-shell rooms are bulky; a two-shell construction weighs typically 
about 10 tons and three-shell about 15 tons. Therefore, such rooms are usu-
ally located in the basement and even then the building fl oor may require 
additional reinforcement to support the room. These requirements can be 
relaxed considerably for the single-shell construction. 

 Mechanical vibrations of the building (due to traffi c, for example) may 
be transmitted to the room structure and may thus appear as artefactual 
signals. To prevent such conduction, the shielded room foundations can be 
isolated from the rest of the building by having the room to rest on its own 
concrete slab. 

 Mu-metal is costly; its main ingredient, nickel, is expensive, and so is the 
complex manufacturing process of high-quality mu-metal sheets. Thus, a 
shielded room with several tons of mu-metal presents a considerable share of 
the investment to a new MEG laboratory.     
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Active Noise Compensation Systems 

 Passive magnetic shields can be enhanced by active systems that measure the 
interference fi eld and generate a compensating fi eld to cancel the interference 
at the location of the MEG system. The typical active compensation system 
comprises a fl ux-gate sensor, driver electronics, and pairs of Helmholtz coils 
outside of the room to supply the cancellation fi elds. Such a setup can provide 
10–30 dB of additional shielding if the interference sources are far away (tens 
of meters or more), so that their fi elds are approximately homogeneous at the 
location of the room. Unfortunately, nearby sources may turn problematic, 
since proper compensation would require the spatial derivatives of the fi eld to 
be taken into account. Tuning the setup against a particular nearby source 
may still give satisfactory results.     

Noise Cancellation within MEG Devices 

 Despite all the effort of suppressing ambient magnetic fi elds, some residual inter-
ference is typically still present within the shielded room. Thus, further noise 
reduction techniques have to be applied within the MEG systems themselves. 

   Gradiometrization .  As discussed earlier in this chapter, employing gra-
diometers instead of magnetometers is a straightforward method to protect 
the MEG sensors from far-away interference sources; a gradiometer’s response 
to a source falls off much faster with distance than that of a magnetometer. 
A carefully manufactured (well-balanced) gradiometer can attenuate homo-
geneous fi elds by as much as 60 dB (factor 1,000). On the other hand, fi elds 
from the most distant brain regions are picked up better by magnetometers 
than gradiometers. 

   Reference sensor array .  Interference can also be measured explicitly and 
then subtracted from the signals.  Reference sensors  located some tens of centi-
meters away from the MEG helmet do not measure brain signals, but capture 
mainly the interference. By optimally coupling the output of the reference-
sensor array to the MEG channels proper, the interfering signal can be removed. 
This arrangement works well with homogeneous interference fi eld; however, 
the presence of gradients may degrade the performance, as the interference at 
the helmet must be extrapolated from the measurements at the reference 
sensors. For this purpose, the reference sensor arrays usually include both 
magnetometers and gradiometers. The reference-sensor approach can also be 
considered as a higher-order gradiometrization (Vrba & Robinson,   2001  ). 

 The optimal couplings (“weights”) from the reference sensors to the 
MEG sensors can be determined either by direct calculation, if the geometry 
is known to a high precision, or adaptively from real measurements of 
external interference by the same array. 

 When performing correlation or coherence analysis of MEG data, it 
should be noted that the couplings to the reference sensors may introduce 
spurious correlations between the MEG channels, if not explicitly addressed. 
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   Signal-space projection .  Interference can also be suppressed without a 
reference-sensor array by exploiting the fact that external interference and 
brain sources evoke different spatial patterns on the sensor helmet. The ben-
efi t of this reference-free approach is that no extrapolation is required, since 
the interference is measured at the very location it should be suppressed. To 
understand this approach, the concept of signal space comes in handy; each 
channel spans one dimension of that virtual space. Thus, the output of an 
 n -channel sensor array at any time instant can be expressed as a vector, or a 
point, in the  n -dimensional signal space. The spatial pattern is equal to the 
direction of the corresponding vector in the signal space, while the overall 
strength of the signal defi nes the length of that vector, or distance from the 
origin. If the interference subspace is known, the measurement data can be 
projected onto a hyperplane orthogonal to that subspace, thus completely 
removing the contribution of the unwanted subspace; the method is called 
 signal-space projection  (SSP) (Uusitalo and Ilmoniemi,   1997  ; Parkkonen et al., 
  1999  ). An analogous situation arises when taking a 2D picture of a 3D object 
(a 3-channel “measurement”) at such an angle that, say, the depth of the 
object (the “interference direction”) is completely hidden. 

 Projected data are rank-defi cient, i.e., after projecting out an  m -dimensional 
subspace from an  n -channel measurement, there are only  n  −  m  linearly inde-
pendent signals, or equivalently, degrees of freedom. Since  m  is usually only 
3–8 and  n  > 100, the mere loss of degrees of freedom is not a problem as such, 
but to correctly interpret the spatial aspect of projected data, the SSP operator 
should be taken into account. For example, SSP may introduce slight changes 
in the signal topography. In source modeling, the projection operator has to 
be applied also to the result of the forward computation (see Chapter 5) to 
ensure unbiased estimation. 

 The interference subspace is usually determined by principal component 
analysis (PCA) of a short measurement without a subject. Selecting 3–5 com-
ponents associated with the highest eigenvalues for the subspace typically 
reduces the variance of the interference down to acceptable levels. Such sub-
spaces appear very stable over time, even months or years, provided that the 
magnetic environment does not change drastically. 

  Signal-space separation.  Instead of determining the interference sub-
space statistically, the known physical properties of magnetic fi elds — 
expressed in Maxwell’s famous equations — can be exploited to mathemati-
cally construct the subspace where all signals due to sources external to the 
sensor helmet must reside. Similarly, another subspace can be spanned for all 
signals whose sources are inside the sensor helmet. These two subspaces are 
linearly independent thus providing a unique way of separating the measured 
data to contributions from outside and inside of the sensor helmet. Interference 
suppression can now be performed simply by dropping out the outside con-
tribution. This recent method is called  signal-space separation  (SSS) (Taulu 
et al.,   2004  ; Taulu & Kajola,   2005  ). 
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 The SSS subspaces are derived from series of spherical harmonic functions. 
In the SSS framwork, the data are fi rst expressed as two multipole expansions, 
one for the inside and the other for the outside contribution, in the spherical 
harmonic spaces. Subsequently, the sensor-level data are reconstructed using 
only the inside expansion. Both series are truncated to stay within the limits 
imposed by the number of channels in the system; the inside expansion typically 
corresponds to about 100 degrees of freedom. 

 The SSS method is data-independent and time-invariant, however, it 
does require precise information on the geometry of the sensor array; with 
0.1 percent calibration accuracy, the shielding provided by SSS is roughly 40 dB.     

Co-registration 

 The MEG source estimate, i.e., the estimated spatial distribution of the neural 
(primary) currents given the MEG measurements, is usually visualized super-
imposed on the anatomical MR-image of the subject. In addition, the esti-
mate can be mapped into a normalized space, such as Talairach, the Montreal 
Neurological Institute (MNI) standard brain, or other atlas brains; see, e.g., 
Fischl et al. (  1999  ); Mazziotta et al. (  2001  ); Van Essen (  2005  ); Toga et al. 
(  2006  ). On the other hand, the MEG measurements are taken at locations 
known only with respect to the MEG device itself, instead of the anatomy of 
the subject. For subjects with smaller heads, the MEG helmet typically allows 
for head movements as large as a few centimeters; not knowing the head posi-
tion within the sensor array would lead to drastic errors when superposing 
the MEG sources onto an individual anatomical MRI. Therefore, MEG devices 
include a subsystem to determine the position of the head with respect to the 
MEG sensors. 

 Since MEG — unlike MRI — cannot directly measure the position of 
the head, small coils generating magnetic fi elds at known locations on the 
scalp of the subject are employed in the  head position measurement . When 
the coils are energized, the MEG sensor array can be used to localize the 
coils, just like it is used to localize neural currents in the brain. If we could 
place the coils at anatomical locations that are accurately identifi able on ana-
tomical MRIs, this step would be suffi cient to provide us with a coordinate 
transformation between the  MEG device coordinate system  and the  MRI 
device coordinate system . Unfortunately, such anatomical locations are either 
not covered by the MEG sensor array (nasion and the tip of the nose) or they 
are inconvenient as coil locations (preauricular points). This necessitates the 
defi nition and use of a  head coordinate system , which is based on landmarks 
identifi able accurately both in the MRIs and on the real head. By measuring 
the coil locations in the head coordinate system with a 3D digitizer, and 
combining that information with the locations of the coils in the MEG 
device coordinate system, we are able to bridge the gap between the MEG 
and MRI device coordinate systems and thus to translate MEG results onto 
the MRI space. 
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 Within the MEG system, the head position is determined by feeding 
small currents through the 3–5 indicator coils either sequentially or simulta-
neously at different frequencies, measuring the elicited magnetic fi elds and 
then estimating the coil locations. This procedure is usually carried out in the 
beginning of each recording block, during which the position of the head is 
assumed to be stable. 

 With some subject groups, most notably children, the assumption of a 
stable head position (within a few millimeters) for longer than some seconds 
is not necessarily valid. Continuous head position tracking should be used in 
these cases.     
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Figure 2–15 . (a) One defi nition of an orthonormal right-handed head 
coordinate system; x-axis passes through both left (LPA) and right (RPA) 
preauricular points and points to the right, y-axis intersects x-axis at a 
right angle and passes through nasion, and z-axis is normal to the xy-
plane and points upwards (the Elekta-Neuromag convention; other MEG 
vendors have different systems, albeit based on the same landmarks). 
(b) Three head-position indicator coils attached to the head of the sub-
ject. Note that the coils do not correspond to the landmarks, and thus the 
coil locations must be digitized prior to the head position measurement 
in the MEG system. (c) The relevant coordinate systems and the ways to 
move between them.
3D rendering courtesy of Dr. Mika Seppä 
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Safety

 MEG is inherently very safe; it measures magnetic fi elds that are always 
present outside of the head, and does not employ high magnetic fi elds, as does 
(f)MRI, or radioactive tracers, as does PET. The only safety concern is liquid 
helium, utilized as a coolant for the superconducting parts of the MEG sys-
tem. Helium is nontoxic and nonfl ammable but may replace oxygen when 
present in the air in large quantities. Helium gas is lighter than air, so it con-
centrates at the ceiling level. Liquid helium may also cause severe frostbites 
because of its very low temperature. 

 During normal operation, the helium gas evaporating inside the MEG 
Dewar is fed outside through an exhaust line. Should this line be blocked, the 
pressure inside the Dewar starts to rise gradually. To prevent the system from 
eventually exploding, the Dewars are fi tted with safety valves that let out the 
excess gas by releasing it to the air inside the shielded room. Therefore, 
the shielded room must have proper ventilation, arranged in such a way that 
the air outlet is near the ceiling. 

 A sudden loss of the vacuum isolation of the MEG Dewar leads to a rapid 
boil-off of liquid helium. Since one liter of liquid helium expands to about 
750 liters of gas at room temperature and normal atmospheric pressure, many 
of the MEG Dewars are equipped with a high-capacity safety exhaust line to 
provide a low backpressure path to the outside air.     

Stimulators

 Most MEG measurements involve stimulation of the subject by, e.g., sounds, 
touch, images, video clips, or their combinations. Delivering stimuli without 
interferring with the MEG signals is often challenging, as many conventional 
devices that could be used for generating the required sensory input also pro-
duce unwanted magnetic signals that are picked up by the MEG. In addition, 
stimulus delivery should be temporally precise; sloppy timing yields smeared 
responses, particularly in the primary sensory areas. The following sections 
describe the principles of MEG compatibility and highlight the most com-
monly employed stimulation setups for MEG. Developing, selecting and 
applying stimulators is a large undertaking; this section is merely an brief 
introduction.     

Electromagnetic Compatibility 

 An MEG recording may suffer from interference of several kinds: magnetic 
materials, electric currents and radio-frequency signals can all disturb the 
MEG recordings. The next paragraphs address these issues in more detail. 

 Magnetic material that moves within the shielded room naturally 
interferes with the recording. The level of such interference depends on the 
distance to the MEG sensors, on the amplitude of the movement, and on 



Instrumentation and Data Preprocessing  53

the magnetization of that moving object. Even though, in theory, perfectly 
stable yet magnetic objects would not interfere, it is often exceedingly dif-
fi cult to immobilize them so that no interference would be seen. Particularly 
the devices in contact with the subject do always move due to breathing and 
pulsation, not to mention normal muscular movements. Even if magnetic 
objects are only on the fl oor of the shielded room, the minute vibrations or 
bending of the fl oor may be suffi cient to generate observable interference. 
Thus, to be on the safe side, devices within the shielded room should be 
made of nonmagnetic materials. In practice, few materials are strictly non-
magnetic. Testing for suffi ciently low magnetism is fortunately straightfor-
ward with the MEG system itself: the material to be tested is periodically 
moved back and forth with an amplitude of a couple of centimeters, and 
slowly brought from a distance toward the MEG sensor helmet while some-
one else is watching the MEG traces for periodic defl ections that clearly 
exceed the background fl uctuations. Commonly used nonmagnetic materi-
als include aluminum, brass, copper, silver, gold, high-quality stainless 
steel, rubber, glass, wood, and many plastics. Even these should be tested 
with the above procedure since some samples may contain magnetic impu-
rities, and certain coloring agents are magnetic. When constructing or using 
electronic devices, it should be noted that the commonly used gold-plated 
electrical connector pins typically include a layer of nickel, which is strongly 
magnetic. 

 Currents in electric devices generate magnetic fi elds around them, just 
like the very weak currents in neurons. The strength of the fi eld due to a cur-
rent is directly proportional to the strength of the current and to the surface 
area of the current loop. Therefore, to minimize the interference, the currents 
must be kept as low as possible and the current loops as small as possible. 
Accurate analysis of the current path may be elaborate, but observing the fol-
lowing guidelines should yield satisfactory results: (i) circuits should be pow-
ered with a single cable where the feed and return wires are carefully twisted 
around each other for the entire length of the cable to ensure that the net 
surface area of the loop is close to zero; (ii) circuits and devices should be 
grounded only at a single point, and the ground connections should form a 
star-like structure, thus preventing the formation of accidental “ground 
loops,” which can be large and thus give rise to signifi cant stray fi eld; (iii) the 
current path and consumption should be as constant as possible, so that if a 
measurable fi eld is generated it is only a DC fi eld that can easily be compen-
sated for; and (iv) the signal input/output connection should carry only a very 
low current (a balanced differential line is optimal) to avoid loops formed by 
the power-feed and signal-output wires. 

 As mentioned earlier, external radio-frequency (RF) signals may inter-
fere with the operation of a SQUID. RF signals decrease the modulation 
depth, increase the white noise level, and may introduce a DC shift in the 
output signal. Many modern stimulators include digital circuitry that oper-
ates at relatively high frequencies, and unfortunately these devices often emit 
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spurious RF noise. The regulatory directives that govern the level of these 
emissions are not strict enough for MEG compatibility, and thus a fully com-
pliant device may still be unusable with MEG. Even if the generator of RF 
signals, e.g., a cell phone, is outside of the shielded room, directly or indirectly 
(capacitively or inductively) coupled wires may act as antennas and carry the 
unwanted interference into the room. Therefore, all cables entering the 
shielded room should be properly low-pass-fi ltered at the feedthrough to 
remove any RF contamination. Omitting feedthrough fi ltering may result in 
a setup that works most of the time if the environment is relatively RF-free, 
but exhibits spurious artifacts when RF sources happen to be in the vicinity.     

Timing 

 MEG is a time-sensitive method; it allows tracking the neural responses down 
to millisecond timescales. The latencies of the early responses from, e.g., 
primary sensory regions, are rather constant across healthy individuals—
however, such measures are of diagnostic value only if the stimulus timing is 
known with adequate precision, typically within a millisecond. Trigger-to-
stimulus timing can be broken into two components: a constant delay between 
a trigger signal and the actual physical delivery of the stimulus, and a random, 
or at least uncontrollable, variation of that delay about the average value, also 
known as jitter. A constant delay can be readily compensated for, and gener-
ally does not compromise the quality of the MEG data in any way, whereas 
jitter destroys the fi ne details and reduces the amplitude of the response; see 
 Figure  2–16  . Note that this stimulus vs. trigger jitter should not be confused 
with the sometimes desirable random variation of the interstimulus intervals.  

 The timing errors are most often attributable to the stimulus generator, 
nowadays often a PC running special software. The PCs with standard operat-
ing systems are not hard realtime devices, and thus there is no way to guaran-
tee that the stimulus and the corresponding trigger pulse are both sent out at 
any precise moment in time. With fMRI, the requirements for timing accu-
racy are not so demanding; a system targeted for fMRI might not be accurate 
enough for MEG and EEG. Usually the only way to verify the timing — and 
to record the trigger-to-stimulus delay — is to measure it with an additional 
device that generates a trigger pulse when a sound (recorded by a micro-
phone) or an image (captured by a photodetector on the screen) is received.     

Auditory

 The quality of an auditory stimulation system is characterized by its frequency 
response, distortion level, channel separation (crosstalk), dynamic range, accu-
racy of loudness control, and maximum distortion-free sound pressure level. 
The experiment at hand sets the standard: a moderate-quality system serves 
well in studies concerning, e.g., the processing of semantics of spoken language, 
while a high-fi delity system is needed for studying the auditory system  per se . 
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 Normal loudspeaker—comprising a permanent magnet, a voice coil and 
a cone—cannot be operated within the shielded room without interferring 
with the MEG recording. Therefore, a common setup is to have the loud-
speakers outside of the room and convey the sound to the ears of the subject 
via plastic tubes. With large-diameter tubes, their proper matching to the 
driver elements, and an equalization unit, it is possible to achieve relatively 
high sound quality. The downside of this approach is the clumsiness of the 
tubes and the necessity to wear earpieces. 

 Electrostatic loudspeaker elements, if not located in the very vicinity of 
the sensors, do not interfere with MEG, as the drive currents are rather low 
and no magnets are involved. A properly directed electrostatic element, 
mounted on the wall of the shielded room, provides a good-quality binaural 
auditory stimulus. The lack of monaural or stereo stimulation and attenua-
tion of background noise limits the applicability of this setup. On the other 
hand, many studies utilize only binaural stimulation, and the shorter setup 
time and increased comfort due to the subject not having to wear earpieces 
should not be overlooked. 

 Insert earphones (e.g. “EAR-Tone” by Etymotic Research Inc., IL, USA) 
are commonly utilized with MEG. They comprise a small driver unit, 
thin plastic (often silicon) tubing and an earplug. The frequency response 
of the insert earphones is typically limited to 4–5 kHz, but they allow 
stimulating the ears independently and are relatively convenient to use. The 
driver unit may emit magnetic interference at the stimulus frequency; thus, 
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Figure 2–16 . Demonstration of the stimulus-to-trigger timing accuracy; 
the evoked response to electric median nerve stimulation with precise 
timing (upper curve) and with uniformly distributed timing jitter upto 
±10 ms (lower curve). The jitter abolishes the fast components of the 
response.
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particularly with stimuli that contain low-frequency components, one should 
ensure that the units are suffi ciently far from MEG sensors to avoid artifactual 
responses. 

 It is often desirable to present the stimuli at a certain level with respect to 
the hearing threshold, say at 60 dB-SL   4   , to reduce the response variability 
due to differences in stimulation. Since hearing thresholds vary across people, 
and the seating of the earpiece affects the conduction of the sound wave to 
the ear (Saunders & Morgan,   2003  ), the threshold should preferably be mea-
sured with the same stimulation setup and in the same session as the actual 
MEG data.     

Visual 

 The MEG environment is challenging also for presenting high-quality visual 
stimuli interference-free. The de facto standard is a setup where a video pro-
jector, located outside of the shielded room, beams through an opening in the 
wall to a semitransparent back-projection screen in front of the subject. With 
the projector at an appropriate location, direct projection to the screen usu-
ally works for seated subjects, whereas mirrors might be required for the 
supine position of the subject. 

 The whole setup should be considered for parameters such as luminance, 
contrast, geometric fi delity and the available range of visual angles. The pro-
jector determines most of the other parameters: resolution, temporal syn-
chronization (delay + jitter, if any), response time and its symmetry, linearity, 
the depth and temporal simultaneity of color reproduction. Again, the 
required fi delity of the image or video reproduction depends on the experi-
ment: a high-quality system is required for studying certain aspects of the 
early visual cortices while a moderate system may suffi ce for other purposes. 
One should be aware that the projector types on the market behave quite dif-
ferently in many important respects: LCD (Liquid Crystal Display) projectors 
may exhibit asymmetric black/white/black transition times and colors may 
not be drawn simultaneously, which, although not usually perceived, can 
alter responses from the visual system. DLP (Digital Light Processing, arrays 
of micro-mirrors whose angle can be controlled electronically) projectors 
often have better contrast and symmetric transition times. The more expen-
sive models feature separate DLP units for the main colors, thus allowing them 
to be drawn simultaneously. 

 The light bulbs in the projectors wear out, and the luminance drops 
accordingly (in some cases by as much as 50%). For experiments where the 
absolute illumination matters, it is thus important to regularly measure the 
luminance on the projection screen. 

 Most, if not all, video projectors keep at least one full image frame in an 
internal buffer before showing it, which corresponds to a constant delay 
(the duration of one frame is 16.7 ms at the 60-Hz refresh rate). Projectors 
draw the frames usually at few fi xed rates, typically only at 50 or 60 frames 
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per second. When driving a projector at a higher rate, it may adapt by simply 
dropping out a frame every now and then. This coarse downsampling gives 
rise to jittering on top of the constant delay. This jitter cannot be compen-
sated for, except by triggering each trial by measuring the stimulus onset 
directly on the screen with a photodetector. Note that this elaborate arrange-
ment is not required to remove the effect of a constant delay, yet it is always 
worthwhile to verify with a photodetector that a new setup (including the 
stimulation software, graphics hardware and driver, video projector and the 
employed resolution and refresh rate) works fl awlessly.     

Somatosensory

 The human somatosensory system can be stimulated peripherally and nonin-
vasively by touching the skin mechanically, by heating and cooling, and by 
applying brief electric pulses to directly activate a nerve. 

 Tactile stimuli are usually delivered by feeding pressurized air either 
directly to skin or to a small container with an elastic membrane in contact 
with the skin. Such pneumatic devices come with multiple channels to stimu-
late, e.g., fi ngertips independently. Due to the dispersion of the pressure wave, 
these stimuli have signifi cant rise and fall times (on the order of 20 ms). 
A bundle of optic fi bers shaped in the form of a brush can also be used as a 
tactile stimulator; the light refl ected from the skin when tapping it with the 
brush is utilized to obtain accurate timing information (Jousmäki et al.,   2007  ). 

 The skin can be heated locally by a laser beam, which provides a way for 
controlled pain stimulation. Such stimulation yields a sensation of mild prick-
ing pain. 

 Sensory nerves can also be stimulated directly; electric pulses applied via 
cutaneous electrodes trigger action potentials in the nerve fi ber. The applied 
pulses are very brief, typically 100–200 μ s . Stimulators can operate either by 
keeping the current or the voltage constant. Since the constant current drive 
is less affected by changes in the electrode impedance, it is more widely used. 
When stimulating the median nerve at the wrist, the current at the motor 
threshold is typically 5–10 mA. 

 Since nerve stimulators are electrically connected to the subject, they 
have to include an isolation system to protect the subject in case of a poten-
tially lethal failure in any electric system that could be in contact with the 
subject. This isolation can be achieved either optically or by a transformer. 
Optical isolation is always MEG-compatible but the transformer isolation, in 
some devices, employs RF pulses that severely contaminate the MEG signals. 
Irrespective of the isolation type, the stimulator should be kept outside of the 
shielded room and only the electrode leads should enter the room. 
Unfortunately, normal feedthrough fi ltering is diffi cult to arrange to comply 
with the regulations on the protective isolation. Therefore, an RF-shielded 
enclosure with a direct feed-in to the shielded room is the preferred location 
for such a stimulator.     
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Other Modalities 

 Auditory, visual and somatosensory stimulation covers almost all MEG 
experiments. Yet, there is room for studies concerning the olfactory, gusta-
tory and proprioceptive systems, for example. Commercial stimulators for 
these modalities are scarce, and even more so when considering only MEG-
compatible devices. Thus, these stimulators are often developed in the MEG 
laboratories.     

Recording Behavioral Responses 

 In many experiments, in addition to MEG data, behavioral responses are of 
interest. Certain paradigms, e.g., recording motor-evoked fi elds or responses 
related to speech production, rely on behavioral responses for timing the 
averaging of MEG data. 

 Normal response buttons can be used with MEG, provided that they are 
nonmagnetic and that their operation is silent to avoid confounding auditory 
responses due to the button presses. Optical switches, in which a light beam is 
interrupted by the fi nger press, are well-suited for this task. The light source 
and detector, connected to the switch by optic fi bers, can be placed outside of 
the shielded room. Nonmagnetic electric switches can also be employed, pro-
vided that the associated cabling is appropriately fi ltered for no RF leakage. 

 The onset of speech can be recorded with a microphone and preamplifi er 
whose output is either directly fed to an auxiliary analog input available in 
most MEG systems, or to a trigger input, after thresholding it to a binary signal 
(“speech on” vs. “speech off”).      

Preprocessing 

Signal-to Noise Ratio and Averaging 

 The MEG signal amplitude is affected by several factors: the extend of the 
activated area, the level of neuronal synchrony, the anatomical location and 
orientation of the source, and cancellation effects due to opposing coincident 
nearby activations. Signal amplitude may also change due to medication and 
pathologies. Therefore, MEG response amplitudes span a wide range, from 
few femtotesla to a picotesla. 

 Noise from several sources hampers MEG. Brain activity not of interest 
(“brain noise”), biological noise from sources other than the brain, instru-
mentation and ambient magnetic interference, all contribute to the noise seen 
in MEG recordings. The relative strengths of these sources depend on the 
frequency: in rough terms, at the lowest frequencies (below 1 Hz) the ambient 
and biological noise are usually most prominent; the mid-frequency band 
(1–100 Hz) is dominated by brain noise (except at the line frequency of 
50/60 Hz), and at higher frequencies most of the noise originates in the MEG 
instrument itself. 
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 Single evoked responses often have a poor signal-to-noise ratio (SNR), 
on the order of one. To improve the SNR to allow, e.g., accurate detection and 
localization of the underlying sources, multiple responses can be averaged. 
Averaging reduces the noise as  1/ N    , where  N  is the number of averaged 
trials, provided that the noise in the data is temporally uncorrelated from trial 
to trial.  Figure  2–17   illustrates the improvement in SNR due to averaging. 
Since the response amplitude often decreases with frequent presentations of 
the same stimulus, and biological noise may increase with a prolonged mea-
surement (frequent eye blinks, muscle artifacts due to neck tension etc.), 
the SNR improvement in practice is somewhat worse than predicted by the 
formula above. See Chapter 4 for more information.  

 Averaging can also be done in the spatial domain: signals at neighboring 
channels can be added together, often after squaring to avoid cancellation due 
to fi eld sign changes, to gain in SNR by trading off spatial resolution. This 
approach is well-suited when accurate localization is not the main point in 
the analysis.     

Filtering

 Signal-to-noise ratio of MEG data can be improved also by limiting the window 
of frequencies so that only the band where the response’s energy lies is 
retained. This operation is  fi ltering , also referred to as  time-domain  or  temporal  
fi ltering in order not to confuse it with  spatial fi ltering . 

 To understand how fi ltering may reduce the noise level, a simple example 
comes in handy: If the noise spectrum can be assumed white,   5    the RMS (root-
mean-square) amplitude of noise  

 nn B f= Δ    where  B  
n
  is the spectral density 

of noise and Δ f  is the bandwidth. For example, if the white noise level 
  5fT / cm / HznB =    and the pass-band is 0–100 Hz thus Δ f  = 100 Hz, the 
observed noise amplitude  n  = 50 fT/cm 

RMS
 . If we know that the responses of 

interest are confi ned to 0–25 Hz and we fi lter the data accordingly, the noise 

100 ms

100 fT/cm

N = 1 N = 3 N = 10 N = 30 N = 100

N20m

P35m

Figure 2–17 . Averaging somatosensory evoked fi elds. Single planar gradio-
meter channel above the S1 hand region shown. N refers to the number 
of trials averaged. The responses are elicited by electric stimulation of 
the median nerve at the wrist of a healthy adult. Note that the earli-
est responses (N20m and P35m) are apparent already in the single-trial 
response, and that their amplitudes decrease slightly when more trials 
are presented. 
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amplitude drops to 25 fT/cm 
RMS

 , i.e., to one half. Here, the gain in SNR 
achieved by fi ltering is equivalent to prolonging the experiment fourfold. 

 Some responses have lower- and higher-frequency components which 
can be separated by fi ltering. The somatosensory response of the previous 
example ( Figure  2–17  ), if measured with a wide enough pass band, comprises 
the traditional low-frequency responses and a high-frequency burst-like 
response around 600 Hz, which react to experimental manipulations differ-
ently and likely refl ect partially different neural events (Curio,   2000  ; Hashimoto, 
  2000  ; Okada et al.,   2005  ).  Figure  2–18   shows such an average response and its 
low- and high-frequency components.  

  Low-pass fi lters  limit the frequency band at its upper end, i.e., attenuate 
all frequencies above their  corner frequency , usually denoted as the frequency 
at which the fi lter drops the signal amplitude by 3 dB (to 71 percent), assuming 
unity gain at DC. Similarly,  high-pass fi lters  remove the frequency compo-
nents below their corner frequency. These two types can be combined into a 
 bandpass fi lter . Conversely, a contiguous range of frequencies can be removed 
by a  band-stop fi lter , and when this range is very narrow the fi lter is often called 
a  notch fi lter  as it has a “notch” in the frequency response. Regularly-spaced 
notch fi lters form a  comb fi lter , which is useful in removing a signal with a 
harmonic structure, e.g., the line frequency with the fundamental at 50/60-Hz 
and its harmonics (100/120 Hz, 150/180 Hz, etc.). 

 No fi lter has an infi nitely steep transition from the pass-band to the stop-
band but fi lters rather exhibit a certain roll-off rate, often expressed as dB per 
octave (doubling of the frequency). This value is infl uenced mostly by the 
 order  of the fi lter; the attenuation of a 2nd-order low-pass fi lter typically 
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Figure 2–18 . Separating the low- and high-frequency components of 
somatosensory evoked responses to electric median nerve stimulation. 
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increases 12 dB/octave, whereas that of an otherwise similar but 6th-order 
fi lter increases 36 dB/octave. 

 The above simple characterization does not describe any fi lter fully: in 
addition to the  amplitude response , the fi lter has a  phase response  that indicates 
how the fi lter changes the phase of the signal as a function of frequency. Here, 
fi lter design becomes relevant: a  Bessel  fi lter has a maximally linear phase 
response but less attenuation, whereas a  Chebyshev  fi lter is optimized for maxi-
mum attenuation but trades off the linear phase response. A  Butterworth  is a 
good compromise of the two. All these fi lters can be implemented either as 
analog electronic circuits, or digitally on a signal processor or computer. In the 
digital domain, these “analog” fi lters are often referred to as  infi nite impulse 
response , or IIR, fi lters as their output would (in theory) last infi nitely long for a 
delta spike at the input. Both the analog and digital versions are  causal , that is, 
the output of the fi lter depends only on the past input. 

 In addition to the above fi lters, digital systems allow implementing fi lters 
that would be very cumbersome to build in the analog world.  Finite impulse 
response  fi lters have guaranteed zero output in a certain time after applying a 
delta impulse at the input. FIR fi lters feature linear phase response and 
they are inherently stable; both very desirable properties. A close relative is 
 a frequency-domain fi lter , also referred to as an FFT (fast Fourier transform) 
fi lter, which realizes the fi lter function by transforming the input signal to the 
frequency domain, shaping the complex-valued spectra by the desired fi lter 
response, and then performing an inverse Fourier transform to provide the 
fi ltered time-domain signal. FFT fi lters process a short segment of the signal 
at a time, and the frequency-shaping is bounded by the length of the window; 
for high-pass fi lters the segment has to be long enough to capture the corner 
frequency. 

 FIR and FFT fi lters can be  acausal : the output depends not only on the 
previous input but also on the future input. This somewhat counterintuitive 
concept simply means that the fi lter keeps the input signal in memory for a 
certain duration, and uses the prior and subsequent values to compute the 
fi ltered output value, which enables desirable features such as a linear phase 
response. Unfortunately, there is a price to pay: acausal high-pass fi lters can 
generate artifacts. For example, when high-pass-fi ltering an evoked response 
at a corner frequency which is higher than the lowest frequency component 
of the response itself, a fake response may emerge before the actual one, as the 
fi lter removes frequency components that are required to confi ne the response 
in time.     

Suppressing Residual Interference 

 Despite the suppression systems outlined previously, unwanted signals may 
still remain in the measured MEG data, either due to their high amplitude (the 
attenuation provided by suppression methods is always limited) or due to 
their spatial distribution being generally indistinguishable from that of brain 
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activity. If this residual interference occupies the same frequency range as the 
brain responses of interest, the simple time-domain fi ltering cannot be used 
to remove the interference. However, exploiting the statistical and spatial 
properties of the interference can still provide a way to clean the data. 

  Independent component analysis  (ICA) is a blind source separation 
method that seeks for directions in the signal space that are maximally inde-
pendent in the statistical sense, and expresses the data along these directions; 
see, e.g., Hyvärinen and Oja (  2000  ) for a thorough description of ICA and its 
implementations. Since artifactual signals are most often independent of 
brain activity, ICA suits the task very well (Vigário et al.,   2000  ): however, ICA 
relies on the user to classify the obtained independent components to refl ect 
either artifacts or brain activity. 

 If there is  a priori  information about the artifact, the suppression method 
can take advantage of it. Knowing the precise timing (or determining it from 
the data if possible) of spatially similar, repeating events—e.g., the magnetic 
artefact due to a heartbeat—allows us to average several such events for a bet-
ter signal-to-noise ratio of the artifact itself, and thus obtain its spatial pattern 
on the sensor array. Once the pattern is known, it can be removed from the 
data by signal-space projection (see earlier discussion). If the pattern is not 
stable but undergoes a stereotypical sequence, principal component analysis 
(PCA) can be employed to extract a small set of patterns from the “artifact 
average” to be removed from the data. 

 Within the signal-space separation framework, many artifactual signals 
can be detected as temporal correlations between the inside and outside 
spaces. If high correlations are found, the corresponding interference can be 
removed by projection (Taulu and Simola,   2006  ); this method is known as 
temporal signal-space separation, or tSSS.        

Notes

    1    Wavefunction in quantum mechanics gives the probability of fi nding the 
particle at a certain location in space.   

    2    In some MEG systems the sensor coils are located in the vacuum space and 
they are thermally linked to the inner vessel.   

    3    An experimental MEG system by Volegov and colleagues (  2004  ) employs a 
superconducting magnetic shield inside the Dewar to provide high attenu-
ation towards external interference fi elds, and to act as a “magnetic mirror” 
which turns magnetometers into axial gradiometers.   

    4    Sensation level: decibels with respect to the individually-determined hearing 
threshold.   

    5    In a white signal, the spectral density is the same at all frequencies, i.e., the 
spectrum is “fl at.” The term is analoguous to white light, which contains all 
visible wavelengths.         
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Introduction 

 Running successful MEG measurements requires not only understanding the 
principles of MEG but also mastering various practical points which impact 
the quality of the acquired data. Investing time and effort in the MEG recordings 
most often pays off; nothing facilitates data analysis more than a well-planned 
experiment and good-quality data. 

 This chapter addresses the practical issues encountered when conducting 
MEG measurements.      

3

Measurements

Lauri Parkkonen and Riitta Salmelin

       A careful measurement and a good experimental design are the keys • 
to good-quality data  
    Interfering signals may arise from the subject, environment, or the • 
measurement setup; the sources should be identifi ed and removed if 
possible  
    Results of MEG measurements replicate accurately even within single • 
subjects     
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Quality Assurance 

 The MEG environment and the system may change over time. New interfer-
ence sources (magnetic or radio frequency), fl ux traps in the MEG sensors, 
incorrect or suboptimal settings of the MEG system or stimulators etc. may 
all reduce the amount of useful information in the MEG recordings. Equipment 
may also malfunction. In the worst case, such degradations could hamper the 
detection and localization of neural sources. 

 Quality assurance measures are thus recommended. A typical procedure 
comprises (i) noise measurements without a subject — “empty room mea-
surements” — to spot changes in the magnetic environment or MEG sensors, 
(ii) verifi cation of the localization accuracy with the help of a phantom head 
that includes current sources, and (iii) checking the proper operation of the 
stimulus delivery system. Quality assurance checks can be done on a daily 
or weekly basis depending on the usage of the system and the risk factors 
involved. 

 Monitoring the data quality should eventually save time by allowing the 
experimenter to concentrate on the particulars of the experiment instead of 
the system and setup. Sometimes it may be diffi cult to tell whether data are 
compromised because of interference from the subject or from the environ-
ment or the system itself; having a recent “fi ngerprint” of the signals without 
the contribution from a subject helps to resolve these cases. Similarly, an 
apparently incorrect source localization cannot necessarily be traced to any 
particular device or procedural step if regular checks are not performed. 

 In addition to periodic quality assurance measurements, it is good practice, 
prior to each MEG experiment and before bringing in the subject, to reserve 
ample time to check that all the hardware and software components are fully 
functional. A test run of the MEG data acquisition also provides an opportu-
nity to record “empty room” data (2–3 min) for reference. If multiple groups 
share the MEG system, it is particularly important to check that the stimula-
tion devices and the possible software scripts, as well as response buttons or 
microphones, if needed, are connected as required by the experiment and 
function as expected. 

 Careful pre-tests improve the data quality as the subject’s time and 
attention can be focussed on the experiment instead of debugging the mea-
surement setup.     

Subject Preparation 

 Before starting the actual MEG recording and even prior to guiding the 
subject into the magnetically shielded room, several preparatory steps are 
necessary. A typical procedure is outlined below.  

   1.   Consent . The subject receives a clear explanation of the experimental 
procedures and reads and signs the consent form.  
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   2.   Demagnetization . All objects that contain metal (earrings, hairpins, neck-
laces, piercings on the head, wrist watch, underwire bra, belt, etc.) should be 
removed. Clothing can include magnetic buttons, rivets and zippers so it is 
best to change to known non-magnetic clothes. Shoes are frequently magnetic 
and should be removed. Make-up and hair dyes can contain magnetic metal 
particles. Magnetization of, e.g., dental work can be reduced by a demagnetizer; 
refer to the instructions of the demagnetizer for correct operation, incorrect 
use may even increase the magnetization. Note that a demagnetizer exerts 
substantial force on ferromagnetic objects; if there is any possibility that such 
objects are within the body, a demagnetizer should not be applied.  

   3.   Test for magnetization . With new subjects and patients, it is worthwhile 
to do a quick test before proceeding with the preparations. This test is con-
ducted simply by having the subject to sit in the MEG system while the 
experimenter checks the raw signals for possible contamination; cf. “Artifacts” 
section below. The body can be magnetic due to, e.g., dental work, metal 
particles from previous surgery, and implants. Iterate demagnetization and 
testing if necessary.  

   4.   EEG . If scalp EEG is to be measured, the EEG cap is applied and the elec-
trode impedances verifi ed to be low enough, typically less than 10 kilo-ohms 
(the limit depends on the amplifi er). If the cap does not include the reference 
electrode, a separate single electrode should be applied as the reference. An elec-
trode for the isolated ground of the EEG amplifi er should be attached as well. 

 Single scalp electrodes are often placed according to the international 
10–20 system, which was originally designed for just 21 electrodes (Jasper, 
  1958  ) but now has modern derivatives supporting denser electrode arrays 
(Oostenveld & Praamstra,   2001  ). In these systems, the on-scalp distances between 
the preauricular points and nasion and inion are divided into predefi ned sec-
tions, which form a grid for the electrodes. EEG text books (see, e.g., Niedermeyer 
& Lopes da Silva, (  2004  ) describe the standards on placing the electrodes. 

 Whole-scalp EEG is usually measured with an EEG cap instead of single 
electrodes. Detailed instructions on how to apply the cap are provided by the 
vendor.  

   5.   EOG . Electrodes are applied for monitoring eye movements and blinks. 
A pair of electrodes attached diagonally (below the left eye and above the right 
eye, or vice versa) allow catching both eye movements and blinks for auto-
matic rejection of contaminated trials. Applying two pairs, one horizontally 
and another one vertically, enables more sensitive monitoring of eye move-
ments. The impedance of EOG electrodes is not as critical as that of scalp EEG 
electrodes but should still be below 100 kilo-ohms.  

   6.   EMG/ECG . If required, electrode pairs for monitoring muscular (skeletal 
and cardiac) activity are attached. The EMG electrodes should be placed 
roughly at the ends of the muscle for maximum signal; palpation and muscle 
contraction aid in positioning the electrodes. Again, impedances should be 
verifi ed.  
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   7.   Coils . Head position indicator coils are attached on the scalp. Using three 
coils is the absolute minimum, but for improved accuracy and desirable 
redundancy at least four coils should be employed, if that option is supported 
by the MEG system. With four or more coils the system is able to cope with 
situations where one coil detaches or moves prior to the MEG measurement. 
The locations should be chosen such that the coils can be fi rmly attached to 
the scalp, not to the hair, and that they are all covered by the MEG sensor 
array once the subject is seated in the system. At the same time, they should 
be as far apart as possible to ensure most stable and accurate co-registration. 
When using four coils, two of them are typically placed behind the earlobes as 
high up as possible, and the other two wide apart on the forehead, again as 
high up as possible so that they can be properly covered by the MEG sensor 
array. 

 There are various ways to attach the coils: they can be embedded in the 
EEG cap, attached to the scalp with tape, or even glued to the skin with 
collodium. Note that the coils are electrically isolated, and they should not be 
in an electrical contact with the scalp.  

   8.   Digitization . The locations of the indicator coils must be known with 
respect to the anatomy for co-registration, e.g., with MRI, and the locations 
of the scalp EEG electrodes for EEG source modelling. This information is 
obtained by a digitizer device that records the coordinates of a stylus in the 
3D space. The digitization procedure begins by identifying the anatomical 
landmarks that span the head coordinate system (see Chapter 2). After that, 
the locations of the head position indicator coils and EEG electrodes can be 
digitized, and both expressed in the head coordinate frame. If no scalp EEG 
electrodes are digitized, the head shape should be digitized to allow for a more 
accurate and verifi able co-registration with anatomical MRIs. Some tens of 
scalp points taken along contours from the tip of the nose to the back of the 
head, and from one ear to the other, already help in obtaining a better match 
with the MRIs. Some systems support a continuous digitization mode which 
allows quickly collecting thousands of points on the head surface.     

 These steps may take just a few minutes, or even up to an hour if a 
high-density EEG cap is applied.     

Measurement 

 After the preparation steps described above, the subject can be guided in to 
the shielded room. The actual measurement is typically preceded by the 
following steps.  

   1.   Seating . Head position indicator coils and EEG electrode wires and cap cables 
should be connected to the MEG/EEG system. Stimulator devices (e.g., auditory 
or somatosensory), if used, should be connected to the subject and tested. 
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The subject should also try out the response buttons and microphones, if they 
are needed in the experiment. 

 The setup should be made as comfortable as possible for the subject; if 
the position is not comfortable, being immobile even for a short time easily 
becomes painful, which distracts the subject. Tense neck muscles add wide-
band noise to the MEG, and thus deteriorate the quality of the recording. 

 Unlike in fMRI, in MEG subjects may see the movement of, e.g., the hand 
when using response keys. Looking at such a movement evokes visual 
responses that do not vanish in the averaging, as they are synchronized to the 
trials. Such additional responses may unnecessarily complicate the data anal-
ysis. Similarly, response buttons emitting an audible click may give rise to 
time-locked auditory responses, and movements that are mechanically trans-
mitted to other limbs may lead to additional somatosensory responses. Thus, 
care should be taken to prevent or mask unwanted sensory input. 

 When recording children, or certain kinds of patients, it may be advisable 
to have an assistant in the shielded room with the subject. The above demag-
netization guidelines apply also to the assistant. During data collection, the 
assistant should remain immobile and as far from the MEG sensor helmet 
as possible.  

   2.   Instructions . The subject is reminded of the task and given specifi c instruc-
tions. In most MEG experiments, the subject should also be asked not to 
move during the recording, to avoid eye movements, and — depending on 
the experiment — to try to blink only during certain periods of the stimulus 
sequence. In addition, the subject should be told how and when to communi-
cate with the experimenter.  

   3.   Checking for artifacts . After the door of the shielded room has been closed 
and the data acquisition system started, the MEG traces should be examined 
visually for any artifacts. Movement-related and biological artifacts are the 
most common; refer to the following section to identify artifacts. Requesting 
the subject to take a couple of deep breaths helps in verifying that there is no 
magnetic material on the subject’s person; see the next section.  

   4.   Checking the EEG signals . Scalp EEG signals should be inspected visually. 
Excessive noise or line frequency interference are likely signatures of bad elec-
trode contacts. With high-density electrode caps, it is often unavoidable that 
some channels lose proper contact to the skin; aiming to have every single 
EEG cap electrode working may not be the most productive approach. On the 
other hand, the reference and isoground electrodes must be fully functional, 
as losing them spoils the whole EEG recording. 

 The operation of the EOG channels can be verifi ed by asking the subject 
to blink a few times, move the gaze to left and right, followed by up and down 
movements, while the experimenter is watching the EOG traces: blinks and 
vertical movements should evoke clear signals, in excess of 200 microvolts, in 
the vertical EOG channel whereas horizontal movement is mainly visible in 
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the horizontal EOG channel. A single diagonal EOG channel picks up all these 
movements but with a lower signal-to-noise ratio than separate horizontal 
and vertical channels. 

 Contracting the muscle monitored by EMG should give rise to bursting 
high-frequency activity. In studies of cortico-muscular coherence where the sub-
ject has to maintain a steady contraction, it is a good idea to give feedback of the 
proper level of contraction (clear bursting on the EMG channel) at this stage.  

   5.   Head position measurement . The position of the subject’s head with 
respect to the MEG sensor is determined by briefl y energizing the head posi-
tion indicator coils. Depending on the MEG system, the coils are activated 
either sequentially or simultaneously at distinct frequencies. The signals emit-
ted by these coils are captured by the MEG sensors. Based on these signals, the 
coil locations are estimated in the MEG device coordinate system (see above). 
With the help of the information from the digitization, the transformation 
between the head and MEG device coordinate systems is calculated. 

 Just prior to the head position measurement, the subject should be asked 
to take a comfortable position and remain as immobile as possible until the 
end of the measurement block. If continuous head position tracking is 
enabled, small movements are acceptable, however, the subject should still 
avoid large head movements, as the associated motor activity and sensory 
input may have an effect on the data. 

 When measuring a subject for the fi rst time in MEG, it may be advisable 
to perform a short test run prior to the actual measurement and re-adjust the 
position when the subject is more relaxed.  

   6.   Data collection . After a successful head position measurement, MEG data 
collection can be started. The experimenter should monitor the raw MEG 
data throughout the experiment; simple visual inspection allows judging 
whether the noise level is acceptable. All deviations should be detected as early 
as possible in order to avoid recording useless data. 

 In addition, on-line averaging should be employed and the accumulating 
average monitored. Even when the data are to be re-averaged off-line, the 
online average reliably shows the response amplitude. This direct measure of 
signal-to-noise ratio allows the researcher to decide when to stop data collec-
tion, instead of always acquiring a fi xed number of trials. It also helps in 
detecting unwanted trial-locked responses due to, e.g., movement.  

   7.   Breaks between blocks . Subjects can typically concentrate on a task no 
more than 10 to 15 minutes continuously. Therefore, longer experiments are 
often split in multiple blocks (see Chapter 4). Between the blocks, the subject 
can rest and relax, blink and move the eyes freely. Head movement between 
the blocks may also be allowed, if the blocks are analyzed separately or if the 
researcher is prepared to apply specifi c post-processing and analysis methods 
to the data. In any case, it is advisable to measure the head position at the 
beginning of each block. 
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 If continuous head position tracking is not available or applied, the with-
in-block stability can be verifi ed by performing an additional head position 
measurement at the end of each block; if it differs substantially from the mea-
surement at the beginning of the block, the experimenter should consider 
discarding and re-measuring that block; however, experiments that rely on 
the novelty of stimuli may not allow such repeats.  

   8.   Finishing the recording . Once a suffi cient amount of data is collected and 
the measurement fi nished, the subject can be guided out of the shielded room, 
and EEG caps, electrodes and head position indicator coils carefully detached. 
EEG caps and electrodes should be cleaned soon after the experiment to 
remove any residual electrode paste before it dries.     

 Besides the actual measurement, time should be budgeted for the checks 
listed above, which typically add up to 10 minutes to the recording time.    

Artifacts

 MEG signals can, unfortunately, be hampered by unwanted signals from several 
sources. Contaminating interference can be a result of strong ambient magnetic 
fi elds or by sources — biological or artifactual — in the subject. The ambient 
sources include interference from power lines and electromotors (at 50 or 60 Hz 
and harmonics) and from large moving magnetic objects such as cars, elevators, 
and even hospital beds. The signals from moving objects are characterized by 
temporal scales similar to the movement; the frequency content is predominantly 
below 1 Hz. Reduction of this type of interference is discussed in Chapter 2. 

 The experimenter is more often confronted by interference from the 
subject rather than from the environment. Common biological sources dis-
turbing MEG include the cardiac muscle, skeletal muscles, and the eyeballs. 
Each of these sources has a distinct temporal waveform; see  Figure  3–1  . 
Cardiac artifact refl ects either the pulsation or the magnetic counterpart of 
the QRS complex of the electrocardiogram (Jousmäki and Hari,   1996  ). It is 
characterized by relatively brief pulses occuring at the heart rate, and it appears 
more prominently on magnetometers than gradiometers. Other muscles, 
when they contract, emit continuous or bursting high-frequency noise, which 
is naturally stronger the closer the muscle is to the sensor array. Both head 
and eye movements are associated with shifts of the steady (DC) magnetic 
fi eld level seen by the MEG sensors; eye movements and blinks are manifested 
as sub-second defl ections on the frontal channels, whereas large head move-
ments evoke such changes on most channels.  

 Artifacts may also arise from nonbiological sources in or on the subject. 
Dental work, fi llings and braces, often give rise to large-amplitude magnetic 
signals that amplify when the subject is moving the jaw. These signals may be 
so strong even after demagnetization that the subject has to be excluded from 
research studies. However, cleaning the data with post-processing methods 
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described in Chapter 2 may enable detection and localization of the relatively 
fast brain signals from, e.g., primary sensory areas and epileptic foci. 

 If the subject has magnetic particles on the body, particularly on the 
chest, breathing evokes slow periodic magnetic signals seen on several chan-
nels, more strongly on magnetometers than gradiometers. If in doubt, a sus-
pect respiration-related source can easily be verifi ed by asking the subject to 
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Figure 3–1 . Normal vs. artifactual signals on representative MEG channels 
(planar gradiometer pairs). Top rows show typical raw MEG traces from 
a resting subject (note the regular cardiac artifact on the lowest sensors), 
whereas the lower traces display typical biological artifacts and a breathing-
induced signal from a magnetic particle on the chest of the subject. 
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fi rst hold the breath, and then to take a couple of deep breaths while the 
experimenter is monitoring the MEG signals: if the slow variation fi rst disap-
pears and then increases, the source is likely related to the small movements 
associated with breathing. To trace the source further, the subject can be 
asked to move one limb at a time. Most often the magnetic material is in the 
clothing.     

Replicability of MEG Results 

 The reliability of MEG responses can be verifi ed by repeating the experiment 
and comparing the results. Physiological factors such as vigilance are beyond 
the scope of this text, but purely technical aspects may also contribute to 
differences between measurements. They pertain mostly to co-registration of 
the MEG and MRI coordinate systems; head movements, if not monitored 
and compensated for, result in displacement of the source on the MRI anatomy. 

Figure 3–2 . Replicability of auditory evoked responses. Eight MEG measure-
ments performed on the same subject over a period of two years all yield 
consistent responses to stimulation of the right ear with short 1-kHz tone 
pips. The locations of the N100m sources (modeled as equivalent current di-
poles; see Chapter 6) estimated from the responses are shown as blue dots 
on the structural MRI of the subject. The corresponding source waveforms 
vary slightly in amplitude, whereas the peak latency remains similar. 



74 MEG: An Introduction to Methods

When the underlying neural sources are strong and exhibit simple fi eld 
patterns, so that they are easy to model, co-registration procedures are respon-
sible for most of the localization errors. When the experiments are performed 
carefully, such sources can repeatedly be localized to a few millimeters. 

 Differing sensor-level responses from two recordings of the same subject 
may be simply due to different head positions. This problem can be rectifi ed 
either by preprocessing the data with movement compensation methods 
(Uutela et al.,   2001  ; Taulu et al.,   2005  ) to align the signals to a reference head 
position, or by performing the comparison in the source space instead of 
sensor space. 

 The overall replicability of MEG responses is good.  Figure  3–2   shows the 
results of the same auditory experiment performed multiple times on a single 
subject. The locations of the N100m sources, refl ecting a response from the 
primary auditory cortex, are within a few millimeters of each other, and the 
source waveforms differ only by amplitude, partly attributable to variations 
in the stimulus intensity.        
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Introduction 

 In order to design effi cient functional neuroimaging experiments, one needs 
to consider (i) the dynamics of the measured neural variable, and (ii) the rate 
at which this variable can be sampled. The bulk of the MEG (and EEG) signal 
refl ects synchronous post-synaptic current fl ow in a large number of neu-
rons. These are very fast processes, in the millisecond range, and the signal 
can also be sampled at a very high rate, up to several kHz, i.e., in submillisec-
ond range. Accordingly, the response can be tracked with good temporal 
accuracy in each trial ( Figure  4–1  ). In contrast, fMRI signal refl ects changes in 
the oxygen consumption, which lags the neural activation by 5–10 s and var-
ies slowly, over a period of several seconds. Whole-head fMRI images with a 
reasonable spatial resolution can usually be collected every 2 seconds, at best, 

4

Experimental Design 

Riitta Salmelin and Lauri Parkkonen     

        Experimental setups that work well for fMRI are often suboptimal for • 
MEG, and vice versa  
    Designs used in behavioral studies may serve as good starting points • 
for MEG experiments  
    Interstimulus interval, stimulus duration, and number of trials per • 
experimental condition, all infl uence the neural response      



Figure 4–1 . Comparison of fMRI BOLD and MEG/EEG signals; schematic responses to stimuli of 200 ms, 2 s and 15 s in duration. 
A prominent BOLD effect is obtained only with stimulation persisting for several seconds, whereas MEG/EEG evoked responses are pri-
marily elicited by stimulus onsets and offsets, with possibly a relatively weak sustained response. Cortical rhythms seen by MEG/EEG
(mainly alpha around 10 Hz and mu with 10- and 20-Hz components) may undergo suppression and rebound modulation, whose 
time course is more comparable to that of BOLD. Due to the sluggishness of the BOLD signal, it is suffi cient to sample it 0.5–2 times 
per second; here, the dots denote sampling at a rate of 1/second (repetition time TR = 1 s). The MEG/EEG onset responses typically last 
for less than a second and change orders of magnitude more rapidly than BOLD, thus necessitating sampling rates above 300 Hz. 
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with the sampling rate limited by the image acquisition process. Because of 
that, single trials can typically not be sampled with high enough temporal 
resolution. The shape of the response can be estimated by combining multiple 
single trials which were sampled at different times with respect to stimulus or 
task onset (event-related design with jittered stimulus timing). The com-
monly applied analysis to a block design experiment effectively sums up the 
fMRI signal over 20-30-s periods when the subject continuously receives sim-
ilar stimuli, or performs the same task—thus, the result carries no temporal 
information on the responses. 

 Thus, a major difference between neurophysiological and hemodynamic 
neuroimaging methods is that the signatures of neural activity recorded 
in MEG (and EEG) are fast and they are oversampled in time whereas those 
detected with fMRI and PET are slow and they are undersampled (see 
 Figure  4–1  ). This difference affects experimental design to a large extent and, 
in particular, often renders good fMRI designs suboptimal for MEG and vice 
versa. In fact, the designs used in behavioral studies, where one collects man-
ual or oral reaction times, tend to be better suited as starting points for MEG/
EEG experiments than those typically used in fMRI/PET studies. 

 Owing to its combined temporal and spatial sensitivity, MEG can identify 
different processing stages as they unfold. Because of that, negligence in stim-
ulus preparation tends to immediately manifest in the neural signals. For 
example, differences in the fade-in envelope of sound stimuli may cause much 
larger effects in the early auditory responses than behaviorally highly relevant 
differences in the stimulus content, e.g., speech vs. nonspeech sounds. 
Therefore, the basic physical properties of sensory input need to be controlled 
carefully (either matched or completely randomized) in order to extract 
meaningful information about different levels of processing. For this same 
reason, MEG studies do not readily accommodate an approach frequently 
applied in fMRI/PET studies in which one assumes that, e.g., when the same 
type of manual response has been given in two tasks, those tasks can be directly 
contrasted and the movement effects so removed. MEG data may well reveal 
that particularly the timing of the neural processes leading to the manual 
response, and the sensorimotor activation itself, are infl uenced by the experi-
mental condition. This great advantage (or curse, depending on the situation) 
of the MEG method has to be kept in mind when designing and piloting new 
experiments.      

Measures of Brain Activity 

 The choice of experimental parameters is infl uenced by the type of informa-
tion one wishes to extract from the brain signals and by the type of analysis 
one plans to use in that endeavor. Here we briefl y review the most common 
response types relevant for MEG (and EEG) studies.    
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Evoked Responses 

 Most MEG studies, so far, have focused on evoked responses, i.e., neural 
activation that occurs at the same time, phase-locked, with respect to stimu-
lus or task onset (or offset) from trial to trial. Evoked responses are typically 
detected within about 1 s from the stimulus presentation or execution of the 
task. Evoked  single-trial responses  may be detectable in favorable conditions; 
however, most often some tens or hundreds of trials are collected to yield an 
average evoked response with a good signal-to-noise ratio. The earliest salient 
responses, i.e., those of shortest latency, are typically transient (short-lasting) 
and tightly locked to the stimulus, and thus yield sharp responses even when 
averaged across multiple trials. The longer-latency responses tend to progres-
sively increase in duration and are likely to exhibit more jitter with respect to 
the stimulus timing; in the average, they appear as sustained responses with 
slow fade-in and fade-out phases.  Figure  4–1a   illustrates these dynamics in a 
schematic way. 

 Evoked responses can be considered to refl ect changes in the sensory 
input: a long-lasting stimulus gives rise typically only to a transient MEG/
EEG evoked response at the onset and offset of the stimulus, whereas the 
fMRI BOLD response may persist throughout the entire duration of the stim-
ulus, although delayed overall due to the sluggishness of the BOLD signal. 
Moderately long stimuli may generate sustained components in the evoked 
response.     

Modulation of Cortical Rhythms 

 Event-related modulation of cortical rhythmic activity—i.e., time-dependent 
variation of the amplitude of oscillations within a frequency band of interest, 
often referred to as  stimulus- or task-induced responses —may reveal effects 
that occur systematically across trials, but are less strictly time-locked to the 
stimulus or task timing. It should be noted that such oscillatory signal itself is 
generally not phase-locked to the stimulus presentation or task, and these 
components typically vanish in the time-domain averaging commonly 
employed to recover evoked responses. 

 Modulation of rhythmic activity often extends over several seconds, thus 
providing a time frame that is complementary to that accessible with evoked 
responses. There may be spatial limitations, however, as salient rhythmic 
activity tends to be concentrated to specifi c areas in the cortex, in and around 
the primary sensory and motor areas. Non-averaged data collected during 
continuous stimulation or task performance (or during rest) lends itself to 
analysis of spectral power.     

Changes in Interareal Synchronization 

 Measures such as coherence and phase synchronization between brain 
regions are employed to search for functionally connected networks and to 
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characterize their dynamics. The relevant time courses of these signatures 
range from transient phase-locking of some tens of milliseconds induced by 
sensory stimulation, to coherent activity lasting several seconds in a complex 
cognitive task. 

 In the following, we will consider the practical infl uence of various 
experimental parameters on the collection of evoked, event-related, and 
non-averaged MEG data.      

Timing and Number of Trials 

 The number of experimental conditions, the number of trials per condition, 
the stimulus or task duration, the intertrial interval and the total duration of 
the experiment are all tied together.   The number of trials per experimental 
condition   needs to be high enough to enable data analysis in single subjects. 
Ideally, when focusing on stimulus-locked evoked responses, one would aim 
for about 100 accepted trials per condition which, with a realistic estimate of 
15–20% of the trials contaminated by eye blinks or other types of artifact 
signals (see Chapter 3), requires about 120 trials per condition. In some sub-
jects, auditory responses (N100m) to short tones may be so strong that even 
responses to single stimuli can be detected among the task-unrelated back-
ground noise, and 40–50 trials may be quite suffi cient for source analysis. 
However, the strength of cortical responses varies considerably between 
individuals. In practice, about 60 artifact-free trials may provide a good 
enough signal-to-noise ratio. In cognitive tasks, in which each trial may be 
fairly long and one needs to limit the total duration of the experiment in 
order to keep the subjects alert and motivated, 60–80 accepted trials (out of 
a total of 80–120 trials) is often a realistic goal. When the focus is on event-
related modulation of cortical rhythms, as few as 40–50 trials may be 
adequate (although a higher number is preferable), as source analysis is typi-
cally performed on data integrated over extended time intervals, or on non-
averaged signals. If possible within a reasonable recording time, one may test 
the reproducibility of the neural responses by presenting twice the minimum 
required number of stimuli, dividing the trials randomly into two groups, 
and averaging the responses. This type of approach is most suitable for 
simple sensory stimuli. 

   Stimulus duration   has a strong effect on the MEG (and EEG) signal. For 
example, a short tone pip elicits a transient N100m response, which for a 
longer sound is followed by another, more sustained response. For an audi-
tory, somatosensory or visual stimulus of long duration, separate responses 
may be detected to both stimulus onset and offset. When the focus is on 
evoked responses, stimuli of short duration (< 100–200 ms) are a good option, 
unless there is a specifi c need to choose otherwise. The phase-locked synchro-
nized response is strongest to the onset of the stimulus, with little added value 
provided by an extended duration, and shorter stimulus duration helps to 
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limit the full length of the experiment. In the visual domain, the risk for 
saccades (and problematic artifacts) is signifi cantly reduced by presenting the 
stimulus for less than 150–200 ms. If one needs to use stimuli or tasks of very 
long duration, on the order of seconds, it may be worthwhile to consider 
whether, instead of phase-locked evoked responses, a more suitable approach 
might be spectrotemporal analysis on averaged event-related data, or on 
blocks of non-averaged data, and design the experiment accordingly. 

   The interstimulus interval (ISI)   should be long enough to allow the neural 
responses to return to the base level (‘rest’) for at least 200 ms in the case of 
evoked responses, or for 500–1000 ms in the case of event-related modulation 
of rhythmic activity. Thus, when the focus is solely on evoked responses, 
stimulus onset asynchrony (SOA) falls typically within 1–3 s, depending on 
the amount of sustained activity the stimulus or task elicits, and on the speed 
at which the subject can process the stimuli or perform the task. SOAs up to 
5–10 s may be required for comprehensive tracking of event-related modula-
tion of cortical rhythms. The choice between fi xed or variable ISI/SOA is at 
the discretion of the experimenter. MEG analysis does not set any require-
ments in this regard, owing to the high time resolution. In MEG (or EEG) 
experiments the effective ISI/SOA within each stimulus or task category often 
varies considerably because the order of the trials belonging to the different 
categories is usually randomized. Randomization is recommended, as the 
vigilance of the subject thus varies, on average, similarly for all experimental 
conditions and renders them more comparable. Nevertheless, should it be 
required by the neuroscience question, a blocked design is obviously equally 
feasible from the MEG point of view. Even in that case, randomized mini-
blocks may often be a better option than one extended block of each stimulus/
task type. Blocked design is obviously the choice when using continuous tasks 
or stimuli, and the analysis is performed on non-averaged data. In that case, 
it may be useful to introduce short rest periods also within blocks (and not 
just longer periods between blocks) to serve as a baseline condition. 

 As an example, let us assume that we are interested in how the left and 
right auditory cortex respond to 1–kHz tones, 50 ms in duration, presented to 
the left or right ear or to both ears simultaneously. Since the stimuli are short 
tone pips, cortical activation is concentrated to the fi rst 100–200 ms. Thus, 
the SOA could, in principle, be as short as 600 ms. However, the auditory 
cortex responds more strongly with increasing SOA. A reasonable setup might 
be as follows: 3 conditions (randomized) x 100 stimuli x 2–s SOA = 600 s = 10 
min of effective recording time. This is a very short experiment, and one could 
easily double the number of stimuli, and thus test for reproducibility of the 
responses. Alternatively, one could enhance the neural responses by choosing 
a longer SOA, or the SOAs could be randomized, e.g., between 2 and 6 sec-
onds to reduce expectation. However, one also needs to keep in mind that this 
is an extremely boring experiment for the subject and, therefore, best results 
are probably obtained by keeping the experiment as short as possible. 
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 As another example, one might evaluate reading comprehension by 
showing sentences that create a strong expectation for a certain fi nal word, 
and replacing that word with another one having different types of relation-
ships to the expected word. Let us assume that we have four different types of 
sentences, and 100 sentences in each category. The sentences have, on aver-
age, 7 words. In order to avoid artifacts from eye movements (saccades), the 
sentences are presented one word at a time, displayed in foveal vision. The 
neural response to each word contains a strong sustained component that 
lasts until 600–800 ms after stimulus onset. A reasonable setup would thus be 
as follows: 4 types of sentences (randomized) x 100 sentences x (7 words x 1-s 
SOA within each sentence plus an additional 1-s interval between sentences) 
= 3200 s = 53 min, divided into 5–6 sequences with short breaks in between, 
thus resulting in about 80–90 min in total recording time. An experiment 
should not last much longer than this, for the sake of the subject and data 
quality.     

Collecting Behavioral Responses (or Not) 

 There is plenty of MEG research on the motor system. However, when the 
focus is on auditory or visual perception, or cognitive processing, the strong 
neural activations associated with voluntary movements are essentially arti-
facts that may seriously hinder the analysis of the primary effects of interest. 
Therefore, if answering the neuroscience question does not necessarily require 
reaction times to be collected for each stimulus, it is best not to collect them. 
This is where design of MEG (and EEG) experiments diverges most from that 
of purely behavioral experiments. 

 However, the usual counterargument is that one needs behavioral 
responses in order to keep the subject alert and to verify that s/he performs 
the task as instructed. One can think of multiple alternative approaches. One 
possibility is to require a delayed response, prompted by another stimulus 
that follows the stimulus of interest, which will interfere less with the primary 
effects, but allows monitoring of behavior. Another possibility is to require a 
delayed response only to a part of the stimuli, e.g., a yes/no decision prompted 
by an occasional question mark, and remove this small subset of trials from 
the source analysis. Equally well, one could defi ne specifi c targets which the sub-
ject needs to respond to immediately, thus providing reaction times to a subset 
of stimuli; again, these trials would be removed from the source analysis. 

 If the experimental question requires behavioral responses in all trials, 
they can obviously be collected. Eye movements are the most problematic as 
they generate huge artifacts. Finger movements are often preceded by strong 
readiness fi elds, thus easily confounding data in the time window of interest. 
Use of left vs. right hand is complicated, at the neural level, by the fundamen-
tally different activation patterns. This is a problem also when using different 
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fi ngers of the same hand, to a somewhat lesser degree. In some cases, verbal 
responses may work better, as the readiness fi eld tends to be markedly weaker 
than for hand movements, and the activation is bilateral and quite similar for 
stereotyped responses such as “yes/no.” 

 The excellent time resolution of MEG facilitates a fairly free choice of 
parameters. What we have presented here are guidelines, rather than rules, 
for experimental design. They can be adjusted at will, as long as the experi-
menter is aware of the possible effects for subject performance, neural 
responses, and data analysis.     
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     Introduction 

First: A Metaphoric Detour 

 Leaving the dowser behind right from the beginning of this chapter, there are 
plenty of other ecological situations where fi nding sources of some observa-
tions is not obvious to begin with. Imagine that you go bow-fi shing in clear 
waters for the fi rst time ever. This is a well-known situation in many books of 
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MEG Sources 

Sylvain Baillet

        Finding sources of MEG/EEG traces can either be viewed as a • 
localization or an imaging problem  
    Localization refers to decomposing the data into the respective • 
contributions of a limited number of elementary current source 
models, e.g. point-like equivalent current dipoles  
    The imaging approach produces representations of brain currents • 
distributed in space, e.g. on the cortical surface  
    The pertinence of either of these approaches is dictated by the • 
neuroscience question that initially motivated the experiment and the 
acquisition of data  
    Both need to be advantageously complemented by adapted methods • 
for statistical exploration and inference that have recently emerged – at 
the individual and group levels – thereby considerably reducing the 
incertitude in the confi dence awarded to a given source estimate      
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lessons about things: “How come the bird will catch the fi sh before I can?”. 
The answer stays almost immutably the same: “That’s because the bird knows 
about light refraction at the surface of water”. As unsatisfactory as this answer 
might sound, we have to admit  at least  that the bird (and humans) can learn 
from experience that the fi sh, being underwater, cannot be caught in the same 
way as the mouse, running on the ground. This countryside metaphor does 
not take us too far from our problem here. Indeed, the observations the bird 
makes are series of distorted images from its prey. The fi sh here is the source 
of the observations, which the bird implicitly combines with his model of the 
infl uence of the source medium on the observation (light refraction), and a 
collection of  a priori  information on the expected fi sh behavior in stressful 
circumstances. 

 Maybe the bird catches the fi sh much faster than we would ever do, but 
he surely does not know he is solving forward and inverse problems with 
every dinner.     

Historical Roundup and Motivations 

 The estimation problem of sources of electromagnetic traces collected outside 
the head has certainly mobilized, initially, most of the early clinical electro-
physiologists. Since the late 1940s when electroencephalography (EEG) 
entered the clinical rooms, the medical community had gathered an impres-
sive corpus of empirical knowledge on the localization of the origins of abnor-
mal scalp recordings from patients (Petit-Dutaillis et al.,   1952  ) – which is still 
the essence of the EEG clinical practice today. EEG and MEG scientists have 
subsequently greatly benefi ted from the decisive contributions of biophysi-
cists initially interested in modeling the origins of electrocardiographic (ECG) 
signals. David B. Geselowitz became a major contributor to the fi eld by for-
malizing the concept of  equivalent  generator (Geselowitz,   1963  ) and the 
dipole theory in ECG (Geselowitz,   1964  ). The dipole model later entered the 
EEG literature as an empirical tool to formally describe the topography of 
scalp potentials, and yielded a means to infer qualitatively the localization of 
the main sources of surface signals (Kooi et al.,   1969  ). The ECG community 
kept the lead, however, by studying the infl uence of inhomogeneities in body 
tissues on the empirical localization of a dipole model (Arthur & Geselowitz, 
  1970  ), making the fi rst comparison between ECG and magnetocardiographic 
(MCG) recordings (Geselowitz,   1973  ), and designing a multiple-dipole source 
model in a spherical approximation of the geometry of body tissues in the 
vicinity of surface recordings (Miller & Geselowitz,   1974  ). Being themselves 
physicists and MCG experimenters, early MEG scientists like B. Neil Cuffi n 
and David Cohen were naturally connected to the most advanced models 
from cardiographics (Cuffi n & Geselowitz,   1977  ), and initiated a tradition of 
modeling and methodological innovations for MEG (Hosaka & Cohen,   1976  ; 
Cohen & Hosaka,   1976  ) that also benefi ted the analysis of EEG sources. 
Beyond the visual inspection of fi eld topographies at the sensor level, the 
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somatosensory cortex then became the playground of computational source 
estimation challenges and demonstrations in the 1980s. Okada et al., (  1984  ) 
demonstrated the relative localization power of single dipoles in a spherical 
head geometry, as an elementary model for the primary cortical projection of 
fi ngers and ankle, along the homuncular mediolateral somatotopic organiza-
tion, originally evidenced by the direct cortical stimulations of Penfi eld 
(Penfi eld & Boldrey,   1937  ). Finally, MEG source estimation became acknowl-
edged as an  inverse problem  – a concept already well known to physicists, and 
which addresses a wide range of methodological frameworks and innovations – 
following the Biomagnetic Inverse Problem Conference in 1985, the proceed-
ings of which ( Biomag ,   1987  ) contain important contributions that initiated 
most of the subsequent developments that we shall review, comment, and 
illustrate with a pragmatic perspective in the next sections of this chapter.     

Chapter Overview and Recommended In-depth Reading 

 This book chapter has no intent to cover an extensive technical review of all 
methodological tricks relevant to the MEG source-estimation problem. 

Figure 5–1 . A natural metaphor of forward and inverse modeling: refrac-
tion of light at the surface of water lets us perceive that the depth of the 
fi sh is shallower (illusion) than it is (true). Bird catches prey with forward 
model learned from experience. The naive bow-fi sher does not know 
about the physics of light refraction at the surface of water, (a) and starts 
with a wrong forward model (“no light refraction at the water surface”) 
that will lead him to miss his target (b). The heron knows from experience 
how to catch the prey without explicit knowledge of light refraction (c). 
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Indeed, this would cover too wide a spectrum to be compacted in a few 
pages. Most relevant details to the approaches we will introduce here will be 
covered – with a focus on applications – in the next chapters of this hand-
book. Detailed technical reviews are available in journal literature, and are 
constantly enriched by a productive scientifi c community. A subjective 
desert-island selection of useful published review material would include: 
Hämäläinen et al., (  1993  ) is a classic of MEG at large, and includes detailed 
descriptions of basic source-estimation approaches; Baillet et al., (  2001a  ) is a 
detailed review of source estimation and modeling with a signal-processing 
perspective; Darvas et al., (  2004  ) is complementary reading, as it includes 
recent developments in statistical appraisal and inference of the estimated 
source; Hillebrand et al., (  2005  ) reviews the relatively popular spatial-fi lter 
approach to the MEG source estimation problem. See also chapters 7 and 8 
for updated and technically detailed documentation.      

Inverse Problem Theory in a Nutshell 

 The rapid historical review we have covered in the second section of the intro-
duction above, closes with the statement that MEG (and EEG) source estima-
tion is an inverse problem. Though it is quite acceptable that this indeed 
might be a problem, it might be less intuitive why this problem is  inverse .    

The Inverse and the Forward (problems) 

 An inverse problem is something we are all facing in our personal and some-
times professional lives. The bow-fi shing metaphor was an attempt to dem-
onstrate this statement. The concept of inverse problem was formalized by 
physicists in experimental science, where a model is confronted to some 
observations. Models derive from theories and are supposed to let us make 
predictions on natural phenomena and, more generally, on the outputs of a 
system (e.g., the Earth’s climate, the stock exchange, or the brain). Hence, a 
system is a very general concept used in many different situations – from biol-
ogy to economics. The main motivation here is to formalize how inputs  I  are 
transferred to observable outputs  O  via some transformation T() – which 
might include optional feedback loops and additional nuisances – so that:

   ( )T .O I=     (5–1)  

 which constitutes a model for the production of  O . The  parameters  of the 
system are quantities that might be changed without fundamentally violating 
and thereby invalidating the theoretical model. Inputs  I  and some elements 
of T() (such as the refractive index of water  n 

w
   in the light refraction problem) 

are explicit and implicit parameters respectively of the system in (5–1). 
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The distinction between the implicit and explicit nature of parameters is 
rather artifi cial as (5–1) could as well be rewritten: 

   ( )T , .O I= q     (5–2)  

 where  q represents the set of originally implicit parameters in T() (i.e.  q = { n 
w
  } 

in the context of light refraction). Predicting observations from a theoretical 
model with a given set of parameters is called solving the  forward  modeling 
problem.  

 The reciprocal situation, where observations are used to estimate the val-
ues of some parameters of the system, corresponds to the  inverse  modeling 
problem.     

Why MEG Source Estimation is an Inverse Problem 

 Without further theoretical elaboration, we need to clarify why MEG source 
estimation – like all other brain imaging techniques – requires us to solve an 
inverse problem. The system specifi cally under consideration here concerns 
the (electro)magnetic activity of the brain. The basic input  I  is the global 
electrophysiological activity of neurons. Experimental evidence reports on 
magnetic fi elds being measured at the surface of the head in the context of 
cognitive or clinical neuroscience paradigms. These are the observations  O . 
The theoretical model T at stake here builds on the theory of electrodynamics 
(Feynman, 1964) which reduces in MEG to the Maxwell equations under 
quasistatic assumptions (Hämäläinen et al.,   1993  ). 

 In the context of brain mapping, we are essentially interested in  identify-
ing , in space and time, the sources of the observed head surface signals – that 
is, the parameters of  I . This identifi cation challenge reduces to the estimation 
of the free parameters of a source model of mass neural activity detectable at 
the scalp surface in a specifi c experimental context, which is an incarnation of 
an inverse modeling problem as defi ned previously. Forward modeling in the 
context of MEG consists in predicting the magnetic fi elds produced at the 
sensor level by the source model in question, for any values of parameters in  I . 
Beyond the very choice of a theoretical model to account for mass neural 
activity, MEG forward modeling considers the parameters in  q as being 
known and fi xed. These include the geometry of the head, conductivity of 
tissues, sensor locations, etc. 

 As an illustration, take a single current dipole as a model for the global 
activity of the brain, at a specifi c latency of an averaged evoked response  O . 
We might choose to let the dipole location, orientation, and amplitude as the 
set of free parameters  I , to be inferred from the sensor observations. The 
model T necessitates we specify some parameters  q to solve the forward mod-
eling problem, which consists in predicting how a single current dipole may 
produce magnetic fi elds on the sensor array in question. We might, therefore, 
choose to specify in  q that the head geometry will be approximated as a single 
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sphere, with its center at some given coordinates. The way the inverse modeling 
phase will be approached has many branches, as we shall discuss later.     

Back to Theory: Important Detours 

 Before moving forward with the specifi city of MEG inverse modeling, we 
need to discuss a couple of important theoretical considerations. 

 First, the nature of the parameters to be estimated from the observations 
depends on the motivation of the experiment. While a physicist might have 
been motivated in estimating  n 

w
   from observations of his favorite goldfi sh in 

a water tank, the bird is essentially motivated in identifying the source of the 
observation, that is, the fi sh. Both are solving an inverse problem from the 
same system and observations, but with different objectives. 

 Likewise, both the naive bow-fi sher and the bird are seeking a solution to 
the same inverse problem (localize the fi sh), but with different models ( n 

w
   > 1 

for the fi sh,  n 
w
   = 1 for the naive fi sherman). This thought experiment let us 

scalp data predictions from forward
and inverse models

(a) (b) (c)

residuals

Figure 5–2 . Modeling illustrated: unknown brain activity – (a) top view – 
generates variations of magnetic fi elds, and electric potentials, at the 
surface of the scalp. This is illustrated by time series representing mea-
surements at each sensor lead – (a) from bottom to top. Modeling of 
the sources and of the physics of MEG and EEG is illustrated in (b). As 
naively represented at the top of (b) forward modeling consists of a sim-
plifi cation of the complex geometry and electromagnetic properties of 
head tissues. Source models are presented with colored arrows. Their free 
parameters – e.g. location, orientation and amplitude – are adjusted dur-
ing the inverse modeling procedure to optimize some quantitative index. 
This is illustrated here in (c) where the residuals – i.e., the absolute differ-
ence between the original data and the measures predicted by a source 
model – are minimized. 
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conclude that while two solutions to the forward problem might exactly fi t 
the observations by adjusting the free parameters in the model (here by 
changing values in  I , e.g., the size and the location of the fi sh), this would lead 
to multiple – and sometimes radically different—solutions to the inverse 
problem (a strong bias in fi sh localization from the naive bow-fi sher). 
Therefore – and this is a general principle – whereas the forward problem has 
a unique solution in classical physics (as dictated by the causality principle), 
the inverse problem might accept multiple solutions, which are models that 
equivalently predict the observations. 

 In MEG (and EEG), the situation is critical, as it has been demonstrated 
theoretically by von Helmoltz back in the 19th century that the general inverse 
problem that consists in fi nding the sources of electromagnetic fi elds outside 
a volume conductor has an infi nite number of solutions. This issue is not 
specifi c to MEG: geophysicists are also confronted to non-uniqueness of 
inverse models in trying to determine the distribution of mass inside a planet 
by measuring the gravity fi eld in the space outside the globe. Therefore, theo-
retically, an infi nite number of source models would equivalently fi t MEG 
and EEG observations, which reduces their predictive power on the system’s 
behavior to null. Fortunately, this question has been addressed with the math-
ematics of ill-posedness and inverse modeling, which formalize the necessity 
of bringing additional contextual information to complement a basic theo-
retical model, as we shall discuss in the next section. This brings us to the 
second point, where one has to bear in mind that  the inverse problem is a 
modeling problem . If we follow the Popperian paradigm that states that a 
model is valid as long as it is not falsifi ed by failure in predicting new experi-
mental evidence (Popper,   1959  ), both the bird and naive solutions to the fi sh 
problem are valid until the fi sh needs to be caught, which consists in itself of 
a new experiment that will eventually invalidate the naive model. Transposed 
to the MEG world, the fi sh becomes, e.g., an epileptogenic locus supposedly 
identifi ed using MEG source modeling and potentially subjected to surgical 
resection, with terrible consequences if the wrong model was not falsifi ed 
beforehand. 

 As we shall now see, these considerations have both philosophical and 
technical impacts on approaching the general theory and the practice of 
inverse problems (Tarantola,   2004  ). An important approach to address this 
caveat consists in obtaining a measure of the uncertainty on the values of the 
parameters sought by the inverse model. Situations like the aforementioned, 
where a large set of values for some of the parameters produce models that 
equivalently account for the observations, may raise a red fl ag to both ques-
tion the quality of the experimental data and, most importantly, falsify the 
theoretical model. 

 Therefore, because uncertainty and modeling come in a pair, solutions to 
the inverse problem should necessarily be complemented or even directly 
built from probabilistic appraisal or statistical inference. This point will be 
reviewed below.     
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Ill-posedness and the Need for A Priori Information 

 Non-unicity of the solution is one situation where an inverse problem is said 
to be  ill-posed . One could think also about the reciprocal situation, where 
there is no value for the system’s parameters to account for the observations. 
In this case, the data are said to be inconsistent (with the model). The bird is 
confronted with this situation when seeing an object at the bottom of the 
water that does not match his representation of what a fi sh is supposed to 
look like (e.g., a wrecked car). 

 Another critical situation, which indeed concerns MEG, is when the model 
parameters do not depend continuously on data. This means that even tiny 
changes on the observations (e.g. by adding a small amount of noise) trigger 
major variations in the estimated values of the parameters. This is critical to 
any experimental situation, and especially in the biosciences and with MEG in 
particular, where the data are contaminated by considerable artifacts. 

 The epistemology and early mathematics of ill-posedness were initiated 
by Jacques Hadamard (Hadamard,   1902  ), where he somehow radically stated 
that problems that are not uniquely solvable are of no interest whatsoever. 
This statement is obviously unfair to important questions in science such 
as gravitometry, the backwards heat equation 1 ,     and surely MEG source 
modeling. 

 The modern view on the mathematical treatment of ill-posed problems 
has been initiated in the 1960s by Andrei N. Tikhonov and the introduction 
of the concept of  regularization , which spectacularly formalized a  Solution of 
ill-posed problems  (Tikhonov & Arsenin,   1977  ). Tikhonov suggested that 
some mathematical manipulations on the expression of ill-posed problems 
could make them turn well-posed in the sense that a solution would exist, and 
be eventually unique. 

 More recently this approach found a more general and intuitive frame-
work using the theory of probability, which naturally refers to the uncertainty 
and contextual  a priori  inherent to experimental sciences (see, e.g., Tarantola, 
  2004  ). 

 As of 2008, more than 2000 journal articles referred in the PubMed pub-
lication database to the query ‘(MEG OR EEG) AND source’ and about 560 
to the more technical query ‘(MEG OR EEG) AND (“inverse problem” OR 
“inverse method”’(U.S. National Library of Medicine). This abundant litera-
ture may be considered ironically as only a small sample of the infi nite num-
ber of solutions to the problem, but it is rather a refl ection of the many differ-
ent ways MEG source modeling can be addressed with additional information 
of various nature. 

 Such a large amount of reports on the same technical issue has certainly 
been detrimental to the visibility and credibility of the MEG and EEG brain 
mapping community within the larger functional brain-mapping audience, 
where the fMRI inverse problem reduced to the estimation of the BOLD 
signal – though subject to major detection issues – is well-posed. 



The Dowser in the Fields: Searching for MEG Sources  91

 Today, it seems that a reasonable degree of maturity has been reached, as 
all the investigated methods reduce to only a handful of classes of approaches 
that are now well-identifi ed. Gradually, the methodological research in MEG 
source modeling is moving from inverse methods to the issue of statistical 
appraisal and inference, and is joining the concerns shared by other func-
tional brain-imaging communities (Baillet et al.,   2001a  ). 

 We will now survey this landscape of approaches to the MEG source 
modeling problem with a pragmatic point of view. Technical details will be 
usually skipped, to focus on a clearer classifi cation of the methods. More 
information is delivered in other sections concerning data analysis in this 
book. In-depth reviews are available in all cited references, and especially 
those in the early sections of this chapter.      

The Many Faces of MEG Inverse Modeling 

 For purposes of clarity, we will not attempt to formalize in a general way the 
classes of approaches to the MEG inverse modeling problem. We will rather 
take the steps from a phenomenological point of view, observing that two 
main chapels have developed quite separately: the localization and the imag-
ing approaches, respectively. Our purpose here is to note methodological 
landmarks and focus on differences, similarities, and on the respective assets 
of the corresponding basic models.    

Localization vs. Imaging 

 We refer to the  localization approach  when the global source model consid-
ered in the MEG inverse problem states that the observations are produced by 
the activity of brain areas, whose locations can be estimated from the data. In 
this paradigm, each source in the global model accounts for the activity of a 
brain region which is explicitly separated in space from other active regions in 
the model. 

  Imaging approaches  have been developed more recently, and were 
inspired by the plethoric research in image restoration and reconstruction in 
other domains (early digital imaging, geophysics, and other biomedical imag-
ing techniques). The corresponding global source model does not attempt to 
estimate location parameters from observations, but rather aims at recover-
ing the distribution of  all  mass neural currents, at a scale compatible with the 
electrophysiological basis of MEG signals (Chapter 1). The general outcome 
of this approach is truly a stack of images – hence  imaging  – in the sense that 
the estimated parameters are restricted to the intensities of distributed ele-
mentary models of mass neural activity that spatially sample the brain, just 
like the pixels of an image sample a region of 2D space. Contrarily to the 
localization model, there is no sense of source separation in the imaging 
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approach  per se . Explicit identifi cation of activity issued from distinct brain 
regions necessitates complementary analysis beyond inverse modeling. 

 We will now discuss these approaches in the following subsections with a 
focus on concepts rather than on techniques, which details can be found in 
the cited references.     

The Localization Approach 

Empirical Inference on Source Localization 

 The early attempts for source localization in the context of MEG and EEG 
started by questioning the elementary source model to be considered, and 
then by evaluating the number of source parameters that could  reasonably  be 
estimated from the data. 

 The seminal achievements of cardiography that we have briefl y surveyed 
earlier exhibited the current dipole as a generic model of massive electro-
physiological activity. Indeed, a signifi cant number of publications in the 
EEG and MEG community have addressed the localization issue by empirical 
inference on the location of a current dipole susceptible to generating the 

Figure 5–3 . Inverse modeling: the localization (a) vs. imaging (b) approaches. 
Source modeling through localization consists in decomposing the MEG 
generators in a handful of elementary source contributions; the simplest 
source model in this situation being the equivalent current dipole (ECD). 
This is illustrated here from experimental data testing the somatotopic 
organization of primary cortical representations of hand fi ngers (Meu-
nier et al., 2001). The parameters of the single ECD have been adjusted 
on the [20, 40] ms time window following stimulus delivery. The ECD was 
found to localize along the contralateral central sulcus, as revealed from 
the 3D rendering obtained after the source location has been registered 
to the individual anatomy. In the imaging approach, the source model 
is spatially-distributed using a large number of ECD’s. Here, a surface 
model of MEG generators was constrained to the individual brain surface 
extracted from T1-weighted MR images. Elemental source amplitudes are 
interpolated onto the cortex, which yields an image-like distribution of 
the amplitude and spatial extension of cortical currents. 
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surface measurements under investigation. This supposed that the electro-
physiologist would intuitively solve the MEG forward problem that consists 
in predicting what is the surface distribution of magnetic fi elds produced by a 
dipole, at a given location with a given orientation.    

 This approach can be exemplifi ed in Wood et al. (  1985  ), where terms such 
as ‘waveform morphology’ and ‘shape of scalp topography’ are used to dis-
cuss the respective sources of MEG and EEG signals. This empirical approach 
to localization has considerably benefi ted from the constant increase in the 
number of sensors of MEG and EEG systems as exemplifi ed in  Figure  5–4  .  

 Indeed, a surface representation of the fi eld topographies on an approxi-
mation of the scalp surface – as a disc, a sphere or even as a realistic shape 
extracted from the subject’s MRI – can be achieved using interpolation tech-
niques of data between sensors that have gained considerable popularity in 
MEG and EEG research (Perrin et al.,   1987  ). Wood et al. (  1985  ) – like many 
others – used the distance between the minimum and maximum magnetic 
distribution of the dipolar-like fi eld topography to infer the putative depth of 
a dipolar source model of the data.     

There are Unknowns that are Not Known 

 Computational approaches to source localization attempt to mimic the talent 
of electrophysiologists, but with a more quantitative benefi t. We have seen 
that the current dipole model has been adopted as the canonical equivalent 

(a) (b) (c)

Figure 5–4 . On the benefi ts of a larger number of sensors: (a) 3D render-
ing of a subject’s scalp surface with crosshair markers representing the 
locations of 151 axial gradiometers as MEG sensors (coil locations are 
from the VSM MedTech 151 Omega System). (b) shows the interpolated 
fi eld topography onto the scalp surface 50 ms following the electric 
stimulation of the right index fi nger. The fi elds reveal a strong and focal 
dipolar structure above the contralateral central cortex. (c) the number 
of channels has been evenly reduced to 27. Though the dipolar pattern 
is still detected, its spatial extension seems more spread out – hence the 
intrinsic spatial resolution of the measurements has been degraded – 
due to the effect of interpolation between sensors, which are now quite 
distant from the maxima of the evoked magnetic fi eld pattern. 
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generator of the electrical activity of a brain region considered as a functional 
entity. Localizing a current dipole in the head implies that 6 unknown param-
eters be estimated from the data  2  . Therefore, characterizing the source model 
by a restricted number of parameters was considered as a possible solution to 
the ill-posed inverse problem, and has been attractive to many MEG scien-
tists. Indeed, without additional prior information about the unknowns, the 
number of unknowns needs to be smaller than that of the instantaneous 
observations for the inverse problem to be well-posed in terms of unicity of a 
solution. Therefore, recent high-density systems with about 300 sensors 
would allow – theoretically – the unambiguous identifi cation of 50 dipolar 
sources; a number that would probably satisfy the modeling of brain activity 
in many neuroscience questions. 

 It appears, though, that most recent research reports using MEG source 
localization show a more conservative profi le by usually considering inverse 
source models with far fewer dipole sources (typically < 5). The reasons for 
this are both technical and proper to MEG brain signals, as we shall now 
discuss.     

The Least-Squares Criterion 

 Numerical approaches to the estimation of unknown source parameters are 
generally based on the widely used least-squares (LS) technique which 
attempts to fi nd the set of parameter values that minimizes the (square of the) 
difference between the observations and the predictions from the correspond-
ing model. In other words, the LS approach is a pragmatic point of view on 
the evaluation of a model when facing experimental observations. Indeed, 
biosignals such as MEG traces are naturally contaminated by nuisance com-
ponents (e.g., environmental noise and physiological artifacts) which should 
not be explained by the model of brain activity. Therefore, we need to add to 
the general systems equation (5–2) a nuisance term e such that:

   ( )T , .O I= +q e     (5–3)   

 This nuisance term has considerable impact on the evaluation of a source 
model, as we do not want an inverse model to account for perturbations 
induced by the reality of data acquisition. It is quite straightforward to under-
stand that the noise components add some uncertainty to the estimation of 
the parameters: when noise components are independent and identically dis-
tributed (IID) on all sensors, one would theoretically need as many additional 
free parameters as the number of noise components to span the space occu-
pied by all possible noisy observations. But we would then end up handling a 
problem with 300 additional unknowns, adding to the original 300 source 
parameters, for only 300 instantaneous data. 

 Hence, quite insidiously, this necessitates that the scientist understands 
what is of interest (signal: T( I ,  q)) and what is perturbation (noise: ε) in the data. 
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Therefore – as in all other fi elds of experimental science – a selection of 
signal-processing manipulations from trial selection, averaging, fi ltering, etc. 
are necessary prior to any inverse modeling to reduce or reject the contribu-
tion of nuisance to observations. 

 This will lead us to solve the basic LS equation:

   ( )( ) ( )2 2ˆ argmin T , argmin .LS
I I

I O I= − =q e     (5–4)  

 and therefore consider that a relevant objective consists in minimizing the 
variance – or  power , using the signal-processing glossary – of the deviation ε  

LS
   

of the model prediction from the data.      

The Importance of Data Preprocessing 

 Hence, tuning the model parameters so that they perfectly fi t the data would 
also result in explaining the remaining nuisance components; a general issue 
known as  overfi tting  the observations. The LS approach defi nes a criterion to 
select the unknown parameters so that the resulting model is able to predict 
the signal part in the observations, without the nuisance contribution. This 
criterion assumes that ε is IID under normal distributions across sensors. 
This condition is violated for many types of perturbations such as physiologi-
cal artifacts (e.g., cardiac and/or ocular), which produce highly correlated 
fi eld patterns across a subset of head surface sensors (see  Figure  5–5  ). Beyond 
artifact rejection and/or reduction techniques, careful preprocessing of the 
data may therefore also include a so-called pre-whitening procedure, which 
insures that the remaining perturbations are indeed IID (Kay,   1993  ).  

 From a statistical point of view, a LS fi t of model parameters to data 
attempts to reduce the sample variance of the residuals – that is, the part in 
the observations left unexplained by the model – to some expected value; ide-
ally the one of e. In practice, this value may be estimated from the sample 
statistics of the MEG signals preceding the stimulation, or ideally from an 
acquisition run with the MEG recording only the environmental noise and/or 
with the subject resting quietly under the helmet (Huizenga et al.,   2002  ; Jun 
et al.,   2006  ).     

The Techniques of LS Dipole Fitting 

 Estimating the 300 unknowns of a 50-dipole model from 300 observations 
would invariably result in overfi tting any MEG data. This can be understood 
by fi rst rewriting (5–2) as follows:

   ( )T .O I= q     (5–5)  

  q is the set of orientation and location parameters and  I  is the set of dipole 
amplitudes. (5–5) translates that the physics of MEG predicts that a current 
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dipole produces magnetic fi elds that depend linearly on current amplitudes  I , 
while they depend non-linearly on source orientations and locations  q (e.g., 
Baillet et al.,   2001b  ). Let us now arbitrarily fi x all values in  q at random. The 
resulting matrix T( q) is  almost certainly  full-rank, i.e., invertible. This means 
that knowing  q, a solution  Î  to (5–5) exists and is unique: 

   ( ) 1ˆ T .I O
−= q     (5–6)  

 If observations are from real – i.e., noisy – MEG data, then we have 
 O  = T(θ) I  + ε, which we replace in (5–6) to fi nally obtain: 

   
( ) ( )( )

( )

1

1

ˆ T T ,

ˆ T .

I I

I I

−

−

= +

= +

q q e

q e
    (5–7)   

 The fact that a random selection of  q can yield a perfect fi t to arbitrary 
MEG observations is an illustration of the fundamental ill-posed nature of the 
MEG inverse problem which we have approached here using basic algebra. 

 Now let us suppose that we know the true source orientations and loca-
tions  q. By adding noise e to this synthetic data set, we would still end up 
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Figure 5–5 . Matrix array of correlation coeffi cients across 147 MEG sensors 
during a 900 ms baseline recording of ongoing brain activity. Red and 
blue colors represent strong patterns of spatial correlation between MEG 
measurements, indicating – as expected – that supposed brain noise is not 
spatially independent. 
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overfi tting the data by producing a model  Î  in (5–7) that would also fully 
account for noise in the data (i.e.  e  

LS
   = 0 in (5–4)), which is of course not 

desirable in practice. 
 Therefore, trying to fi t as many parameters as there are unknowns does 

not lift the ill-posed nature or the modeling problem in real, noisy conditions. 
Here, although a solution to the inverse problem exists and is unique, it is 
highly dependent on the noise components in the data and ends up violating 
the third Hadamard condition to well-posedness (i.e., continuous depen-
dency). Now let us suppose for the sake of further demonstration that the 
data is idealistically clean from any disturbance. Remember, we obtained 
the canonical inverse in (5–6) by estimating the amplitude parameters  I  after 
the other source parameters (orientations and locations)  q have been fi xed. 
Now, if all 300 source parameters { I ,  q} are left unconstrained, (5–5) is still 
linear in  I  but not in  q, as imposed by the forward model of the electromag-
netics of MEG. Here, there are as many unknowns as there are instantaneous 
data, but the fact that some of them have a nonlinear dependency just makes 
them more diffi cult to estimate than in the situation where all unknowns 
linearly depend on the observations as in (5–6). 

 We need to solve the full LS optimization problem:

   { } ( )( )2

,

ˆˆ, argmin T , .
I

I O I= −
q

q q     (5–8)   

 However, (5–8) no longer reduces to a linear analytical solution for  q, as 
it did for  I  in (5–6). This implies the use of numerical optimization recipes 
based on automated search algorithms guided by, e.g., gradient descent (Press 
et al.,   1986  ). Optimization will search for the minimum of (5–8), and there is 
no fundamental limitation to that endeavor, when the number of unknowns 
is kept below the number of observations. The minimum of  e  

LS
   certainly exists 

and is theoretically unique when sources are constrained to be dipolar (see, 
e.g., Badia et al.,   2004  ). The practice of non-linear optimization, however, 
may reveal that the landscape of || O  − T( I ,  q)|| 2  in the dimensions of  I  and  q 
might be quite hilly; meaning that there are many sets of parameters { I ,  q} 
leading to values of  e   

LS
   which are  very close  to its global minimum. These val-

ues are naturally called  local minima , and this is where the search for optimal 
parameter values might be trapped as illustrated Figure   5–6  . Concretely, this 
will translate as a greater sensitivity of the search to its initial conditions, e.g., 
the values assigned to the unknown parameters to initiate the search.  

 In summary, even though localizing a number of elementary dipoles 
corresponding to the amount of instantaneous observations is theoretically 
well-posed, we are facing two issues that will drive us to reconsider the source-
fi tting problem in practice, as we shall see in the following section:  

   (1)  Overfi tting: meaning that the inverse model accounts for the noise com-
ponents in the observations;  
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   (2)  Non-linear searches that tend to be trapped in local minima of the LS 
cost which are all the more numerous as the inverse model contains more 
elementary sources.         

“How Many Dipoles Should I Fit to My Data?” 

 A general rule of thumb when the data is noisy and the optimization principle 
is ruled by nonlinear dependency is to keep the complexity of the estimation 
as low as possible. Taming the complexity starts with bringing the number of 
unknowns to be estimated under the number of observations, thereby mak-
ing (5–5) become overdetermined. Overdeterminacy should not be consid-
ered as big an issue in experimental sciences as underdeterminacy. Indeed, 
and very pragmatically speaking, the additional information brought by sup-
plementary sensors just brings more information to the estimation problem, 
and might even give room to channel selection in case of noise or artifact 
contamination of a subset of sensors. 

 Early dipole fi tters – as we have seen above – have naturally realized that 
fi tting a single dipole to early-latency somatosensory data would be about the 
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Figure 5–6 . On optimizing functionals with non-convex energy landscapes. 
This is illustrated in this cartoon where the energy functional depends on 
a single parameter, which value can be altered along the x-axis. Two ini-
tial conditions are explored (blue disks). Initialization from the leftmost 
blue disk leads to the global minimum of energy (green disk). Optimiza-
tion from the second initial condition (rightmost blue disk) ends up being 
trapped in a local minimum of the energy landscape (red disk). 
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right way to start with computational source fi tting (Okada et al.,   1984  ). The 
somatotopy of primary somesthesic brain regions using single dipole models 
has been, and still is, yielding a fl ourishing literature, especially in clinical 
investigations (e.g., Meunier et al.,   2003  ). This single equivalent dipole model 
(ECD) for supposedly isolated activations during the early stage of brain 
information processing was also conjectured and evaluated in auditory 
(Zimmerman et al.,   1981  ) and visual (Lehmann et al.,   1982  ) primary responses. 
Very early on, though, it appeared that most later components of evoked 
fi elds would necessitate more parameters to both 1) bring the LS-error ε  

LS
   

down to a level compatible with SNR, and 2) yield a source model with rea-
sonable stability across successive observations on a time window compatible 
with the waveforms measured at the sensor level. 

 Scherg and von Cramon (  1985  ) conceptualized the spatiotemporal (ST) 
dipole model, which also requires to solve a LS-optimization problem, but on 
a set of successive time samples. The ST dipole model was typically developed 
to localize the sources of scalp waveforms that were assumed to be generated 
by multiple and overlapping brain activations. The model therefore includes 
the  a priori  that a source in the inverse model is expected to be activated for a 
certain duration – with amplitude modulations – while staying at the same 
location with the same orientation. The ST model is typical of the introduc-
tion of further information in the tricky estimation problem confronting us. 

 Alternatively, the orientation constraint may be relaxed by considering 
that tiny displacements of the brain activity can be effi ciently modeled by a 
rotating dipole source at some fi xed location. This approach was extensively 
adopted in studies of the tonotopic organization of the auditory cortex 
(Zimmerman et al.,   1981  ). In practice, a rotating dipole can be effi ciently 
modeled by a triplet of orthogonal dipoles, which form a basis for a dipole 
with any orientation at the same location. Hence, the orientation parameters 
in  q can be reduced to the amplitude parameters of the dipoles in the equiva-
lent triplet, i.e., parameters with linear dependency on the data. 

 When multiple sources are expected from the experiment, multiple-
dipole models need to be fi tted to the observations. As we have seen previously, 
fi tting the entire set of parameters with too many dipoles is detrimental to the 
numerical stability and signifi cance of the inverse model. Hence, the number 
of dipoles to be adjusted must also be estimated from the observations, and 
thereby constitutes some hidden parameter in the forward model. 

 Adding the number of sources to the LS error functional leads to intrac-
table optimization. Other criteria based on information theory may be applied 
to automatically estimate the number of sources in the data, but have been of 
limited success in MEG because the statistics of the data do not match the 
methodological assumptions for which they were developed initially (Waldorp 
et al.,   2005  ). Signal classifi cation and spatial fi ltering techniques are effi cient 
solutions to this problem as we shall see in the next section. 

 Let us conclude by stating that the localization approach, consisting in 
adjusting the parameters of a limited number of equivalent dipole sources, 
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requires considerable expertise from users. Special care should be brought to 
the evaluation of the stability of the estimated sources with regards to changes 
in initial conditions of the optimization, so that reproducibility of the inverse 
model should not be questioned. With all that in mind, it has proven to be an 
effi cient means to evaluate models of brain activity, even on complex para-
digms (see Chapter 6).     

Spatial Filters, Beamformers and Signal Classifi ers 

 The inherent diffi culties to source localization with generators of multiple 
origins and noisy data components have led signal processors to develop 
alternative approaches, most notably in the glorious fi eld of radar and sonar 
in the 1970’s. Rather than attempting to localize the sources by adjusting their 
tricky nonlinear parameters, scanning techniques have emerged and pro-
ceeded by systematically sifting through space to see how a predetermined 
source model would fi t into the data at a specifi c region of space. 

 While doing so, the fi rst approaches also attempted to block the contri-
butions from the other parts of space, hence the nicknames of spatial fi lters 
and beamformers — just as if a virtual beam would be directed and listen 
exclusively at some region of space. 

 These approaches have triggered tremendous interest and applications in 
array signal processing, and have percolated the MEG community at several 
instances (e.g., Spencer et al.,   1992   and more recently, Hillebrand et al.,   2005  ). 

 In brief, spatial fi lters and beamformers are built on a source model 
defi ned  a priori . This latter is usually a single or a triplet of current dipoles. At 
each point in a predefi ned 3D or surfacic grid, a narrow-band spatial fi lter is 
formed so that the contribution to data of the source model at this very point 
is estimated while the other brain regions are ideally muted – or at least atten-
uated – by the fi lter spatial block band. van Veen and Buckley (  1988  ) have 
detailed a technical introduction to beamformers which is excellent further 
reading. 

 It is sometimes claimed that beamformers do not solve an inverse prob-
lem: this is a bit overstated. Indeed, spatial fi lters do require a source and a 
forward model, which will be both confronted to the observations. Instead of 
looking for  the  best solution (like, e.g., in the LS sense), beamformers scan the 
entire expected source space and systematically test the prediction of the 
source and forward models on the observations. This results in a model score 
map which should not be misinterpreted as a current density map, as in the 
imaging techniques we shall examine below. More technically – though with 
no details given here – the forward model is also somehow inverted as in 
(5–6), though iteratively on each source grid point to estimate the output 
of each narrow band fi lter, successively. Therefore, beamformers and spatial 
fi lters are truly avatars of inverse modeling. 

 Among all possible narrow-band spatial fi lters for MEG, linearly-
constrained minimum variance (LCMV) beamformers (van Veen and Buckley, 
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  1988  ) are by far the most popular, as they offer a reasonable tradeoff between 
the attenuating performances outside the pass-band and the degrees of free-
dom available from observations to build the fi lter coeffi cients. 

 Though beamformers are convenient in translating the source localiza-
tion problem to a signal detection issue in a search space, they suffer from 
drawbacks that are important to bear in mind.  

   (1)  They are built from a model of the covariance statistics of the data, which 
may be estimated from the data through sample statistics. However, even 
though a greater number of sensors is benefi cial to the synoptic measure-
ment of the brain magnetic fi elds, the more channels, the more data sam-
ples are necessary for robust – and numerically stable – estimation of the 
covariance statistics. This is the reason MEG beamformers have been 
evaluated on sweeps of ongoing, unaveraged data (see Chapter 9) in 
experimental conditions where behavioral stationarity was a means to 
ensure some stationarity in the data as well. In the context of evoked, 
time-locked activity, some recent developments suggest to consider sam-
ples across single trials to build the statistics (Cheyne et al.,   2006  ).  

   (2)  They are quite sensitive to errors in the head model. The fi lter outputs are 
usually normalized by local noise contributions evaluated from some 
baseline time window. However, SNR is not homogeneous everywhere in 
the source space, which results in sidelobe leakages from interfering 
sources nearby, which impedes the fi lter selectivity and, therefore, the 
specifi city of source detection (Wax & Anu,   1996  ).  

   (3)  They are fooled by simultaneous highly correlated activations that are 
interpreted by the beamformers as emerging from a single source, hence 
identifi ed with an uncontrolled location bias.     

 Signal processors had long identifi ed these issues, and consequently 
developed an alternative point of view on the data as being signal or noise, as 
an alternative technique to beamformers. Multiple signal classifi cation 
(MUSIC) algorithm (Schmidt,   1986  ) starts by considering that the signal and 
noise components within observations are uncorrelated. Strong results in sig-
nal subspace theory show that these components live in separate subspaces 
which can be identifi ed using, e.g., principal component analysis (PCA) of the 
data time series (Golub,   1996  ). 

 Mosher et al. (  1999  ) gives an extensive review of signal classifi cation 
approaches to MEG and EEG source localization. Their practice in various 
experimental conditions remains limited by their sensitivity in the defi nition 
of the signal vs. noise subspaces, which rules completely the subsequent clas-
sifi cation and, therefore, the performances of source identifi cation. Reasons 
for this come from the quite limited instrumental noise in EEG and MEG 
compared with the massive background brain activity which is very perturb-
ing, because it is structured in a way very comparable with the signal of 
interest. An interesting application of MUSIC-like powerful discrimination 
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ability, though, has been developed in epilepsy spike-sorting (Ossadtchi 
et al.,   2004  ). 

 In summary, spatial fi lters, beamformers, and signal classifi cation 
approaches bring us  closer  to a distributed representation of the brain electri-
cal activity. As a caveat, the results generated by these techniques are not an 
estimation of the current density everywhere in the brain. It is rather a score 
map of a source model – generally a current dipole – which is evaluated at the 
points of a predefi ned spatial lattice, which sometimes leads to misinterpreta-
tions. The localization issue now becomes a signal-detection problem within 
the score map; and solutions to this issue are described in the literature (e.g., 
Mosher et al.,   2003  ). Illustrations and examples of beamforming approaches 
are given in Chapter 9. 

 The imaging approaches we are about to introduce now, push this detec-
tion problem further by attempting to estimate the brain current density at 
once, and entirely from the MEG/EEG surface data.     

The Imaging Approach 

 We have brought the inverse modeling problem from mere localization 
using point-like source models to a distributed score map of the same 
elementary source models as obtained from beamforming. The imaging 
approaches, which have developed quite in parallel, yield source models built 
from a distribution of elementary source currents as well, but with fi xed 
locations – and usually orientations – and where amplitudes are estimated all 
at once. 

 Therefore, MEG source imaging yields an estimation of neural current 
intensity maps distributed within the brain volume or constrained at the 
cortical surface, just like pixels are distributed on a 2D image.     

The Imaging Source Space 

 The imaging approach estimates the source amplitudes from the observations 
while constraining the locations and orientations to the brain volume or 
surface. In the volumic case, the brain is gridded using a 3D lattice of 
voxels, which might be either generic – e.g., inferred from an MRI template – 
or obtained directly from the subject’s individual MRI and confi ned to a 
mask of the grey matter by using the appropriate software solution, e.g., 
SPM( http://www.fi l.ion.ucl.ac.uk/spm/ ), brainVISA( http://brainvisa.info ) or 
BrainSuite( http://neuroimage.usc.edu/brainsuite/ ). 

 The cortically-constrained image model derives from the assumption 
that MEG data originates essentially from large cortical assemblies of pyrami-
dal cells, with currents from post-synaptic potentials (PSP) fl owing orthogo-
nally to the local cortical surface. The orientation constraint can either be 
strict (Dale and Sereno,   1993  ) or relaxed by authorizing some controlled 
deviation from the surface normal (Lin et al.,   2006a  ). 

http://www.fil.ion.ucl.ac.uk/spm/
http://brainvisa.info
http://neuroimage.usc.edu/brainsuite/
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 In both cases, reasonable spatial sampling of the image space requires an 
order of several thousands of elementary sources as depicted  Figure  5–7  . This 
number is very critical in the surfacic case, as the cortical mantle is severely 
convoluted. Consequently, though the imaging inverse modeling problem 
consists in estimating parameters of only linear-dependency in the data, it is 
dramatically underdetermined.  

 Just as in the context of source localization, where the number of sources 
is a restrictive prior as a remedy to ill-posedness, imaging models need to be 
complemented by  a priori  information. This is properly formulated with the 
mathematics of regularization, and we are now going to review and sort out 
the various priors which have been adopted in MEG source imaging so far.     

Regularization With Priors on the Image Model 

 Adding priors to the imaging model can be adequately formalized in the 
context of Bayesian inference, where solutions to inverse modeling satisfy 
both the fi t to observations – given some model of nuisances – and some 
additional priors. In the estimation perspective, where one is looking for a 
 best model  of some sort – and with the notations from the generic Equation 
(5–1) – it is possible to consider the mode of the  a posteriori  probability 
distribution of source intensity  p ( I | O ), given the observations as a mixture of 
the likelihood of the noisy data  p ( O | I ) – i.e., of the predictive power of a given 

(a) (b)

(c) (d)

Figure 5–7 . The cortical surface, tessellated at two resolutions, using: 
(a, b) 10,034 vertices (20,026 triangles with 10 mm 2 average surface area) 
and (c, d) 79,124 vertices (158,456 triangles with 1.3 mm 2 average surface 
area).
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source model – and the  a priori  probability of a given source model  p ( I ) 
following the Bayes rule that states.

   ( ) ( ) ( )| | .p I O p O I p I∝     (5–9)   

 We do not want to detail the mathematics of Bayesian inference any fur-
ther here, as this would reach outside the objectives of this chapter. Specifi c 
recommended further reading includes Demoment, (  1989  ), for a Bayesian 
discussion on regularization and Baillet et al., (  2001a  ), for an introduction to 
MEG imaging methods, also in the Bayesian framework. 

 Here, we will discuss pragmatically regularization from the restricted – 
but highly illustrative – perspective of the generalization of the least-squares 
criterion. 

 We may recall fi rst the objective of LS, which consists in minimizing the 
error  ε   

LS
   between the observations and the prediction from the source model 

(Eq. (5–8)). Now our objective for source imaging would be that this predic-
tion error be complemented by the adequation of the model parameters to 
some  a priori  information that could, e.g., be formulated literally as follows: 
“Among all possible solutions, favor those with spatial and temporal smooth-
ness of the spatial distribution of neural currents and their time series (respec-
tively); penalize models where currents have unrealistic, non-physiologically 
plausible amplitudes; favor adequation with an fMRI activation map; prefer 
source image models made of piecewise homogeneous activations; etc.” 

 An important benefi t of a well-chosen prior would be that there would 
exist  a unique solution  to the regularized inverse modeling problem, despite 
the original underdeterminacy. As relevant priors may take many faces, this 
explains the plethora of source imaging solutions, and the diffi culty for new-
comers to understand that these methods usually belong to the same techni-
cal background. 

 Concretely, we are moving from ordinary LS (OLS) to regularized-LS 
(RLS) by defi ning a new objective for the search of model parameters, that is, 
the amplitudes of all elementary source currents  Î 

RLS
  :

   ( )( )2

.
ˆ argmin T argminRLS RLS

I I

I O I f I= − + =l e     (5–10)   

 Note that we have removed the nonlinear parameters  q  (e.g., the elemen-
tary source locations) from the optimization, as they are now all considered 
as fi xed and predetermined. T is now entirely defi ned as the solution to the 
MEG forward problem for all elementary sources in the distributed model 
with arbitrary unit current amplitudes, and is generally referred to as the  gain 
matrix ;  f ( I ) is typically a positive monotonic function of source amplitudes, 
which takes large values when  I  deviates from the expected type of source 
distribution a priori; λ is a positive scalar that helps balance the parameter 
optimization between unregularized OLS prediction error   ( 1)LS �e l    and 
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excessive trust in the priors regardless of the observations   ( 1)�l    as illustrated 
 Figure  5–8  . For this reason  e   

LS
   becomes a  data attachment term  in RLS.  

 Now it is obvious that the minimization of ε  
RLS

  , and the existence of a unique 
solution to (5–10), strongly depends on the mathematical nature of  f ( I ).     

A Collection of Priors 

 A widely used prior in the fi eld of image reconstruction considers that the 
expected source amplitudes  I  be as small as possible on average. This is the 
well-described minimum-norm (MN) model where:

   ( ) 2
.f I I=     (5–11)   

 Technically speaking, we are referring to the L2-norm. In that case, ε  
RLS

   is 
quadratic in  I , with a unique analytical solution which writes (Tarantola, 
  2004  ):

   ( ) 1

d
ˆ T' TT' I ,MNI O

−= + l     (5–12)  
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Figure 5–8 . Infl uence of the regularization parameter λ on the profi le of 
the posterior probability distribution. The prior (in blue) and likelihood 
(in green) are normally distributed with different modes and variances. 
As λ increases, the mode of the posterior probability distribution in red 
tends to the mode of the prior. 
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 where T′ stands for the matrix transpose of T, and I 
d
  the identity matrix. The 

computational simplicity of the MN estimate of distributed current ampli-
tudes has been very attractive in MEG (Wang et al.,   1992  ), because it demon-
strated that a unique solution to the underdetermined MEG inverse problem 
could be elaborated.  

 The basic MN estimate has been demonstrated to be problematic, though, 
as it tends to favor the most superfi cial brain regions (e.g., gyral crowns) and 
underestimate the contribution of deeper source areas (such as sulcal fundi) 
(Fuchs et al.,   1999  ) ( Figure  5–9  ).  

 As a remedy, a slight alteration of the basic MN estimator consists in 
weighting each elementary source amplitude by the inverse of the norm of its 
contribution to sensors (i.e. of the corresponding column of the gain matrix 
(T)). This depth weighting yields a weighted MN (WMN) estimate which still 
benefi ts from unicity and linearity in the observations as the basic MN in 
(5–12) (Lin et al.,   2006b  ). 

 Despite their robustness to noise and simple computation, it is relevant to 
question the neurophysiological validity of MN priors – though it would have 
been more rigorous to do so beforehand. Indeed – though reasonably intuitive - 
there is no evidence that neural currents would systematically match the 
principle of minimal energy. Some authors have speculated that a more physi-
ologically relevant prior would be that the norm of spatial derivatives (e.g., 
gradient or Laplacian) of the current map be minimized (as in LORETA; 
Pascual-Marqui et al.,   1994  ). As a general rule of thumb, however, all MN-based 
source imaging approaches greatly overestimate the smoothness of the spatial 
distribution of neural currents, while quantitative and qualitative empirical 
evidence demonstrate spatial discrimination of reasonable range at the sub-
lobar brain scale (Darvas et al.,   2004  ; Sergent et al.,   2005  ). Refer to Chapters 7 
and 8 for specifi c discussions on distributed-source modeling. 

Figure 5–9 . Sensitivity of MEG to cortical currents depends on their loca-
tion and orientation. MEG signals are stronger on sulcus walls (yellow/
red) than on the gyral crowns (green/blue). 
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 Most of the recent literature in regularized imaging models for MEG 
consists in struggling to improve the spatial resolution of the MN-based mod-
els (see Baillet et al. (  2001a  ) for a review), with notable increases in theoretical 
performances, but with limited impact on routine analysis in the MEG room 
so far, though, because of practical limitations due to the computational load 
of these techniques. 

 As a general principle, we are facing the dilemma of knowing that all 
priors about the source images are certainly abusive, hence that the inverse 
model is wrong, while hoping it is not  too  wrong for the sake of signifi cance 
of the neuroscience question under scrutiny. This discussion is recurrent in 
the general context of estimation theory and model selection, and we shall 
return to this later.     

At Last, a Word on Head Models: The Forward Problem 

 In previous sections, we have taken for granted that the forward model of 
MEG was solved prior to running into the questions of inverse modeling. We 
shall speak briefl y of state-of-the-art approaches to modeling the neural cur-
rents and the magnetostatics fi rst, always from a pragmatic perspective, and 
cite useful references for complete reading.     

Modeling Starts at the Source 

 The solution to the forward problem in MEG (and, again, EEG) concerns the 
choice of two models that are bound to work together very complementarily: 
the source model and the prediction (modeling) of MEG/EEG surface 
measurements produced by such a model. 

 The canonical source model we have been using the all way through so 
far, is the electric current dipole. This model was initially motivated by the 
dipolar pattern of magnetic fi elds observed outside the scalp. Further, the 
depolarization process in neural cell assemblies is quite intuitively depicted as 
a current fl ow between a source and a sink over a limited distance, which is 
also well-accounted by an equivalent current dipole. 

 Indeed, most topographical patterns from evoked activity at the sensor 
level are essentially made of dipolar shapes of fi eld distributions, thereby rein-
forcing the fi tness of such a simple model for current density distribution in 
cell assemblies. 

 Some authors however, have questioned the predictive value of the dipo-
lar model – especially in the context of ECD fi ts for source localization – when 
brain activity is susceptible to extending up to about 10cm 2  to be detectable at 
the scalp surface, as evidenced by electrocorticographic (ECoG) recordings 
(Tao et al.,   2005  ). 

 To understand this, we need to refer to the physics of magnetostatics, 
which state that the magnetic fi elds produced by any arbitrary current distri-
bution may be decomposed as the sum of more elementary terms; the fi rst 
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being the dipolar contribution of the source, and the rest being built from the 
contributions of elementary multipolar current sources: this is called the 
‘multipolar expansion’ of the fi eld (Karp et al.,   1980  ). When the source exten-
sion is small compared to its distance to sensors – e.g. from small (~< 1cm 2 ) 
shallow brain activations to deeper large source (~> 10cm 2 ), the multipolar 
contributions tend to be negligible compared with dipole’s. However, when 
the extension of the local brain activity tends to increase, and/or when the 
distribution of neural currents within an active areas departs from uniformity – 
e.g., when local synchronization rate amongst cell assemblies is rather poor – 
multipolar components tend to become prominent in the measured fi eld 
(Jerbi et al.,   2002  ). 

 As a matter of fact, measures from simultaneous ECoG and EEG in epi-
lepsy have shown that on the order of 10cm 2  active brain surface is sometimes 
necessary, to be detected at the scalp level. Further, studies have shown that 
the ECD model in localization approaches for such large surface of brain 
activity, localize the source of the signals with a distance bias of few centime-
ters away from the patch centroid (Jerbi et al.,   2004  ). Recently, federative 
efforts for compact multipolar modeling of large brain areas have been 
achieved (Jerbi et al.,   2002  ) and triggered research on effi cient localization 
using source models from multipolar expansions up to order 4 (quadrupole 
source model), which has shown very encouraging gain on localization bias 
(Jerbi et al.,   2004  ). In the near future, this may be applied for further compact 
modeling in distributed source models and yield better-posed inverse model-
ing problems with more effi cient numerical resolution. 

 Once a generic model of neural mass activity has been selected, the forward 
problem is further resolved by describing the source environment – i.e., the 
geometrical and the electromagnetic properties of head tissues – and the sensor 
array, both having infl uence on the fi elds produced by the source model.     

Modeling the Sensor Array 

 The MEG sensor array is made of multiple pick-up coils (magnetometers), 
which are sometimes arranged in pairs or more, to form physical gradiome-
ters (see Chapter 2). It is important that the sensing principles from which the 
data originate be modeled accurately prior to source estimation. If not, the 
model of data formation as in (5–2) would suffer from severe bias. We may 
note in passing that designing a model for the sensor array is quite straight-
forward in principle, but is subjected to practical caveats that one should bear 
in mind to avoid systematical errors. 

 The details of the sensor geometry are generally dependent on the manu-
facturer of the array, and the researcher needs to be aware of any possible 
options in solving for the sensor model. When the exact sensor geometry is 
not made available, the sensing coils are considered as point-like. This simpli-
fi ed sensor model is also the most common, and has limited impact on the 
accuracy of the forward model. If the geometrical details of the sensor coil are 
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available, the computation of the total magnetic fl ux induction captured by 
the sensor can be more accurately modeled by integration within the sensor 
surface area. Gradiometer arrangements are readily modeled by applying the 
arithmetic operation they mimic by combining the fi elds modeled at each of 
its magnetometers. 

 Recent MEG systems include sophisticated noise-attenuation technology 
that may be routinely applied to the raw recordings. These include higher-
order gradient corrections and signal-space projection techniques, which 
alter the basic data formation model and therefore need to be taken into 
account (Nolte & Curio,   1999  ). The researcher needs to be aware whether 
such correction procedure has been applied to the data. If yes, he/she will 
have to make sure that the software solution to the forward problem will be 
capable of altering the basic forward solution accordingly. 

 The most tricky part in the modeling of the MEG array consists of the 
accurate localization of the sensors relative to the head (i.e. the brain sources) 
of the subject. This general problem is known as the ‘coregistration’ issue and 
the bias in the estimation due to misspecifi cation of the sensor locations may 
be quite dramatic. Fortunately, MEG system vendors have developed solu-
tions to localize the sensors respectively to some coils attached to the subject’s 
scalp, which are fully integrated to the acquisition software (see Chapter 2). 
As we shall discuss later, these solutions are satisfactory when the anatomy of 
the subject is not fully specifi ed and source locations are interpreted qualita-
tively. However, when the individual cortical surface conditions the source 
distribution, as in the imaging approaches, or even when dipoles are second-
arily projected into the MRI volume for further interpretation, the errors due 
to this registration procedure may also produce severe misinterpretation of 
the source solution (Schwartz et al.,   1996  ). 

 Indeed, even though the MEG array is rigid, and therefore the relative 
distances between sensors are constant, the subject is likely to move during an 
acquisition run, thereby moving his head away from the initial position taken 
as a reference for the subsequent localization steps. Therefore, the head loca-
tion has to be checked at least both at the beginning and at the end of a run. 
New MEG systems are now developed to monitor the head location online. 
This will greatly improve the quality check on the data and permit interrup-
tion of a run spoiled by head movements, or even allow a more precise offl ine 
correction of those movements (see, e.g., Uutela et al.,   2001  , and BrainStorm 
[ http://neuroimage.usc.edu/brainstorm ]).     

Modeling of Head Tissues 

 Predicting the magnetic fi elds produced by an elementary source model at a 
given sensor array requires a last modeling step, which has occupied a large 
part of the MEG literature. This so-called  head modeling  is literally a model 
of the infl uence of the head geometry, and magnetostatic properties of head 
tissues, on magnetic fi elds measured outside the head. 

http://neuroimage.usc.edu/brainstorm
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 In EEG for instance, it is quite intuitive that the skull would form a 
barrier of lower conductance that strongly distorts and attenuates the electric 
potentials at the scalp vs. at the cortical surface. This is also the case for MEG 
in an arbitrary head geometry, as the electric potentials and magnetic induc-
tion are coupled by the Maxwell’s equations (Hämäläinen et al.,   1993  ). 

 Simple geometrical models of the head have been extensively investi-
gated; the most popular being concentric layers arranged in spheres, one 
sphere per major category of tissue (scalp, skull and brain). The reasons for 
this are both historical and pragmatic. From the historical point of view, the 
sphere was – again – initially investigated in MCG, and demonstrated an 
interesting trade-off between oversimplifi ed models of body sources fl oating 
in an homogeneous medium, and the computationally-demanding numeri-
cal solutions required by realistic geometry, which basic computers could not 
handle routinely at the time. 

 From the pragmatic point of view, one can notice that most heads fi t 
reasonably well inside a sphere centered about 5 cm above the plane defi ned 
by the usual anatomical fi ducials used in MEG: the nasion, and both bilateral 
pre-auricular points. 

 The spherical geometry has demonstrated very attractive properties in 
MEG (Sarvas,   1987  ). Indeed, remarkably, MEG spherical solutions are abso-
lutely insensitive to the number of shells, such that a single homogeneous 
sphere generates the same MEG fi elds as a set of concentric spheres of different 
conductivities. Therefore, for MEG purposes, only the center of symmetry, 
i.e., the common center of the concentric spheres, is important; the conduc-
tivity profi le plays no role in the solution, nor do the radii of the spheres. 
Implicitly, it is assumed that the radius of the outermost sphere is smaller 
than the distance of any of the sensors from the center of symmetry. The 
sphere can be fi t to the entire head, or restricted to regions of interest, such as 
parieto-occipital regions for visual studies. 

 Another remarkable consequence of the spherical symmetry is that the 
radial component of the magnetic fi eld is not affected by the volume currents, 
and therefore only depends on the primary current source. However, this fact 
is of minor practical importance, since all fi eld components can be easily 
computed from an analytical formula, which takes the contribution of the 
volume currents correctly into account (Sarvas,   1987  ). More importantly, 
however, radially oriented currents produce no magnetic fi eld outside a 
spherically symmetric conductor. Therefore, signals from currents at the 
crests of the gyri and depth of the sulci are attenuated in the MEG data, 
whereas the contribution of the former is very prominent in EEG (see 
 Figure  5.9  , and Hillebrand & Barnes,   2002  ). 

 This has led researchers to investigate more realistic head geometries to 
enhance the sensitivity of MEG toward pseudo-radial sources. Boundary 
Element (BEM) and Finite Element (FEM) methods are generic numerical 
approaches to the resolution of continuous equations over discrete space, and 
have naturally been applied to MEG. Both approaches necessitate a geometric 
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tessellation of head tissues from the individual MRI, as a realistic approxima-
tion of their geometry ( Figure  5–10  ).  

 In the case of BEM, the conductivity of tissues is supposed to be homo-
geneous and isotropic within each envelope. Therefore, each tissue envelope 
is delimited using surface boundaries defi ned over a triangulation of each of 
the segmented envelopes from the MRI. 

 FEM assumes that tissue conductivity may be anisotropic (such as the 
skull and white matter), therefore the primary geometric element needs to be 
volumic. Consequently, tetrahedra are elementary sample elements that will 
fi ll the volume of each tissue compartment. 

 The main obstacle to a routine usage of BEM and, more pregnantly, in 
FEM, is essentially the tessellation phase. Because the head geometry is intri-
cate and not always well-defi ned from conventional MRI, automatic segmen-
tation tools sometimes fail to identify robustly some tissue structures that 
would justify the use of realistic head models by themselves. These include, 

(a) (b)

(c)

Figure 5–10 . Three approaches to MEG head modeling: (a) Spherical 
approximation of the geometry of head tissues; (b) Digitization of surface 
envelopes using surfacic meshes with numerical solution using the BEM 
approach; (c) An alternative to (b) using volumic meshes – here built from 
tetrahedra – with numerical solution using the FEM approach. 
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e.g., the skull – which is invisible on conventional T1-weighted MRI (but see 
Dogdas et al.,   2005  ) for an effi cient estimation procedure). 

 The computational times also remain extremely long (several hours on a 
conventional workstation) and are detrimental to source localization meth-
ods where the source location is optimized, which necessitates the update of 
the corresponding forward model on the fl y. Pragmatic solutions to this 
problem have been proposed recently. These include the interpolative approx-
imation of the source lead-fi eld from a dense precomputed volumic grid 
(Ermer et al.,   2001  ), or from an atlas-based approach, which deforms a pre-
computed FEM tessellation to match the individual scalp of the subject 
(Darvas et al.,   2006  ). 

 An alternative solution to these numerical approaches considers a set of 
overlapping spheres to compute the individual lead-fi elds at each sensor in 
the array (Huang et al.,   1999  ) ( Figure  5–11  ). In other words, a spherical head-
model is designed locally to compute the led-fi eld at each individual sensor 
location. If the tessellations of the three primary tissue layers are available, the 
initial decision is which layer to use for the fi tting; practical experience is that 
the inner skull boundary is most useful for this fi tting in the MEG case, since 
the currents are most affected by the inner skull boundary, and because the 
scalp layer in the inferior regions basically begins to fl atten out as the scalp 
joins the neck regions. Fitting local spheres to these regions tends to create 
unrealistically large spheres, and fi tting instead to the inner skull yields spheres 
that are more naturally fi t to the brain regions (See BrainStorm).  

 Finally, let us close this section by mentioning that any realistic head 
model requires an estimation of the conductivity values of the tissues of the 
encephalon. Though solutions for impedance tomography using MRI (Tuch 
et al.,   2001  ) and EEG (Goncalves et al.,   2003  ) have been suggested, their 
practical impact is yet to be matured before entering the daily practice of 

(a) (b)

Figure 5–11 . Side (a) and front (b) views of a selection locally-fi tted spheres 
to the individual anatomy of a subject. Each sphere is adjusted to a 
given sensor location and the neighboring scalp surface to compute the 
corresponding lead fi eld. 
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MEG researchers. So far, conductivity values from ex-vivo studies are con-
ventionally integrated in all BEM and FEM models (Geddes & Baker,   1967  ).      

Approaches to the Appraisal of MEG Inverse Models 

 Throughout this chapter, we have been dealing with modeling, and modeling 
implies dealing with uncertainty. MEG source estimation has uncertainty 
everywhere: data are complex and contaminated with various nuisances, 
source models are simplistic, head models have approximated geometries and 
conductivity properties that are poorly approached in vivo, priors are only 
priors, and can be considered as quite arbitrary, etc. 

 It is therefore reasonable to question how the numerical methods at stake 
may be sensitive to all these sources of errors and bias. This concerns the 
appraisal of the source model, which general methodology has been adapted 
to MEG just recently, and is now achieving a signifi cant degree of maturity.    

Confi dence Intervals 

 We have seen before that fi tting dipoles to a time chunk of data may be quite 
sensitive to their initial locations prior to the search. Similarly, imaging meth-
ods suggest that each brain location is active, potentially. It would be quite 
relevant to understand the confi dence the researcher may have in the ampli-
tudes suggested by the distributed source model. 

 In other words, we are now looking for error bars that would defi ne a 
 confi dence interval  about the estimated values of a source model. 

 Signal processors have long developed a systematic approach to what 
they have coined as ‘detection and estimation theories’ (Kay,   1993  ). The 
general stake consists in understanding how certain one can be about the esti-
mated parameters of a model, given a model for the noise in the data. The 
basic approach consists in considering the estimated parameters (e.g., source 
location) as a random variable. The parametric approach to the estimation of 
error bounds on the source parameters consists in estimating their bias and 
variance. 

 Bias is an estimation of the distance between the true value and the expec-
tancy of the average of a parameter due to perturbations. The defi nition of 
variance follows immediately. Cramer-Rao lower bounds (CRLB) on the 
estimator’s variance can be explicitly computed using an analytical solution 
to the forward model, and given a model for perturbations (e.g., with distri-
bution under a normal law). In a nutshell, the tighter the CRLB, the more 
confi dent one can be about the estimated values. Mosher et al. (  1993  ) have 
investigated this approach using extensive Monte Carlo (MC) simulations, 
which evidenced a resolution of a few millimeters in single dipole models. 
These results were later confi rmed by phantom studies (Baillet et al.,   2001b  ; 
Leahy et al., 1998). 
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 CRLB increased markedly for two-dipole models, thereby demonstrating 
their extreme sensitivity and the need for a careful usage in localization 
approaches. 

 Recently, nonparametric approaches to the determination of error 
bounds have greatly benefi ted from the commensurable increase in computa-
tional power. Jackknife, and more generally bootstrap-based approaches, 
proved to be effi cient and powerful tools to estimate confi dence intervals on 
MEG source parameter estimations without any explicit limitations on the 
nature of perturbations and head models. 

 These techniques are all based on data resampling approaches and have 
proven to be exact and effi cient when a large-enough number of experimental 
replications are available (Davison & Hinkley,   1997  ). This is typically the case 
in MEG experiments where protocols are designed on multiple trials. If we 
are interested, e.g., in knowing about the confi dence interval on a source loca-
tion in a single-dipole model from evoked averaged data, the bootstrap will 
generate a large number (typically > 500) of averaged pseudo-data sets by 
randomly choosing trials from the original set of trials and averaging them all 
together. Because the trial selection is random, and systematically taken from 
the complete set of trials, the corresponding sample distribution of the esti-
mated parameter values is proven to converge toward the true distribution. 

 A pragmatic approach to the defi nition of a confi dence interval thereby 
consists in identifying the interval containing, e.g., 95% of the resampled esti-
mates (see  Figure  5–12  ; Baryshnikov et al.,   2004  ; Darvas et al.,   2005  ; McIntosh 
& Lobaugh,   2004  ).  

 These considerations naturally lead us to statistical inference, which 
questions hypothesis testing where the researcher is interested in addressing 
questions that are specifi c to the scientifi c hypothesis that motivated data 
acquisition, and which we shall review briefl y in the next section.     

Statistical Inference 

 Questions like: “How different is the dipole location between these two exper-
imental conditions?” and “Are source amplitudes larger in such condition 
that in a control condition?” belong to statistical inference from experimental 
data. The basic problem of interest here is hypothesis testing, which is sup-
posed to potentially invalidate a model under investigation. Here, the  model  
must be understood at a higher hierarchical level than when talking about, 
e.g., a basic source model. It is supposed to address the neuroscience question 
that has motivated data acquisition and some experimental design (Guilford 
et al.,   1978  ). Readers are also encouraged to refer to Chapter 10 in this book, 
which extensively documents this question. 

 In the context of MEG, population samples that will support the infer-
ence are either trials or subjects. Testing can therefore be run at the individual 
and group levels, respectively.     
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Brief Review of Tools for Statistical Inference 

 As for the estimation of confi dence intervals, both parametric and non-
parametric approaches to statistical inference can be considered. There is no 
space here for a comprehensive review of tools based on parametric models. 
They have been, and still are, extensively studied in the fMRI and PET 
communities – and recently adapted to EEG and MEG (Kiebel et al.,   2005  ) – 
and popularized with software toolboxes such as SPM (Turner et al.,   1998  ). 

 Nonparametric approaches like permutation tests are also emergent 
techniques for statistical inference applied to neuroimaging data (Nichols & 
Holmes,   2002  ; Pantazis et al.,   2005  ). Rather than applying transformations 
to the data to secure the assumption of normally-distributed measures, 

(a)

(b)

Figure 5–12 . The bootstrap procedure yields nonparametric estimates of 
confi dence intervals on source parameters. This is illustrated here with 
data from a study of the somatotopic cortical representation of hand fi n-
gers (Meunier et al., 2001). Ellipsoids represent the resulting 95% confi -
dence intervals on the location of the ECD, as a model of the 40 ms (a) 
and 200 ms (b) brain response following hand fi nger stimulation. Colors 
encode for the stimulated fi ngers. While in (a) the respective confi dence 
ellipsoids do not overlap between fi ngers, they considerably increase in 
volume for the secondary responses in (b), thereby demonstrating that 
a single ECD is not a proper model of brain currents at this later latency 
(adapted from Darvas et al., 2005). Note that similar evaluations may be 
drawn from imaging models using the same resampling methodology. 
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nonparametric statistical tests take the data as they are, and are robust to 
departures from gaussianity. 

 In brief, hypothesis testing forms an assumption about the data that the 
researcher is interested in questioning. This basic hypothesis is called the null 
hypothesis, H0, and is traditionally formulated to translate no signifi cant 
fi nding in the data, e.g., ‘there are no differences in the source model in both 
experimental conditions’. The statistical test will express the signifi cance of 
this hypothesis and evaluate the probability that the statistics in question 
would be obtained just by chance. In other words, the data from both condi-
tions are interchangeable under the H0 hypothesis. This is literally what per-
mutation testing is doing. It computes the sample distribution of estimated 
parameters under the null hypothesis, and verifi es whether a statistics of the 
original parameter estimates was likely to be generated by this law. 

 We shall now review quickly the principle of multiple hypothesis testing 
from the same sample of measurements,which induces errors when multiple 
parameters are being tested at once. This issue pertains to statistical inference 
both at the individual and at the group levels. Samples will be therefore 
formed of repetitions (trials) of the same experiment in the same subject, or 
the results from the same experiment within a set of subjects, respectively. 

 This distinction is not crucial at this point. We shall, however, highlight 
the issue of spatial normalization of the brain across a sample of subjects 
either by applying normalization procedures (Ashburner & Friston,   1997  ) or 
by the defi nition of a generic coordinate system onto the cortical surface 
(Mangin et al.,   2004  ; Fischl et al.,   1999  ).     

Controlling the Family-wise Error Rate 

 The outcome of a test will evaluate the probability  p  that the statistics 
computed from the data samples will be issued from complete chance as 
expressed by the null hypothesis. The researcher fi xes a threshold on  p , above 
which H0 cannot be  reasonably  rejected, thereby corroborating H0. Tests are 
designed to be computed once from the data sample so that the error – called 
the type I error – consisting in accepting H0, while it is invalid, stays below the 
predefi ned p-value. 

 If the same data sample is used several times for several tests, we multiply 
the chances that we commit a type I error. This is particularly critical when 
running tests in sensors or source amplitudes of an imaging model, as the 
number of tests is on the order of 100 and even 10,000, respectively. In this 
latter case, a 5% error over 10,000 tests is likely to generate 500 occurrences of 
false positives by wrongly rejecting H0. This is obviously not desirable, and 
this is the reason why this so-called family-wise error rate (FWER) should be 
kept under control. 

 Parametric approaches to address this issue have been elaborated using 
the theory of random fi elds, and have gained tremendous popularity through 
the SPM software. These techniques have been extended to electromagnetic 
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source imaging, but are less robust to departure from normality than non-
parametric solutions. The FWER in nonparametric testing can be controlled 
by using the statistics of the maximum over the entire source image, or topog-
raphy at the sensor level – possibly across time (Pantazis et al.,   2005  ). 

 The emergence of statistical inference solutions adapted to MEG has 
brought electromagnetic source localization and imaging to a considerable 
degree of maturity, quite comparable to other neuroimaging techniques (see 
 Figure  5–13   for an example). Most software solutions now integrate sound 
solutions to statistical inference for MEG and EEG data, and this is a fi eld that 
is still growing rapidly.      

Figure 5–13 . MEG statistical inference at the group level illustrated: Jerbi 
et al. ( 2007) have revealed a cortical functional network involved in hand 
movement coordination at low frequency (4Hz). The statistical group 
inference fi rst consisted on fi tting, for each trial in the experiment, a 
distributed source model constrained to the individual anatomy of each 
of 14 subjects involved. The brain area with maximum coherent activa-
tion with instantaneous hand speed was identifi ed. The traces at the top 
illustrate excellent coherence in the [3,5]Hz range between these mea-
surements (hand speed in green and M1 motor activity in blue). Secondly, 
the search for brain areas with activity in signifi cant coherence with M1 
revealed a larger distributed network of regions. All subjects were coreg-
istered to a brain surface template in Talairach normalized space, with the 
corresponding activations interpolated onto the template surface. A non-
parametric t-test contrast was completed using permutations between 
rest and task conditions (p < 0.01); adapted from (Jerbi et al., 2007).
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Emergent Approaches for Model Selection 

 While there is a long tradition of considering inverse modeling as an optimi-
zation problem – i.e., designate  the  solution to an inverse problem as the 
source model corresponding to the putative global maximum of some ade-
quacy functional – there are situations where, for empirical and/or theoretical 
reasons, the number of possible solutions is just too large to ensure this goal 
can be reached. This kind of situation calls for a paradigm shift in the approach 
to inverse modeling, which animates some discussion in the concerned scien-
tifi c communities (Tarantola,   2006  ). 

 In MEG and EEG more specifi cally, we have admitted that picking a 
number of dipoles for localization purposes, or an imaging prior to insure 
unicity of the solution, has its (large) share of arbitrariness. Just like nonpara-
metric statistical methods have benefi ted from the tremendous increase of 
cheap computational power, Monte Carlo simulation methods are powerful 
computational numerical approaches to the general problem of  model selec-
tion . Indeed, a relevant question would be to let the data help the researcher 
decide whether any element from a general class of models would properly 
account for the data, with possibly predefi ned confi dence intervals on the 
admissible model parameters. 

 These approaches are currently emerging from the MEG literature and 
have considerable potential (David et al.,   2006  ; Mattout et al.,   2006  ; Daunizeau 
et al.,   2006  ). It is likely, however, that the critical ill-posedness of the source 
modeling problem will be detrimental to the effi ciency of establishing tight 
bounds on the admissible model parameters. Further, these techniques are 
still extremely demanding in terms of computational resources.      

Conclusions: “What am I supposed to do with my data?” 

 Throughout this chapter, we have stumbled across many pitfalls imposed by 
the ill-posed nature of the MEG source estimation problem. We have tried to 
offer a pragmatic point of view on these diffi culties. 

 It is indeed quite striking that despite all these shortcomings, MEG source 
analysis might reveal exquisite relative spatial resolution when localization 
approaches are used appropriately, and – although being of relatively poor 
absolute spatial resolution – imaging models help the researchers tell a story 
on the cascade of brain events that have been occurring in controlled experi-
mental conditions. From one millisecond to the next, it is often striking that 
imaging models reveal tiny alterations in the topography of brain activations 
at the millimeter scale. 

 An increasing number of groups from other neuroimaging modalities 
have come to realize that beyond mere cartography, the temporal and oscilla-
tory brain responses are essential keys to the basic mechanisms of brain infor-
mation processing at the neural mass level. The multiplicity of EEG systems 
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installed in MR magnets, and the steady – though still slow – development of 
MEG equipments, reveal a lively scientifi c community with exciting perspec-
tives for the future of multidisciplinary brain research.   

Notes

     1   To estimate retrospectively what was the distribution of temperature in a 
medium for instance.  

     2   3 for location  per se , 2 for orientation and 1 for amplitude.         
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Introduction 

 The types of information one would typically like to extract from MEG data 
are approximate location of active brain areas, time course of activation in 
those areas, and effect of task or stimulus category on the neural timing and/
or strength of activation. The Equivalent Current Dipole (ECD) model is an 
excellent tool in this endeavor. It is simple, well defi ned, and robust, as it 
requires the minimum number of assumptions and, importantly, these 
assumptions are entirely transparent to the user. 

 As an example of a neuroscience question with multiple experimental 
conditions, let us consider silent reading of words and nonwords.  Figure  6–1   
displays MEG responses in one subject to short and long words, and nonwords. 
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Multi-Dipole Modeling in MEG 

Riitta Salmelin     

      MEG data are usually not ambiguous; it is mostly obvious where the • 
active areas are located  
  Diligence in identifying clear dipolar fi eld patterns yields well-behaved • 
models  
  Parametric variation of stimuli is essential for functional localization • 
and helpful in source modeling  
  The proposed solution should be obvious also in the original sensor • 
signals – always check      
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The displayed time interval extends from 200 ms before stimulus presentation 
to 800 ms after it. Each curve shows the signal recorded by one MEG sensor. 
This particular MEG system (Vectorview™, Elekta-Neuromag Ltd.) uses two 
orthogonally oriented planar gradiometers at each recording site, which 
detect the maximum signal directly above an active cortical area. There are 
defl ections in the curves essentially everywhere over the helmet, refl ecting 
multiple active areas in the brain. In a number of sensors, the responses vary 
by stimulus type.  

 By using ECDs one can identify the multiple areas that generate these 
signals and their time courses of activation. In this experiment, there were 
four experimental conditions and eight subjects. The analysis proceeds 
through a number of steps, and we will start with single-subject analysis. First, 
we focus on each experimental condition separately, and construct a source 
model. Then, in order to compare the stimuli, we form a single, combined 
source model that works for all conditions in this subject. Based on this com-
mon model, we can identify cortical areas and time windows that show sig-
nifi cant differences between conditions. Then we move onto group analysis. 
We fi rst group the individual source areas according to function, location, 
direction of current fl ow, and/or timing, and then test for signifi cant effects at 
the group level. 

Figure 6–1 . MEG signals to short and long words and nonwords, in one 
subject. The measurement helmet is viewed from above, fl attened onto 
the plane, with the nose pointing upwards. In this Vectorview™ system, 
sensors are arranged in 102 locations along the helmet. In each location, 
there are two planar gradiometers that are most sensitive to orthogo-
nal orientations of current fl ow (see schematic heads in the upper right 
corner) and one magnetometer (data not shown). Time runs along the 
horizontal axis, from 200 ms before stimulus onset to 800 ms after it. 
Variation of magnetic fi eld is shown on the vertical axis. 
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 This is a straightforward but not trivial task. In this chapter we will begin 
with simpler paradigms in order to illustrate the basics of ECD source model-
ing, then work our way to increasingly complex data sets, and eventually 
return to the question of reading words and nonwords. In addition, we will 
touch upon the issue of mouth movements in an MEG experiment. Finally, 
we will briefl y discuss the use of ECD modeling in the analysis of cortical 
rhythms and their task-related modulation.     

Basic Auditory Responses 

 Here, subjects listened to brief tones given alternately to the left and right ear, 
approximately once per second (e.g., Mäkelä et al.,   1993  ; Pantev et al.,   1998  ; 
Salmelin et al.,   1999  ).  Figure  6–2   depicts MEG signals averaged with respect 
to tones given to the right ear, in one subject. A clear defl ection at about 100 
ms after stimulus onset (N100m) shows that there is a sudden change in the 
magnetic fi eld, that is, transient current fl ow in the brain underneath those 
sensors. A very similar response is seen over both hemispheres.  

  Figure  6–3   depicts the magnetic fi eld pattern over the left hemisphere 
when moving through the strong N100m response. At about 60 ms, there is 
very little signal. Around the peak response, there is a clearly dipolar (sym-
metric) fi eld pattern. At about 150 ms after stimulus onset, there is another 
strongly dipolar fi eld pattern, but anterior and inferior to the earlier pattern. 
Although highly informative, these maps only provide coarse information 
on source loci. Next, one needs to determine the underlying source areas in 
the brain.  

Figure 6–2 . MEG responses to right-sided auditory stimulation (1-kHz 
tones, duration 50 ms) in one subject. The time window extends from 50 
ms before tone onset to 250 ms after it. 
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 As the fi elds are clearly dipolar, it seems reasonable to model the underly-
ing sources with Equivalent Current Dipoles that represent the center of an 
active cortical patch, and the direction and magnitude of electric current 
therein (Hämäläinen et al.,   1993  ). By scanning through the N100m response, 
we fi nd a time point at which the fi eld is as closely dipolar as possible 
( Figure  6–4a  ). The density curves should then be fairly symmetrical, and the 
line connecting the maxima should be perpendicular to the zero fi eld line, 
indicated by the black curve. The center of the dipole should fall on the cross-
ing of these two lines. In this way, one should already have a feeling of what to 
expect before computing the ECD solution.  

Figure 6–4 . Source localization at 100 ms post-stimulus. (a) Optimally dipo-
lar fi eld pattern during the N100m response. (b) Selection of MEG sen-
sors for calculation of ECD parameters. (c) Source of the left-hemisphere 
N100m response in the lower lip of the Sylvian fi ssure, with current fl ow 
perpendicular to the course of the sulcus. 

Figure 6–3 . Distribution of magnetic fi eld over the course of the auditory 
response. The red area indicates magnetic fi eld emerging from the brain, 
and the blue area the reentering fi eld. Electric current fl ows in the mid-
dle, along the zero line (black curve). 
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 To fi nd the source of the left N100m response, we select a subset of sensors, 
covering the local fi eld maxima ( Figure  6–4b  , solid line). The selection is also 
depicted on the helmet as light gray squares. The source is located in the lower 
lip of the Sylvian fi ssure, with the current fl owing downwards, away from the 
cortical surface ( Figure  6–4c  ). As there is only one clear fi eld pattern in the left 
hemisphere, the exact selection of MEG sensors is not critical. 

 A model using this one source, plotted in purple in  Figure  6–4b  , allows 
comparison with the original signals, which are plotted in black. This source 
accounts adequately for the N100m in the left hemisphere but less so for the 
later component, which had a clearly different fi eld pattern (cf.  Figure  6–3  ). 
The right-hemisphere N100m remains unexplained, as it should. One can 
determine the right-hemisphere N100m source in the same way, by fi nding a 
clear dipolar fi eld pattern and using another subset of sensors, as shown by 
the dashed line in  Figure  6–4b  . 

 If we only use the left-hemisphere N100m source to account for the data 
recorded by all MEG sensors, we will fi nd that the waveform depicted in 
 Figure  6–5a   describes the time course of activation in the left auditory cortex. 
The overall level of explanation for the whole helmet, the goodness-of-fi t 
value, remains quite low, as one would expect. When we only include the 
right-hemisphere N100m source ( Figure  6–5b  ), the result is very similar, with 
a clear time course of activation locally but poor explanation overall. When 
we include both left and right N100m sources ( Figure  6–5c  ), the explanation 
rises dramatically and exceeds 80% around the peak of activation. Importantly, 

Figure 6–5 . Source analysis of the N100m response in one subject. (a) Time 
course of activation in the left auditory cortex (source waveform) and 
goodness-of-fi t over the whole helmet when only one ECD in the left 
auditory cortex was included. (b) Time course of activation in the right 
auditory cortex when only one ECD in the right auditory cortex was 
included. (c) Time courses of activation in the bilateral auditory cortex 
when two ECDs were included, one in each hemisphere. 



Multi-Dipole Modeling in MEG  129

the source waveforms remain exactly the same, regardless of whether we 
include only one or both sources in the model. This is exactly how it should 
be if our source models are good, and represent independent source areas. 
We can conclude that there is no interaction between these two sources and, 
according to this criterion, our model is adequate for the N100m defl ection.  

 However, the later defl ection at around 200 ms was not well explained by 
the N100m source. In this subject, the later so-called P200m sources (from EEG 
literature) were located slightly anterior to the N100m sources, apparently in 
the upper lip of the superior temporal sulcus ( Figure  6–6  ). The N100m and 
P200m sources are spatially rather close to each other and have fairly similar 
orientations (but opposite directions) of current fl ow. However, we can still 
try to include them all in the multidipole model. The 4-dipole model (thick 
solid curves) shows how the N100m sources are active fi rst, and then return 
to the base level when the P200m sources become active. The goodness-of-fi t 
value now exceeds 80% for most of the measurement interval.  

 For comparison,  Figure  6–6   also includes the previous 2-dipole model 
with only the N100m sources, plotted as dashed lines. The N100m waveforms are 
slightly affected by the inclusion of the P200m dipoles, because of the closeness 
of the sources, and the effect is obviously strongest in the later time window. 
Importantly, the unphysiological change of polarity in the waveforms of the 
2-dipole model is removed in the more realistic 4-dipole model. Eventually, 
we have a well-behaved 4-dipole model that accounts for most of the activity 
recorded by all the sensors. This so-called source analysis is done individually 
for each subject.     

Figure 6–6 . Complete source analysis of auditory responses in one subject, 
including both the N100m and P200m ECDs in both hemispheres (solid 
lines). For comparison, the time courses of activation in the auditory cor-
tex are also plotted for the model with only the bilateral N100m sources 
included (dashed lines). The abbreviation ‘g’ stands for goodness-of-fi t. 
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Somatosensory Responses 

 Let us now move on to a slightly more complex data set.  Figure  6–7   displays 
responses to right median nerve stimulation (e.g., Forss et al.,   1994  ; Schnitzler 
et al.,   1995  ). Again, the displayed time interval is 300 ms. Obviously, there is 
plenty of activity, with different time behaviors: early components are 
observed medially over the left central sulcus, and later components medially 
in the left hemisphere and more laterally in both hemispheres.  

 Also in this case, by scanning through the fi eld patterns one can recog-
nize the different source areas at distinct time points ( Figure  6–8  ). At about 
20 ms after stimulus onset, there is a dipolar fi eld pattern forming over the left 
hand area in the central sulcus. The picture becomes even clearer at about 
30 ms, but the current now fl ows in the opposite direction. Until about 50 ms, 
the fi eld pattern remains fairly unchanged. At about 80 ms, the left parietal 
cortex produces a pronounced dipolar fi eld pattern. At around 100 ms, it is 
accompanied by activations laterally in the left and right hemisphere. The 
location is very similar to that of the auditory responses, but the opposite 
direction of current fl ow now indicates activation in the upper lip of the 
Sylvian fi ssure.  

 When several source areas are active rather simultaneously, one has to 
put some effort into selecting the subsets of sensors used for source localiza-
tion. For the early sources in the upper row of  Figure  6–8  , almost any selec-
tion will do, as there is no other simultaneous activation. For the parietal 
source, one should exclude the left frontal sensors, which detect the lateral 
activation. Conversely, for the left lateral source, the sensor selection should 
avoid the parietal region. As in the auditory responses, the question here is 

Figure 6–7 . MEG responses to electric stimulation of the right median 
nerve at the wrist in one subject. The time window extends from 50 ms 
before stimulus onset to 250 ms after it. 
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Figure 6–9 . Final source model for right median nerve stimulation in the 
same subject for whom original MEG data was displayed in Figures 6–7
and 6–8. Left: Locations and directions of the ECDs displayed on the sub-
ject’s MRI.  Right: Time courses of activation in the brain. SI = primary 
somatosensory cortex, PPC = posterior parietal cortex, SII = second soma-
tosensory cortex contralateral (c) and ipsilateral (i) to stimulation. Because 
of the close similarity of the ECDs determined at 20 ms and 30 ms, they 
are both represented in the SI waveform (negative defl ection at 20 ms, 
positive defl ection at 30 ms). 

not where the active areas are, but how to fi nd such unequivocal fi eld patterns 
that it is possible to reliably localize the sources. It is important to fi nd the 
time point at which each fi eld pattern is optimally dipolar. It is worth noting 
that this optimal time point may, or may not, coincide with a peak in the 
signal. 

 In  Figure  6–9  , the sources are shown on the subject’s MR images. The 
20-ms and 30-ms responses are generated by slightly different sources in the 
hand area. However, they are so similar in location and orientation that both 
cannot be included in the multidipole model because they interact too much. 
Therefore, the strong 30-ms source in the primary somatosensory cortex, SI, 

Figure 6–8 . Magnetic fi eld patterns at different times after right median 
nerve stimulation. The arrows represent the ECDs that best account for 
each fi eld pattern. 
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represents the hand area activation in the model. In the source waveform, the 
peak at 30 ms is preceded by a small negative defl ection at 20 ms. Note that 
this is not deactivation but simply refl ects the opposite direction of current 
fl ow in almost the same cortical location. Usually, one would be concerned 
about a waveform that shows both positive and negative values, but here we 
know that this is a real effect.  

 The other sources are located in the posterior parietal cortex (PPC) and 
in the left and right second somatosensory cortices in the upper lip of the 
Sylvian fi ssure (SII). We now have a sequence from SI to posterior parietal, 
and further to the ipsi- and contralateral SII cortices, with all activations 
partly overlapping in time. Again, one may check for possible interactions 
between sources by leaving out one source at a time and observing whether it 
affects the other waveforms. 

 For this high-quality data set, other analysis approaches will provide 
essentially the same sequence of activation. The active areas can also be visu-
alized using so-called distributed models, which produce probability maps of 
current distribution (e.g., Dale et al.,   2000  ; Lin et al.,   2004  ; Uutela et al.,   1999  ). 
 Figure  6–10   displays Minimum Current Estimate (MCE; Uutela et al.,   1999  ) 
of this data set. From 20–50 ms, activity is concentrated to the SI cortex. 
At about 80 ms, both the posterior parietal cortex and the contralateral 
SII show activation. At about 100 ms, the SII activations have reached their 
maximum in both hemispheres.  

 It is important to realize that the focal ECDs and the distributed proba-
bility maps produce exactly the same electromagnetic fi eld outside of the 
head, so both are equally correct. The appearance of the result is determined 
by the choice of analysis method (model), not by the structure of active areas 
in the brain. The bottom line is that MEG (or EEG) gives an estimate of 
the center of an active area but—at least in typical experimental setups and 
signal-to-noise ratios—no direct information about its spatial extent. 

Figure 6–10 . Minimum Current Estimate (MCE) of the data displayed in 
Figure 6–7. The current distribution is projected on a triangle mesh repre-
senting the brain surface and integrated over the time intervals of inter-
est, corresponding to those in the ECD analysis. The color represents the 
estimated current strength. 
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 The localization accuracy is best when perpendicular to the current fl ow 
(where small changes in location result in large changes in the magnetic fi eld 
distribution) and worst along the current and in depth. The uncertainty in 
source depth is particularly relevant when comparing activation strengths. If 
a particular source is localized deeper in experimental condition A than in B, 
systematically across subjects, then it is likely that the active area is, indeed, 
centered at a slightly different depth in the two conditions. However, a more 
typical fi nding is that there are some differences within individual subjects 
but no systematic ordering at the group level. In this case, it is likely that the 
noise in the data (including the infl uence of other active sources nearby) has 
resulted in some error in source localization. If a source is localized too deep 
with respect to its true location, its activation will appear stronger than it 
actually is; if it is localized too superfi cially, it will appear weaker than in real-
ity. Accordingly, when comparing experimental conditions that suggest 
sources in the same general brain area, but with some variability in source 
depth, it is reasonable to equate the source locations, i.e., to use the same 
source to model activity in all conditions before comparing the activation 
strengths between the conditions. For the same reason, comparison of activa-
tion strength in the left vs. right hemisphere is always somewhat problematic, 
as there may be actual or artifactual differences in source depths that affect 
the apparent activation strength. The comparison can be argued best if the 
sources are centered approximately at the same depth in homologuous areas 
of the left and right hemisphere. 

 The localization accuracy varies from ∼1 mm to ∼1 cm, depending on the 
signal-to-noise ratio and the overall distribution of activation in the brain. 
The orientation of current fl ow, perpendicular to the course of the sulcus 
where the current is generated, is a very accurate and useful measure.     

Reading Words and Nonwords 

 Let us now return to the reading task ( Figure  6–1  ). The Dual-Route Model of 
reading ( Figure  6–11  ; Coltheart et al.,   1993  ) assumes that when we see a 
familiar word, like ‘brain’, the visual features must be processed fi rst before 
the analysis can proceed to the content—apparently fi rst at the level of single 
letters, and then as a whole word, which further activates the word’s meaning 
and its sound form. However, when we see an unfamiliar word or a nonword, 
we cannot use the lexical route because there is no representation for these 
letter-strings in our mental lexicon. Instead, we are supposed to process the 
letter-strings letter by letter, and convert each letter to its corresponding 
sound in order to obtain a sound form for the letter-string, which again may 
lead to some type of semantic association.  

 In this MEG experiment on word vs. nonword reading (Wydell et al., 
  2003  ) the stimuli were short and long real Finnish words (e.g., ‘talo’ = house, 
‘lautanen’ = plate), and short and long pronounceable nonwords (e.g., ‘roki’, 
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‘soijinto’). For real words, the lexical route should dominate, and length 
should have little effect. Processing of nonwords, on the other hand, would 
rely on the letter-level grapheme-to-phoneme conversion, and letter-string 
length should have a strong effect. There were 100 stimuli of each type, shown 
in a randomized sequence. The letter-strings were presented for 400 ms, and 
each stimulus was followed by a blank interval of 2.6 s. The subjects were 
reading the letter-strings silently, but, occasionally, a question mark prompted 
them to read aloud the preceding word (4% of trials). The task coerced the 
subjects to process the words until pronunciation. Movement artifacts were 
avoided by performing the analysis on the silent trials (96%). 

  Figure  6–12   displays enlarged views of MEG signals recorded by three 
sensors over the left temporal, parietal, and occipital areas. There are some 
interesting effects. Over the left temporal area, the response is markedly 
different to long nonwords than to the other word types. In the posterior 
parietal cortex, on the other hand, there is a particularly strong response to 
long real words. The early posterior visual response is similar for all stimuli.  

  Figure  6–13   illustrates the fi eld patterns that produce the occipital and 
left temporal signals in the different experimental conditions: short words, 
long words, short nonwords, and long nonwords. The occipital fi eld pattern 
at about 200 ms after stimulus onset is very similar for all stimulus types. 
Therefore, it is easy to represent these fi eld patterns by a single ECD that 
works well for all experimental conditions. It is worth noting that there are 
small differences in location and orientation, which may result from noise in 
the data or refl ect real variability between the conditions. For example, there 
may be a slight inferior–superior shift in location for long vs. short letter-
strings. However, the difference is so small that the sources would not appear 
as separate ECDs in multidipole modeling (cf. discussion of auditory and 
somatosensory data above). The same is true for the fi eld pattern over the left 
temporal cortex at 400–500 ms. The pattern is essentially the same for all 
conditions, except that it is particularly strong for the long nonwords, and 
most diffi cult to identify for long real words when, at the same time, there is 

Figure 6–11 . Outline of the dual-route model of reading. 
Modifi ed from Coltheart et al. ( 1993).



Figure 6–13 . Field patterns and the best-fi tting ECDs (arrows) correspond-
ing to the MEG signals recorded over the occipital and left temporal areas 
(cf. Figure 6–12) in the different experimental conditions. 

Figure 6–12 . Examples of MEG signals when reading short and long words, 
and nonwords. Enlarged views of three sensors. The complete data set of 
this subject is displayed in Figure 6–1.

135
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another fi eld pattern nearby in the parietal cortex. How should one proceed 
with the analysis?     

Constructing the Source Model 

 Just as for the auditory and somatosensory data above, source areas generating 
these signals are determined one by one. The localization is done by scanning 
through the response to identify time points at which each distinct fi eld pat-
tern is as closely dipolar as possible, selecting a subset of sensors that covers 
the local fi eld maximum, and computing the ECD that best accounts for the 
signal measured by these sensors. The resulting ECDs are then brought into a 
multidipole model where the locations and orientations of the ECDs are kept 
fi xed, while their amplitudes are allowed to vary in order to best account for 
the data recorded by all MEG sensors over the time interval of interest. The 
resulting source waveforms are then used for estimating cortical dynamics 
within and across experimental conditions. 

 There are at least two possible approaches:  

   (i)  Analyze each experimental condition independently, and then combine 
the sources into a single multidipole model that works for all conditions.  

     Start, e.g., from the most prominent response pattern or from the • 
earliest systematic response and then work through the data to fi nd 
the weaker/later sources.  
     For the combined model, choose the sources (or sets of nearby • 
sources) with clearest fi eld patterns and/or best confi dence values. 
Check that the combined model accounts for the data in each experi-
mental condition as adequately, and in the same way, as the models 
constructed specifi cally for those conditions.    

   (ii)  Equally well, one can start from one experimental condition, use those 
sources as a starting point when one sets off to analyze the next condition, 
and add and modify the sources while one works through the data sets.     

 In fact, it would be best to analyze the data (at least) two or three times, 
using different approaches. It is important that one learns to know the data. 
Separate sets of sources for each condition are useful if one expects to fi nd 
small but systematic differences in location or orientation of current fl ow—
say, for short vs. long words (cf.  Figure  6–13  ). However, for controlled com-
parison of activation strengths and timing between conditions, one will want 
to compose a single set of ECDs (if possible). The minimum number of 
sources should be used that can explain the data. It may take some effort to 
fi nd the time points and experimental conditions in which a consistently 
observed fi eld pattern is most dipolar, i.e., where the signal is strong and 
interference from other source areas is minimal. However, the endeavor is 
worth the effort, as clean dipolar fi eld patterns facilitate reliable identifi cation 
of the underlying sources that normally account both adequately and robustly 
for the entire data set. 
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Figure 6–14 . Localization of left temporal activation in the reading task 
(long nonwords) in one subject. (a) Field pattern and the best-fi tting ECD 
over the left hemisphere. (b) ECD displayed on the MR image of the sub-
ject’s brain. (c) Whole-head view of the MEG signals, with measured sig-
nals plotted in black and the explanation, using the one ECD in the left 
temporal cortex, plotted in purple. (d) Enlarged view of left temporal 
sensors. (e) Enlarged view of right occipitotemporal sensors. 

 In the reading experiment, we may start to look for sources in the long 
nonword condition where there was an exceptionally strong left temporal 
activation ( Figure  6–13  ). By selecting the frontotemporal sensors painted in 
light gray ( Figure  6–14a  ) we can avoid the unwanted effect of other active 
areas. The source is located in the superior temporal cortex ( Figure  6–14b  ). 
A model that only includes this one source accounts well for the sustained 
left temporal signals ( Figure  6–14c,d  ). Characterization of one clear dipolar 
fi eld pattern also helps to further recognize systematic unexplained signals in 
other areas. The word ‘systematic’ here refers to appearance of the same 
waveform on several adjacent sensors. For example, the same unexplained 
waveform is seen on three neighboring sensors over the right occipitotemporal 
cortex ( Figure  6–14c,e  ).  

 In cognitive data sets, signals are often weaker overall than for basic 
sensory/motor responses, and the large number of active brain areas that are 
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spatially and temporally quite close to each other appear as additional ‘noise’ 
when localizing the sources. Accordingly, one must often tolerate focal fi eld 
patterns that are not perfectly dipolar. The emerging and re-entering fi eld 
patterns may not be fully symmetrical and the resulting ECD will, therefore, 
not fall exactly on the zero fi eld line. Nevertheless, when one makes the effort 
to fi nd time points at which the different fi eld patterns are as dipolar as possible, 
ECD modeling is entirely feasible for cognitive data sets as well. 

 An effective decrease in signal-to-noise ratio will increase the potential 
risk of mislocalizing the source unphysiologically deep. Normally, the local-
ization can be improved by testing other time points and sensor selections, in 
order to minimize the effect of other nearby sources. Occasionally, a spatially 
extended fi eld pattern may seem to be generated by an unphysiologically deep 
ECD when, in reality, it is generated by two source areas that are active at the 
same time. Such sources could be located quite close to each other, with fairly 
similar directions of current fl ow, yet separable in space (e.g., distance within 
2–3 cm, difference in direction less than 20–30 deg; see Helenius et al.,   1999  , 
for an example of superior temporal activation). This type of situation can 
usually be solved by scanning through the different experimental conditions 
and identifying the sources at time points where one or the other fi eld pattern 
is emphasized. 

 After the 2–3 analysis rounds, with different approaches, we have a model 
composed of 9 ECDs in this subject, with sources in the occipital lobe, left 
temporal and parietal, and right occipitotemporal cortex ( Figure  6–15a  ). One 
should always check that each individual source makes sense, by comparing 
the source waveforms with the original signals. As an example, we could focus 
on the left temporal area ( Figure  6–15b  ). The signals in the upper and lower 
row of the sensor pairs display quite different stimulus dependence. This 
device has two orthogonal sensors in each measurement location. Therefore, 
we would expect to see these differential effects on the sensors map onto two 
different source areas in the brain that are fairly close to each other but have 
almost orthogonal directions of current fl ow. Indeed, our solution suggests 
that sources 5 and 9 produce these signals. The long nonwords differ from the 
other stimuli in source 9 in the superior temporal cortex, while in the more 
inferior, rather horizontally oriented source 5, the response is strongest for 
the short nonwords, in agreement with the original measured signals.  

 In order to check that the model is really meaningful, it is very useful to 
compare two stimulus conditions at a time.  Figure  6–16   depicts responses to 
long words and long nonwords. There are at least two very obvious differ-
ences in the original waveforms—one over the left temporal and the other 
over the posterior parietal cortex ( Figure  6–16b  ). These areas apparently cor-
respond to sources 9 and 8, respectively ( Figure  6–16a  ). Indeed, source 9 
shows the strong response to nonwords, whereas source 8 displays the 
stronger activation to real words, with the time behavior matching that of the 
original sensor waveforms. Accordingly, we can be reasonably satisfi ed with 
this model.      
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Figure 6–15 . Source analysis in the reading task in one subject. (a) ECDs 
shown on the surface rendering of the subject’s MRI and time courses of 
activation in those areas for the different stimulus types. The sources are 
ordered according to latency of activation. Goodness-of-fi t value (g) is 
plotted at the bottom. (b) Selection of MEG sensors over the left temporo-
parietal cortex. Enlarged view of two orthogonally oriented sensors is 
plotted below. 

Testing for Differences Between Experimental Conditions 

 After an acceptable source model has been compiled, one may collect any 
descriptive values from the waveforms (e.g., onset/offset/peak timing, peak 
amplitude, mean amplitude, or integral over specifi c time intervals) and test 
them for signifi cant stimulus/task effects. 

 Here, as an example, we will describe one possible approach for the data 
set on word/nonword reading. Behaviorally, it has been reported that naming 
latencies are shorter for short than long words, and that this length effect is 
markedly stronger for naming nonwords than real words (Weekes,   1997  ). 
A comparison between short words and long nonwords should encompass all 
these effects: length effect, lexicality effect, and their interaction. 

 First, we search for signifi cant differences in individual subjects.  Figure  6–17   
displays the time course of activation in the left temporal cortex for those two 
conditions, in one subject. The signal variation in the prestimulus baseline 
interval carries information about the noise level in this area, in this specifi c 
source model and in these experimental conditions. A rather conservative 
approach is to estimate, for example, the level of 2.58 times standard devia-
tion (corresponding to p<0.01), represented by the gray box, and only accept 
as signifi cant those differences between the two waveforms that exceed this 
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level (cf. Tarkiainen et al.,   1999  ). In this case, we would identify a signifi cantly 
stronger activation to long nonwords than short words in the left superior 
temporal cortex at about 400 to 700 ms after stimulus onset.  

 Cortical areas with stimulus effects were identifi ed in the same way in all 
subjects.  Figure  6–18   collects the subsets of source areas that showed signifi -
cant differences between the extreme conditions of long nonwords and short 
real words. The source clusters are presented separately for differences 
detected within the fi rst 200 ms after stimulus onset ( Figure  6–18a  ) and after 
200 ms ( Figure  6–18b  ). Within 200 ms after stimulus, differences in the peak 

Figure 6–16 . Comparison of two experimental conditions. (a) ECDs shown 
on the surface rendering of the subject’s MRI and time courses of activa-
tion in the source areas for the two stimulus types. Goodness-of-fi t value 
(g) is plotted at the bottom. (b) Selection of MEG sensors over the left 
temporoparietal cortex. Enlarged view of two sensors is plotted below. 

Figure 6–17 . Within-subject test for signifi cant differences between exper-
imental conditions in the left superior temporal cortex. The height of the 
gray box represents 2.58 times standard deviation within the prestimulus 
baseline interval (-200…0 ms). The dashed lines indicate the borders of 
the interval during which activation was signifi cantly (p<0.01) stronger to 
long nonwords than short real words. 
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amplitude were found in 6 of 8 subjects, with the sources clustered around the 
occipital midline. After 200 ms, the most salient cluster of such sources (6 of 
8 subjects) was found in the left superior temporal cortex.  

 Here, we used functional criteria combined with location information to 
identify sources that were observed consistently across subjects. Within these 
occipital and left temporal clusters, we now test for group-level statistical 
effects between all four stimulus categories. The strength of the early occipital 
activation ( Figure  6–19a  ) showed a pure length effect, and most probably 
refl ects basic visual feature analysis within the fi rst 200 ms (cf. Tarkiainen 
et al.,   1999  ). In the left temporal cortex, the duration of activation showed 
interesting behavior—namely, a weak effect of length for real words but a 
marked effect for nonwords; the duration for the 8-letter nonwords was twice 
that for the 4-letter nonwords ( Figure  6–19b  ). The peak amplitude and mean 
signal strength also showed the same interaction between length and lexical-
ity. This pattern parallels that reported for reaction times in word and non-
word reading (Weekes,   1997  ). If we accept the dual-route model of reading, 
this pattern should be interpreted as refl ecting phonological analysis. 
Considering that activation of the left superior temporal cortex in this very 

Figure 6–18 . Source areas showing signifi cantly stronger activation to long 
nonwords than short real words. (a) Differences detected within 200 ms 
after stimulus onset in the occipital cortex (6 subjects). (b) Differences 
detected after 200 ms following stimulus onset. Source waveforms are 
plotted for the left temporal cluster (6 subjects). The individual source 
waveforms are plotted on top and the grand mean waveform below. 
Abbreviations S1 to S8 refer to individual subjects. 
Modifi ed from Wydell et al. ( 2003).
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same time window has been consistently associated with lexical-semantic 
analysis (e.g., Halgren et al.,   2002  ; Helenius et al.,   1999  ) this fi nding would 
seem to suggest considerable spatiotemporal overlap between analysis of 
meaning and sound-form of written words.  

 Instead of identifying source clusters by functional criteria, one could 
have performed the clustering solely on the basis of source locations and 
directions of current fl ow. The result would have been essentially the same, 
only somewhat more noisy (see, e.g., Cornelissen et al.,   2003  ).      

Reading Words Aloud 

 When words are read overtly, mouth movement artifacts come into play. 
 Figure  6–20   illustrates such an experiment. A word was presented for 300 ms. 
Then there was a blank interval of 500 ms. A question mark then appeared for 
2 s, prompting the subject to read the word out loud. A blank screen was 
again shown for 2 s before a new word was presented. EMG was recorded 
across the opposite corners of the mouth. Microphone signal was registered 
to determine the timing of lip movement and speech onset. The purpose of 
this experiment was to compare speech production in fl uent speakers and 
developmental stutterers (Salmelin et al.,   2000  ).  

 Mouth movement artifacts are an obvious problem, as they cause strong 
signals that mask the cortical activity. Fortunately, those disturbing fi eld 
patterns can usually be removed from the MEG data.  Figure  6–21   depicts 
examples of mouth EMG and microphone signals in fi ve single trials during 

Figure 6–19 . Signifi cant stimulus effects at the group level. (a) Maximum 
amplitude (mean ± SEM) of the early occipital activation was signifi cantly 
stronger to long than short letter-strings, regardless of lexicality. (b) Dura-
tion of the left temporal activation was also infl uenced by letter-string 
length but signifi cantly more for nonwords than real words. 
Modifi ed from Wydell et al. ( 2003).
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the experiment. The signals are aligned to the stimulus onset, which is shown 
by the continuous vertical line. The mouth movement and speech onset vary 
by about 100 to 200 ms from trial to trial, both with respect to the stimulus 
onset and with respect to each other. This jitter makes it possible to dissociate 
the artifact signal from the cortical activity of interest.  

 In  Figure  6–22  , the original MEG data were averaged with respect to 
speech onset, recorded with a microphone. The speech artifact is usually quite 
accurately time-locked to microphone onset and, therefore, one can get a very 
clean artifact pattern with this averaging procedure. The signal concentrates 
along the rim of the helmet. Task-related cortical activity has faded out 
because of the jitter with respect to stimulus onset. By emphasizing the arti-
fact this way, one can then remove the disturbing fi eld pattern from the 
responses. This can be done with the help of, e.g., the Signal Space Projection 
(SSP) method (Uusitalo and Ilmoniemi,   1997  ).  

Figure 6–20 . Experimental setup for comparing speech production in fl u-
ent speakers and stutterers. The delayed reading paradigm was used to 
focus separately on preparation and actual production. 
Modifi ed from Salmelin et al. ( 2000).

Figure 6–21 . Intertrial variability of EMG onset (mouth movement) and 
microphone onset (speech production) with respect to stimulus presenta-
tion, illustrated for fi ve trials in one subject. 
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 The same data can also be averaged with respect to the EMG signal, that 
is, mouth movement onset ( Figure  6–23  ). This procedure allows focus on the 
motor control of speech production. The speech artifact fi eld ( Figure  6–22  ) 
has been removed from the averaged signals. Clear dipolar fi eld patterns 
emerge over the left and right frontal lobes, approximately at the time when 
the mouth movement starts. The sources of these fi eld patterns are readily 
localized to the bilateral face motor cortex.  

Figure 6–22 . MEG data averaged with respect to speech onset, determined 
from the microphone record. The helmet views illustrate the magnetic 
fi eld pattern at speech onset (t = 0 ms). 

Figure 6–23 . MEG data averaged with respect to mouth movement onset, 
determined from the EMG record. The helmet views illustrate the mag-
netic fi eld pattern approximately at mouth movement onset (t = 20 ms) 
and the arrows the best-fi tting ECDs. The planar gradiometers that are 
maximally sensitive to activation in these source areas are marked with 
rectangles.
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  Figure  6–24   displays the same data fi nally averaged in the typical fashion, 
with respect to the stimulus onset. Again, the speech artifact fi eld has been 
removed. In this data set, bilateral frontal activations are observed best at 
about 500 ms after word presentation. Over the left hemisphere the fi eld pat-
tern is clearly dipolar, and the source in the face motor cortex can be deter-
mined reliably. However, in the right hemisphere, the fi eld pattern points to 
activation of the motor cortex but the underlying source area is practically 
impossible to localize; the helmet view in  Figure  6–24   represents the most 
dipolar fi eld pattern one can detect. Activation of the right motor cortex in 
this subject thus seems to be more strongly time-locked to mouth movement 
onset than to stimulus onset. A reasonable approach would be to determine 
this source from the signals averaged with respect to mouth movement onset 
( Figure  6–23  ) and then use that ECD to account for activity in the signals 
averaged with respect to stimulus onset ( Figure  6–24  ).  

  Figure  6–25   illustrates the cortical activation sequence at the group level. 
In this experiment there was no systematic functional variation in the stimuli 
or task. The main aim was to compare fl uent speakers and stutterers in the 
basic task of overt reading of single words. The source areas from individual 
subjects were grouped together primarily by similarity in location. The curves 
give the mean time course of activation in those areas, averaged across 
fl uently speaking subjects. The fi rst vertical line indicates the word presenta-
tion and the second vertical line the appearance of the vocalization prompt 
(question mark).  

 The occipital and the left and right inferior occipitotemporal cortices 
were active within the fi rst 200 ms. Next, there was activation in the left superior 

Figure 6–24 . MEG data averaged with respect to stimulus onset. The helmet 
views illustrate the magnetic fi eld pattern when the subject is waiting for 
the vocalization prompt (t = 480 ms) and the arrow the best-fi tting ECD 
in the left hemisphere. The planar gradiometer that is maximally sensitive 
to activation in this source area is marked with a rectangle. 
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temporal and inferior parietal cortices, starting about 200 ms after word onset 
and reaching the maximum at about 400 ms. The left inferior frontal cortex, 
approximately Broca’s area, showed activation in the same time window. The 
sources assigned to the temporal cluster are spatially quite close to those 
assigned to the inferior frontal cluster, on the one hand, and sources belong-
ing to the inferior parietal cluster, on the other hand. Here, the orientation of 
current fl ow was used as an additional criterion (white bars plotted on the 
three source clusters in  Figure  6–25  , middle column) which clearly distin-
guished between the adjacent clusters. 

 All the activations listed in the two left-most columns return to baseline 
before the vocalization prompt. The signals depicted in the right-most column 
begin at about 200 ms after word onset, and persist until actual vocalization 
and even beyond it. This is quite reasonable, as those signals arise from the left 
and right sensorimotor and premotor cortices and, apparently, from the 
supplementary motor area. 

 Differences between the time courses of activation in fl uently speaking 
individuals and stutterers are collected in  Figure  6–26  . There were group dif-
ferences in three brain areas and time windows. Within the fi rst 400 ms, while 
preparing for vocalization the fl uent speakers fi rst activated Broca’s area, and 
then the left motor/premotor cortex, which appears to be a natural order of 
events. In the stutterers, however, the sequence was reversed. They showed 
exceptionally early activation in the left sensorimotor/premotor area, already 
within the fi rst 200 ms, whereas activation of Broca’s area was delayed with 

Figure 6–25 . Group-level clusters of active cortical areas and their mean 
time courses of activation across 10 fl uently speaking subjects. In the mid-
dle column, the mean orientation of current fl ow in the source clusters is 
shown as well (white bars). 
Modifi ed from Salmelin ( 2007).
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respect to that observed in fl uent speakers. After the vocalization prompt, the 
right motor cortex showed signifi cantly stronger activation in fl uent speakers 
than in stutterers. The combination of MEG data and ECD analysis thus made 
it possible to compare the groups at three different levels: the locations of the 
active areas were fairly similar, but differences emerged in timing within the 
fi rst 400 ms and in activation strength during overt vocalization.      

ECD Analysis of Cortical Rhythmic Activity 

 At rest, cortical neurons generate spontaneous oscillatory activity.  Figure  6–27   
shows an 8-s interval of MEG signals recorded over the left and right senso-
rimotor cortex, and over the posterior visual areas. The subject was sitting 
relaxed, with his eyes closed. The spectra show the typical frequency distribu-
tion in a healthy adult subject. The parieto-occipital activity is mainly in the 
10-Hz range, called alpha rhythm, whereas the sensorimotor activity has both 
10- and 20-Hz components, and is known as the mu rhythm. The mu rhythm 
is suppressed by moving the hand, as shown by the black curve, and the alpha 
rhythm by opening the eyes—that is, broadly speaking, when those brain 
areas are involved in actual task performance (Hari & Salmelin,   1997  ; 
Pfurtscheller & Lopes da Silva,   1999  ). In this section, we will consider ECD 
analysis when localizing sources of cortical rhythms and quantifying their 
event-related modulation. The focus is on the spatially well-defi ned senso-
rimotor mu rhythm, for which ECD analysis is particularly suitable.  

 For ECD modeling, the data is bandpass fi ltered to the desired frequency 
range. For example,  Figure  6–28   shows a stretch of data fi ltered to 16–24 Hz. 
During the bursts of 20-Hz activity, a clear dipolar fi eld pattern is formed over 
the central sulcus. In principle, the procedure of ECD localization is similar to 
that described for the analysis of evoked responses above. However, localization 

Figure 6–26 . Source areas in which differences were found between 
groups of fl uent speakers and stutterers. The time courses of activation 
are depicted below. Differences in timing were found within 400 ms after 
word presentation and differences in activation strength during speech 
production.
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of cortical rhythms is done from non-averaged data with signal-to-noise ratio 
far inferior to that of averaged evoked responses. Accordingly, one needs to 
collect a large number of samples and identify reliable clusters of ECDs. For 
example, one could randomly pick 10 samples of 30-s stretches of data and 
determine the best-fi tting ECD every 10 ms (corresponding to 5 data points per 
each period of a signal oscillating at 20 Hz), resulting in 30,000 ECDs. An obvi-
ous baseline interval can usually not be defi ned; instead, one may estimate the 
base level of rhythmic activity as the mean signal level over the entire data set.  

 The subset of sensors used in the ECD calculation (cf.  Figures  6–4  and 
 6–8   in analysis of evoked responses) can be selected with the help of the spa-
tial distribution of the frequency spectra, and by visual evaluation of the fi eld 
patterns ( Figure  6–28  , left). A visual check of the fi eld patterns, combined 

Figure 6–27 . Stretch of non-averaged MEG data recorded by the sensors 
plotted in color on the helmets. On the right side, power spectra of signals 
recorded by sensors over the central sulcus (top) and over the parieto-
occipital area (below). 

Figure 6–28 . Localization of spontaneous rhythms to the central sulcus. 
Left: Stretch of non-averaged MEG data fi ltered to 16–24 Hz. Typical fi eld 
pattern during peaks of the strong 20-Hz oscillations. Right: Source clus-
ters along the central sulcus for oscillations in the 10-Hz and 20-Hz range, 
in one subject. The course of the central sulcus is depicted (white curve). 
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with test calculation of ECDs for a number of time points, provides an estimate 
for setting acceptance criteria (e.g., goodness-of-fi t value, confi dence values 
for localization) for the large set of ECDs obtained with automatic localiza-
tion over long stretches of data. Typically less than 5% of the original ECDs 
represent reliable dipolar sources within the brain region covered by the selec-
tion of sensors (Salmelin & Hari,   1994a  ; Salmelin et al.,   1995  ). 

  Figure  6–28   gives examples of source clusters along the central sulcus in 
one subject, obtained from data fi ltered around 10 Hz and around 20 Hz. The 
clusters may also be conveniently displayed as dipole density plots (e.g., 
Lehtelä et al.,   1997  ; Liljeström et al.,   2005  ; Vieth et al.,   1996  ). In the resting 
brain, the sources of mu rhythm are concentrated in and around the hand 
representation area in the central sulcus. The 10-Hz component originates 
largely in the somatosensory cortex—but also precentrally—whereas the 
20-Hz component seems to be predominantly a motor cortical rhythm 
(Salenius et al.,   1997  ; Salmelin & Hari,   1994b  ; Salmelin et al.,   1995  ). 

 In voluntary movements the 20-Hz activity shows somatotopic organization. 
 Figure  6–29   illustrates the results of a study in which subjects made self-paced 
movements of the left and right toes, index fi ngers, and mouth. The colored 
dots show foot, hand, and mouth representation areas along the central sul-
cus, determined with electric stimulation of the tibial and median nerve and 
the lower lip, respectively. The colored blobs are sources of 20-Hz oscilla-
tions. For movement of left and right toes, the sources were concentrated 
close to the foot area; for left and right index fi nger fl exion, close to the con-
tralateral hand area; and for mouth movements, sources extended laterally to 
the mouth area—in this subject, mainly in the right hemisphere. Note that the 
sources again cluster frontally with respect to the central sulcus. This result 

Figure 6–29 . Localization of sources of 20-Hz activity when the subject 
made voluntary movements of the left and right toes or fi ngers, or opened 
the jaw. The colored dots represent the foot, hand, and mouth areas in 
the somatosensory cortex, determined with electrical stimulation. 
Modifi ed from Salmelin et al. ( 1995).
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implies that one may use 20-Hz activity to evaluate functionality of different 
parts of the motor cortex, not only the hand area.  

  Figure  6–30   presents the whole-head view of one subject when he was 
reading words aloud. The curves display the mean amplitude of 20-Hz oscil-
lations from 1 second before word onset to 5 seconds after it (Salmelin et al., 
  2000  ). The MEG signals were fi ltered to 16–24 Hz, their absolute value taken, 
and the resulting signals averaged with respect to word onset (TSE, Temporal 
Spectral Evolution; Salmelin & Hari,   1994b  ). This approach reveals modula-
tion of activity that occurs systematically, but not exactly at the same time, 
from trial to trial (event-related vs. phase-locked activity). There is a clear 
suppression of 20-Hz activity quite locally over the lateral areas, but also more 
medially, with different time behaviors.  

  Figure  6–31a   illustrates the localization of the 20-Hz oscillations—a gen-
eral pattern, here illustrated in one (typical) subject—to the hand and mouth 
areas of the right and left hemispheres. With these candidate source areas one 
may proceed, in principle, through the same steps as in the multidipole analy-
sis of evoked responses described above. One can estimate the time course of 
activity in the proposed ECDs in the left and right hand and mouth areas 
( Figure  6–31b  ). In order to evaluate, in individual subjects, how well the 
sources account for the MEG signals measured over the whole head, we can 
perform a forward calculation to map the estimated source activity onto the 
MEG sensors (model signals). In this study, the interest was in localizing the 
sources of the 20-Hz modulation. Accordingly, TSE curves of modeled MEG 
signals were compared with TSE curves of the original measured MEG 
signals. The four sources ( Figure  6–31a  ) were found to account well for the 
event-related modulation of 20-Hz activity ( Figure  6–30  ).  

Figure 6–30 . Mean amplitude of 20-Hz oscillations recorded by MEG sen-
sors when the subject was reading words aloud. The time window extends 
from 1 s before word onset to 5 s after it. 
Modifi ed from Salmelin et al. ( 2000).
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 From the continuous source activity ( Figure  6–31b  ), one can compute 
the mean level of activity (TSE) in those brain areas.  Figure  6–31c   displays 
grand-averaged source-level TSE curves (10 subjects) in the right hand and 
mouth, and left hand and mouth areas. The fi rst vertical line indicates word 
presentation, and the second line indicates the vocalization prompt. The gray 
bar indicates actual speech production. Just as in the analysis of phase-locked 
evoked responses, it is important to check that the ECDs included in the mul-
tidipole model do not interact—i.e., that they are not too close to each other, 
and that the orientation of current fl ow in those areas is not too similar. In the 
case of rhythmic activity, possible interaction is harder to evaluate from the 
source waveforms than it is in the case of evoked responses. However, clearly 
different time behaviors, like those between the hand and mouth areas within 
each hemisphere in this data set, speak in favor of independence of the ECDs. 
One may, for example, estimate the space angle between the magnetic fi eld 
distributions produced by the ECDs (should exceed 30–40 degrees), or simu-
late activity in those areas and evaluate how much of the signal generated by 
one ECD is accounted for by the other ECD. In reality, the possible interac-
tions are not determined only by pairs of sources but by all sources included 
in the model. Nevertheless, comparison of the most suspicious pairs of ECDs 
provides a good approximation of the potential risks. 

 Equipped with reasonable source models, one may proceed to comparison 
of different experimental conditions or subject groups, in the same way as for 
phase-locked evoked responses.  Figure  6–31c   shows that in the mouth motor 
cortex the 20-Hz rhythm was strongly suppressed well before vocalization. 

Figure 6–31 . Source analysis of 20-Hz activity. (a) ECDs in the left and right 
hand and mouth areas along the central sulcus in one subject. (b) Time 
course of 20-Hz activation in those areas. Vertical lines denote a new trial 
(word presentation). (c) Grand average time course of 20-Hz modulation, 
calculated across 10 subjects. 
Modifi ed from Salmelin et al. ( 2000).
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Further research has demonstrated that this suppression is correlated with 
timing of the visual instruction rather than mouth movement onset—clearly 
pointing to involvement of motor cortex in cognitive processing, not simply 
motor control (Saarinen et al.   2006  ). Interestingly enough, the hand areas 
seem to be involved in speech production as well, although obviously much 
less than the mouth areas, and only during the actual movement. It has been 
shown that the mouth vs. hand area segregation in the motor cortex is stron-
ger for verbal than nonverbal mouth movements, independent of sequence 
length or complexity. The main factor appears to be the verbal vs. nonverbal 
contrast; that is, the hand areas are more involved in producing nonverbal 
than verbal mouth movements (Saarinen et al.,   2006  ; Salmelin & Sams,   2002  ). 
The segregation between hand and mouth area involvement in speech pro-
duction is signifi cantly weaker in stutterers than fl uently speaking individuals 
(Salmelin et al.,   2000  ). 

 ECD localization of rhythmic activity is fast and accurate, and allows one 
to take full advantage of the changes of rhythmic activity at different times. 
For example, using ECD analysis, one only needs short intervals of clear dipo-
lar signals to obtain good candidates for source analysis. However, when there 
are multiple source areas generating the rhythmic activity, as in the case of 
parieto-occipital 10-Hz rhythm, ECD analysis and testing of the explanatory 
power of the sources may become very time-consuming. Furthermore, selec-
tion of optimal subsets of sensors for source localization may require consid-
erable expertise. A potentially more serious limitation of the ECD modeling is 
that it can only be done for time intervals in which there is clear signal. 
Accordingly, brain areas in which rhythmic activity is suppressed can only be 
identifi ed indirectly, by fi rst localizing the sources in the time windows during 
which there is discernible activity, and then testing whether those sources also 
account for the suppression. In the case of the central mu rhythm, suppres-
sion and enhancement of rhythmic activity normally occur in the same gen-
eral area, at least in terms of the spatial accuracy available with MEG. 
Alternative methods using distributed modeling or beamformer techniques 
(with their own limitations) have been proposed (see Chapters 7, 8, and 9) 
and compared with ECD modeling (Liljeström et al.,   2005  ).     

Discussion

 This chapter has, hopefully, emphasized to the reader that MEG data are usu-
ally not ambiguous. It is mostly quite obvious which areas are active. In that 
sense, the infamous inverse problem is not really the problem in MEG data 
analysis. It is more a question of identifying the clear fi eld patterns, localizing 
the sources that generate them, and constructing a clean, well-behaved model 
with those sources. 

 Careful experimental design and high-quality data are the prerequisite 
for successful data analysis. The experimenter should make sure that the data 
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are of highest quality. No analysis method can redeem data of poor quality. 
The fi rst step is to decide what one really needs to fi nd out, and choose the 
paradigm accordingly. For example, accurate localization is certainly needed 
for presurgical mapping of the central sulcus. The early somatosensory evoked 
fi elds are well suited for this purpose, as there is little activity in other cortical 
areas than the primary somatosensory cortex. However, if one studies differ-
ences in timing, e.g., during language tasks, extremely accurate localization is 
not really the issue to push. Parametric variation of stimuli or tasks is essential 
for functional localization (e.g., Tarkiainen et al.,   1999  ) and very useful in 
source modeling. 

 One has to learn to read the MEG signals. That is the sound basis for all 
analysis. It is essential to know the data throughout. It may be a good idea to 
use different analysis methods to look at the same data; it also makes one spend 
more time scrutinizing the signals and thus become thoroughly familiar with 
them. This makes it possible to fully understand the solutions one gets. 

 Finally, when a solution or model is ready, one should be able to recognize 
it also in the original signals. Everything should make sense in the end. The 
analysis tools must provide visual control of the model and what it explains. 

 A major advantage of the ECD approach is that there are no hidden 
assumptions in mapping the fi eld pattern to activation in the brain. The main 
criticism that has been raised against ECD modeling is that the user makes (or 
can make) subjective choices about the total number of active areas and the 
subset of sensors to be included in source localization. However, fundamen-
tally this is no different from the subjective choices of thresholding one needs 
to make when using distributed analysis methods, or in PET/fMRI analysis. 
When ECD analysis is performed on the same MEG data set by different, 
experienced researchers, the same major sources emerge; variability, if any, 
appears in the inclusion of the weakest sources. The unparalleled asset of ECD 
analysis is that, having full visual control of the process, the user knows exactly 
why certain areas are found to be active and others not. It is advisable to carry 
out an ECD analysis, at least in a cursory fashion, before using more automatic 
analysis or visualization tools. 

 Basic sensory or motor processes often involve a relatively small number of 
brain areas that can be readily distinguished by location and/or direction of cur-
rent fl ow and that show clear dipolar fi eld patterns, at least at specifi c time inter-
vals. When studying cognitive functions, the overall activation tends to be 
weaker, the time intervals of interest longer, and the effective signal-to-ratio 
lower because of the large number of sources that are spatially close and show 
considerable temporal overlap. Because of that, one often has to accept less per-
fect dipolarity of the fi eld patterns than for functionally simpler tasks. Otherwise, 
the general procedures and considerations are similar for all types of data sets. 

 When using the ECD approach, one obviously seeks to identify the dis-
tinct dipolar fi eld patterns in the data. In principle, one could argue that such 
an assumption ignores active areas that do not show dipolar signal distribution. 
However, at the distance MEG signals are recorded (at least 3 cm from the 
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source currents) cortical activity appears dipolar as higher terms are reduced, 
relatively more rapidly, with distance. Most importantly, when a set of ECDs, 
determined from clearly dipolar fi eld patterns, suffi ce to account for the data 
recorded by all sensors without leaving any systematic group of signals unex-
plained—and that is normally the case—it is hard to argue that alternative 
accounts of source structure would be critically needed. 

 Obviously, there are no miracle tools that would be more correct than 
others—and this is, of course, the real inverse problem in MEG (or EEG) 
analysis. User-independent tools should be particularly suitable for compari-
son across sites and users; nevertheless, one should not assume that such 
methods are more correct than others. For clear, good-quality data, any anal-
ysis tool should work well and give very similar results. Whichever tool one 
uses, one should be cautious in the interpretations—but that is true for all 
imaging techniques.      
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Introduction 

 Several techniques have been developed to construct source models accounting 
for electrophysiological brain activity measured by EEG and MEG. Rather than 
modeling the measured signal using only a small number of (discrete) dipole 
sources, the approaches considered in this chapter essentially estimate the con-
tribution of all sources within the entire brain volume to the observed MEG 
or EEG, and thereby provide a distributed representation of the underlying 
neuronal activity. A major advantage is that such distributed representations 

7

Estimating Distributed Representations of 

Evoked Responses and Oscillatory Brain Activity 

Ole Jensen and Christian Hesse

      Distributed representations of electrophysiological activity are typically • 
done using current estimates and beamforming techniques  
  Distributed representations allow for spatial normalization and • 
group averages  
  Minimization constraints are applied when calculating distributed • 
current estimates, resulting in spatially smooth solutions  
  Both event-related responses and oscillatory brain activity can be • 
modeled by distributed current estimates  
  Beamforming approaches are best suited for longer lasting brain • 
responses such as modulations of oscillatory activity      
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can be spatially normalized to a standardized brain, and averaged over multi-
ple subjects. This has become a crucial requirement in modern-day cognitive 
neuroimaging research. 

 From a practical point of view, there are two commonly used approaches 
to calculating distributed neuronal activation, both of which involve dis-
cretizing the brain volume onto a three-dimensional grid. The fi rst approach 
is based on a distributed source model, and seeks to simultaneously estimate 
the current at all grid locations by fi tting this model to the data, which involves 
inversion of an overdetermined set of linear equations. The second approach 
uses so-called “beamformers,” which are adaptive spatial fi lters, to separately 
and sequentially estimate the contribution of sources at each grid location to the 
overall signal at the sensors. While beamforming does not assume a distrib-
uted source model, the technique also results in a distributed representation 
of brain activity. 

 MEG and EEG data are typically analyzed with respect to event-related 
responses or modulations in oscillatory brain activity. From a theoretical per-
spective there are no differences between the source models of these two types 
of brain responses. However, from a practical perspective there are important 
considerations when estimating the distribution of brain activation for 
event-related responses compared to oscillatory brain activity. 

 In this chapter we will discuss the relative advantages and disadvantages 
of distributed representations of source activity. After covering some theo-
retical considerations, a discussion follows on how to apply the technique in 
practice to event-related fi elds and oscillatory activity.     

Theory

Basics of Source Modeling 

 The aim of biophysical source modeling is to account for the measured MEG/
EEG signal in terms of a set of underlying current sources located within the 
brain volume. Equivalent current dipoles are a widely used model ( Fig.  7–1  ) 
for approximately describing the spatial and temporal characteristics (orien-
tation and magnitude) of the local current fl ow within a small volume of 
brain tissue, caused by the synchronized activation (post-synaptic currents) 
of many neurons (pyramidal cells). More formally, the  N  measured signals 
 b ( t ) = [ b  

1
  ( t ),  b  

2
  ( t ),…,  d 

N
  ( t )]  T   refl ecting the time-varying magnetic fi eld (or 

electric potential) patterns at the scalp are assumed to have been generated by 
the summed fi eld patterns of a set of  M  (unobserved) current dipole sources

   ( ) ( ) ( )t t t= +b Gq n      (7–1)   

 Each column of the  N -by- M  leadfi eld matrix  G  contains the projection 
weights that refl ect the spatial attenuation pattern at the sensors of the fi eld, 



158 MEG: An Introduction to Methods

generated by a (unit magnitude) current dipole at a certain grid location, 
whose time-varying current strength (magnitude) is given by the correspond-
ing row of  q ( t ) = [ q  

1
  ( t ),  q  

2
  ( t ),…,  q 

M
  ( t )]  T  . The additive noise term  n ( t ) = [ n  

1
  

( t ),  n  
2
  ( t ),…,  n 

N
  ( t )]  T   is intended to account for any residual variance not 

explained in terms of the current sources within the brain. 
 The weights in the leadfi eld matrix  G  are determined independently of 

the measured signal, using an electromagnetic volume conductor model (i.e., 
the forward model) whose geometry is often a simple approximation of the 
anatomy of the head, e.g., a spherical multi-shell or boundary element model. 
Moreover, a triplet of dipoles at the same (grid) location, having orthogonal 
orientations in x, y, and z directions, can be used to explain the activity of any 
current dipole source at this location. Thus, in practice, the total number of 
current dipole sources  M  is three times the number of grid points. The (aver-
age) orientation of a dipole at each grid location can be determined from the 
current magnitude time courses  q ( t ) in the x, y and z directions. 

 The fundamental aim of the source modeling approaches discussed in 
this chapter is to estimate the current magnitudes  q ( t ) at all locations of the 
grid covering the brain volume, given a predetermined leadfi eld matrix  G , 
and assuming that noise is negligible or at least suffi ciently reduced, e.g., by 
averaging over trials. The difference between the methods is that distributed 
source modeling seeks to estimate the elements of  q ( t ) all at once, whereas 
beamforming estimates the elements  q ( t ) of at each grid location separately. 
As we will see subsequently, these source/current estimation approaches can 
be applied to MEG/EEG signals both in the time-domain (e.g., to model 
event-related fi elds) and in the frequency domain (e.g., to model ongoing or 
induced oscillatory activity).     

qxG1

G2

G3

b = G q + n
  min || q ||

bN

qz

b2

b1

q

(a) (b) (c)

Figure 7–1 . The principle of current estimates. (b) The brain volume is 
modeled by a three-dimensional grid. (b) The full current distribution is 
approximated by the current dipoles, q, at each grid point. The aim is to 
fi nd the current distribution that produces a fi eld that matches the fi eld 
measured by the sensors, b. The forward model G relates the current 
distribution to the measured fi eld. (b) For visualization, the magnitudes 
of the current dipoles are projected to the brain surface and represented 
by a color code. 
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Basics of Distributed Current Estimates 

 If the noise term is disregarded, and we consider a single time instant  t , 
Equation (7–1) essentially describes a system of simultaneous linear equa-
tions, where  b  and  G  are known (either observed or specifi ed) and where the 
vector  q  is the unknown quantity. Distributed source modeling approaches 
essentially try to estimate the currents by solving Equation (7–1) for  q  by 
inverting the system of equations, which can be loosely thought of as “dividing” 
both sides by  G . However, since the number of grid points is much larger than 
the number of sensors—there are usually several thousand dipoles compared 
with only a few hundred sensors—the system of equations is underdetermined, 
which means that the solution for  q  cannot be uniquely determined unless 
additional constraints on  q  are applied. A typical constraint is to minimize the 
total current:

   min   � �q     (7–2)   

 From a practical perspective, the current minimization constraint results 
in source estimates that are biased toward spatially smooth solutions. This is 
illustrated in  Figure  7–2A  , where current distributions producing similar 
fi elds are shown. The solutions to the right will be chosen, given that they 
result in the smallest absolute current. The minimization constraint in 
Equation (7–2) can be applied with respect to different norms. The L2–norm 
minimizes the sum of the squared current values, whereas the L1–norm mini-
mizes the sum of the absolute current values. Current estimates obtained 
with respect to the L2–norm are referred to as Minimum Norm Estimates 
(MNE), (Dale & Sereno,   1993  ; Hamalainen & Ilmoniemi,   1994  ; Matsuura & 

A) B)

0.5

0.4

0.3

0.2

0.1

−4 −3 −2 −1 0 1 2 3 4

2

1

Figure 7–2 . (A) The current distributions to the left and the right produce 
very similar fi elds. However, when applying the minimum current constraint 
the distributions to the right are chosen. (B) The a priori distributions of 
current magnitudes when applying the L1- and the L2-norm estimates. 
Reproduced from Uutela et al. ( 1999).
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Okabe,   1995  ) whereas estimates obtained using the L1–norm are referred to 
as Minimum Current Estimates (MCEs) (Matsuura & Okabe,   1995  ; Uutela 
et al.,   1999  ). The L2–norm implicitly assumes a Gaussian  a priori  current dis-
tribution, whereas the L1–norm assumes a Laplacian (double exponential) 
distribution ( Figure  7–2B  ). Consequently, the MNE results in more spatially 
smeared current distributions compared to the MCE. Thus, when selecting 
between the L1– and the L2–norm, an implicit choice is being made in terms 
of spatial smoothness of the current distributions. From a theoretical point of 
view there are no well-motivated reasons for choosing one approach over the 
other. From a physiological perspective we do not have suffi cient information 
to judge which approach is more appropriate. Minimization procedures with 
additional smoothness constraints have been implemented in the LORETA 
method (Pascual-Marqui et al.,   1994  ). As for MNE, the LORETA approach 
results in quite smeared source estimates.  

 One practical problem that arises when calculating current estimates is 
that superfi cial sources are overestimated at the expense of deeper sources. 
This is a consequence of deep focal sources producing fi elds very similar to 
extended superfi cial sources ( Figure  7–3  ). Since the MEG sensors are more 
sensitive to nearby sources, the current-estimate methods become biased 
toward the superfi cial sources when applying the minimization constraint. In 
order to reduce this bias, a weighted norm is often applied to reduce the con-
tribution of the superfi cial currents (Ioannides et al.,   1990  ; Liu et al.,   1998  ; 
Uutela et al.,   1999  ). It is important to keep in mind that when selecting a spe-
cifi c approach to reduce the depth bias, a choice is implicitly being made that 
has consequences for the fi nal current distribution. The minimum norm esti-
mate using the L2–norm can be derived directly by inverting Equation (7–1), 
but this is not the case for the minimum current estimate, since it involves 
the L1–norm. Uutela et al. (  1999  ) used linear programming in order to solve 

Figure 7–3 . Deep focal and superfi cial distributed sources produce very 
similar fi elds. Since magnetic fi elds decrease with distance, the deeper 
sources must be stronger in magnitude compared to superfi cial sources in 
order to produce the same fi eld. Thus, the minimization constraint biases 
the solution toward superfi cially distributed sources. 
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the L1 optimization problem. For reasons of computational effi ciency they 
proposed fi rst to calculate the current orientations using the L2–norm, and 
subsequently calculate the current amplitudes using the L1–norm for the 
fi xed current orientations.  

 There are several methods of visualizing the current estimates. The 
method used by Uutela et al. (  1999  ) visualizes the estimated solutions by pro-
jecting the current distribution onto a triangular mesh representing the brain 
surface. The current magnitudes are then interpolated and color coded. 
Subsequently the sources of interest can be manually identifi ed by means of a 
graphical user interface. The coordinates of the sources of interest can be 
mapped onto the anatomical MRI of the individual subjects. As for dipole 
modeling, the coordinates of the head model are aligned to the structural 
MRI of the subjects with reference to anatomical landmarks (see, e.g., Dale 
et al.,   2000  ; Lin et al.,   2004  ). 

 It should be noted that current estimates for groups of subjects typically 
are performed differently for EEG and MEG data. ERPs from EEG data are 
often averaged across subjects at the sensor level. This can be done, since the 
electrodes in different subjects have approximately the same position with 
respect to the brain. In the case of MEG, different subjects will have different 
positions inside the helmet. As a consequence, individual brains are posi-
tioned differently with respect to the sensor array. Thus, it is preferable to 
average the estimated current distributions across subjects. Scaling to a nor-
malized brain (e.g., the MNI or a Talairach brain) or morphing is typically 
done prior to averaging.     

Basics of Beamforming 

 An alternative way of estimating the contribution of each source in the brain 
volume to the MEG/EEG signal measured at the scalp is to use the so-called 
beamforming approach. Instead of trying to solve a system of equations with 
more unknown than known parameters using norm constraints on the solu-
tion, the activation time-course at each source location (and in each direc-
tion) can be determined independently of all other locations, by means of 
spatial fi lters. Adaptive spatial fi ltering is a general technique in multichannel 
signal processing, which was initially developed for radar and antenna array 
processing (e.g., Capon,   1969  ; Van Veen & Buckley,   1988  ; Van Veen,   1992  ). 
Early applications of different versions of this signal estimation technique, in 
conjunction with MEG/EEG source analysis, have been described by Van 
Veen (  1997  ), Robinson and Vrba (  1999  ), and by Gross et al. (  2001  ). For 
reviews of beamforming applied to MEG, see Hillebrand and Barnes (  2005  ) 
and Hillebrand et al. (  2005  ). 

 A spatial fi lter comprises a set of coeffi cients or weights ( w  = [ w  
1
 ,  w  

2
 ,…, 

 w  
N
 ]  T  ) that essentially defi ne a linear combination (weighted sum) of the signals 

at all sensors is supposed to selectively enhance activity at the target location 
(source) while suppressing interfering activity from sources at all other 
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locations.   1    Thus, an estimate of the activation time course of a source at a 
given source (grid) location  i  is estimated as

   ˆ ( ) ( )T
i iq t t= w b     (7–3)   

 To obtain a distributed representation of source activity using this 
approach in practice, one “scans” through the brain volume and constructs a 
separate set of spatial fi lter weights (beamformers)  w  j  for each point (and 
orientation) of the grid, which are then used to obtain a current estimate 
for that source using Equation (7–3). The resulting distributed representation 
of source activity can then be visualized and further analyzed in much the 
same manner as the current estimates obtained using the MNE and MCE 
methods. 

 How are the weights of the spatial fi lter determined? Mathematically, it 
can be shown (see, e.g., Haykin,   2002  ) that the spatial fi lter weights that pro-
vide the best linear estimate (in the least square-error sense) of the activation 
time course of a source  q   

i
  ( t ) at a given location  G   

i
   are determined by

   
1

1
i

i T
i i

−

−=
C G

w
G C G

    (7–4)  

 where  C  −1  is the inverse of the cross-covariance matrix of the measured signal 
 C  =  b ( t ) b ( t )  T  /( T -1), where  T  is the number of time.  

 The expression for the spatial fi lter weights in Equation (7–4) is vari-
ously known as  Capon’s beamformer , the  linearly constrained minimum 
variance  (LCMV) beamformer, and the  minimum mean square error  (MMSE) 
estimator (e.g., Haykin,   2002  ). It is the use of the cross-covariance matrix of 
the data that makes this type of fi lter “adaptive” and accounts for its spa-
tially selective enhancement and interference-suppression characteristics. 
When applied to frequency-domain data, the cross-covariance matrix  C  is 
replaced by a matrix refl ecting the cross spectrum (or cross-spectral den-
sity) at a particular frequency, or over a frequency band of interest. In the 
context of MEG/EEG neuroimaging, frequency-domain beamforming is 
also known as the  dynamic imaging of coherent sources  (DICS) method (e.g., 
Gross et al.,   2001  ; Chapter 9). Alternatively, LCMV beamforming can also 
be applied to bandpass-fi ltered data, which, in MEG neuroimaging, is also 
referred to as  synthetic aperture magnetometry  (SAM) analysis (Robinson & 
Vrba,   1999  ). 

 Beamforming relies on two key assumptions, namely: a) that the activa-
tion time courses of all sources are mutually uncorrelated; and b) that the 
forward model describing the fi eld patterns of the sources is correct, or at 
least suffi ciently accurate.   2    The mathematical exposition required to explain 
in detail why these assumptions are necessary—and what happens when 
they are violated—is beyond the scope of this introductory chapter. However, 
a relative intuitive account would be the following: The cross-covariance 
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matrix  C  captures the dependency structure of the MEG/EEG signals at the 
sensor level, and refl ects  both  correlations due to the projection of the same 
source signal onto each of the sensors, as well as correlations between differ-
ent source signals. In the ideal case, where the waveforms of all sources are 
uncorrelated, then the spatial fi lter only has to suppress interference between 
sources with spatially correlated fi eld patterns. In this case, the cross-correlation 
matrix only contains spatial correlations, and the multiplication by its inverse 
essentially removes these correlations. Correlated source-activation time 
courses constitute an additional source of cross-covariance, which cannot be 
disambiguated from the cross-covariance due to spatially correlated fi eld 
patterns, and hence are not effectively cancelled by the inverse covariance 
matrix. In effect, the beamformer is trying to simultaneously maximize and 
suppress (parts of) the same signal, and this can lead to large errors in the 
source estimate (e.g., Van Veen,   1997  ). 

 In cognitive neuroscience, beamforming is used mainly to estimate the 
power of oscillatory activity. Beamforming is (by mathematical construction) 
not optimally suited for providing “good” estimates of sources with corre-
lated activation time courses. Thus, it is not clear when applications of this 
method (i.e., based on separately scanning individual locations within the 
brain volume) are appropriate for visualizing or localizing networks of coher-
ent cortical sources—whose activations are, by defi nition, correlated to some 
degree, dependent on the phase angle—but see, e.g., Gross et al. (  2001  ) and 
Kujala et al. (  2007  ) for successful applications. Attempts to overcome this 
problem by simultaneously scanning at several grid locations have been made 
(Brookes et al.,   2007  ). 

 A further practical requirement is that the estimate of the cross-covariance 
matrix of the data is accurate, and that the cross-covariance matrix is invert-
ible. These are the problems often encountered when applying beamforming 
for source analysis of event-related fi elds (ERFs). The cross-covariance matrix 
can become rank-defi cient (and hence not invertible) in two circumstances: 
if the epoch of interest contains fewer time samples than sensors, or (at least 
theoretically) if the time-locked, averaged MEG signal refl ects the activity of 
only a very small number of neuronal sources, and any background activity 
and noise effectively disappears by averaging an extremely large number of 
trials. In practice, rank-defi cient cross-covariance matrices can be made 
invertible by regularization, which effectively involves injecting additional 
noise into the signal—this, in turn, tends to spatially smear the neuronal 
activity. For this reason, beamforming is not widely used in MEG/EEG source 
analysis of evoked activity. 

 Since the adaptive spatial fi lters computed using Equation (7–3) are 
dependent on the leadfi eld matrix  G , beamforming—like the MNE/MCE 
methods for distributed source modeling—does not provide accurate esti-
mates of deep sources. This is essentially due to the fact that the fi eld patterns 
at the scalp of neighboring dipole sources approaching the center of the head 
are generally more similar to each other (i.e., more spatially correlated) than 
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the fi elds of neighboring dipoles close to the surface. Particularly in the pres-
ence of noise, this leads to larger localization errors. Primarily because of this 
“spatial leakage,” beamformers tend to overestimate the signal power of deep-
lying sources, which makes it diffi cult to interpret the “raw” beamformer sig-
nal amplitude estimates. Two approaches have been proposed to circumvent 
this problem. A normalization approach based on the  neural activity index  
(NAI), put forward by Van Veen (  1997  ), scales (divides) the projected power 
at each source location by the corresponding projected noise power, using a 
suitably accurate model estimate of the signal noise.   3    A practical alternative 
for comparisons of source activity between two experimental conditions is to 
simply use the ratio of source power between conditions. The latter approach 
assumes an implicit signal model in which the noise characteristics (regard-
less of interpretation) are identical in both conditions, and is more widely 
used in cognitive neuroscience (e.g., Nieuwenhuis et al.,   2008  ). 

 Finally, it should be noted that beamforming, or adaptive spatial fi ltering 
as such, is  not  a source localization technique, but rather a method for estimat-
ing (extracting) a signal at a known location. Nevertheless, the location of impor-
tant or dominant sources can be determined by appropriate postprocessing of 
the distributed representation of source activity obtained by beamforming, 
e.g., thresholding or detection of local peaks in activation/power.     

Characterizing Spontaneous Oscillatory Activity by Power Spectra 

 The approaches so far pertain to current estimates of event-related fi elds, 
which refl ect transient time-locked changes in brain activity. However, it is 
clear that the brain also produces oscillatory activity, which is not phase-
locked to stimuli or responses (Hari & Salmelin,   1997  ; Tallon-Baudry & 
Bertrand,   1999  ). It is useful to distinguish between two types of oscillatory 
activity: spontaneous, and induced. Spontaneous oscillatory activity occurs in 
the absence of stimuli or overt behavior, but can be modulated by various 
conditions. An example of spontaneous oscillations is posterior alpha activity 
(7–13 Hz), which emerges when subjects are resting (Niedermeyer & Lopes 
da Silva,   1999  ). For instance, the power of the posterior alpha activity is much 
higher when the eyes are closed than when the eyes are open. Induced oscilla-
tory activity is measured in response to repeated stimuli. These oscillations 
are not necessarily phase-locked to the stimuli ( Figure  7–4  ). An example of 
induced oscillatory activity is the “beta rebound,” which are ~ 20 Hz oscilla-
tions that emerge after median nerve stimulation (Salmelin & Hari,   1994  ). 
Given that these oscillations are not phase-locked to the stimuli, it is not pos-
sible to average the measured traces and then calculate the source estimates. 
We will here discuss various approaches used to identify the sources of 
oscillatory activity by means of current estimates.  

 Several studies have investigated power in various frequency bands. For 
instance, power differences in the delta, theta and alpha band have been 
compared in different patient groups (Niedermeyer & Lopes da Silva,   1999  ). 
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It should be pointed out that just because there are differences in a given fre-
quency band when comparing two groups of subjects, it does not necessarily 
mean that there is spontaneous oscillatory activity with a magnitude strong 
enough for the sources to be modeled. In order to be able to assess whether 
the sources of spontaneous oscillatory activity can be identifi ed, it is recom-
mended to perform a spectral analysis of power at the sensor level. Such an 
analysis serves several purposes. If a “clear” peak in the spectra can be identi-
fi ed, it suggests that oscillatory activity is present, rather than a broad band 
signal. Second, spectral analysis will allow for identifying the frequency peak 
and range. Given that the peak frequency of alpha oscillations varies among 
subjects, the optimal approach when identifying oscillatory sources is to tar-
get the peak frequency in individual subjects (Posthuma et al.,   2001  ). A com-
mon approach to spectral analysis of spontaneous oscillatory activity is to 
apply Fourier transforms to the ongoing data. We will here describe in detail 
how this is done, given that this insight is important for understanding how 
to calculate MCEs/MNEs in the frequency domain. The power spectrum is 
calculated from the modulus of the Fourier transform squared as a function 
of frequency. Typically, the fast Fourier transform (FFT) algorithm is applied. 
Using this approach directly for power estimation has one drawback: the 
variance of the power spectra estimates does not decrease with increasing 

Stimulus
onset

Averaging

Averaged evoked potential

Evoked gamma
(fixed latency)

Induced gamma
(jitter in latency)

Figure 7–4 . Evoked responses are phase-locked to the stimulus and will 
subsequently be presented in the averaged data. Induced responses are 
not necessarily phase-locked, and are attenuated by averaging. 
Reproduced from Tallon-Baudry and Bertand ( 1999).
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data length. This problem can be solved using Welch’s method by dividing 
the data into segments of equal length (“windowing”). The power spectra 
calculated for each segment are then averaged, thus reducing the variance of 
the spectral estimate with increasing number of segments (Welch,   1967  ; 
Challis & Kitney,   1991  ). Frequency smoothing can be controlled by changing 
the length of the data segments, i.e., the frequency resolution decreases as the 
length of the data segments becomes shorter. Some frequency smoothing 
might be advantageous, given the frequency fl uctuations in cortical rhythms. 
For instance, in a typical subject the alpha activity might fl uctuate between 
10 and 12 Hz. Practical experience has shown that adjusting the length of the 
time window yielding a frequency resolution of 0.5–1 Hz results in sensible 
power spectra for activity in the alpha and beta range. Another concern that 
arises when segmenting data prior to spectral estimates, is spectral leakage 
emerging due to edge effects of the segments. The spectral leakage can be 
reduced by applying a windowing function, i.e., a taper, to each segment. 
Often a Hanning taper is applied (Challis & Kitney,   1991  ). To compensate for 
the data loss due to the taper at the edges of the segment, overlapping seg-
ments are applied—e.g., 50% overlapping segments are typically used for 
Hanning tapers.  Figure  7–5A   shows an example where the power spectra have 
been calculated using Welch’s method for a subject resetting with eyes closed. 
Note that the dominant frequencies of both alpha and beta activity can be 
identifi ed in the spectra. While Welch’s method for power spectra estimation 
is commonly used, multitaper techniques provide a better control of the fre-
quency smoothing, and are becoming increasingly popular (Percival,   1993  ; 
Mitra & Pesaran,   1999  ).      

Current Estimates of Spontaneous Oscillatory Activity 

 The main complication when identifying sources of oscillatory activity is that 
the phases of the oscillatory signals are not time-locked to events. This pre-
cludes averaging the signals directly in order to improve the signal-to-noise 
ratio. One approach is to identify the sources in the frequency domain by 
using dipole modeling (Lutkenhoner,   1992  ; Tesche & Kajola,   1993  ) or cur-
rent estimates (Gomez & Thatcher,   2001  ; Jensen & Vanni,   2002  ). Current 
estimates in the frequency domain are done by calculating the Fourier trans-
forms for the frequency of interest within the magnetic fi elds measured by the 
sensors. The current estimates (L1, L2 or LORETA) are then calculated for 
the complex representations. As when calculating power spectra (see previous 
section) it is advantageous to apply a time window that divides the data into 
epochs, in order to control the frequency resolution and increase the signal-
to-noise ratio (see  Figure  7–6  ). The current estimates of the complex Fourier 
transform are then calculated for each time window and combined. Selecting 
short time windows results in a relatively high signal-to-noise ratio, but low 
frequency resolution; selecting long time windows increases the frequency 
resolution at the expense of a lower signal-to-noise ratio. As for Welch’s 
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Reproduced from Jensen and Vanni ( 2002).



168 MEG: An Introduction to Methods

methods for power spectra estimation, applying a Hanning taper to each win-
dow will reduce the spectral leakage. Windowing the data poses one problem: 
the complex current estimates for each time window will have different 
phases. This problem is solved by calculating the current estimates for the real 
and imaginary parts of the Fourier-transformed data. The real and imaginary 
parts of the current estimates are then combined, leaving only the magnitude 
of the current estimate (Jensen & Vanni,   2002  ). These magnitudes are then 
averaged over time windows. As a result, the phase information and thus the 
source orientation are lost. While this method has been implemented for 
MCEs (Jensen & Vanni,   2002  ), it should be mentioned that the same approach 
can be used for MNE and LORETA. The implications for the estimated source 
distributions are the same as those for event-related fi elds: the MNE source 
distributions will be more spatially smeared as compared to those calculated 
by MCE.  Figure  7–5   shows an example where the sources of spontaneous 
oscillatory activity in alpha and beta band have been estimated. First, the power 
spectra were calculated in order to identify the frequency peaks at ~11 and 
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Figure 7–6 . Calculating MCEs in the frequency domain. The Fourier trans-
form is calculated for the each time window (epoch) for the frequency 
of interest. The current estimates for the real and imaginary parts of the 
Fourier-transformed data are combined for each time window. Finally, 
the current estimates are averaged. 
Reproduced from Jensen and Vanni ( 2002).
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~21 Hz. The current distributions for those frequencies were then estimated 
and subsequently mapped onto the subject’s anatomical MRI.      

Time-frequency Representations of Induced Oscillatory Activity 

 Prior to performing source modeling of induced oscillatory activity, it is 
important to characterize when in time, and at which frequency bands, a given 
effect occurs. While power spectra are convenient for determining the fre-
quency band of interest for spontaneous activity, more elaborate methods are 
required in order to characterize changes in oscillatory activity in response to 
a given stimulus. One commonly applied method is based on fi ltering the data 
in the frequency band of interest (Kalcher & Pfurtscheller,   1995  ). After each 
trial has been bandpass fi ltered, it is rectifi ed and smoothed over time. The 
resulting representations are then averaged over trials, thus preserving activity 
that is not phase-locked to the stimulus. Subsequently, the amplitude repre-
sentations are normalized with respect to a baseline interval, in order to express 
amplitude changes in percent. Amplitude increases are termed “event-related 
synchronization” (ERS), and decreases are termed “event-related desynchro-
nization” (ERD). The terminology ERD/ERS has not been generally adopted 
since it assigns a physiological interpretation to changes in amplitude. Another 
much-related approach is termed “temporal spectral evolution” (TSE) which 
characterizes absolute rather than relative power changes with respect to a 
baseline (Salmelin & Hari,   1994  ). The TSE and ERD/ERS methods have been 
used to characterize oscillatory activity in specifi c frequency bands. As com-
puter power over the years has increased, methods are nowadays applied that 
simultaneously investigate a range of frequencies. Wavelet techniques and 
spectrograms are typically applied (Tallon-Baudry & Bertrand,   1999  ). With 
respect to the wavelets technique, a  wavelet family  for the frequencies of 
interest is constructed. The complex Morlet wavelet is often applied:
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resolution of the representations over different frequency bands. As the 
frequency increases the wavelets become shorter, thus increasing the time 
resolution ( Figure  7–7A  ). Longer wavelets (a larger  m ) will result in a better 
frequency resolution at the expense of the time resolution; the contrary is the 
case for shorter wavelets. Typically, wavelets of width m = 7 provide a good 
compromise between time and frequency resolution.  Figure  7–7B   shows an 
example in which the TFR has been calculated for an induced oscillatory 
signal in the beta band. The TFRs of power are useful for determining the 
time intervals and frequency bands in which the induced amplitude modula-
tion of ongoing oscillatory activity occurs. This is crucial information when 
localizing the sources refl ecting the induced changes in oscillatory activity, 
using both distributed source modeling (MNE/MCE) and beamforming 
methods.      
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ple of a time-frequency presentation of induced beta activity calculated 
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Current Estimates of Induced Oscillatory Activity 

 When localizing induced oscillatory activity, the aim is to calculate the time 
course of oscillatory sources. This is different from localizing the sources of 
event-related fi elds, since the single trial signals cannot be assumed to be 
phase-locked to the stimuli. Thus, the current estimates must be calculated 
for each trial and then averaged in an appropriate manner. In principle it is 
possible to extend the method of Jensen and Vanni (  2002  ) in order to identify 
sources of induced oscillatory activity, by applying a sliding time window to 
each trial. The power values of the current estimates for each time window, 
with respect to the same delay in relation to the stimuli, are then averaged. 
Lin et al. (  2004  ) have proposed such an approach based on the complex wave-
let transform. Like the Fourier transform, the complex wavelet transform 
yields real and imaginary representations for which the current estimates can 
be calculated. The current estimate’s real and imaginary parts are then summed, 
averaged over trials, and represented as a function of time ( Figure  7–8  ). 
Lin et al. applied this method to MNEs, but it can also be used in conjunction 
with MCEs. As always, when characterizing induced activity it is convenient 
to study changes in power of induced oscillatory activity with respect to a 
baseline period, since this attenuates noise due to slow drifts in signal power. 
Lin et al. (  2004  ) proposed to use an F–test to compare stimulus power to 
baseline power in the current estimates, thus effectively producing a signal-
to-noise estimate of the induced activity. Only a few applied neuroscience 
studies so far have been published using MNEs/MCEs to identify induced 
oscillatory activity. However, given the growing interest in oscillatory activity, 
more studies on this subject are bound to emerge in the near future.       

Applications

Applications of Current Estimates to Event-Related Fields 

 How well do the current-estimate techniques compare to other methods? 
This question cannot be answered unequivocally, given that the various meth-
ods are based on different assumptions. We will here address one study that 
directly attempted to compare MCE to dipole modeling. In order to compare 
the different approaches, Stenbacka et al. (  2002  ) designed several data sets 
and asked 10 trained researchers to localize the sources by means of dipole 
modeling and MCE. The data sets varied in diffi culty with respect to number 
of dipoles and temporal overlap between the source activations. In general, 
the researchers were able to identify sources equally well using MCE and 
dipole modeling. Independent of the method it was problematic to identify 
deep sources and sources with close-to-radial orientations. For both meth-
ods, source localization became diffi cult if the degree of temporal overlap 
between the activated sources was increased. 
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Figure 7–8 . Wavelets and MNE applied to study the temporal develop-
ment of induced oscillatory activity. (A) CWT denotes complex wavelet 
transformations applied to the data. The MNEs are calculated for the real 
and imaginary parts of the wavelet transformations and summed. The 
current estimates are then averaged over trials and an F-test is applied to 
normalize the data with respect to noise. (B) Early activity (40–100 ms) in 
the beta band (~ 17 Hz) was identifi ed using the wavelet approach and 
MNE. The beta activity was induced by median nerve stimulation. The 
resulting MNE is represented on the subject’s infl ated brain. As expected, 
the sources are localized around sensorimotor cortex. 
Reproduced from Lin et al. ( 2004).
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 Typically, both methods produced sensible solutions; however, MCE was 
found to systematically underestimate the source amplitudes of the identifi ed 
sources. This was due to the spatial spread of the sources arising from the 
current estimates. Additionally, more false sources were found using the MCE 
approach, since the researchers tended to confound noise with real sources. 
It should be mentioned that no distributed sources were included in the test 
data sets. The advantage, that current estimates can be easily averaged over 
data sets from several subjects was not accessed, either. Averaging over 
subjects would have most likely removed the falsely identifi ed sources for the 
MCEs. In conclusion, MCE is likely to perform as well as dipole modeling 
when localizing sources of event-related fi elds. However, MCE is inferior 
compared to dipole modeling when estimating the true strength of highly 
focal sources. 

 The fi rst MEG study we will address uses MCE to investigate how brain 
activation is modulated by visual attention. The experimental question is as 
follows: are there brain regions where the activation to peripheral stimuli is 
modulated by foveal attention? If yes, when in time does this modulation 
occur? To address this question, Vanni and Uutela (  2000  ) designed a study in 
which subjects were supposed to detect luminance changes in a foveally pre-
sented fi xation square. Since these changes occurred unpredictably, they 
required the subjects to attend intensively ( Figure  7–9A  ). Occasionally, a 
square was fl ashed in the right or the left peripheral hemisphere. Event-related 
fi elds in response to the peripheral stimuli were measured. Control condi-
tions (passive viewing, intertrial) were similar, except that there was no detec-
tion task. The MCEs were calculated for the individual subjects with respect 
to a spherical head model. The head models were fi tted to the brain surface in 
each subject. Subsequently, the MCEs were averaged across subjects. The cur-
rent estimates were then projected to the surface of a geometry obtained from 
a standard brain. In the time window, a 100–160 ms difference was found 
between attended and control conditions. Stronger activity was found for the 
attended compared to the control condition (passive viewing) in right pre-
central areas ( Figure  7–7B  ). Using this region of interest, the time course of 
the precentral area was identifi ed from time resolved MCEs ( Figure  7–9C  ). 
Note that the attention modulation of the right precentral activity is present 
for both left and right peripheral visual fi eld stimulation.  Figure  7–9D   shows 
an example from a single subject in which the activity from the precentral 
region was mapped to the segmented brain surface. Note the overlap in the 
regions identifi ed for left and right stimulation (indicated by white and black 
outlines). The region modulated by attention corresponds to the frontal eye 
fi eld (FEF). Beyond identifying the FEF, the study also showed that the effect 
of attention occurred 130 ms after the onset of the peripheral stimuli. The 
fi ndings show that focusing attention to a fi xation point enhances responses 
in the FEF to non-attended peripheral stimuli. This is consistent with monkey 
studies showing that the FEF is an important note in the parietofrontal 
network involved in planning and execution of saccades.  
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est mapped onto the segmented brain of a single subject. 
Reproduced from Vanni & Uutela ( 2000).
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 The second example is an MEG study in which the MNE rather than 
MCE approach has been applied to investigate the N400m effect. The N400 
component has been intensively studied using EEG, and refers to a negative 
detection in the ERPs occurring ~400 ms post-stimulus. The N400 compo-
nent increases in magnitude in response to semantic violations (i.e., a word in 
the sentence that does not make sense)—this is referred to as the N400 effect 
(Kutas & Hillyard,   1980  ). Using MEG, the dominant sources of the N400 
effect have been identifi ed in the left and right superior temporal cortex by 
dipole modeling (Helenius et al.,   1998  ). MNE has also been applied in order 
to identify the sources of the N400 effect (Halgren et al.,   2002  ). The study was 
designed as a standard N400 paradigm in which 240 sentences were presented 
visually. Half of the sentences ended with a word that was semantically incon-
gruent with respect to the sentence context; the other half of the sentences 
had congruent endings.  Figure  7–10A   shows a typical ERF from one sensor 
over the left temporal region. Note the stronger N400m component for the 
incongruent sentences. Field distributions are shown in  Figure  7–10B   after 
subtracting the two conditions.   4    The fi eld distribution over the left hemisphere 
is well described by a dipole in the superior temporal cortex. Additionally, the 
MNE approach was applied to account for the N400 effect. The MNEs were 
calculated in time-steps of 5 ms and converted to a dynamic statistical 
parametric map (dSPM). These maps represent the MNE results in terms of 
signal-to-noise ratios rather than baseline-subtracted current distributions 
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Figure 7–10 . The MNE applied to the N400 effect. (A) The ERFs for congru-
ent (black) and incongruent (red) sentence-endings for a single subject. 
(B) A dipole model accounting for the subtracted ERFs for a single subject. 
(C) The MNEs of the subtracted conditions represented as dSPMs. The 
source distributions in each subject were mapped to infl ated brain 
representations, and morphed prior to grand averaging. 
Reproduced from Halgren et al. ( 2002).
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(for details see Liu et al.,   1998  ; and Dale et al.,   2000  ). The noise used in dSPM 
is estimated from the measured data. As shown in Dale et al. (  2000  ), the 
MNEs become more focal after noise normalization and thresholding. Source 
distributions were mapped to the segmented brain surface for the two condi-
tions subtracted. The brain surfaces were then morphed according to gyri and 
sulci and a grand average over 8 subjects was performed ( Figure  7–10C  ). At 
about 250 ms, the fi rst activity emerges in Wernicke’s area. It then spreads 
and, after 300 ms, prefrontal activity can be observed, which eventually 
includes Broca’s areas. It should also be mentioned that the threshold applied 
to the dSPMs is somewhat arbitrary. In conclusion, the MNE approach 
applied to the N400 effect allows for visualizing the spatiotemporal develop-
ment of event-related activity. Compared to the dipole model, MNE does 
produce source distributions that are fairly smeared.      

Applications of Current Estimates to Spontaneous Oscillatory Activity 

 In an attempt to compare different techniques developed to localize oscilla-
tory sources, Liljestrom et al. (  2005  ) tested three different methods using 
simulated and measured data. The methods tested were dipole models  of 
bandpass-fi ltered data, MCE in the frequency domain, and Dynamica 
Imaging of Coherent Sources (DICS, see Chapter 9). The study showed that 
all three methods performed well when identifying the sources of the domi-
nant spontaneous rhythms (the alpha and mu rhythms). As for modeling 
event-related fi elds, dipole modeling had the disadvantage in that during the 
fi tting procedure, operations such as manually selecting a group of sensors 
had to be performed. DICS proved better than MCE when separating nearby 
sources. 

 The following example addresses the modulation of oscillations in the 
beta band by benzodiazepines. From clinical EEG research it is well known 
that beta oscillations increase in power if a patient has been administered 
benzodiazepine. The pharmacologically induced beta oscillations have a fron-
tal EEG distribution; however, it is not known where the sources accounting 
for the beta increase are localized. In a study by Jensen et al. (  2005  ), spontane-
ous MEG data were measured before and after administration of benzodiaz-
epine in 8 subjects.  Figure  7–11A   shows the spontaneous power spectra for 
sensors over the central band. Note that (1) the power in the beta band 
increased dramatically with benzodiazepine, and (2) the beta power decreased 
in frequency. Given that the frequency peaks in the 8 subjects varied from 13 
to 23 Hz, it was essential to calculate the current estimates in each subject with 
respect to the individually dominant beta frequency peaks.  Figure  7–11B   
shows the grand average of the MCEs before and after the administration of 
benzodiazepine. The MCEs were calculated in each subject with respect to a 
spherical head model fi tted to the individual brain surfaces. The current esti-
mates were then projected onto the surface of a standard brain, and averaged 
across subjects. The identifi ed sources were also mapped to structural MRI in 
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single subject. 
Reproduced from Jensen et al. ( 2005).
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the individual subjects. As seen in the example in  Figure  7–11C  , the beta 
sources were located in the sensorimotor cortex around the central sulcus. In 
conclusion, this study shows that the increase in beta-band oscillations with 
benzodiazepine can be accounted for by sources in sensorimotor cortex. Prior 
to performing the MCE analysis, it was essential to fi rst calculate the power 
spectra in each subject in order to identify the peak frequency of the beta 
oscillations.      

Beamforming Techniques Applied to Induced and 
Prestimulus Oscillatory Activity 

 The beamforming approach has proven successful in localizing oscillatory 
brain activity in numerous studies (Hillebrand & Barnes,   2005  ; Bauer et al., 
  2006  ; Gaetz & Cheyne,   2006  ; Medendorp et al.,   2006  ; Osipova et al.,   2006  ; 
Jokisch & Jensen,   2007  ; van Dijk et al.,   2008  ). We will here present a few 
examples demonstrating the capabilities of the method. The fi rst study is on 
gamma activity induced by long-term memory recall (Nieuwenhuis et al., 
  2008  ). The participants learned to associate a face to one of eight locations, in 
two types of training schemes. In the fi rst scheme (stabilized), the training 
was distributed over a week. In the second scheme (labile) the training was 
done in one block on the day of the recall session ( Figure  7–12a  ). During the 
recall session, only the faces were presented and subjects were asked to move 
each face to the remembered location with a joystick.  Figure  7–12b   demon-
strates that strong posterior gamma activity was elicited in response to the 
presentation of the face. Using the beamforming approach, subjected to data 
from a 100 ms sliding time window, it was possible to track spatiotemporal 
progression of the gamma activity. The DICS approach was used, calculating 
the induced power in the frequency domain. The gamma activity was mapped 
onto the individual subject’s structural MRI. The individual brains were then 
morphed to a standard brain, and the induced activity averaged across sub-
jects. As seen, the gamma activity was fi rst induced in early visual areas and 
then progressed to higher order areas, including parietal cortex. When com-
paring the labile to the stabilized condition, stronger gamma activity was 
observed in visual areas ( Figure  7–12c  ). Note that  Figure  7–12c   represents a 
statistical map of the difference: using a randomization cluster technique, the 
statistically signifi cant activity across subjects was identifi ed and illustrated. 
This approach corrects for multiple comparisons over the grid points.  

 The beamforming approach also allows for identifying prestimulus 
induced oscillatory activity. In the example in  Figure  7–13  , visual stimuli were 
presented at detection threshold (van Dijk et al.,   2008  ). The prestimulus 
activity that was present just prior to the onset of the visual stimuli was then 
analyzed. It was found that stronger alpha activity was associated with a 
decrease in detection performance ( Figure  7–13b  ). The beamforming 
approach allowed for identifying the alpha activity to the parieto-occipital 
cortex. As mentioned in the theory section, the beamforming approach is 
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Figure 7–12 . The beamforming approach applied to localize sources of 
gamma activity during long-term memory recall. (a) Subjects were trained 
on associating a face to one of eight locations. Two training schemes 
were applied. In the ‘stabilized’ scheme, associations were training over 
a week, and in the ‘labile’ scheme, training was done at the day of recall. 
(b) Strong induced oscillatory gamma activity was observed over posterior 
brain regions. The activity could be tracked to start in early visual areas, 
and then it progressed to parietal regions. (c) The sources representing 
the difference in gamma activity were localized to early visual areas. The 
colored regions indicate statistically signifi cant differences, corrected for 
multiple comparisons using a cluster-randomization approach. 
Reproduced from Nieuwenhuis et al. ( 2008).
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based on constructing spatial fi lters for each grid point of the discretized brain 
volume. These fi lters can also be used to extract the activity from individual 
trials. This is done in  Figure  7–13c,   in which the signal trial, alpha power, was 
derived for the parieto-occipital region. The trials were then sorted in four 
bins according to alpha power, and the hit rates were calculated for each bin. 
These fi ndings confi rm that hit rate decreases with an increased alpha power 
produced in the parieto-occipital sulcus.        

(a)

Prestimulus
2.5 – 3.5 s

0.20

0.10

P
ow

er
 [(

fT
/c

m
)2 /

H
z]

Stimulus
16 ms

misses
hits

0

1.2

1.1

1.0

N
or

m
al

iz
ed

 H
it 

R
at

es

0.9

0.8
1 2 3 4

Power [Quartiles]

p 
=

 0
.0

24

p 
=

 0
.0

01

5 10 15 20 25
Frequency (Hz)

Posterior (Rα)

Rα

Response
< 700 ms

Mask
100 ms

(b)

(c)

Figure 7–13 . The beamforming approach used to localize oscillatory pre-
stimulus activity. (a) For the visual stimuli, a smaller disc was superimposed 
on a larger disc with a slightly different gray level. Subjects were asked 
to detect if there was a difference in gray level or not. (b) Posterior pre-
stimulus alpha activity was stronger for the detected stimuli. The sources 
representing the difference were identifi ed to parieto-occipital cortex. 
(c) A spatial fi lter also based on beamforming was used to extract the 
single trial alpha power. The trials were sorted in four bins according to 
alpha power, and the hit rates were calculated for each bin. The hit rate 
decreased systematically with alpha power. 
Reproduced from van Dijk et al. ( 2008).
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      Table 7–1  An overview of the software packages available for performing 
current estimates and beamforming. Please refer to the respective software 
web pages for further information.  
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Practical Concerns 

 There are both commercial and free software packages available for calculat-
ing current estimates and beamformer. Below, fi nd Table 7–1 summarizing 
the various software packages. It should be mentioned that each package has 
different features, making if diffi cult to directly compare the different meth-
ods. Nevertheless, when choosing a software package users are encouraged to 
read publications related to the experiment(s) in which the actual the soft-
ware has been applied. This will provide insight into whether the software is 
suitable to answer a given question.     

Summary

 In this chapter we have described several approaches for constructing distrib-
uted representations of source activity. A common advantage of the different 
estimation methods is that the resulting distributed representations can be 
morphed onto a standard brain, and subsequently averaged across subjects. 
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This makes the approaches convenient for modern-day cognitive neuroimag-
ing studies, which typically rely on grand averages across 10 to 30 subjects. 
When it comes to the modeling of event-related fi elds, MCE or MNE estimates 
of distributed source models are typically the favored approach. The current 
estimates allow for tracking the evoked activity over time. For the modeling 
of oscillatory brain activity, the beamforming approach has been shown to 
produce robust results, and has proven successful for characterizing induced 
oscillatory activity in numerous studies. In practice, beamforming requires a 
good estimate of the data cross-covariance or cross-spectral density matrix, 
and is typically less suitable for analyzing evoked responses. While beamform-
ing so far works reasonably well for characterizing activation differences 
between conditions, both the underlying spatial fi ltering method and the sub-
sequently applied statistical techniques could benefi t from further refi nement 
(Sekihara et al.,   2004   and   2008  ). In particular, statistical comparisons of the 
difference in activity distributions could be improved, in order to appropri-
ately deal with type–1 statistical errors over grid points in relation to the spa-
tial correlations stemming from the source estimation.       

Notes

    1   It is important to point out that in the context of beamforming, the terms 
“spatial” and “location” do not in the fi rst instance refer to the 3-dimen-
sional space of the brain volume and the points within. What is meant is the 
N-dimensional measurement space defi ned by the sensor array, in which 
the vector representations of the scalp fi eld patterns of all sources within the 
brain volume happen to defi ne a point.   

    2   Here, the term “accuracy” does not exclusively refer to the quality of the 
electromagnetic volume conductor model used to compute the columns of 
the leadfi eld matrix  G . The fi eld patterns of spatially extended sources (e.g., 
locally or bilaterally synchronized neuronal activity), which effectively com-
prise dipole sources at several grid locations (and orientations) with essen-
tially the same—and hence highly correlated—activation time courses, are 
not accurately described by the fi elds of source at individual grid locations. 
Thus, spatially extended sources, in fact, violate both of the fundamental 
assumptions underlying the beamforming approach.   

    3   This is not a trivial problem, since it requires not only a concrete and precise 
defi nition of what the noise term refers to in Equation (7–1), and what are 
its statistical properties, but also necessitates the use of ancillary methods for 
estimating the (brain) signal and noise-subspace-component contributions 
to the cross-covariance matrix. Poor choices or estimates of the noise model 
invariably distort the amplitude estimates for neuronal sources.   

    4   Alternatively, the noise-normalized current distributions for the conditions 
could have been calculated and then subtracted.         
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Introduction 

 Independently, different brain imaging methods provide compromised 
spatial and temporal resolutions. For example, anatomical MRI provides 
highly accurate images of the individual brain anatomy, but does not convey 
information about the dynamically changing patterns of brain activity. In 
functional imaging, fMRI is temporally limited by the slow time course of the 
hemodynamic response, but can provide a spatial sampling on a millimeter 
scale (Belliveau et al.,   1992  ; Kwong et al.,   1992  ). EEG and MEG, in turn, pro-
vide a temporal resolution of milliseconds, but the localization of sources is 
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more complicated because of the electromagnetic inverse problem. Combining 
information provided by both anatomical and functional MRI with EEG and 
MEG data thus facilitates elucidating the spatial distribution and temporal 
orchestration of human brain activity (Dale et al.,   2000  ; Daunizeau et al., 
  2007  ; Liu et al.,   1998  ). 

 In order to render the solution of the electromagnetic inverse problem 
unique (Helmholtz,   1853  ), several source modeling techniques with different 
constraints have been proposed. In the Equivalent Current Dipole (ECD) 
approach, the activation is assumed to be relatively focal, and thus it can be 
well accounted for by a small number of current dipoles. However, the 
assumption of limited extent of the activity cannot always be justifi ed. 
Furthermore, reliable estimation of the nonlinear dipole location parameters 
becomes prohibitively diffi cult when the number of sources increases. 

 Some of the limitations of the ECD model can be overcome by using a 
distributed source model. In this approach, the locations of a large number of 
dipoles are kept fi xed, and their amplitudes are determined on the basis of the 
measured data. This problem is underdetermined; therefore, additional  a 
priori  constraints are required. In particular, in the  l  

2
  minimum-norm 

estimate (MNE) approach (Hämäläinen & Ilmoniemi,   1984  ), one selects the 
current distribution with minimum power ( l  

2
  norm), while maintaining the 

requirement that the measured data match those predicted by the model. 
This MNE solution was subsequently refi ned to incorporate cortical location 
and orientation constraints (Dale & Sereno,   1993  ). Furthermore, noise nor-
malization has been employed to establish the statistical signifi cance of cur-
rent estimates (Dale, et al.,   2000  ). In accordance with similar approaches 
employed in other functional imaging modalities (fMRI and PET), the result-
ing spatiotemporal estimates are often referred to as dynamic statistical para-
metric maps (dSPMs). Subsequently, a variation of this approach (sLORETA), 
with a different noise normalization factor, was introduced (Pascual-Marqui, 
  2002  ). More focal estimates than those provided by the MNE can be obtained 
by using an  l  

1
 -norm prior; the corresponding minimum-norm solution 

is often called the minimum-current estimate (MCE) (Matsuura & Okabe, 
  1995  ; Uutela et al.,   1999  ). 

 It has been demonstrated that individual anatomical information, 
acquired with structural magnetic resonance imaging (MRI), can be incorpo-
rated into the source localization with the  l  

2
 -norm constraint. In particular, 

the locations of the sources can be constrained to the cortical mantle. with 
their orientations perpendicular to the local cortical surface (Dale & Sereno, 
  1993  ). Such a modeling constraint is motivated by the physiological informa-
tion that the most signifi cant sources of MEG and EEG signals are postsynap-
tic currents in the pyramidal cells on the cortex, and that the principal net 
direction of these currents is perpendicular to the cortical surface (Hämäläinen 
et al.,   1993  ; Okada et al.,   1997  ). Importantly, in MCE, the optimization 
algorithm becomes more straightforward if the orientations of the sources are 
known, and the scalar source amplitudes are estimated subject to  l  

1
  constraint. 
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To this end, the MCE implementation described in Uutela, et al. (  1999  ) used 
the current-source orientations provided by MNE. 

 The fusion of electromagnetic and hemodynamic data is still in its 
infancy. In the presently available modeling methods, a distributed current 
estimate confi ned to the cortical gray matter is usually employed, with a 
stronger  a priori  weighting at locations with signifi cant fMRI activity (Dale 
et al.,   2000  ; Liu et al.,   1998  ). More elaborate methods that attempt to model 
the two data sets jointly under a common framework are also emerging. 
Furthermore, basic studies that aim at understanding the relationship between 
the hemodynamic and electromagnetic signals are ongoing, and will eventu-
ally result in a physiologically motivated rather than a partly heuristic model 
of the coupling between the hemodynamic and electromagnetic data. 

 In this chapter, we will fi rst outline the overall MEG data-processing 
workfl ow, with emphasis on source estimation and incorporation of anatom-
ical information. Thereafter, we provide an overview of analytical methods 
needed in the computation of the minimum-norm solutions, including appli-
cation of minimum-norm solutions in the computation of time-frequency 
representations in the source domain. Next, we will discuss a specifi c work-
fl ow to compute the cortically constrained, distributed source estimates, 
including practical approaches to acquiring and processing the MRI and 
MEG data. Finally, we will discuss a few representative studies where the 
presented methods have been employed.     

The “Workfl ow” of MEG Data Processing 

 In this section we will discuss the overall approach to processing of MEG 
data. One of the purposes of this section is to highlight the role of the corti-
cally constrained minimum-norm solutions in the workfl ow of MEG data 
processing.    

The General Workfl ow 

 A recommended general workfl ow for performing source estimation on MEG 
data is as follows. First, the raw sensor data need to be examined for obvious 
artifacts. Software provided by MEG vendors is generally quite useful for 
scrolling through the data, looking for dead channels, noisy channels, or 
channels showing jumps indicative of trapped fl ux, etc. Artifact-rejection 
software is used to automatically locate many of these defects, but it’s a good 
idea to perform some “spot checking” as well. 

 The spatial pattern of the activity can also be viewed at the sensor array, 
by some form of interpolation from the discrete data at the sensors into a 
smooth color image or a contour map. These types of displays are particularly 
useful as “movies” of patterns over time, observing apparent sources appearing 
and disappearing over the epoch of interest. 
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 With the initial observations completed, more formal noise rejection 
schemes should be applied. Although not always apparent to the user, noise 
rejection often already implies an assumption about the source, so it is indeed 
a fi rst step in source estimation. With noise reduction applied, the sensor data 
can often be more readily observed and sources inferred directly. Some noise 
rejection schemes use a noise-covariance matrix estimated in the empty room, 
i.e., no subject present, as a basis for optimizing the noise rejection algorithm. 
The linear estimation approach presented in this chapter also considers “sub-
ject noise” by incorporating a noise-covariance matrix computed from the 
baseline signals preceding the stimuli in an evoked-response study. If ongoing 
background brain activity is analyzed, this separation of “brain noise” is less 
plausible, and we recommend using the empty room noise-covariance instead. 

 Next, we recommend the class of linear imaging estimators, often referred 
to as “minimum-norm” techniques, that are the emphasis of this chapter. 
These and similar techniques map the sensor data onto dense source grids. 
These grids are almost always based on cortical surfaces, but in the past 
included simple geometrical surfaces and volumes. Nonlinear imaging esti-
mators can also be employed; see  Minimum-current Estimates  in the present 
chapter, and Chapters 5 and 7, for details. 

 Next is the class of adaptive beamformers, such as MUSIC, LCMV, and 
SAM, which select a source model and scan a source grid looking for agree-
ment. The metrics generated by these scans can also be viewed as images, but 
they are more correctly called  pseudoimages  — since they are, more accurately, 
a measure of how underlying models fi t, and therefore only have meaning 
where the measures have local maxima. The beamformer approaches are 
discussed in Chapter 7. 

 From the beamformer scans, we may often be able to discern a simpler 
underlying model of a few dipoles, which can be then be fully fi t using 
maximum-likelihood or maximum- a posteriori  methods, i.e., generalized 
least-squares with priors. The most widely used example is the case of fi tting 
multiple dipoles using least-squares. This and similar techniques are discussed 
in Chapters 5 and 6. 

 The use of cortical constraints on the dipole locations can be quite useful 
for interpretation, but as a sanity check it is also good practice to test the data 
with an unconstrained dipolar model, i.e., one that does not require that the 
locations be on cortex. If these solutions are only shifted slightly from the 
cortical surface, then reasonable interpretations are that the forward model is 
somewhat inaccurate, or that the source is extended and is best represented 
by a dipole located nearby. 

 A gross shift, however, to a location outside the head, would be a warning 
that you have external contaminants not properly handled in the noise model/
rejection. Similarly, a gross shift to elsewhere in the head (such as deep) is a 
further warning of ambiguities in the models, which are often due to edge 
effects of the helmet array. Another reason for using unconstrained dipole 
searches is that the source being modeled is not cerebral, but rather an external 
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contaminant such as an eye movement or blink. In special cases where the 
signal-to-noise ratio is high, it is also possible to detect signals from deep 
structures outside the cortex. 

 In each successive step, the parameters can be tested for signifi cance using 
uncertainty measures, to help simplify the model. Signifi cance is dependent on 
the defi nition of noise, which is often defi ned in the fi rst part of this process.     

Imaging and Dipole Modeling 

 As reviewed in Baillet et al. (  2001  ) and discussed in Chapter 5, source estima-
tion may be broadly categorized as “imaging” or “parametric” — a somewhat 
artifi cial distinction, since the images themselves are functions of parameters, 
and “pseudoimages” can be generated from parametric scans. As we discussed 
above, a general workfl ow would indeed use both techniques. In the imaging 
techniques, we generally restrict ourselves to methods that map sensor data to 
the cortical surface. Typically we are mapping roughly 200 measurements 
onto roughly 10,000 cortical imaging points, a severely underdetermined 
problem. In order to solve this ambiguous problem, strong priors must be 
imposed to arrive at a unique solution, which can then be visualized on 
the cortical surface, possibly infl ated to make the activity in the sulci readily 
visible. 

 This imaging-solution method goes by a variety of names and approaches, 
such as minimum-norm least-squares with weighting and regularization, 
generalized least-squares with priors, maximum  a posteriori  (MAP) or 
Bayesian estimation with Gaussian priors, linear minimum mean square, 
LORETA, or LAURA, to name a few. See Mosher, Baillet, & Leahy (  2003  ), for 
a review of the mathematical approaches that all lead to the same general 
imaging model. 

 We note in passing that other imaging estimators can be derived by itera-
tions of the priors, other norms, or other non-Gaussian priors. For instance, 
see the MCE discussed below and in Chapter 7. 

 Given that we must impose such strong priors, we might reasonably 
question the need to apply these techniques. One answer lies in the need to 
better interpret complex sensor data. For example, in the standard 10–20 EEG 
array, a presentation of results from the “Cz” sensor is universally understood 
by any researcher. But today’s arrays are denser, with different gradiometric 
and differential designs and adaptive noise schemes. In many instances it is 
no longer simple to directly interpret sensor patterns. The imaging techniques 
incorporate the forward model directly into the transformation onto the 
cortex, such that many of the sensor and machine effects are suppressed in the 
presentation. The opportunity exists, therefore, to create cortical images that 
are “site independent,” i.e., protocols are that are more reproducible among 
research instruments and sites, once the forward models have been factored 
out (Weisend et al.,   2007  ). 
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 True physical and physiological insight into neural activity is diffi cult, 
however, with such strong imaging priors on thousands of parameters. The 
signifi cance tests help identify “regions of interest” (ROIs), which are “extended” 
sources constrained to the cortical surface. The goal is to try to simplify the 
number of parameters that defi ne these ROIs. The simpler models are generally 
easier to interpret; for example, a single equivalent current dipole leads to a 
reasonable interpretation that neural activity is focused around the location. 

 Such low-order parametric models are diffi cult to generate directly when 
the pattern of activity is complex and extends for a long period of time. 
The statistical parametric maps of images and beamformer scans are inter-
vening steps between imaging and dipole modeling. The statistical maps 
help identify regions of interest in the image that may be replaced with sim-
pler patches, or even dipoles. The beamformer techniques generally require 
statistical assumptions about the temporal activity — e.g., linear or statistical 
independence — but then allow a more direct scan of the cortex for simplify-
ing models.      

Theoretical Background 

 This section provides technical details of the analytical methods involved in 
the computation of cortically constrained distributed source estimates. Our 
discussion includes both the  l  

2
  minimum-norm estimates (MNE) and the 

more focal  l  
1
  minimum-current estimates (MCE). We also apply the compu-

tational methods to frequency-domain analyses, in particular to the calcula-
tion of time-frequency representations and phase-locking values. While this 
section contains some essential mathematical details of the algorithms, it is 
not necessary for the reader to go into the depths of this section to understand 
the workfl ow and the section titled  Practical Implementation of Cortically 
Constrained Estimates , below.    

Minimum-Norm Estimates (MNE/h2) 

 Under the quasi-static approximation of Maxwell’s equations (Hämäläinen 
et al.,   1993  ), the measured MEG/EEG signals and the underlying current 
source strengths are related by a linear transformation:

   ,= +Y AX N     (8–1)  

 where  Y  is an  m -by- t  matrix containing measurements from  m  sensors over  t  dis-
tinct time instants,  X  is a 3 n -by- t  matrix denoting the unknown time-dependent 
amplitudes of the three components of  n  current sources,  A  is the gain matrix 
representing the mapping from the currents to MEG/EEG signals, i.e., the 
solution of the forward problem, and  N  denotes noise in the measured data.  
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 The most feasible assumption is that  N  is Gaussian with a spatial covari-
ance matrix  C , to be estimated from the data. If we further assume that the 
source amplitudes have a Gaussian  a priori  distribution with a covariance 
matrix  R , we obtain the Bayesian maximum  a posteriori  (MAP) estimate or  l  

2
  

minimum-norm solution, linearly related to the measurements, as (Dale & 
Sereno,   1993  )

  ( ) ( )1 1MNE 2 2 2 ,T T T Tλ λ λ
− −− −= + = + =X RA ARA C Y RA ARA C Y WY     (8–2)  

 where   λ   2  is a regularization parameter to avoid magnifi cation of errors in data 
in the inversion, and the superscript  T  indicates the matrix transpose.  

 We have also implicitly assumed that  C  and  R  are time-independent, 
and that there are no temporal correlations. In the original unweighted 
minimum-norm approach,  R  is simply a multiple of the identity matrix. 
However, there is no direct physiological information to support this particu-
lar selection of source priors. Rather, the choice is motivated by the simple 
computational realization of the estimation procedure. It is also seen from 
Equation   (8–2)   that regularization corresponds to multiplying the source 
covariance matrix by a constant factor   λ   −2 . 

 Equation   (8–2)   can be also viewed as the analytic solution of an optimi-
zation problem where the cost function is a sum of weighted least-squares 
error between the measured and modeled data, and a penalty term comprising 
the weighted norm of the estimated currents, i.e.,

  ( ) ( ){ }2 21 2 1
MNE argmin

T T

FF
λ− −= − − +

X

X Y AX C Y AX X R X     (8–3)  

 where  F
⋅    indicates the Frobenius norm, a generalization of the  l  

2
  vector 

norm, of the enclosed matrix.  
 In a later section we will consider another source prior, namely the 

 l  
1
 -norm prior, which corresponds to a double-exponential probability distri-

bution function with zero mean, as discussed in Uutela et al. (  1999  ). This 
prior leads to a cost function in which the penalty term is the sum of the abso-
lute values of the source currents, while the data error term is identical to that 
in MNE. The optimal solution of this problem is called the minimum-current 
estimate (MCE). The two approaches can thus be regarded as two variants of 
distributed source modeling techniques with distinct prior assumptions. 

 In Equation   (8–2)  , the current orientations have not been constrained. 
 A priori  orientation information can be easily incorporated by replacing the 
gain matrix by

   fixed ,= ΘA A     (8–4)  

 where  Θ  is the 3 n -by- n  matrix containing the unit vectors pointing to the 
directions of the currents.  

 If the direction cosines of the  k th dipole are  c  
kx

 ,  c  
ky

 , and  c  
kz

 , the  k th column 
of  Θ  reads
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   � �
3( 1) 3

(0 0 0 0) .T
k kx ky kz

k n k

c c c
− −

Θ = … …     (8–5)   

 Instead of applying Equation   (8–2)   directly, it is often convenient to use 
an equivalent formulation

   MNE 2 1( ) ,T T λ −= + =X RA ARA I Y WY� � � � � �     (8–6)  

 where 

   
1/2

1/2

−

−

=

=

Y C Y

A C A

�

�
    (8–7)  

 are the spatially whitened data and gain matrix, respectively.  
 The noise-covariance matrix of the whitened data is an identity matrix, as 

indicated by the comparison of Equations   (8–2)   and   (8–6)  . The whitening pro-
cedure also naturally leads to the choice   λ   2   =    ζ   2  tr( ÃRÃ   T  )/ m , where   ζ   2  denotes 
the inverse of the SNR of the whitened data, to bring the regularization param-
eter to the correct scale even in cases where the measurements have different 
units of measure — which is the case when planar gradiometer and magnetom-
eter data, or MEG and EEG data, are combined in a single estimate. 

 The sensitivity of MEG sensors is not uniform across cortical locations 
(Hillebrand & Barnes,   2002  ). In fact, it follows generally from Maxwell’s 
equations that the lead fi elds of both MEG sensors and EEG electrodes have a 
maximum at the border of the source area (Heller & van Hulsteyn,   1992  ). 
Because of the minimum-norm penalty, both MNE and MCE solutions are 
biased to superfi cial locations, to which the sensors are most sensitive. It is 
possible to compensate for this tendency by modifying our diagonal source-
covariance matrix  R  by scaling the entries by a function increasing monotoni-
cally with source depth, e.g., a norm of the corresponding column of the gain 
matrix  A  (Fuchs et al.,   1999  ; Ioannides et al.,   1990  ; Lin, Witzel, et al.,   2006  ).     

Noise-Normalization

 In the above, Equations   (8–2)   and   (8–6)   provide the best-fi tting values of the 
current amplitudes or, in Bayesian view, the maximum  a posteriori  (MAP) 
estimate. To make the resulting maps conceptually similar with those calcu-
lated in other widely used functional imaging modalities (fMRI and PET), 
Dale et al. (  2000  ) proposed that current values should be converted into 
dynamic statistical parametric maps. To this end, we need to consider the 
variances of the currents

   ( ) ( )2 .T T
k kk kk

w = =WCW WW� �     (8–8)   

 For fi xed-orientation sources, we now obtain the noise-normalized activity 
estimate for the  k th dipole and  p th time point as

   
MNE
,

,
k p

kp

k

X
z

w
=     (8–9)  
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 which is  t -distributed under the null hypothesis of no activity at the current 
location  k . Since the number of time samples used to calculate the noise-
covariance matrix  C  is quite large (more than 100) the  t  distribution approaches 
a unit normal distribution, i.e., a  z -score.  

 If the orientations are not constrained, the noise-normalized solution is 
calculated as

   
( )( )

( )

3 2

3 1 ,
1

3
2
3 1

1

.

MNE
k q p

q
kp

k q
q

X

F
w

− +
=

− +
=

=
∑

∑
    (8–10)   

 Note that under the null hypothesis,  F 
kp

   is  F- distributed, with three 
degrees of freedom for the numerator. The degrees of freedom for the denomi-
nator is typically large, again depending on the number of time samples used 
to calculate the noise-covariance matrix. 

 As discussed in Dale et al. (  2000  ), the noise-normalized estimates resulting 
from the transformations given in Equations   (8–8)   and   (8–9)   have a smaller 
depth bias than the MNEs obtained without applying depth weighting. 
Furthermore, the point-spread function, i.e., the image of a point current 
source, is more uniform in space in the noise-normalized estimate than in the 
MNE. 

 Another variation of the noise-normalized MNE is the sLORETA 
(Pascual-Marqui,   2002  ):

   ( ) ( )2 2 2( ) ( )T T T T
k kk kk

w λ λ− −= + = +W C ARA W W I ARA W
	 � � � �     (8–11)   

 From this expression it can be clearly seen that the sLORETA noise-
normalization factor differs from that given in Equation   (8–8)   by the addition 
of the term   λ   −2  ARA   T   to the noise-covariance matrix  C . If the  a priori  informa-
tion incorporated in   λ   −2  R  is correct,  C   +    λ   −2  ARA   T   =  C  

d
 , the data covariance 

matrix. It has been shown that, in the absence of noise, sLORETA yields an 
unbiased estimate of the location of the activity (Pascual-Marqui,   2002  ). In 
our experience, under realistic noise conditions the difference between 
sLORETA and dSPM is less dramatic than claimed, as also indicated by our 
recent study on the depth biases of MNE and the two noise-normalized 
estimates (see Lin, Witzel, et al.   2006  ). 

 It is also important to realize that the roles of the MNE and the noise-
normalized estimates are different. The former gives an estimate of the cur-
rent amplitudes in physical units [A/m], [A/m 2 ] while the noise-normalized 
distributions are test statistics to be employed as signifi cance measures. 
Optimally, dSPM or sLORETA and MNE distributions should be used in 
combination so that the signifi cance map is used to delineate the areas of 
activity with high signal-to-noise ratio and, subsequently, MNE is consulted 
for the true current amplitudes at that particular region.     
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Minimum-current Estimates (MCE) 

 In contrast to the MNE, the minimum-current estimate (MCE) employs the 
 l  
1
 -norm as constraint (Matsuura & Okabe,   1995  ; Uutela et al.,   1999  ). The 

latter publication formulated MCE as the solution of the optimization 
problem:

   ,

n
MCE
p ,

X i 1

MCE
p

argmin  

subject to  ,

i p

i pi

rp r

w X
=

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
=

∑X

Y B X�
    (8–12)  

 where  MCE
pX    is the solution at time point  p ,  w  

i
  are the weights of dipole 

sources, while  ̃Y   
rp

   and  B   
r
   are derived from the measurement data and the 

forward solution for fi xed-orientation sources to implement regularization as 
follows.  

 As before, let  Θ  be the  n -by-3 matrix containing the source orientations 
and compute the singular-value decomposition

   .TΘ = ΠA U V�     (8–13)  
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 where  U   
r
   is composed of the fi rst  r  columns of  U .  

 This method of eigenvalue truncation in regularization was introduced 
to MCE by Uutela et al. (  1999  ), and it is closely related to using the regulariza-
tion parameter   λ   2  in Equations   (8–2)   and   (8–6)  . It is easy to show that the 
latter corresponds to weighting of the eigenvalues with a smooth transition 
function instead of the step function implied by Equation   (8–12)  . 

 The above implementation of MCE requires the knowledge of the source 
orientations, to be incorporated by the matrix  Θ  in Equations   (8–13)   and 
  (8–14)  . In principle, it is also possible to implement MCE without requiring 
 Θ  to be specifi ed fi rst. However, the solution of this minimization problem is 
numerically more demanding and, therefore, we prefer using the original 
MCE formulation proposed by Uutela, et al. (  1999  ). The weights for currents, 
 w 

i
   in Equation   (8–12)  , are usually chosen as the Euclidean norms of 

the columns of  A  Θ  to guard against the superfi cial bias mentioned above. 
The orientation matrix  Θ  can obtained either from an initial MNE using one 
of the orientation constraints described under  Acquisition and Processing of 
Anatomical MRI Data , below. The magnitudes of the dipoles, which satisfy 
Equation   (8–12)  , can be estimated using Linear Programming (Moon & 
Stirling,   2000  ). 
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 An interesting variation of the cortically constrained MCE called VESTAL 
was introduced by Huang et al. (  2006  ). The most important feature of this 
approach is that the usually discontinuous MCE source waveforms are pro-
jected to the subspace spanned by the most signifi cant left singular vectors of 
the MEG data matrix  Y . As a result, one obtains smooth waveforms resem-
bling those produced by the  l  

2
  minimum-norm approach, while preserving 

the focal quality of the  l  
1
 -norm solutions. 

 Recent work by Ou et al. (  2009  ) addresses the same problem using a mixed 
 l  
1
  l  
2
 -norm approach. At each location, the source waveform is expressed as a 

linear combination of orthogonal basis functions, which may be determined 
from the SVD of the data like in VESTAL. An  l  

2
  norm is applied among the 

coeffi cients of these basis functions to promote contributions of multiple 
functions at each location, while an  l  

1
  norm among different locations encour-

ages sparsity. This approach is computationally more effi cient than VESTAL 
and is more principled because the regularized cost function to minimize is 
explicitly stated.     

Computation of the Gain Matrix 

 In the calculation of the gain matrix  A , a common practice is to assume dipolar 
sources in a dense grid covering either the entire brain or the cortical mantle. 
In this approach, the current estimates are dipole amplitudes, whose unit is 
[Am]. However, a more appropriate quantity to consider is the volume or 
surface dipole density given in [Am/m 3 ] or [Am/m 2 ], respectively. In case of 
cortically constrained currents, transformation to current density representa-
tion requires an approximation for the area of the cortical patch corresponding 
to each source location. We compute these patch areas using detailed cortical 
geometry information, as will be described below. The transformation is 
accomplished by multiplying each column of a ‘dipolar’ gain matrix by the 
corresponding patch area. 

 We have also assumed that the fi nite size of the pick-up coils of the MEG 
instrument and their confi guration (magnetometers or gradiometers), as well 
as the effect of noise-compensation methods possibly applied to the MEG 
data, have been accounted for in the calculation of  A . The size and confi gura-
tion of the pick-up coils can be taken into account by approximating the sum 
(or difference) of the magnetic fl uxes threading the elements of the pickup 
coil loops as a weighted sum
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k kp kp kp
p

y w B r e
=

= ⋅∑
� �

    (8–15)  

 where  w 
kp

   are weight factors specifi c for sensor  k ,  kpr
�

   are the integration points, 
 ê 

kp
   are the unit normal vectors describing the orientation of the coil at each of 

the integration points, and $\vec B(\vec r_{kp})$ is the magnetic fi eld gener-
ated by the current dipole of interest at $\vec r_{kp}$.  
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 In our software packages to be discussed under  Examples of Available 
Software , we have implemented Equation   (8–15)   for the coil geometries found 
in the commonly used MEG systems. We have found that depending on the 
coil sizes, one to eight integration points in each coil loop are necessary to 
ensure suffi cient accuracy. If the boundary-element method (BEM) is 
employed in the forward solution, the calculations can be conveniently 
arranged so that the number of integration points ( N 

k
  ) has a very modest 

effect on the overall computation time. 
 If the signal-space projection method (Tesche et al.,   1995  ; Uusitalo 

& Ilmoniemi,   1997  ) has been employed for noise compensation, the same 
projection operator has to be applied to both the data and the forward 
solution:  A  =  PA  

orig
 , where  A  

orig
  is the unprojected gain matrix and  P  is the 

projection operator applied to the data. If reference sensors have been used to 
reject external disturbances, the measured signals  Y  are linear combinations 
of the data from the primary (helmet) sensors and reference sensors. Once the 
confi gurations of both sensor types and the noise compensation matrix 
employed are known, the effects of the noise compensation can be taken into 
account to compute the effective gain matrix:  A = A  

pri
  −  M  

comp
  A  

ref
 , where  M  

comp
  

is the noise compensation matrix whereas  A  
pri

  and  A  
ref

  are the gain matrices 
computed for the primary and reference sensors, respectively. Both of these 
noise compensation schemes are integrated, e.g., in the software packages 
presented in  Examples of Available Software.      

fMRI Constraints 

 The hemodynamic changes detected by fMRI are associated with changes of 
underlying neural activity, i.e., electrical currents fl owing in and around the 
neurons. Therefore, it has been proposed that MEG and fMRI can be used 
together to obtain activity estimates with higher temporal and spatial resolu-
tion than provided by one modality alone. This joint analysis can be per-
formed at several levels: (1) Side-by-side comparison of fMRI activity with 
MEG source estimates; (2) Using the fMRI information as a prior in MEG 
source estimation (Dale et al.,   2000  ); (3) Joint analysis where fMRI and MEG 
data are handled on equal footing (Daunizeau et al.,   2007  ); (4) Neural model-
ing approach where, in addition to fMRI and MEG, a plausible model of the 
neural ensembles and their connections is taken into account (David et al., 
  2006  ; Riera et al.,   2005  ;   2006  ). 

 While several papers exist comparing fMRI activity with MEG source 
estimates using identical or similar experiments in the two modalities, com-
bined modeling strategies are still emerging. Dale et al. (  2000  ) describe a 
method to include fMRI as an additional constraint: the  a priori  variance of 
sources is decreased at locations with no signifi cant fMRI activity. An optimal 
weighting ratio of 10:1 between active and inactive cortical locations has been 
suggested by simulation studies (Liu, et al.,   1998  ). 

 While this approach is technically sound and can be understood in the 
Bayesian inference framework, it does not use a physiologically motivated, 
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detailed model linking the electrical and hemodynamic activity. A recent 
comparison of hemodynamic signatures and neural activity in the soma-
tosensory cortex of a rat indicates that their relationship is strongly nonlinear 
(Devor et al.,   2003  ). This type of data will be eventually incorporated into 
joint estimation models where both fMRI and MEG are included simultane-
ously, rather than employing one modality as a prior in the analysis of another; 
see,  e.g. , J. Riera et al. (  2005  ).     

Time-frequency Analyses 

 In recent years there has been a lot of interest in frequency-domain analyses 
of MEG data. This includes calculation of power and coherence spectra, 
time-frequency representations, and phase-locking indices. These topics are 
covered in detail in other chapters of this book. Here, we briefl y describe how 
time-frequency analyses can be conducted in the source domain using the 
linear minimum-norm solutions (Lin et al.,   2004  ). 

 For localization of oscillatory neuronal activity we will fi rst calculate the 
time-frequency representation (TFR) for single-trial MEG data. To this end, 
each single trial  ( )( )k

ps t    for each sensor  p  is convoluted with a Morlet wavelet, 
which is a complex-valued sinusoidal oscillation at central frequency  f  
weighted with a Gaussian envelope:  ( ) ( ) ( )2 2, exp /2 exp 2tw t f A t i ftσ π= −   . In 
our applications we have used wavelets whose width is typically between 
3 and 8 cycles. For each sensor  p  we thus obtain a complex TFR for trial 
 k :  ( )( ) ( ) ( )( ), ,k k

p pt f w t f s dτ τ τ= −∫y    with both amplitude and phase informa-
tion. Using a minimum-norm estimate inverse operator  W , we can map the 
TFR from MEG sensor space onto the cortical surfaces:  ( )( ) ( )( ), ,k kt f t fΨ = Wy   , 

where  ( ) ( ) ( )( )1

Tk k k
n= …y y y   . 

 Given the TFR on cortical surfaces, the following quantities can be calcu-
lated at each source location respectively: (1) averaged power, which is the 
modulus squared of ψ( t, f ) computed from the average of all trials; (2) induced 
power, which is the average of the squared moduli of ψ( t, f ) across trials; and 
(3) Phase-Locking Value (PLV), which is a measure of phase difference con-
sistency across trials with respect to a reference signal:  ( ) ( )ki tt e ϑθ =   , where 
 ϑ 

k
  ( t ) is the phase difference at time  t  in trial  k  (Lachaux et al.,   1999  ) and  ⋅    

denotes the modulus of the average over trials. The reference signal can be a 
waveform time-locked to the onset of the experimental stimulus during  
stimulus-cortical PLV  calculation, or a waveform on the other cortical source 
location for  cortico-cortical PLV  calculations. As shown in  Figure  8–1  , fMRI 
information can further be utilized to improve source-localization accuracy 
of oscillatory activity (Lin et al.,   2007  ;   2004  ).       

Practical Implementation of Cortically Constrained Estimates 

 In this section, we will discuss the workfl ow of computing cortically con-
strained minimum-norm solutions, including information on acquisition 
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of the necessary MRI and MEG data and on crucial computational steps 
involved.    

Acquisition and Preprocessing of MEG Data 

 The use of cortically constrained source estimates has some implications for 
recommended MEG data acquisition practices. Most importantly, reliable 
estimation of the noise-covariance matrix requires that continuous raw data 
are available, as will be discussed in  Estimation of the Noise Covariance Matrix , 
below. Some MEG systems provide a choice between truly continuous and 
epoch-based data acquisition modes. We strongly recommend that the con-
tinuous acquisition mode is employed. This approach makes off-line digital 
fi ltering straightforward, and allows the use of high-pass fi lters with low 
corner frequencies. 

 We also recommend that a generous bandpass is used in the actual data 
acquisition, since the data are invariably fi ltered and re-averaged off line, even 
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Figure 8–1 . A schematic diagram illustrating the process of using raw MEG 
data to calculate the phase locking value (PLV) on the cortical surface 
The yellow and red boxes on the MEG data indicate the baseline period 
and the post-stimulus interval, respectively. Note that an fMRI prior can 
be incorporated into the calculation of the linear inverse operator. For 
details, see text. 
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if on-line averages are usually computed for quality control and initial explor-
atory analyses. We usually employ a highpass at 0.1 Hz or lower in the data 
acquisition. Depending on the system and environmental noise conditions, 
a DC recording may even be feasible. Since the computation of the noise-
covariance matrix is a nonlinear operation, and thus does not commute with 
fi ltering, the off-line averages and noise-covariance matrix estimate should be 
computed with an identical bandpass. If the MEG system provides a choice of 
storing the data with or without noise compensation applied, we have found 
that it is useful to consistently save uncompensated data, and apply software 
noise compensation during the analysis as appropriate. 

 For quality control purposes, optimization of the noise-rejection algorithms, 
and for the computation of a noise-covariance matrix for spontaneous data 
analyses, about a 5-minute continuous record of empty room data without 
subject should be collected before each measurement session, or at least once 
every day.     

Acquisition and Processing of Anatomical MRI Data 

 As described above, a feasible anatomical constraint for MEG and EEG source 
localization is to restrict the source locations to the cortical mantle, extracted 
from the individual subject’s MRI. With modern segmentation methods, a 
representation for the geometry of the cortex can be automatically generated 
from high-resolution 3D MRI data sets. We routinely employ the FreeSurfer 
(Dale et al.,   1999  ; Fischl et al.,   2001  ;   1999  ) and BrainSuite (Shattuck & Leahy, 
  2002  ) software packages to build the triangular cortical surface mesh from 
T1-weighted anatomical 3D-volume MRI data. For example, on the Siemens 
MRI scanners, we employ the MPRAGE sequence and acquire two identical 
data sets to enhance the SNR by averaging. For reconstruction of the inner 
skull, outer skull, and scalp surfaces needed for the MEG and EEG forward 
solutions, and surface-based alignment of the MEG and MRI coordinate 
frames, we often acquire an additional 3D multi-echo FLASH sequence. 
However, for MEG-only modeling the MPRAGE data are usually suffi cient, 
because the outer skull surface is not needed. 

 The principal surfaces generated by FreeSurfer and BrainSuite are the 
pial surface and the gray-white matter boundary; we use the latter to generate 
the cortically constrained source space. In addition to the folded surface, both 
FreeSurfer and BrainSuite also compute infl ated and fl attened representa-
tions of the cortex, which expose the parts of the cortex embedded in the 
sulci. These representations are thus particularly useful for visualizing MEG 
data, which are mainly sensitive to fi ssural activity. FreeSurfer also provides 
an automatic parcellation of the cortex, which can be useful in inquiring 
source waveforms in specifi c regions of interest. An additional benefi t of the 
surface-based analysis is that cortical surfaces can be aligned across individuals 
for computation of group statistics using a morphing procedure in a spherical 
coordinate system (Fischl et al.,   1999  ). 
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 To achieve suffi cient anatomical detail for visualization of the folded cor-
tical mantle, the triangular tessellations of the cortical surface typically consist 
of around 130,000 – 150,000 vertices per hemisphere, corresponding to an 
approximate triangle size of 1 mm. For source modeling, this dense triangula-
tion is typically subsequently decimated to a source space of 7,500 – 10,000 
dipoles. The decimation is motivated by the limited spatial resolution intrin-
sic to the source localization using MEG/EEG, and by practical computational 
effi ciency concerns. However, this simplifi ed source geometry may yield inac-
curate dipole orientations, which do not take into account the orientation 
variation over the patch belonging to each decimated current source location. 
Furthermore, the actual areas of the patches have to be taken into account in 
the calculations to estimate the current density on the cortex. 

 Motivated by the fi nite size of the cortical patches, we advocate three 
different approaches for handling the source orientations (Lin, Belliveau, 
et al.,   2006  ): (1) Using unconstrained orientations with all three current com-
ponents present; (2) Using the loose orientation constraint (LOC) whereby 
the orientations are constrained more or less strictly to the estimated orienta-
tion of the cortical normals, depending on the curvature of the cortex at the 
location of interest; (3) Using orientations which are strictly constrained by 
the estimated cortical normals at the source space points. In practice, the 
third approach often yields current estimates which contain spurious isolated 
spots of activation, most probably due to the fact that the normals at the rela-
tively sparsely spaced source locations do not account for the variation of the 
normals within the cortical patch corresponding to the source space point. As 
discussed in Lin, Belliveau, et al. (  2006  ), full implementation of the LOC 
approach requires computation of cortical patch statistics (CPS). This com-
putation involves the use of the Dijkstra search (Bertsekas,   2000  ) to delineate 
the cortical patches. An analogous approach using cortical patches as elemen-
tary sources instead of current dipoles, with properties similar to our LOC 
procedure, also has been introduced (Wagner et al.,   2000  ). In addition, a 
recent publication introduces the concept of spatial basis functions on cortical 
patches, to incorporate local geometrical information with a relatively small 
total number of unknown parameters (Limpiti et al.,   2006  ).     

Alignment of the MEG and MRI Coordinate Frames 

 In order to employ MRI and MEG data together, it is necessary to bring the 
two data sets into a common coordinate frame. For this purpose, 3 – 5 small 
head-position indicator (HPI) coils are usually attached on the head surface, 
and their locations as well as additional head surface points are digitized prior 
to the MEG acquisition in a coordinate frame defi ned by fi ducial landmarks. 
During the MEG measurement, current is fed to the coils either intermit-
tently (see, e.g., Fuchs et al.,   1995  ) or continuously (Uutela et al.,   2001  ), to 
compute their locations with respect to the sensor array. If a continuous 
head-position measurement is used, it is possible to take the head movements 
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into account by using minimum-norm based interpolation techniques, for-
ward model averaging, or the signal-space space separation (SSS) algorithm 
(Taulu et al.,   2005  ). 

 One possibility to align the MRI and MEG head coordinate frames 
involves attaching MRI-visible markers to the fi ducial locations, to be able to 
identify them easily from the MRI data. However, this approach has the 
potential of errors because the placement of the MRI markers might not be 
accurate and, furthermore, several investigators may share the same subject 
base and may prefer slightly different choices of fi ducial locations. Therefore, 
most MEG groups have abandoned the use of markers, but instead rely on the 
ability to identify the fi ducials from the MRI data. The correctness of the 
alignment can be confi rmed by displaying the digitized scalp surface points 
overlaid with the MRI slices. 

 Since it is relatively straightforward to construct an accurate scalp surface 
triangulation from high-resolution MRI data, it is also possible to identify the 
fi ducial locations directly from the MRI-based scalp surface reconstruction. 
In addition, the scalp surface points can be used to refi ne the fi ducial-
based initial alignment either manually or automatically, using the iterative 
closest-point algorithm (Besl & MacKay,   1992  ) if a MRI-based scalp surface 
triangulation is available.     

Estimation of the Noise Covariance Matrix 

 The approaches introduced above employ a noise-covariance matrix estimated 
from the data. As indicated by the cost function in Equation   (8–3)  , the incorpo-
ration of the noise covariance means that in noisier signal-space directions, mis-
matches between the measured data and those predicted by the source estimate 
receive a smaller weight when the optimal current distribution is determined. 

 Depending on the problem, different types of data can be employed to 
estimate the noise covariance. The most conservative choice is to employ 
empty-room data. The interpretation of this approach is that all brain signals 
are considered to be of interest, and only the environmental and instrumental 
noise sources are considered. Calculation of this type of covariance matrix 
requires that a measurement of empty-room noise without a subject is avail-
able. For the estimation of such a covariance matrix, we usually employ about 
fi ve minutes of data to guarantee a reliable estimate. 

 Another possibility, applicable to evoked-response studies, is to consider 
the baseline data before stimulus presentation as noise, and to estimate the 
noise covariance from the baselines preceding the stimulus presentations. 
Since the baseline of an average typically contains no more than a few hun-
dred samples, it is necessary to employ the individual epochs to compute 
a reliable estimate. We concatenate the individual baseline sections of the 
data after removing the DC offset from them, and use this data set to estimate 
noise. The DC-offset removal eliminates slow epoch-to-epoch baseline 
variations as a source of noise, and thus avoids overestimating the magnitude 
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of noise. A potential confound of this approach is that the baseline periods 
may contain background brain activity originating in the same areas as signals 
of interest. Due to the combination of noise weighting, and the minimum 
norm constraint incorporated in Equation   (8–3)  , the contributions of such 
source distributions are dampened. One possibility to address this issue is 
to compare solutions computed with the empty room and baseline noise 
covariance matrices, and investigate the source waveforms in ROIs showing 
signifi cant activity in the former but not latter. 

 The quality of the estimated noise-covariance matrix can be evaluated by 
plotting its eigenvalues.  Figure  8–2   compares the eigenvalue spectrum of an 
empty room noise covariance matrix to those of two noise estimates com-
puted from baseline periods. It is clearly seen that if enough samples are 
employed in the computation of the noise covariance matrix from human 
data, the eigenvalue spectrum is limited from below by the empty-room esti-
mate. If the number of data points is too small, the eigenvalues fall below the 
empty-room noise — which is clearly unrealistic, falsely indicating a drop in 
the noise level when the subject is present. If the number of data points is 
pathologically small, the eigenvalues may even fall below zero, which is clearly 
incorrect because the noise covariance matrix is theoretically positive defi nite.  

1000
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Figure 8–2 . Comparison of the distribution of the square roots of the 
eigenvalues of three noise covariance matrix estimates: An adequate 
noise-covariance matrix computed from the baseline periods (green); 
A noise-covariance matrix computed from the baseline periods with too-
small number of samples (red); A noise-covariance matrix computed from 
empty room data (blue). An approximate sensor noise level at the measure-
ment bandwidth is indicated by a dashed blue line. For details, see text. 
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 Sometimes there is not a suffi cient amount of baseline-period data avail-
able to compute a reliable noise estimate. In such cases, we have used two 
approaches to remedy the situation: (1) Set the off-diagonal terms of the 
noise-covariance matrix to zero, thereby ignoring the spatial structure of 
the noise; (2) Regularize the noise-covariance matrix by adding a fraction of 
the average of its diagonal elements to each diagonal element, i.e., each sensor 
variance. If the latter approach is employed in a system consisting of different 
types of sensors, e.g., magnetometers and planar gradiometers, it is recom-
mended that averages are calculated for each sensor type separately, and a 
fraction of the average corresponding to the sensor type is added to its 
variance for regularization.     

Examples of Available Software 

 Our laboratories have independently developed two analysis streams, which 
implement the tools for MRI segmentation and geometric modeling as well as 
for processing MEG data to compute cortically-constrained source estimates. 
One of our analysis streams uses the BrainSuite software developed at the 
University of Southern California (Shattuck & Leahy,   2002  ) for MRI process-
ing, while the other relies on the FreeSurfer package created at MGH (Dale, 
et al.,   1999  ; Fischl, et al.,   2001  ;   2004  ;   1999  ). Correspondingly, the two MEG 
analysis packages are called BrainStorm and MNE. BrainStorm is implemented 
as a Matlab toolbox and includes implementation of a wide variety of source 
estimation algorithms. The MNE software employs compiled C-code and 
includes a wealth of command-line tools as well as graphical user interfaces for 
visualizing the results. In addition, the MNE software includes basic signal pro-
cessing tools and fl exible off-line averaging capabilities. Development of new 
algorithms is supported by a Matlab toolbox, which gives access to all interme-
diate and fi nal results of the analyses. Our groups have started a collaborative 
project to enhance interoperability of the two sets of software, and to verify and 
validate the implementations. A comparison of the BrainStorm and MNE soft-
ware features is presented in  Table  8–1  . Both BrainSuite/BrainStorm and 
FreeSurfer/MNE software packages are freely downloadable from the web (see 
 http://neuroimage.usc.edu/brainstorm/ ,  http://brainsuite.usc.edu/ , and  http://
www.nmr.mgh.harvard.edu/martinos/userInfo/data/index.php ).       

Examples

 This section contains a few examples of experiments analyzed with the methods 
and software described above.    

Consistency of Source Estimates Across Different MEG Systems 

 Pooling of magnetoencephalography (MEG) data across laboratories is not 
straightforward because of differences in hardware, software, and different 

http://neuroimage.usc.edu/brainstorm/
http://brainsuite.usc.edu/
http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/index.php
http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/index.php
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      Table 8–1.  Comparison of the features of BrainStorm and MNE.  

  Feature  BrainStorm  MNE  

 Implementation  Matlab  Compiled C programs, Matlab 
toolbox for accessing fi les and end-
user development  

 MRI 
segmentation 
and 
reconstruction 

 BrainSuite recommended 
Other choices possible 

 FreeSurfer  

 Forward models  Sphere model, Overlapping 
spheres, BEM, FEM 

 Sphere model, BEM  

 BEM surface 
triangulations 

 BrainSuite, Anatomist, or 
other software. Program 
has algorithms for re-
registering tessellations 
with MRIs. Downsampling 
of tessellations. 

 FreeSurfer or other software 
providing the data in the same 
coordinate system as FreeSurfer 
MRI data  

 Preprocessing  Filtering, data viewer, SSP, 
noise cancellation with 
reference sensors 

 Filtering, downsampling, raw 
data viewer, estimation of noise 
covariance matrices, SSP, noise 
cancellation with reference sensors. 
Software is also aware of the SSS 
method employed in Neuromag 
software for noise cancellation.  

 Input data fi les  Native Neuromag fi f data, 
converters from VSM, 4D; 
native VSM data; native 
EGI data; ASCII formatted 
and “raw” binary data 

 Native Neuromag fi f data, 
converters from VSM, 4D, and KIT 
data to the fi f format  

 File formats  Matlab “mat-fi les”  fi f fi les for most intermediate 
results, w and stc fi les for FreeSurfer 
compatible surface-based data  

 Graphics output  Full suite of Matlab-
generated output formats 

 Static images: jpeg, tiff, png, 
PostScript, PDF  ; Movie fi les: 
QuickTime  

 Source 
estimation 
methods 

 LS, MNE, dSPM, MUSIC, 
LCMV 

 MNE, dSPM, sLORETA, dipole 
fi tting.  

 Simulation  Simulation of data using 
the forward model 

 Simulation of data using the 
forward model, simulate spatially 
correlated noise with help of a 
noise-covariance matrix  
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environmental noise levels. To investigate these issues, we recently conducted 
a study with the same fi ve subjects and stimulus-presentation equipment at 
three different sites with different MEG arrays: Elekta-Neuromag Vectorview 
(Boston), VSM MedTech Omega275 (Albuquerque), and 4D Neuroimaging 
Magnes 3600 WH (Minneapolis). Subjects were run twice at each site, in simple 
somatosensory, visual, and auditory paradigms (Weisend et al.,   2007  ). 

 To assess the consistency of MEG source estimates across systems and 
software implementations, dynamical statistical parametric mapping (dSPM) 
was conducted with both the MNE and BrainStorm software packages 
discussed above. A high-resolution cortical surface was extracted using either 
FreeSurfer or BrainSuite, representing the gray-white matter boundary with 
approximately 300,000 vertices. The surface was downsampled to about 
40,000 (BrainStorm) or 5,000 (MNE) vertices. In both MNE and BrainStorm 
the MEG and MRI coregistration was implemented by manual identifi cation 
of three fi ducial landmarks and, in MNE, this initial alignment was refi ned 
with the Iterative Closest Point (ICP) algorithm. The forward solution was 
computed for each of the three MEG systems using an overlapping spheres 
model (BrainStorm), or a single compartment BEM with linear collocation 
approach (MNE). 

 For the computation of the dSPM distributions in Brainstorm, an esti-
mate for the diagonal noise-covariance matrix was computed from a 200-ms 
baseline period preceding the stimuli. In MNE, the individual epochs were 
used to compute the estimate; the result was divided by the number of aver-
aged epochs in the analysis of the averages, to account for the signal-to-noise 
improvement. Regularization consistent with the signal-to-noise ratio of 
whitened data was applied in the computation of the minimum-norm esti-
mates. The dSPM distributions were subjectively thresholded to indicate the 
maximum activity on the cortex. 

 As shown in  Figure  8–3  , our analyses of somatosensory data using the 
cortically constrained source estimates showed excellent test/retest results 
across instruments. This result is in line with our fi nding that the localization 
of data from the Neuromag current dipole data using a single-dipole model 
was accurate within less than 2 mm. Our analyses demonstrate that (1) instru-
ments from different manufacturers yield similar results for somatosensory 
data, and that (2) multiple software packages produce very consistent esti-
mates for simple source confi gurations.      

What and Where Pathways in the Auditory Cortex 

 Human neuroimaging studies suggest that localization and identifi cation of 
relevant auditory objects is accomplished via parallel parietal-to-lateral-
prefrontal  “where”  and anterior-temporal-to-inferior-frontal  “what”  pathways, 
respectively. Using combined hemodynamic (fMRI) and electromagnetic 
(MEG) measurements, Ahveninen et al. (  2006  ) investigated whether such 
dual pathways exist already in the human nonprimary auditory cortex, as 
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suggested by animal models (Rauschecker & Tian,   2000  ; Tian et al.,   2001  ). 
This example demonstrates the potential of using anatomically and functionally 
constrained source estimates to study the fi ne details of cortical processing of 
sensory signals; see  Figure  8–4  .  

 During the experiments in Ahveninen et al. (  2006  ), subjects were pre-
sented with pairs of Finnish vowels /æ/ and / ø /. Each vowel was simulated 
from either straight ahead or 45 degrees to the right. The sound pairs were 
identical, phonetically discordant (but spatially identical), or spatially discordant 
(but phonetically identical). Cortically constrained MEG/fMRI minimum-
norm estimates of responses to “probes” preceded by identical, phonetically 
different, or spatially different “adaptors” were compared. The result suggested 
a double dissociation in response adaptation to sound pairs with phonetic vs. 
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Figure 8–3 . Field maps and source localizations for median nerve stimula-
tion at 20 ms after the onset of the stimulus. The top row shows fi eld 
maps for data collected on the same subject using MEG machines from 
three different manufacturers, after projection into a common reference 
frame. The second and third rows show comparisons of dSPM estimates, 
obtained using two different software packages (MNE/FreeSurfer and 
BrainStorm/BrainSuite). The estimates of activity across MEG systems and 
software packages within the same subject are remarkably consistent. 
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spatial sound changes — demonstrating that the human nonprimary auditory 
cortex indeed processes speech-sound identity and location in parallel ante-
rior  “what”  (in anterolateral Heschl’s gyrus, anterior superior temporal gyrus 
(STG), and posterior planum polare) and posterior  “where”  (in planum tempo-
rale and posterior STG) pathways as early as ~70–150 ms from stimulus onset. 
These data further showed that the  “where”  pathway is activated ~30 ms ear-
lier than the  “what”  pathway, possibly enabling the brain to utilize top-down 
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Figure 8–4 . Differential adaptation to phonemes vs. sound locations in 
nonprimary auditory cortex. Cortical fMRI-weighted MEG minimum-
norm estimates are shown in a representative subject at the N1 peak 
latency. The data are visualized on the infl ated cortical surface, show-
ing the convex and concave parts of the cortex in light and dark grey, 
respectively. The source estimate is shown with a colored overlay showing 
that the auditory cortex areas activated by the Adaptor (the fi rst stimulus 
of the pair) are identical across the conditions, but specifi c adaptation-
induced differences in activity patterns elicited by Probes (the second 
stimulus of the pair) are observed: The posterior activity is strongest (i.e., 
least adapted) when Adaptor and Probe differ spatially, and the anterior 
activity is strongest when Adaptor and Probe differ phonetically. (Abbre-
viations: STS, superior temporal sulcus; HG, Heschl’s gyrus; PT, planum 
temporale; PP, planum polare; STG, superior temporal gyrus.) 
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spatial information in auditory object perception. Notably, selectively attending 
to phonetic content modulated the response adaptation in the  “what”  path-
way, whereas attending to sound location produced analogous effects in the 
 “where”  pathway.     

Analysis of Oscillatory Activity in VisuoMotor Coordination 

 The spiking activity of single neurons in the primate motor cortex is correlated 
with various limb movement parameters, including velocity. Recent fi ndings 
obtained using local fi eld potentials suggest that hand speed may also be 
encoded in the summed activity of neuronal populations. At this macroscopic 
level, the motor cortex has also been shown to display synchronized rhythmic 
activity modulated by motor behavior. Yet, whether and how neural oscilla-
tions might be related to limb speed control is still poorly understood. 

 Using BrainStorm, we applied MEG source imaging to the ongoing brain 
activity in subjects performing a continuous visuomotor (VM) task (Jerbi 
et al.,   2007  ). We used coherence and phase synchronization to investigate the 
coupling between the estimated activity throughout the brain, and the simul-
taneously recorded instantaneous hand speed. We found signifi cant phase 
locking between slow (2- to 5-Hz) oscillatory activity in the contralateral pri-
mary motor cortex, and time-varying hand speed (see  Figure  8–5  ). In addi-
tion, we reported long-range task-related coupling between primary motor 
cortex and multiple brain regions in the same frequency band. The detected 
large-scale VM network spans several cortical and subcortical areas, including 
structures of the frontoparietal circuit and the cerebello–thalamo–cortical 
pathway. These fi ndings suggest a role for slow coherent oscillations in 
mediating neural representations of hand kinematics in humans, and provide 
further support for the putative role of long-range neural synchronization in 
large-scale VM integration.      

Dynamics of Epileptic Activity 

 The most important clinical application of MEG is currently the localization 
of epileptic foci. If clinicians are able to precisely locate where in the brain 
an epileptic seizure begins, then patients may be treated by surgical removal 
of the abnormal brain tissue, and only the abnormal brain tissue. Currently, 
the standard clinical approach is to fi nd the location of the largest activation 
that occurs during a burst in brain activity: the epileptic spike. This is accom-
plished by estimating the locations and dynamics of one or more current 
dipoles from the MEG or EEG data. Locating the largest area of abnormal 
activity is often helpful, but may be misleading in many epileptic patients. For 
example, if the brain activity that leads to a seizure begins as a very small 
spike, but quickly spreads to another brain area, it is important to locate 
the origin of the small spike, which may be missed with the traditional 
analysis. 
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 Using the MNE software, the Martinos Center Clinical MEG Service at 
MGH has begun to evaluate the utility of cortically constrained distributed-
current estimates in the analysis of MEG and EEG data acquired from epileptic 
patients (Knake et al.,   2006  ; Shiraishi et al.,   2005  ). With this technique, a 
‘movie’ is generated that shows estimates of the brain activity over the entire 
time course of an interictal event (see  Figure  8–6  ). This allows a physician to 
determine precisely were in the brain the epileptic spike originates, and focus 
the treatment more specifi cally on the diseased tissue.       
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Figure 8–5 . Coherence between brain activity and hand speed. (a) Trackball 
speed (TBS) power spectrum during visuomotor (VM – blue) and rest (R – 
green) conditions. (b) Cortical map of task-related Z-transformed coherence 
with TBS (VM vs. R) in the 2–5Hz range (P < 0.001, corrected). The white dot 
indicates the location of maximum coherence difference (Montreal Neuro-
logical Institute coordinates: (−42, −17, 67 mm), hand area M1). (c) M1–TBS 
coherence spectrum during VM and R, with a peak at 4 Hz. (d) M1 power 
spectrum. Compared with R (green), VM (blue) has more power in 3–5 Hz 
(P < 0.05, corrected), followed by the well known power suppression of 
10–20-Hz oscillations. (e) Cortical map of difference in brain–TBS phase-
locking at 4 Hz ( +/–1Hz) between VM and R (P < 0.001, corrected). The 
white dot indicates the location of maximum phase-locking difference. 
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Concluding Remarks 

 Within the last decade, anatomical MRI has become an integral and indis-
pensable component of MEG source analysis. MRI data are used not only as 
an anatomical map in the visualization of results, but also as a source of geo-
metrical information for both forward and inverse modeling. In distributed 
source-modeling approaches, the cortical geometry information is particularly 
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Figure 8–6 . Interictal epileptiform discharges in MEG and EEG, with sources 
estimated using equivalent current dipoles (ECDs) and dynamic statistical 
parametric mapping (dSPM). Top left: Interictal epileptiform discharges 
on magnetoencephalography were observed over the right temporal and 
frontal regions widely.  Bottom left: Right temporal dominant but right 
hemispheric spikes or polyspikes could be detected frequently on EEG. 
First row, middle and right: The equivalent current dipoles calculated by 
the beginning of the polyspike burst located at the right temporal oper-
culum, some also in the lower operculum in the right frontal lobe. Second
to fi fth row, middle and right: A dynamic statistical parametric mapping 
showed the wide activity over the whole temporal lobe propagated to 
the ipsilateral frontal and parietal lobes. The threshold of displayed activ-
ity is p < 10 −4, and the full yellow area indicates p < 10 −9.
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useful as a spatial constraint and as a vehicle of visualizing the data in a com-
prehensive and easily understandable way. 

 In contrast, only the fi rst few steps have been taken towards joint use of 
fMRI with the electrophysiological measurements. Further developments in 
this area will clearly benefi t from new experiments elucidating the exact nature 
of hemodynamic coupling, which leads to the development of physiologically 
sound models to estimate neural activity jointly from MEG, EEG, and fMRI 
measurements.     
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     Introduction 

 One possible mechanism for neural communication has attracted consider-
able interest in recent years. Neural synchronization, i.e., temporally precise 
interactions between neural assemblies, may indicate functionally relevant 
interactions between these assemblies (Singer,   1999  ; Bressler & Kelso,   2001  ; 
Engel, Fries et al.,   2001  ; Varela, Lachaux et al.,   2001  ; Fries,   2005  ; Schnitzler & 
Gross,   2005  ). Investigating long-range interactions requires simultaneous 
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measurements of neural activity in the entire brain, with high temporal 
resolution. Connectivity studies using fMRI have successfully been performed 
(e.g., Buchel & Friston,   1997  ; Logothetis,   2003  ; Mechelli, Price et al.,   2003  ), 
but they are inherently restricted to investigating neuronal interactions on the 
rather coarse time scale of hemodynamics, which is well beyond the millisecond 
time range of neural signals. 

 In contrast, magnetoencephalography (MEG) offers whole-scalp cover-
age and excellent temporal resolution in the range of milliseconds and below. 
MEG can not only track rapid changes in the activity of neural populations, 
but it can also reveal changes in oscillatory activity or oscillatory interactions. 
Techniques for analyzing and characterizing oscillatory activity and oscilla-
tory interactions have been used at the level of sensor recordings, both in 
magnetoencephalography and electroencephalography (EEG). Unfortunately, 
in most cases it is diffi cult to relate effects observed at different sensors (or 
EEG electrodes) to brain areas. Nevertheless, the localization is important for 
the interpretation of results, and adds relevant information. 

 The noninvasive recording of magnetic fi elds (associated with neural 
activity) outside the head leads to limitations in the localization of neural 
activity (see Chapter 5). Thus, performing MEG functional connectivity anal-
ysis at the level of macroscopic brain areas instead of sensor recordings requires 
caution and a thorough understanding of the localization procedure. 

 In the following paragraphs we will describe methods that allow the 
investigation of long-range dynamic interactions between brain areas based 
on MEG recordings. The aim of this chapter is not a complete review of avail-
able methods, but rather an introduction to concepts, methods and approaches 
that currently play a role in the rapidly evolving fi eld of functional connectivity 
analysis with MEG.     

Measures of Interactions 

 A large number of methods exist for the characterization of interdependen-
cies between two or more time series. The aim of the characterization is 
a detailed description of the connection in terms of the time course and 
frequency of interaction, the type of interaction (e.g., linear or nonlinear) and 
possibly the direction of interaction. In this section we describe some depen-
dency measures that are most frequently used in the analysis of functional 
interactions based on electrophysiological recordings. We focus on measures 
in the frequency domain. 

 One way to classify functional connectivity measures is the distinction 
between parametric and nonparametric, and between linear and nonlinear 
measures. Nonparametric techniques estimate dependency measures directly 
from the data. They usually employ the fast Fourier transform (FFT), the 
wavelet transform, or the Hilbert transform. In contrast, parametric tech-
niques fi t a model to the data. The estimation of interactions between two 
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time series uses the parameters of the model, and thus relies on the accuracy 
of the estimated model parameters. 

 Linear dependency measures assume that the output of the system under 
investigation is linearly related to the input (scaling the input by a factor  A  
leads to an output scaled by the same factor). Although nonlinear interactions 
have been demonstrated in electrophysiological recordings (e.g., Breakspear, 
  2002  ; Breakspear & Terry,   2002  ; Stam, Breakspear et al.,   2003  ) linear mea-
sures are still widely used. Their advantage is a robust implementation 
and fast computation, but they suffer from their insensitivity to nonlinear 
dependencies in the data. In contrast, nonlinear measures can reveal some 
nonlinear dependencies, but often rely on additional parameters that must be 
specifi ed by the user.    

Nonparametric Dependency Measures 

Coherence

 Coherence is the most common measure to describe the relationship between 
two time series. It is defi ned as the magnitude squared cross spectrum, divided 
by the power spectra of both time series: Cxy(f)=|Pxy(f)| 2 /(Pxx(f)Pyy(f)) and 
ranges between 0 and 1. The cross spectrum is defi ned as Pxy(f)=X(f)Y’(f ) 
(where Y’ denotes the complex conjugate of Y and a capital letter represents 
the Fourier transform). Cxy(f1)=1 indicates a perfect linear relation at fre-
quency f1. The coherence spectrum is usually computed using Welch’s 
method, that is illustrated in  Figure  9–1  .  

 The classic coherence measures suffer from several limitations that have 
led to the development of related measures. First, stationarity of the data is 
required. Second, if coherences between a number of signals are computed, 
it is unclear to what extent the coherence between two signals is due to a 
common input from a third signal. Third, coherence is sensitive to both 
amplitude and phase dynamics. 

 Event-related coherence has been used to obtain a time-varying estimate 
of coherence (Andrew & Pfurtscheller,   1996  ; Pfurtscheller & Andrew,   1999  ; 
Pfurtscheller & Lopes da Silva,   1999  ) to account for instationarity in the data. 
Here, averaging of individual segments is not performed over time, but across 
trials. The FFT window is shifted relative to trial onset, and allows investiga-
tion of temporal changes of coherence. 

 In the second problem, one would like to distinguish the case that area A 
interacts with area B from the case that both areas interact with a third area C. 
Both cases could yield the same coherence spectrum between A and B. Partial 
coherence is an extension to the classical coherence measure that allows one 
to distinguish between the two cases (Dahlhaus,   2000  ; Dahlhaus, Eichler et al., 
  1997  ; Eichler, Dahlhaus et al.,   2003  ; Halliday, Rosenberg et al.,   1995  ). It allows 
the computation of coherence between A and B, taking into account the 
common effect of C. For the characterization of a network of areas, partial 
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coherence can be computed effi ciently based on the inverse cross-spectral 
density matrix of the time courses of all areas (Dahlhaus,   2000  ). 

 A third problem of the classical coherence measure — its dependence on 
amplitude and phase dynamics — may be addressed by complementing a 
coherence analysis with an analysis of phase synchronization.     

Phase Synchronization 

 It is important to separately characterize phase and amplitude dynamics and 
their contributions to interactions of time series, since phase dynamics, in 
particular, may play an important role for the interaction of neuronal 
processes (Rodriguez, George et al.,   1999  ; Varela, Lachaux et al.,   2001  ). Phase 
synchronization has been extensively studied for weakly coupled, self-
sustained oscillators (Rosenblum & Kurths,   1998  ). The computation is illus-
trated in  Figure  9–2  . Coherence between an electromyographic signal (EMG) 
refl ecting muscle activity and MEG signal is computed ( Figure  9–2A  ) and 
shows strong coherence in the range 25–31 Hz.  

 A bandpass fi lter in this frequency band is applied to both signals 
( Figure  9–2B  ). One should be careful to avoid phase delays due to the fi ltering 
(e.g., by applying the fi lter forward and backward). 

 The temporal evolution of phase and amplitude is computed via the 
Hilbert transform ( Figure  9–2C)   (Rosenblum & Kurths,   1998  ; Le Van Quyen, 
Foucher et al.,   2001  ), thus accounting for instationarity in the data. 

Figure 9–1 . Welch’s method for spectral computation. A Hanning window 
is applied to segments of a signal. The FFT-transform is applied to each 
segment. Finally, the FFT-transform is averaged over successive data seg-
ments, which overlap by half their segment length. Coherence and power 
estimates may be improved by replacing the Hanning window with sev-
eral orthogonal functions – termed “tapers” – that are based on discrete 
prolate spheroidal sequences (multitaper spectra). 
(Thomson, 1982; Mitra & Pesaran, 1999).
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Figure 9–2 . Illustration of the synchronization index. (A) Coherence spec-
trum of electromyographic signal (EMG) and magnetoencephalographic 
signal (MEG) shows a peak between 25 and 31 Hz. Computation of the syn-
chronization index starts by applying a 25–31 Hz bandpass fi lter (B). The 
instantaneous phase is computed by means of Hilbert (or wavelet) trans-
form (C) and phase signals are subtracted from each other. Here, the histo-
gram of phase differences (D) shows a preferred value, i.e., the distribution 
of phase differences shows a strong deviation from a uniform distribution. 
The synchronization index quantifi es this deviation, and thus the amount of 
phase-locking between the two signals in this particular frequency range. 
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 To obtain a quantitative measure of synchronization, the phase difference 
between two time series, and the deviation of the phase difference distribu-
tion from a random distribution, can be calculated ( Figure  9–2D  ) and tested 
for signifi cance against surrogate data (Tass, Rosenblum et al.,   1998  ; Lachaux, 
Rodriguez et al.,   1999  ). (Surrogate data are artifi cially generated data that 
share almost all statistical properties with the original data except the property 
that is studied.)     

Direction of Information Flow 

 Whereas the above measures are used to identify signifi cant dependencies 
between time series, the interpretation of functional connectivity results 
would greatly benefi t from further information mainly about the directional-
ity of information fl ow. The information fl ow may be unidirectional (sending 
or receiving) or bidirectional. Due to the wide use of classical spectral analy-
sis, directionality between two signals has often been inferred from a delay 
estimation based on the phase spectrum PHIxy(f)=arctan(Im(Pxy(f))/
Re(Pxy(f))). The rationale behind this idea is that oscillatory information 
between two areas (or a brain area and motoneuron pool) will be transmitted 
with a certain delay that depends on the conduction times along the pathway. 

 A constant delay between two stationary time series x,y would appear in 
the phase spectrum as a linear relationship between phase and frequency in 
the frequency range of signifi cant coherence. However, it should be noted 
that FFT-based methods rely on the assumption of stationarity of the time 
series, which is usually not the case for human MEG/EEG data. In addition, 
fi tting a line to a noisy phase spectrum requires a broad frequency range of 
signifi cant coherence (the line can only be fi tted in the frequency band of 
signifi cant coherence). In real data this frequency range is often not broad 
enough for a stable fi t. 

 Another technique has been used to estimate the time delay between 
primary motor cortex (M1) and muscle (Gross, Tass et al.,   2000  ). Here, the 
phase difference (computed from the Hilbert transform of the signal) in the 
range of signifi cant coherence was computed between the M1 oscillations and 
the electromyographic signal recorded with surface electrodes. The times of 
strongest oscillatory activity (yielding the highest signal-to-noise ratio) were 
selected based on the amplitude of the Hilbert transform. At these times, the 
phase differences were converted to delays and displayed in a histogram. 
Deviations from a uniform distribution (evident as peaks in the histogram) 
indicated a preferred delay that corresponded to known conduction times 
measured with TMS. 

 Within the framework of phase synchronization, the directionality index 
(DI) has been developed (Bezruchko, Ponomarenko et al.,   2003  ; Rosenblum, 
Cimponeriu et al.,   2002  ; Rosenblum & Pikovsky,   2001  ) to quantify the depen-
dencies between two self-sustained, weakly coupled oscillators. It is based on 
the phase dynamics of two signals. The DI quantifi es to what degree the phase 
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dynamics of one signal is infl uenced by the phase dynamics of the other signal. 
The DI is normalized such that -1 and 1 represent an unidirectional effect 
(to and from the fi rst time series, respectively) and 0 indicates a symmetric 
bidirectional effect.      

Parametric Dependency Measures 

 Parametric dependency measures often rely on autoregressive (AR) models 
(Brovelli, Ding et al.,   2004  ; Chen, Bressler et al.,   2006  ; Ding, Bressler et al., 
  2000  ; Kaminski, Ding et al.,   2001  ; Moller, Schack et al.,   2001  ; Schack, 
Rappelsberger et al.,   1999  ). The AR model represents a mathematical model 
for time series based on the assumption that values of the time series are 
weighted sums of the  p  previous values ( p  is called “the order of the AR 
model”) and additive noise. A number of methods are available for comput-
ing the weights (coeffi cients) of a model once the order has been specifi ed. 
Interestingly, power spectra are easily computed from the model coeffi cients. 
AR models can be extended to multivariate autoregressive models (MVAR) 
that allow not only the computation of power spectra, but also of coherence. 
In addition, the directed transfer function can be computed for MVAR mod-
els, and quantifi es the frequency-dependent causality of time series A and B 
(Brovelli, Ding et al.,   2004  ; Kaminski & Liang,   2005  ; Sameshima & Baccala, 
  1999  ). Here, causality is understood in the sense of Granger causality mean-
ing that the prediction of the future of timeseries A can be improved by using 
the past values of time series B. Similar to the concept of partial coherence, 
partial directed coherence has been introduced to identify direct interactions 
between time series (Baccala & Sameshima,   2001  ). 

 One can account for instationarities in the data by computing model 
coeffi cients in a time window moving across the signals (Ding, Bressler et al., 
  2000  ; Moller, Schack et al.,   2001  ). 

 In addition, methods based on autoregressive models have been intro-
duced to characterize directionality between two signals. These techniques 
compute a frequency-domain analogue of Granger causality. 

 Finally, we want to point the interested reader to other (nonlinear) mea-
sures that have been applied to MEG/EEG data, particularly generalized 
synchronization and mutual information (Breakspear & Terry,   2002  ; Stam, 
Breakspear et al.,   2003  ; David, Cosmelli et al.,   2004  ; Ioannides, Poghosyan 
et al.,   2004  ).     

Statistical Considerations 

 Surrogate data offer another, very fl exible possibility to identify statistically 
signifi cant effects in dependency measures (David, Cosmelli et al.,   2003  ; 
David, Garnero et al.,   2002  ; Hurtado, Rubchinsky et al.,   2004  ; Palus & Hoyer, 
  1998  ; Schreiber & Schmitz,   2000  ). In general, surrogate data are artifi cially 
generated data that share almost all statistical properties with the original 
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data, except the property that is studied. We can illustrate the fl exible use of 
surrogate data for coherence spectra. Artifi cial peaks in coherence spectra due 
to stable oscillatory signals (e.g., line noise) can be identifi ed by shifting one 
time series relative to the other, e.g., by 1–2 seconds ( Figure  9–3A,B  ). 
Coherences from physiological processes are most likely destroyed by the 
time-shift operation, whereas the artifi cial coherence peak should not 
change if the underlying oscillation is stable ( Figure  9–3B  ). To destroy syn-
chronization and oscillations in the time series, both time series can be inde-
pendently permuted (i.e., the order of the data points is randomly changed; 
see  Figure  9–3C  ). Applying the same permutation to both time series destroys 
oscillations but preserves non-oscillatory dependencies between the time 
series ( Figure  9–3D  ). This particular approach is interesting for the validation 
of cerebro-cerebral coherence spectra. Depending on the quality of the data, 
the signal-to-noise ratio (SNR), and the possible presence of artifacts, the 
coherence spectrum may show a substantial offset (an artifi cial shift of the 
spectrum across all frequencies to higher coherence values). The offset is 
accounted for by the surrogate data, and allows the identifi cation of signifi -
cant coherence despite the offset. Another relevant type of surrogate data is 
computed by randomly changing the phase of a signal (for each frequency) 
without changing the amplitude ( Figure  9–3E  ). The surrogate data has the 
same power spectrum as the original data ( Figure  9–3F  ) but any coherence 
between the data is destroyed.  

 How can we use the methods introduced above to identify a network of 
interacting brain areas? Three strategies may be employed. First, selection of 
individual anatomical brain areas based on  a priori  information (e.g., from 
other studies). Further analysis is needed to establish interactions between these 
areas. Second, areas are selected based on their activity and subsequently tested 
for interactions. Third, areas may be selected directly, based on their functional 
connectivity to other areas. As the fi rst strategy does not require any computa-
tion, we describe the second and third strategies in the following paragraphs.     

Activation Maps for Network Analysis 

 In principle, any localization technique that can be applied to unaveraged 
data may be used for the second strategy (see Chapter 5). In the following, we 
refer to functional connectivity studies classifi ed according to the localization 
technique — namely, minimum-norm solutions, magnetic fi eld tomography, 
spatial fi lter, or dipole models. In addition to the localization technique, the 
studies differ in other analysis aspects: First, localization can be performed in 
the time, frequency, or time-frequency domain. Second, regions of interest 
can be selected anatomically, by using local maxima in activation maps or 
signifi cant local maxima according to a statistical procedure. Third, the 
employed measures that quantify dependencies between the selected regions 
of interest are different. Some interesting methods are briefl y described in the 
following paragraphs, together with their main features.    
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Figure 9–3 . Surrogate data for coherence. Two time signals were simu-
lated with a broadband component around 10 Hz and a 50-Hz sinusoid, 
representing line noise. (A) The original coherence spectrum. (B) Coher-
ence computed with one time series shifted by 1 s. The broadband 
nonstationary component (representing physiological coherence) has 
vanished, while the 50-Hz component is not affected. (C) Coherence 
between the two time series, after the order of data points has been ran-
domly changed independently for each time series (independent permu-
tation). Physiological and artifi cial coherence is destroyed. (D) Coherence 
between the time series after the order of data points has been changed 
in exactly the same way for both time series (same permutation). Again, 
physiological and artifi cial coherence is destroyed. (E) Coherence spec-
trum after random phases have been added to one time series. (F) Power 
spectrum of the original time series (solid line) and the same time series 
after phase randomization (dashed line) indicating that the phase ran-
domization does not affect the power spectrum. 
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Minimum-norm Techniques 

 In dSPM (dynamic statistical parametric mapping; Lin, Witzel et al.,   2004  ) 
the source estimation is performed for each single trial after fi ltering the MEG 
signals with a complex Morlet wavelet. Power estimates normalized by base-
line power are displayed on a cortical map without selecting regions of interest. 
In addition, cortical maps of phase synchronization to a reference signal can 
be computed and displayed. 

 In contrast, the method by David and coworkers (David, Cosmelli et al., 
  2003  ; David, Garnero et al.,   2002  ) identifi es signifi cantly activated areas in 
relation to surrogate data. Localization is based on nonaveraged data. An 
iterative procedure is employed to reduce the number of active volume ele-
ments (voxels) leading to sparse and focal source representations. During the 
iteration, surrogate data (created from random permutation of the measured 
data) are used to identify signifi cantly activated areas. The fi nal selection of 
signifi cantly activated voxels is subsequently subjected to a synchronization 
analysis. The method has been validated with simulated data, and has been 
applied to an example data set. The use of the iterative sparsening of the 
source representation is of particular interest in this method. Although the 
iteration introduces extra  a priori  parameters, it allows for the identifi cation 
of  signifi cantly  activated areas. 

 An interesting application of minimum norm source reconstructions has 
been proposed by Amor, Rudrauf et al. (  2005  ), using the frequency fl ow 
measure introduced by Rudrauf and colleagues (Rudrauf, Douiri et al.,   2006  ). 
The frequency fl ow analysis is based on an estimation of the instantaneous 
frequency, and identifi es cortical areas with possibly transient common 
instantaneous frequencies in the time-frequency plane. 

 Another technique for functional connectivity analysis using the mini-
mum norm inverse solution has been suggested by Astolfi  (Astolfi , Cincotti 
et al.,   2005  ). Regions of interest were identifi ed anatomically, and the directed 
transfer function (DTF) was evaluated for all combinations of regions of 
interest. The DTF describes frequency-specifi c directed interactions between 
areas, and is computed from a multivariate autoregressive model (see previous 
section, Measures of Interactions).     

Magnetic Field Tomography 

 Another example, synchronization tomography (Tass, Fieseler et al.,   2003  ), 
uses a nonlinear localization algorithm — magnetic fi eld tomography (MFT) 
(Ioannides, Bolton et al.   1990  ) — to compute current densities within the 
brain for each recorded data sample. Phase synchronization is subsequently 
computed on the current density maps for all pairs of voxels. Since MFT is a 
nonlinear, iterative localization procedure, synchronization tomography 
requires long computation times on standard workstations. MFT has also 
been applied to nonaveraged data to localize activated brain areas and to 
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extract their time courses for a subsequent connectivity analysis based on 
mutual information (Ioannides, Liu et al.,   2000  ; Ioannides, Poghosyan et al., 
  2004  ).     

Spatial Filter 

 Spatial fi ltering is a different method that provides tomographic maps of 
activated brain areas (Hadjipapas, Hillebrand et al.,   2005  ). Again, synchroni-
zation analysis was then applied on the time course of activation in the regions 
of interest (see the following DICS section for more information on spatial 
fi ltering).     

Dipole Models 

 In contrast to the distributed localization techniques described above, source 
coherence (Hoechstetter, Bornfl eth et al.,   2004  ) uses a multidipole model to 
explain the measured data (see Grasman, Huizenga et al.,   2004   for another 
example). Single-trial dipole waveforms (the time course of activation of 
dipoles) are subjected to a time-frequency analysis and a subsequent compu-
tation of coherence. 

 A different approach based on dipoles has been described by Makeig 
(Makeig, Debener et al.,   2004  ; Makeig, Delorme et al.,   2004  ). Here, indepen-
dent component analysis (ICA) is applied to the nonaveraged data. 
Synchronization analysis of the time courses of individual components (e.g., 
by means of phase synchronization) shows frequency-specifi c interactions 
between components.      

DICS: Activation and Connectivity Maps 

 Dynamic Imaging of Coherent Sources (Gross, Kujala et al.,   2001  ) allows the 
tomographic mapping of both power and coherence in the entire brain, using 
spatial fi ltering (Robinson & Vrba   1997  ; Sekihara, Nagarajan et al.   2001a  ; 
Sekihara, Nagarajan et al.,   2002a  ; Van Veen, van Drongelen et al.,   1997  ) in the 
frequency domain ( Figure  9–4  ).  

 The output of the spatial fi lter is a linear combination of the adequately 
weighted channels of the data matrix. Spatial fi lters can be designed according 
to very different objectives depending on the aim of the analysis. For source 
localization, the LCMV (linearly constrained minimum variance) beam-
former is often used. Here, the set of coeffi cients or weights is computed as 
the solution of a constraint-minimization problem: the minimization of out-
put power subject to the constraint that activity from the region of interest is 
passed with unit gain. The coeffi cients depend on the solution of the forward 
problem for the region of interest, and the covariance matrix of the data. The 
linear combination of the weighted channels acts like a spatial fi lter that leaves 
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the signal from the region of interest unchanged and attenuates, as much as 
possible, signals originating elsewhere. 

 The fi lter has to be computed for each region of interest. Indeed, to create 
a tomographic map of power, the spatial fi lter must be computed for each 
voxel on a regular 3-dimensional grid covering the entire brain. Since syn-
chronization is often frequency-dependent, DICS has been developed as a 
frequency-domain implementation of a spatial fi lter that allows the tomo-
graphic mapping of power and coherence in a predefi ned frequency band. 

 We employ the cross-spectral density matrix as the basic representation 
of the oscillatory components and their dependencies between MEG and 
possibly additional signals. For continuous data, the complex cross-spectral 
density  P  for signals  x(t), y(t)  is computed using Welch’s method of spectral 
density estimation (Welch,   1967  ; see also  Figure  9–1  ). For trial-based data,  
P  should be computed using wavelets or a moving FFT window. One element 
 P 

i,j 
  of the cross-spectral matrix consists of the cross-spectral densities of 

signals  i  and  j.  Therefore,  P  contains the cross-spectral densities of all combi-
nations of signals. 
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Figure 9–4 . Power and coherence mapping with DICS. Uniformly sized 
volume elements (voxels) are defi ned to cover the entire brain based on 
magnetic resonance images (MRI). The sensor information is used to com-
pute the spatial distribution of power (A) or coherence (B) in a predefi ned 
frequency band (bottom row). 
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 Two measures are derived from this matrix. First, the power spectrum of 
the signal  i  is represented by the diagonal element  P 

i,i
. It allows identifi cation 

of frequency bands containing most of the power, or those showing task-
dependent changes. Second, coherence is the magnitude-squared cross spec-
trum divided by the power spectra of both time series. 

 To obtain a tomographic map of power or coherence, the spatial fi lter 
coeffi cients are computed sequentially for each voxel. Based on the matrix  
P  and the coeffi cients, the cross spectrum can be computed between any two 
voxels. If the same two voxels are chosen, the resulting map will show the 
spatial distribution of power. Alternatively, coherence between a reference 
voxel and all other voxels in the brain can be mapped based on the cross spec-
trum of the reference voxel and all other voxels, and power of both voxels. 

 Except DICS, all the methods introduced in the previous section identify 
regions of interest based on their activation (maybe in a particular frequency 
band). DICS also supports the computation of maps representing oscillatory 
power — but, in addition, it can directly map coherence to a reference area 
(i.e., the third strategy listed in the section on statistical considerations). 

 The functioning of a spatial fi lter can be illustrated in a simplifi ed scenario 
(Gross, Timmermann et al.,   2003  ). We assume that a single brain area is 
active. The frequency-dependent power estimate at any given point can be 
computed as follows:

   ( ) ( ) 11,f (f ) ( )TP
−−⎡ ⎤= ⎣ ⎦r L r C L r     (9–1)  

   r   denotes the position at which power is estimated, f is the frequency,   L   is the 
solution of the forward problem for position   r   and two tangential orienta-
tions (i.e., the leadfi eld) and   C   represents the cross spectrum of all MEG 
channels. The matrix   C   can be decomposed using singular value decomposi-
tion. The decomposition leads to a projection matrix M 

s
 . M 

s
  projects vectors 

onto the signal space. The power estimate can then be described (Gross, 
Timmermann et al.,   2003  ) as 

   ( ) ( ) ( ) ( )( ) ( )1 1
1 s 2 s, T TP f − −⎡ ⎤= + −⎣ ⎦r S L r M L r S L r I M L r     (9–2)  

 where   S   
1
  represents the fi rst singular value of   C   and   S   

2
  the second singular 

value. (  I  -  M   
s
 ) acts as a projection to the noise space.  

 Now the mechanism of the spatial fi lter becomes apparent (see  Figure  9–5  ). 
For this illustration we arbitrarily assume   S   

1 
= 10 and   S  

2
  = 1. At the true source 

location (marked by  + ) the corresponding leadfi eld is in the signal space. For 
the fi rst addend in equation 9–2 we get 1/10 (reciprocal value of   S   

1
 ). In the 

second addend the projection to the noise space is zero (since   L ( r )  is entirely 
in the signal space). Consequently, we obtain a value of P=10. For a point 
close to the true source location (marked by  * ) the corresponding leadfi eld is 
not entirely in the source space but has a component in the noise space. Thus, 
the fi rst addend becomes smaller (e.g., 0.9/10) and the second addend takes a 
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nonzero value (e.g., 0.1). The resulting value is P=5.3 ( Figure  9–5  ). As we 
move away from the true source location, the estimated power decreases. The 
steepness of the decrease depends on the signal-to-noise ratio (SNR, here the 
ratio   S   

1
 /  S   

2
 ) and the change of the leadfi elds. This underlines the importance 

of the SNR for the spatial resolution of beamformer tomographic maps. 
Efforts to increase the SNR during measurement and analysis (e.g., by using 
an optimal signal representation) would be rewarded by an increased spatial 
resolution.      

Starting from Activation Maps: Choice of a Localization Method 

 The choice of the localization procedure should be governed by several 
considerations. In general, one should be aware of the particular advantages 
and limitations of the different methods. In addition to considerations that 
are relevant also for source localizations, functional connectivity analysis 
imposes further requirements on localization techniques. The method should 
be robust in the presence of sources with a physiologically plausible degree 
of correlation (or coherence). In addition, methods yielding sparse source 
representations should be preferred. Otherwise it is diffi cult to separate two 
interacting areas that are close to each other. 

 Dipole models are well suited for data that show a small number of 
dipolar fi eld patterns in the topographical maps (e.g., signals recorded from 
primary sensory areas). For more complex data it is diffi cult to estimate the 
correct number of sources, and the assumption of point-like generators may 
not be valid. 
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Figure 9–5 . Illustration of spatial fi lter. At each location along the x–axis 
the power of a point source located at 0 is displayed as computed from a 
spatial fi lter directed to this position. The  + sign marks the true location 
for which the solution of the forward problem is entirely in the signal 
space. The * marks a point for which the solution of the forward problem 
has a component in noise-space leading to a reduced power estimate. 
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 Distributed inverse solutions based on the minimum-norm technique 
can be effi ciently computed, and they are robust in the presence of even highly 
correlated sources. In their standard implementation they result in rather 
smooth source representations that have a bias towards superfi cial genera-
tors. More complex, iterative techniques like MFT are also insensitive to high 
correlations between sources. They provide focal sources but need long com-
putation times. Spatial fi ltering techniques are computationally very effi cient 
but they are affected by high correlations between areas (Gross, Kujala et al., 
  2001  ; Van Veen, van Drongelen et al.,   1997  ). This is due to their adaptive, 
data-dependent formulation that also leads to a possibly high spatial resolution 
(see DICS section). Simulations have demonstrated that under physiological 
conditions (i.e., no correlations or coherence of 1), spatial fi ltering techniques 
provide an acurate localization of correlated sources (Gross, Kujala et al., 
  2001  ; Hadjipapas, Hillebrand et al.,   2005  ; Sekihara, Nagarajan et al.,   2002b  ). 
The adaptive, data-dependent nature of spatial fi ltering techniques can be 
exploited by optimizing the fi lter design (e.g., for a particular frequency range 
of interest), thus improving the spatial resolution of the tomographic maps. 

 Several software packages are available that implement some of the 
above-mentioned methods.   1    The source coherence technique is implemented 
in the commercial software Besa 5 ( www.besa.de ). LORETA is a free software 
package that implements low-resolution brain electromagnetic tomography 
(see  http://www.uzh.ch/keyinst/loreta.htm ). Several methods are imple-
mented in freely available Matlab toolboxes. Fieldtrip implements spatial fi l-
tering techniques and a number of spectral analysis methods ( http://fi eldtrip.
fcdonders.nl/ ). Another implementation of spatial fi lters is provided in 
Nutmeg ( www.nutmeg.edu/ ). Brainstorm implements dipole models and 
minimum norm solutions (neuroimage.usc.edu/brainstorm). EEGlab con-
tains an algorithm for independent component analysis (ICA) and a plugin 
for dipole fi tting (sccn.ucsd.edu/eeglab/).     

Selecting Regions of Interest: Signifi cance Tests 

 The identifi cation of regions of interest (either from activation maps or func-
tional connectivity maps) should be based on statistical methods. This 
requirement is not specifi c to functional connectivity analysis, but holds true 
for any localization study. As described above, regions of interest may be 
selected  a priori , based on their activity or based on their interaction with 
some reference signal (e.g., muscle activity or activity of a cerebral reference 
area). DICS allows the direct mapping of either power or coherence. The 
other methods fi rst generate distributed source representations and subse-
quently create maps of coherence to a given reference signal. In most cases, 
tomographic functional maps representing either oscillatory activity, or 
coupling with a reference area, are obtained. 

 In principle, regions of interest can be selected from activation maps 
after normalization to pseudo-T maps using noise estimates (Dale, Halgren 

http://www.uzh.ch/keyinst/loreta.htm
http://fieldtrip.fcdonders.nl/
http://fieldtrip.fcdonders.nl/
www.nutmeg.edu/
www.besa.de
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et al.,   2000  ; Van Veen, van Drongelen et al.,   1997  ; Vrba & Robinson,   2001  ). 
Preferably, methods should be used that account for the multiple-comparison 
problem. Performing a statistical test for each voxel (or surface node) results 
in an increase of the possible numbers of false positive results. Consequently, 
the statistical procedure should account for the number of tests. The simplest 
method is the Bonferroni correction that can be performed by multiplying 
the resulting p-values by the number of tests. For spatially correlated maps 
(as in our case) with many elements, this method is not effective and too 
conservative. Two approaches may be used that are more effi cient. 

 First, random fi eld theory has successfully been applied for the corre-
sponding problem of statistically analyzing fMRI (functional magnetic reso-
nance imaging) or PET (positron emission tomography) data (Worsley & 
Friston,   1995  ). It has recently been adapted for distributed source representa-
tions from MEG/EEG recordings (e.g., Barnes & Hillebrand,   2003  ; Carbonell, 
Galan et al.,   2004  ; Pantazis, Nichols et al.,   2005  ); see also Kiebel, Tallon-
Baudry et al. (  2005  ). The approach from Carbonell, Galan et al. (  2004  ) offers 
a unifi ed statistical framework for the identifi cation of signifi cant compo-
nents in topographic and tomographic representations of the data. Thus, the 
method can be applied to the data recorded by the sensors, and the data 
linearly mapped into the brain to create maps of brain activity. Barnes and 
coworkers (Barnes & Hillebrand,   2003  ) employed random fi eld theory to 
specifi cally address the multiple-comparison problem on tomographic maps 
created by spatial fi ltering. A limitation of random fi eld theory for MEG is 
dependence on the assumptions of suffi cient smoothness, gaussianity, and 
stationarity of the underlying data. 

 Second, permutation methods may be used to extract signifi cant regions 
of interest while correcting for multiple tests. Similarly to random fi eld the-
ory, permutation tests have been applied to functional magnetic resonance 
data (Nichols & Holmes,   2002  ). Permutation methods rely on very few 
assumptions, which are illustrated in the following example. Let us assume 
that MEG data was continuously recorded during two experimental condi-
tions, A (e.g., rest) and B (e.g., continuous fi nger movements). We want to 
know which areas in the brain show a signifi cantly different activation between 
the two conditions. Specifi cally, the null hypothesis is that a change of the 
experimental condition has no effect on the activation of brain areas. Any of 
the described localization procedures can be used to compute a distributed 
source representation for condition A and B. Statistics can then be computed 
that characterize the difference between A and B. As preparation for the per-
mutation approach, each data set is split into a number of segments of equal 
length.   2    Before carrying out the localization, the data segments from A and B 
are randomly exchanged. Thus, the fi rst and the second localization is now 
performed on a random set of data segments from both conditions. 
Subsequently, the same test statistics (e.g., relative difference) is evaluated on 
both functional maps. The random exchange of segments, localization, and 
evaluation of the test statistics, is repeated a large number of times. For each 
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repetition the maximum of the test statistics is identifi ed. This results in the 
distribution of the maximum statistics. The critical threshold corresponding 
to a given signifi cance level  α  (e.g., 0.05) can be identifi ed as the ( α  * N) + 1 
largest element of the distribution where N is the number of repetitions. 
It can be shown that the use of the maximum statistics provides a strong 
protection against Type 1 error, i.e., rejecting the null hypothesis when it is 
true (Nichols & Holmes,   2002  ). 

 Permutation methods make no assumptions on the distribution of the 
data (and can thus be applied to activation or connectivity maps) but they 
require the exchangeability of the segments. 

 Using permutation methods with the maximum statistics on real data 
may lead to problems if the null distribution is too variable across voxels. 
If the simple difference between two conditions is used, the maximum statis-
tics may be dominated by some voxels with a large variability in the mean 
difference. This leads to a reduced sensitivity for other voxels. When that is 
the case, other statistics (such as t-statistics) that lead to more homogeneous 
distributions across voxels should be used (Nichols & Holmes,   2002  ; Pantazis, 
Nichols et al.,   2005  ). 

 Pantazis and coworkers performed a comparison of random fi eld theory 
and permutation methods for functional maps obtained from MEG data 
(Pantazis, Nichols et al.,   2005  ). For simulated data both methods showed 
valid results, although the method based on random fi eld theory demon-
strated conservative performance and a dependence on the smoothness of the 
data. Differences in real data that were observed between the methods may 
have been caused by violations of the distribution assumption of random 
fi eld theory. 

 Permutation statistics for MEG data have been used by several groups in 
various ways (e.g., Chau, McIntosh et al.,   2004  ; Greenblatt & Pfl ieger,   2004  ; 
Gross, Schmitz et al.,   2004  ; Singh, Barnes et al.,   2003  ) that demonstrate the 
fl exibility of permutation methods. They can be applied to test for signifi cant 
differences between two conditions for single subjects or for a group of sub-
jects, or to test for signifi cant differences between two groups of subjects for 
one condition. 

 Permutation methods are implemented in SnPM ( www.sph.umich.edu/
ni-stat/SnPM/ ; Nichols & Holmes,   2002  ). This particular implementation has 
been used for the analysis of MEG tomographic maps (Gross, Schmitz et al. 
  2004  ; Singh, Barnes et al.,   2003  ). Another noncommercial Matlab toolbox 
that implements permutation methods is Fieldtrip (for web page, see above). 

 An interesting approach that should be mentioned in this context is the 
application of partial least squares (PLS) analysis on tomographic maps ( www.
rotman-baycrest.on.ca/index.php?section=84 ) (McIntosh & Lobaugh,   2004  ). 
PLS is a multivariate method that performs a singular value decomposition of 
the covariance of sets of variables. The method is very fl exible, since the vari-
ables may contain MEG signals, spectra, behavioral results like reaction times, 
tomographic maps, or other data from different conditions and subjects. 

www.sph.umich.edu/ni-stat/SnPM/
www.sph.umich.edu/ni-stat/SnPM/
www.rotman-baycrest.on.ca/index.php?section=84
www.rotman-baycrest.on.ca/index.php?section=84
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A simple application may be the singular value decomposition of the covari-
ance of the experimental design matrix, and the tomographic maps of the 
different conditions. The results are singular values and latent variables. 
The singular values represent the covariance explained by the latent variables. 
The latent variables optimally capture the effect of the experimental condi-
tions on the data — i.e., they reveal which parts of the data have the strongest 
covariance with the experimental design matrix. Signifi cance of latent variables 
is assessed by means of permutation test.     

Analysis Strategies and Practical Considerations 

 A critical step in tomographic functional connectivity studies using MEG is 
network identifi cation. If regional activation (the second strategy described in 
the section on statistical considerations) is used for network identifi cation, 
one should carefully choose the signal representation that is used for localiza-
tion. The optimal signal representation ultimately determines the quality of 
the network identifi cation. The choice of the signal representation should be 
made based on the maximization of the signal-to-noise ratio of the effect of 
interest (after careful artifact rejection). For example, frequency spectra are 
the optimal signal representation for oscillatory signal components. If one 
aims at localizing continuous oscillations, Welch’s method can be applied on 
the continuous recordings to obtain the cross spectra (after carefully choos-
ing the length of the FFT window). Peaks in the power spectra can then be 
localized. For transient oscillations, wavelet transforms are more appropriate. 

 If little  a priori  information is available about the effect of interest (e.g., 
its time or frequency) one should start at the sensor level. A computation of 
spectra (for continuous data) or time-frequency maps (for epoch data) for 
each sensor is a reasonable fi rst step. In order to account for the stronger 
power of low-frequency components, a frequency-specifi c normalization is 
advisable (e.g., (A-mean(B))/mean(B) or (A-mean(B))/std(B) where A is the 
post-stimulus data, B is the baseline data, and std represents the standard 
deviation). These signal representations can then be tested for signifi cant 
differences between experimental conditions. Parameters of the frequency or 
time-frequency computation can be optimized to increase the signal-to-noise 
ratio (e.g., the use of multi-taper spectra can be particularly benefi cial for 
effects in the gamma frequency range [Mitra & Pesaran,   1999  ]). 

 The second approach usually requires the choice of a reference signal. In 
some studies, muscle activity was used as the reference signal to identify the 
brain area to which it showed strongest coupling (e.g., Pollok, Gross et al., 
  2004  ; Sudmeyer, Pollok et al.,   2004  ; Timmermann, Gross et al.,   2003  ). This 
area can then be used as a reference region for a cerebro-cerebral coherence 
analysis. Often, this extra information is not available. Using modern comput-
ers, a matrix can be computed that represents coherence (or any other depen-
dency measure) between all voxel combinations at a particular frequency. The 
diagonal of the matrix could contain power for each voxel at this frequency. 
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Permutation tests could reveal signifi cant differences between conditions. 
Thus, an entire network can be identifi ed from this matrix. 

 Several problems may arise if broad-band activation time courses are 
computed for regions of interest that were identifi ed in tomographic maps. If 
localization is performed in the frequency domain (e.g., on the cross-spectral 
matrix), the properties (e.g., the spatial resolution) of the spatial fi lters are 
different compared to a fi lter based on the covariance matrix (including all 
frequency components). 

 Another relevant point for the computation of activation time courses is 
the choice of the exact coordinates of the spatial fi lter. Tomographic maps 
can only be computed with a limited spatial resolution (usually a few milli-
meters), which may not allow optimal identifi cation of the center of the 
region of interest. The maximum obtained from the tomographic map can be 
used as an initial estimate for a nonlinear bounded optimization (e.g., using 
the Nelder-Mead algorithm implemented in Matlab). Within the optimiza-
tion procedure, activation time courses are computed for various positions 
and orientations. The criteria for optimization depend on the data (e.g., to 
maximize the ratio of mean post-stimulus power to mean baseline power). 
This optimization may signifi cantly improve the time-course estimation.  

Example: Slow Finger Movements 

 In the following paragraphs we describe a particular MEG functional 
connectivity study (Gross, Timmermann et al.,   2002  ) and guide the reader 
through the different steps of the analysis.    

Paradigm

 This study employed a mapping of cerebro-cerebral coherence without the 
intermediate step of localizing activated brain areas. The study used DICS to 
map cerebro-cerebral coherence during slow fi nger movements (Gross, 
Timmermann et al.,   2002  ). Subjects were asked to perform slow fl exion and 
extension movements of the right index fi nger, sinusoidally, at a frequency of 
0.5 Hz ( Figure  9–6  ). Subjects were trained with a visual target signal and feed-
back of their fi nger position. Subjects were recorded during three 2-minute 
periods of self-paced movements. Neural activity was measured with 122 sen-
sors at a temporal resolution of 1 millisecond. Simultaneously, muscle activ-
ity from three hand and fi nger muscles was recorded with surface electrodes 
(EMG), together with the position of the tip of the right index fi nger using an 
ultrasound device. In the analysis presented here, the EMG signal from the 
right  extensor digitorum communis  (EDC) muscle and the velocity of the fi nger 
tip is used.  

 The slow movements are known to be associated with rhythmic changes 
at 6–9 Hz in the velocity of the fi nger (Vallbo & Wessberg,   1993  ; Wessberg 
& Vallbo,   1995  ; Wessberg & Vallbo,   1996  ; Wessberg & Kakuda,   1999  ). 



Figure 9–6 . Study of slow fi nger movements. The subjects were asked to 
perform smooth and slow (0.5 Hz) fl exions and extensions of the right 
index fi nger. The solid line shows the visually presented target signal used 
for training. The dashed line corresponds to the actual movement of the 
subject measured with an ultrasound device. 
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Figure 9–7 . Spectra of peripheral signals. Power spectra of velocity of right 
fi nger tip (A) and muscle activity (EMG signal, B) show maxima at the 
movement frequency (or harmonics) and at about 8 Hz. (C). Coherence of 
both signals shows interdependencies at the movement frequency (and 
fi rst harmonics) and at about 8 Hz. 
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After excluding peripheral mechanisms as causes of the discontinuities, the 
authors suggested a central origin.     

Peripheral Signals 

 First, power and coherence spectra were computed for muscle activity and 
fi nger velocity for all subjects. As expected from the previous studies, regular 
changes in fi nger movements were seen at about 8 Hz in power spectra of 
muscle activity and fi nger velocity, and also in coherence between those sig-
nals ( Figure  9–7  ). The frequency of these regular changes varied across sub-
jects in the range 6–9 Hz. For each individual subject, the exact 
frequency of maximum power in the fi nger velocity was determined for the 
subsequent analysis. The fi ndings from this analysis step confi rmed the previ-
ously published results (e.g., Vallbo & Wessberg,   1993  ).      

Cerebro-muscular Coherence 

 The aim of the next analysis step was the identifi cation of possible cerebro-
muscular coherence. To this end, coherence between all MEG signals and the 
muscle activity was computed for each subject.  Figure  9–8   shows the results 

Figure 9–8 . Topography of cortico-muscular coherence. Coherence spectra 
of EMG signal and all MEG signals are shown in a fl attened view of the 
sensor layout. Strongest coherence to muscle signal can be seen at about 
8 Hz in a sensor overlying the left sensorimotor cortex. 
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A

B a cb

Figure 9–9 . Localization results for a single subject. (A). DICS was used to 
compute a functional map of cerebro-muscular coherence. For each voxel 
in the brain, coherence of activity in this voxel to muscle activity is com-
puted, and coherence at 8 Hz is used for color coding. Maximum coherence 
is evident in the contralateral sensorimotor cortex. (B). Coherence between
the contralateral primary motor cortex and all other voxels in the brain 
was computed with DICS. Local maxima in the coherence map were found 
in ipsilateral cerebellum (a), contralateral thalamus (b) and contralateral 
premotor cortex (c). 

from an individual subject. Coherence at about 8 Hz can be seen between sen-
sors above the left sensorimotor area and muscle activity from the right EDC 
muscle. This result was confi rmed in the other subjects and indicated the 
existence of cerebro-muscular coherence at the frequency of the regular veloc-
ity changes of fi nger movements.  

 In the next step DICS was applied to localize cerebro-muscular coherence in 
each subject. The frequency of maximum cerebro-muscular coherence was 
determined for each individual subject from the sensor plots ( Figure  9–8  ). 
A 2-Hz frequency range around these individual frequencies was used to per-
form the localization with DICS.  Figure  9–9A   shows the thresholded map of 
coherence to the right EDC muscle for one subject. All 9 subjects showed the 
strongest cerebro-muscular coherence to muscle in the contralateral senso-
rimotor cortex.      
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Cerebro-cerebral Coherence 

 The computation of cerebro-cerebral coherence requires the selection of a 
reference point. Our previous localization of cerebro-muscular coherence 
leads to a natural selection of a reference point: the individual maximum of 
cerebro-muscular coherence at 6–9 Hz, which is located in the primary motor 
cortex. Using this approach, we track the peripherally observed effect to the 
cortex and further on to other areas in the brain. If this approach is not pos-
sible (e.g., because the effect can not be observed in peripheral signals) one 
has to resort to an  a priori  selection of a reference area, to select it from the set 
of signifi cantly activated areas, or to compute the coherence between all com-
binations of voxels. 

 The cerebro-cerebral coherence analysis with DICS resulted in tomo-
graphic maps of coherence to primary motor cortex. Again, the individual 
frequency band (from the cerebro-muscular coherence analysis) was used for 
localization. Visual inspection of local maxima in the coherence maps revealed 
a number of areas.  Figure  9–9B   displays local maxima in the coherence maps 
in ipsilateral cerebellum (a), thalamus (b), and premotor cortex (c). To iden-
tify the areas that are consistently involved across subjects, the individual 
tomographic maps were spatially normalized in SPM99, and subjected to a 
statistical group analysis (one sample t-test). This procedure resulted in the 
identifi cation of a network consisting of contralateral primary motor cortex, 
premotor cortex, thalamus, and ipsilateral cerebellum ( Figure  9–10  ).    

Figure 9–10 . Group results of cerebro-cerebral coherence. Individual maps 
of coherence to left motor cortex in the 6–9 Hz band were 
spatially normalized and subjected to a one-sample t-test in SPM99. Sig-
nifi cant areas are shown (p<0.05, corrected, modifi ed from Gross, Tim-
mermann et al., 2002).
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 The signifi cance of these results does not lie in the identifi cation of the 
cerebello-thalamo-cortical loop (which has been described before) but in the 
functional characterization of the loop in the current paradigm. The study 
showed for the fi rst time an oscillatory interaction at 6–9 Hz within this loop, 
and its relation to fi nger velocity changes at the same frequency. The oscilla-
tory interplay within the network may well implement discrete movement 
control (Gross, Timmermann et al.,   2002  ). 

 In this particular study, network identifi cation as a critical part of the 
functional connectivity analysis was performed using group statistics of coher-
ence maps. A similar approach has been used in other studies (Pollok, Gross 
et al.,   2004  ; Sudmeyer, Pollok et al.,.   2004  ; Timmermann, Gross et al.,   2003  ).      

Discussion and Perspectives 

 Noninvasive functional connectivity analysis with MEG is a new fi eld that 
opens up exciting possibilities to signifi cantly enhance our understanding 
about basic principles governing effi cient information processing in the brain. 
Neural activity is recorded with high temporal resolution that allows to ana-
lyze the transient neural dynamics. In conjunction with localization tech-
niques, time courses of activity in selected regions of interest can be computed 
and subjected to further analysis, characterizing the temporal evolution of 
dependencies between the regions. Due to its high temporal resolution and 
whole-scalp coverage, MEG offers unique information about long-range 
interactions in the human brain. With further methodological developments 
that are currently underway, we can expect to reliably observe neural com-
munication processes under physiological and pathological conditions. 

 Nevertheless, one should keep in mind the limitations of functional 
tomographic connectivity analysis with MEG, particularly when interpreting 
the results. For example, it is important to realize that most localization tech-
niques cannot reliably estimate the extent of an activated brain area. Even if 
statistical criteria are used for the computation of a threshold, the size of a 
distributed source representation is often more related to particular proper-
ties of the data (e.g., signal-to-noise ratio) than to the extent of an activated 
area. One should also be cautious in the interpretation of interactions between 
areas. Even if sophisticated measures (like partial coherence, or the directed 
transfer function) are used on a carefully selected network, there is no way to 
assure the completeness of the network. Thus, interactions that have been 
identifi ed as direct may be due to the infl uence of an “invisible” area. In addi-
tion, the existence of signifi cant dependency during a specifi c experimental 
condition does not necessarily mean that this dependency is functionally rel-
evant. Signifi cant differences in dependency measures are more reliable for 
the identifi cation of task-relevant interactions. 

 In this rapidly evolving fi eld, methodological developments take place 
in several directions. Statistical methods primarily based on permuta tion 
techniques and surrogate data are developed, adapted and validated for 
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high-dimensional data. Similarly, algorithms for data mining and dimension-
ality reduction become increasingly important. These methods often rely on 
principal component analysis (see, e.g., PLS), independent component analy-
sis, hierarchical clustering, or multidimensional scaling. An interesting 
approach that has recently been developed is dynamic causal modeling 
(DCM). DCM is specifi cally designed to allow the investigation of effective 
connectivity. In DCM the brain is described as a deterministic dynamical sys-
tem that is perturbed by external stimuli. The stimuli cause changes in mod-
eled areas. The measurement is predicted based on a forward model, and the 
parameters describing the areas and their interactions are fi tted to minimize 
the deviation from the measured signals (Friston, Harrison et al.,   2003  ). In 
addition, neural mass models are used to understand the relation between 
certain physiologically meaningful parameters and phenomena observable in 
EEG/MEG recordings, such as particular spectral peaks or event-related com-
ponents. (David, Cosmelli et al.,   2004  ; David, Harrison et al.,   2005  ; Rennie, 
Robinson et al.,   2002  ). Furthermore, functional connectivity analysis will 
very likely benefi t from the incorporation of anatomical connectivity infor-
mation (e.g., Passingham, Stephan et al.,   2002  ; Sporns, Tononi et al.,   2005  ).      

Notes     

    1    Please note that this list is not complete.   
    2   For localizations in the frequency domain, Fourier-transformed data 

segments can be used.      
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Introduction 

 As more whole-head systems become available, magnetoencephalography 
(MEG) is increasingly being used in clinical and cognitive neuroscience to 
image human brain function. With the use of novel experimental paradigms, 
researchers are using MEG to explore many aspects of the workings of the 
human brain. To assure an objective scientifi c interpretation of these studies, 
it is important that experimental fi ndings be accompanied by appropriate 
statistical analysis that effectively controls for false positives. 

 This chapter reviews the statistical tools available for the analysis of dis-
tributed activation maps, defi ned either on the 2D cortical surface or throughout 
the 3D brain volume. Statistical analysis of MEG data bears a great resemblance 
to the analysis of fMRI or PET activation maps; therefore much of the meth-
odology can be borrowed or adapted from the functional neuroimaging 

10

Statistical Inference in MEG Distributed 

Source Imaging 

Dimitrios Pantazis and Richard M. Leahy

     This chapter reviews the statistical tools available for MEG analysis   • 
  We describe how statistical maps of brain activation are created on the • 
cortex using the General Linear Modeling approach  
  We review methods to threshold these maps and establish statistical • 
signifi cance while controlling for multiple comparisons      
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literature. In particular, we describe the General Linear Modeling (GLM) 
approach, where the MEG data are fi rst mapped into brain space, and then fi t 
to a univariate or multivariate model at each surface or volume element. 
A desired contrast of the estimated parameters produces a statistical map, 
which is then thresholded for evidence of an experimental effect. 

 Statistical thresholding at each surface or volume element introduces the 
multiple hypothesis testing problem, where thousands of elements or voxels 
are tested against the null hypothesis of no experimental effect. Uncorrected 
thresholding of the brain activation maps could introduce an unacceptably 
large number of false positives. For example, naive thresholding of 10,000 
independent voxels at  α  = 5 %  threshold is inappropriate, since this could 
produce approximately 500 false positives in data in which there is no experi-
mental effect (the null condition). In practice, MEG maps exhibit a high 
degree of spatial correlation, which further confounds their interpretation. 
Therefore, a means of controlling for multiple hypothesis testing is essential 
for meaningful interpretation of statistical maps. In this chapter we describe 
several approaches that can produce corrected thresholds and control for 
false positives: Bonferroni, Random Field Theory (RFT), permutation tests, 
and False Discovery error Rate (FDR).     

Why MEG Statistical Inference is Different than that for 
Other Neuroimaging Modalities 

 Statistical inference in MEG distributed-activation maps uses the GLM frame-
work (Kiebel,   2003  ), which has been widely successful and is considered a 
standard in fMRI and PET neuroimaging studies. However, there are impor-
tant differences from the other neuroimaging modalities related to how 
observations are created and fi tted in GLM models, as well as how subsequent 
statistical inference is performed. 

 The temporal resolution of MEG is on the order of milliseconds, much 
higher than fMRI and PET. Standard analysis of MEG data involves the use of 
stimulus-locked averaging over epochs to produce the evoked response. 
Recently there has also been a great deal of interest in analysis of the induced 
response, which corresponds to stimulus-related variations in power in dif-
ferent oscillatory bands as a function of time. This allows us to detect experi-
mental oscillatory effects corresponding to modulations in power in specifi c 
frequency bands, even though the oscillations themselves are not phase-
locked to the stimulus or response. Induced effects are typically investigated 
using a time-frequency decomposition such as the Morlet wavelet transform 
(Teolis,   1998  ). Averaging over epochs of the power in the time-frequency 
maps gives us an estimate of induced components, which can then be tested 
for experimental effects. These two forms of processing, stimulus-locked 
averaging and averaging of time-frequency power maps, are the two basic 
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approaches that are used for analyzing, respectively, evoked and induced 
components in the MEG data ( Figure  10–1  ).  

 The fact that we often want to identify and localize experimental 
effects — not only over space, as traditionally done in fMRI with the notion of 
voxels, but also in time and possibly frequency — introduces challenges that 
differentiate MEG analysis from that of PET and fMRI. The high dimension-
ality of the data (space  ×  time  ×  frequency  ×  experimental design) presents 
challenges in terms of high computational costs, but also possibilities in terms 
of greater fl exibility in the design of the linear models. 

 Another important difference relative to fMRI is that MEG offers only 
limited spatial resolution. Distributed cortical imaging involves the reconstruc-
tion of thousands of elemental current sources from a few hundred measure-
ments. The problem is highly underdetermined and requires regularization to 
produce a stable solution. The resulting images are typically of low resolution, 
so that reconstructions of focal sources are blurred with extended point-spread 
functions (PSF). The shape of the PSF will depend on the reconstruction space, 
cortical or volumetric, and whether the orientations of the sources are con-
strained to be normal to the cortical surface. Unlike in fMRI, the PSFs for MEG 
are highly asymmetric and can extend over multiple gyri or sulci. As a result, 
even after thresholding to control for false positives, one can still observe false 
positives at locations within the point spread of truly active regions and, there-
fore, care must be taken in interpreting these results.  Figure  10–8  , shown later 
in this chapter, illustrates this issue; the reconstructed statistical map has much 
greater spatial extent than the single simulated cortical patch, and subsequent 
thresholding procedures identify signifi cant activity in broad cortical areas.  

Figure 10–1 . MEG brain activity in response to a task consists of two compo-
nents: evoked responses that are phase locked to the stimuli, and induced 
responses that are not. Averaging the MEG time-series over epochs pre-
serves the evoked components, but suppresses the induced components 
(left). Averaging the power time-frequency decompositions of the time-
series preserves both evoked and induced components (right). 
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 This issue is closely related to the MEG resolution kernel and the actual 
hypothesis being tested. In MEG, the channel measurements  m  are linearly 
related with the brain activation  s  as:  m  =  Gs   +   n , where  G  is the lead fi eld 
matrix that depends on the shape and conductivity of the head as well as 
the position of the sensors, and  n  is the channel noise. We obtain an estimate 
of the MEG sources  ŝ   with some linear inverse method:  ŝ   =  Wm  =  WGs   +   Wn , 
where  W  is the inverse operator and  R  =  WG  is the resolution kernel. 
In distributed cortical imaging, where we estimate more sources than the 
available channel measurements,  R  is not the identity matrix and our solution 
is biased. For a particular cortical location  i , when we test the hypothesis 
 ŝ  

i
   = 0, we are effectively testing ( WG )  i s  = 0, where (.)  i   represents the  i th   row of 

a matrix. Our true null hypothesis is, therefore, not that the cortical activity at 
location  i  is zero, but rather that the whole brain activity, linearly weighted by 
the resolution kernel at location  i , is zero. Waldorp et al. (  2006  ) therefore 
suggests performing hypothesis testing on multivariate models where spa-
tially smooth regions of interest lead to more interpretable hypotheses than 
univariate models. 

 Analysis in fMRI is typically performed in the 3D volumetric space, while 
in MEG the 2D cortical surface is often chosen as the source space. Cortically 
constrained maps can complicate the analysis in several ways. For example, 
isotropic smoothing on the cortical surface when applying random fi eld 
methods requires the use of the Laplace-Beltrami operator (Chung,   2001  ). In 
group analysis the data should be brought into a common coordinate system, 
which requires cortical surface alignment rather than volumetric registration 
(Joshi et al.,   2007b  ; Fischl et al.,   1999  ), and the resulting areas of activation 
should be reported with respect to cortical anatomy rather than the standard 
Talairach coordinates. Orientation-free MEG reconstructions produce vector 
rather than scalar fi elds (3 elemental dipoles at each location), which can also 
complicate analysis. 

 In addition to producing a nonuniform PSF, the MEG inverse operator 
also introduces a highly non-stationary spatial covariance structure in recon-
structed images. Contributions to the covariance can include trial-to-trial 
variations in induced and evoked responses, as well as physiological and envi-
ronmental noise. Furthermore, the covariance can also vary substantially 
over the course of an experiment so that we can often not assume temporal 
stationarity. In comparison, variations in fMRI data can often reasonably be 
approximated as spatially and temporally stationary. As a result, statistical 
inference for MEG with random fi eld theory requires the use of special 
formulas that correct for non-stationarity (Worsley et al.,   1999  ).     

Creation of Statistical Maps 

 In this section we review several methods for generating statistical maps of 
brain activation based on distributed source imaging. They all consist of three 
steps: process the MEG measurements to create a collection of observations, 
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use a general linear model to fi t the observations at each location, and fi nally, 
generate a contrast of the estimated parameters and normalize with its vari-
ance to create a map of pivotal statistics (t-maps, F-maps etc). This methodol-
ogy is a standard approach in fMRI and PET data analysis, and together with 
subsequent statistical inference, is generally referred to as Statistical Parametric 
Mapping (SPM) (Friston et al.,   1995  ).    

Observations

 Typically, the MEG channel measurements are converted into 2D cortical or 
3D volumetric maps of brain activation using a source imaging method 
( Figure  10–2a  ). Inverse methods include the regularized minimum-norm 
(Hämäläinen & Ilmoniemi,   1984  ) and its variants (depth-weighted (Fuchs 
et al.,   1999  ); Tikhonov-regularized (Tikhonov & Arsenin,   1977  ), and noise-
normalized (Dale et al.,   2000  ); beam-formers (Veen et al.,   1997  ); MUSIC 
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Figure 10–2 . Creation of statistical maps of brain activation: (a) Inverse 
methods produce distributed cortical activation maps; (b) Time-frequency 
decompositions expand the data in the frequency domain; (c) MEG data 
observations are created over several spatial-temporal-spectral bands. 
Alternative data reduction techniques can be used, such as singular value 
decomposition; (d) The observations are fi tted into a general linear model 
following a mass-univariate approach, a multivariate approach, or a gen-
eral univariate formulation; (e) A contrast of interest is defi ned and the 
statistic is normalized by its standard deviation. 
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maps (Mosher & Leahy,   1998  ); and sLORETA (Pascual-Marqui,   2002  ). 
Different source assumptions underlie each of these methods, e.g., the dipole 
model in MUSIC and beamforming vs. the distributed source model in the 
minimum norm methods. However, in each case a statistic can be computed 
at each voxel in the 2D or 3D space.  

 To explore the spectral components of induced brain activation, it is also 
common to perform time-frequency decompositions of the image maps, 
using for example the complex Morlet wavelet transform, or the short-time 
Fourier transform (Bruns,   2004  ) ( Figure  10–2b  ). As described before, the 
resulting inverse solutions are of high dimension: (2D or 3D) space, time, 
frequency and experimental condition for each subject. There is, therefore, 
tremendous fl exibility in processing the MEG data; we can create observa-
tions using any of these dimensions, treat them as univariate or multivariate 
observations, and fi t them to different general linear models. 

 Some form of data reduction is desirable. For example, we can summa-
rize information by forming discrete regions or “bands” with respect to the 
time, frequency and/or spatial dimensions and integrating brain activity over 
these bands ( Figure  10–2c  ). Even though this reduces resolution, as we have 
no discrimination power within each band, it can benefi t the analysis in mul-
tiple ways: reduce data storage requirements, improve the signal-to-noise 
ratio, and ameliorate the multiple comparison problem by reducing the num-
ber of concurrent hypothesis tests. Data reduction in the spatial, temporal, 
and frequency dimension, is a common practice in MEG studies. For exam-
ple, Pantazis et al. (  2007  ) defi ned 10 temporal bands (100ms each), a single 
 α -frequency band (8–14Hz), and 6 spatial bands (or equivalently, cortical 
regions of interest) and integrated power over these bands in each trial. Brooks 
et al. (  2004  ) analyzed the data only in a couple of frequency bands. Kilner 
et al. (  2005  ) completely collapsed the spatial information by performing time-
frequency analysis on a single channel, or equivalently, a single source. Finally, 
Singh et al. (  2003  ) fi ltered the data into four frequency bands and averaged 
out the temporal dimension using a spatial power map computed from an 
LCMV beamformer output. 

 If oscillatory analysis is not required, a time-frequency decomposition is 
not necessary and the frequency dimension is ignored (Barnes & Hillbrand, 
  2003  ; Sekihara et al.,   2005  ; Carbonell et al.,   2004  ; Pantazis et al.,   2005b  ). An 
alternative form of data reduction is the application of singular value decom-
position (SVD) or independent component analysis (ICA) to the MEG data. 
For example, Friston et al. (  1996  ) used SVD in the spatiotemporal dimension 
to reduce the set of components for each multivariate observation.     

General Linear Modeling 

 After the construction of observations, a GLM approach is used to model the 
data at each location ( Figure  10–2d  ). The MEG observations, as described 
before, can be current density estimates, time-frequency power maps, or 
others. GLM theory assumes normal distributions, which is reasonable for 
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averaged evoked responses due to the central limit theorem. However, power 
time-frequency decompositions of single trial data have a  χ  2 -distribution. 
Fortunately, Kiebel et al. (  2005  ) has shown that, under most circumstances, 
one can appeal to the central limit theorem, or transform the MEG power 
estimates with a log or square-root transform, to make the error terms normal, 
and thus GLM theory is still appropriate. 

 Under the GLM framework, the MEG observations  Y  are predicted from 
the parameters  b :

   Y Xb= + e     (10–1)  

 where  ε  is the modeling error.  X  is the design matrix whose elements model 
an experimental paradigm and consist of qualitative (0s or 1s) and/or quanti-
tative variables.  

 To provide intuition on using the GLM theory for MEG data modeling, 
consider the following example. In a MEG visual attention study, we acquire 
multi-trial data for two conditions: subject attends to the right (condition 1), 
or to the left (condition 2). By combining an inverse method with time-
frequency analysis of individual trials, we produce dynamic images of brain 
activity in the  α -frequency band. The  α -power observations for a single voxel, 
 y  
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conditions:

   = +ij i ijy b e     (10–2)  

 where  i  = {0, 1} denotes the condition,  j  the trial repetition for each condition, 
and  ε   

ij
   is the model error.  

 The same ANOVA model can be written in matrix notation. If the 
observations  y 

ij
   are arranged on a single observation vector  Y , and the rows of 

the design matrix  X  have 0s and 1s to indicate the condition for each MEG 
observation, the ANOVA model becomes  Y  =  Xb   +   ε , explicitly written as:
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    (10–3)  

 By assuming independent Gaussian error distributions with equal vari-
ance for both conditions,  N (0,  σ  2 ), we can solve the GLM using an ordinary 
least squares solution: 
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    (10–4)  

 where the bar denotes the mean over the dotted subscript. The estimated 
error variance  2σ̂    has  N   +   M  − 2 degrees of freedom, because two of them 
where used to estimate the model predictors. The error and error variance are 
estimated as: 
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 where  P  is a projection operator onto the left null space of  X . We want to test 
whether there is a difference between the two conditions, or equivalently 
whether the difference  b  

1
  −  b  

2
  is signifi cantly different from zero. The statistic 

of interest is therefore the contrast of the two parameters,  1 2
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which is then normalized with an estimate of its standard deviation. The 
resulting statistic  T  is a two-sample t-test between the two conditions. 
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 Even though we could have derived the  T  statistic directly, it is useful to 
see how it is estimated in the GLM framework and get intuition for more 
complex designs where the theory becomes really important. The design 
matrix  X  can have multiple columns with indicator variables, as above, but 
also quantitative variables that correspond to covariates. The observations 
can be arranged in multiple ways and several contrasts can capture the experi-
mental effect of interest.      

Types of GLMs 

 There are three ways to organize the MEG data into GLM observations  Y : a 
mass-univariate approach, a multivariate approach, and a general univariate 
formulation (Kiebel and Friston,   2004  ). The mass-univariate approach con-
siders the data at each location in isolation. Therefore, a separate but identical 
GLM is fi tted at each spatial-temporal-spectral location and analyzed using 
an ANOVA or ANCOVA approach. The data correlations in the respective 
dimensions are ignored at this stage, and accommodated at the inference 
stage through adjusting the P-values associated with the statistical maps. 
For example, even though the activation of nearby voxels is correlated, the 
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mass-univariate approach ignores the spatial correlation, but corrects for it 
when random fi eld theory or permutation tests defi ne a threshold for signifi -
cant activation. The mass-univariate approach can identify regionally specifi c 
effects, since it can test for rejection of the null hypothesis independently at 
each location. This property, together with its ease of implementation, has 
made it the most popular approach in functional neuroimaging. Examples in 
MEG/EEG include mass-univariate models in the spatial dimension (Park 
et al.,   2002  ; Barnes & Hillbrand,   2003  ; Brooks et al.,   2004  ); spatial-temporal 
dimensions (Pantazis et al.,   2003 ,  2005b  ; Sekihara et al.,   2005  ); spatial-spectral 
dimensions (Singh et al.,   2003  ); and spatial-temporal-spectral dimensions 
(Pantazis et al.,   2005c ,  2007  ). 

 In the multivariate approach, we use the Multivariate Analysis of Variance 
(MANOVA) or Multivariate Analysis of Covariance (MANCOVA) frame-
work. In this case, the MEG observations are organized into vectors and 
stacked as rows in an observation matrix  Y . Classical analysis of this model 
proceeds by computing sample covariance matrices of the data and the resid-
uals, and then estimating test statistics such as Roy’s maximum root, Wilk’s 
lambda, Pillai’s trace, or Hotelling’s trace (Seber,   2004  ). 

 An important difference between the multivariate model and the 
univariate model is that the former makes inferences on distributed models, 
whereas the latter makes inferences on regionally specifi c effects. For example, 
if the observation vector represents a group of neighboring voxels, then rejec-
tion of the null hypothesis allows one to infer there is an experimental effect, 
but it does not indicate a subset of these voxels at which this has occurred. 
Because of this limitation, and the requirement to fully specify the covariance 
structure, MANOVA models are rarely used in the spatial dimension. 
Interestingly, Waldorp et al. (  2006  ) argues that mass-univariate approaches 
are inappropriate for hypothesis testing in MEG, and multivariate models are 
more suitable, because of the limited spatial resolution and bias of MEG 
inverse methods (see also earlier in this chapter). Friston et al. (  1996  ) used a 
multivariate model with MEG data where whole trials (spatial and temporal 
dimension) were formed into single observation vectors. Even though 
MANOVA models are generally not convenient for the spatial dimension, 
they can be useful when applied in the temporal or spectral dimension, 
because of their potential to improve statistical power. (Soto et al., 2009) 
Therefore, we expect mass-multivariate analysis, where MANOVA models 
with temporal-spectral observations are fi tted separately in each spatial voxel, 
to be useful in practice. 

 In the general univariate formulation, the observations from multiple 
locations are stacked together into a long vector and fi tted into a univariate 
GLM. The parameter and error variables are similarly vectorized. Therefore, 
a dimension of the observation variables (either space, time, frequency, or 
combinations of these) is used as an experimental factor with the same num-
ber of levels as there are bands in this dimension. This model is the most 
general case of GLM; if the error covariance terms are unconstrained, then it 
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is equivalent to the MANOVA model (where the corresponding dimension is 
used to build multivariate observations); if the between-location covariance 
terms are forced to zero, it is equivalent to the mass-univariate approach 
(where a GLM is fi tted independently in each location). We can also force 
different constraints that will allow us to estimate fewer variance parameters. 
For example, we could assume that in the spatial dimension the covariances 
depend only on the spatial distance between voxels. Kiebel and Friston (  2004  ) 
propose the use of a mass-univariate formulation where a different GLM is 
fi tted in each spatial location and the temporal dimension is included as a 
factor. The advantage of this approach is that we can make inferences about 
the temporal extent of evoked responses, which would have not been possible 
if the temporal dimension was modeled with a mass-univariate approach. 
With the general univariate formulation, in this case we can make inferences 
about differential latencies among trial types or groups.     

Contrast Statistic and Normalization 

 After selection of a GLM approach, the MEG observations are fi tted to the 
models and a contrast (or linear combination) of the parameters is computed 
( Figure  10–2e  ). This contrast statistic captures the effect of interest — for 
example, the difference between two experimental conditions — or the corre-
lation of a response variable with brain activation. It is then preferable to 
normalize the statistics into known parametric distributions (pivotal statis-
tics). This allows the application of random fi eld theory, which, as we will see, 
requires a Gaussian distribution or one derived from Gaussian data (e.g., at or 
F statistic). The normalization also helps when using nonparametric permu-
tation methods, because it makes the variance at all voxels homogeneous 
under the null hypothesis, which should produce approximately uniform 
specifi city; i.e. false positives are equally likely at all locations. 

 We conclude by showing that the GLM framework is parsimonious in 
MEG analysis. Consider, for example, the simple case where the MEG data 
are used to create dSPM maps (Dale et al.,   2000  ), i.e. minimum-norm inverse 
maps normalized with an estimate of the noise standard deviation at each 
location. This corresponds to the simplest case of GLM analysis following a 
mass-univariate approach: the one-way ANOVA model  = +it it it

j jy b e    is fi tted 
to the data separately at each spatial location  i  and temporal location  t , where 
 j  is the trial repetition index and  b it   is the main effect (brain response) (Pantazis 
et al.,   2005b  ). We use superscripts for  i  and  t  to denote that the same model is 
fi t separately in each spatial-temporal location. The estimated contrast of 
interest is the parameter itself, which is equal to the trial average according to 
the minimum-norm solution:  .

ˆ ˆ ˆ[1]T it it it itc b b b y= = =   , where the bar indicates 
an average over the dotted subscript. Since the error terms  

it
je    are assumed to 

be Gaussian, the estimated contrast is also a Gaussian statistic. Finally, to create 
a map of t-distribution statistics, we normalize with the standard deviation at 
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and  J  is the total number of trials. This is equivalent to the noise normaliza-
tion performed in dSPM for orientation-constrained linear inverses. For the 
unconstrained case, the dSPM output is an F-map. The sLORETA solution 
(Pascual-Marqui,   2002  ) is similar to dSPM, but with a different normalization 
coeffi cient. In this case we normalize by the standard deviation computed 
from the data covariance, rather than the noise-only covariance. Under the 
null hypothesis of noise-only (or equivalently, a zero experimental effect), 
sLORETA and dSPM are identical. Similarly, the beam-former neural activity 
index (Veen et al.,   1997  ) corresponds to a t-map for the orientation-
constrained case, or an F-map for the orientation-free case, which can be 
again cast in a GLM framework.     

Multisubject Studies 

 In multisubject studies, the measurement variance has two sources, the 
within-subject variance and the between-subject variance. Depending on how 
we model the error variance, two types of statistical analysis can be used: 
fi xed-effect and mixed (or random) effect. Fixed-effect analysis considers 
only the within-subject variance, and therefore all measurements are fi tted to 
the same GLM in the same manner as they would be for a single subject. 
Statistical inferences apply only to the particular subjects participating in the 
experiment. To generalize to the whole population, mixed-effect analysis is 
required, where both within- and between-subject variances are considered 
in making statistical inferences. 

 Mixed-effect analysis typically involves fi tting hierarchical models 
(Friston et al.,   2002  ; Mumford & Nichols,   2006  ), where we specify the com-
plete model in stages, a fi rst or lower level model fi ts the data for each subject 
separately, and a second level combines the different subjects. The estimation 
of the parameters in the two-stage analysis is a challenge, since it involves 
iterative optimization and is generally not practical unless we follow the sum-
mary statistics approach. This approach is computationally effi cient because 
it dissociates estimation of the parameters of the two-stage models, and can 
be implemented with algorithms such as Markov chain Monte Carlo 
(Beckmann et al.,   2003  ), or Restricted Maximum Likelihood (Verbeke & 
Molenberghs,   2000  ). 

 Under specifi c assumptions, the summary statistics approach simplifi es 
and the parameters can be estimated without the need for an iterative proce-
dure (Mumford & Nichols,   2006  ; Holmes & Friston,   1998  ). We describe this 
method here, because it has become the most popular approach for multisub-
ject analysis in MEG. The fi rst-stage model fi ts the data from each subject 
 1k K= �    separately (To ease notation, we now use subscripts for indices 
where we follow a mass-univariate approach):

   = +k k k kY X b e     (10–8)  

 where  Y 
k
   are the MEG observations and  b 

k
   are the model parameters of sub-

ject  k . While each design matrix  X 
k
   can have a different number of rows (for 
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example, different number of MEG trials per subject), all the design matrices 
must have the same number of columns, with each column expressing the 
same effect among subjects. The subject parameters are estimated using a 
generalized least-squares solution, which normally requires the estimation of 
the error covariance matrix  C 

k
  : 

   1 1 1ˆ ( )T T
k k k k k kb X C X X C− − −=     (10–9)  

 The second stage model takes only one contrast  ˆT
kc b    from each subject 

and fi ts it to the group GLM: 
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 where  X 
g
   and  b 

g
   are the group design matrix and group level parameters 

respectively. The summary statistics model error  ε   
g
   has two variance compo-

nents, the intrasubject and intersubject variance. Under the assumption of 
homogeneous intrasubject variance (i.e.  ˆT

kc b   , has the same variance for all 
subjects), the intrasubject variance is a scaled identity matrix. Similarly, under 
the assumption of independent subjects, the intersubject variance is a scaled 
identity matrix. Therefore, the covariance of  ε   

g
   is also a scaled identity matrix, 

and the generalized least-squares solution of the second stage model (which 
normally requires estimation of the error covariance matrix) becomes 
equivalent to an ordinary least-squares solution that does not require the 
covariance matrix: 

   1ˆ ˆ( )T
g g g gb X X X b−=     (10–11)   

 The key assumption here is the homogeneity of the intrasubject vari-
ances; without it, the ordinary least-squares solution could not have been 
used, iterations would be necessary to estimate both the intrasubject and the 
intersubject components of the variance. 

 With multisubject studies, we fi rst coregister all subjects to a common 
coordinate system, using either volumetric brain coregistration (Christensen 
& Johnson,   2001  ; Shen & Davatzikos,   2002  ; Hellier et al.,   2002  ) or cortical 
surface alignment methods (Fischl et al.,   1999  ; Thompson et al.,   2001  ; Joshi 
et al.,   2007a  ). Then the fi rst-stage model, which can be a mass-univariate 
approach, a multivariate approach, or a general univariate framework, esti-
mates subject-specifi c parameters. These parameters are then fi tted to a sec-
ond-stage model, and fi nally a statistic map is computed on the common 
coordinate system using a contrast of the group parameters  b g   at each voxel. 
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This statistic map can then be thresholded for signifi cant activity at the group 
level, using any of the methods described later in this chapter. 

 Consider the following example. In Pantazis et al. (  2007  ), the fi rst-stage 
model consisted of fi tting a univariate model for each subject in the alpha 
band, for each of several cortically defi ned regions of interest and time bands. 
A contrast statistic was then estimated that captured an attention effect: 
ipsilateral minus contralateral alpha power in each spatiotemporal band. The 
contrast for all subjects was then fi tted to a second-stage GLM (Equation 10–10), 
whose design matrix  X g   is a column of 1s. This simply leads to averaging the 
responses from all subjects (Equation 10–11), since the assumption of homo-
geneous intrasubject variance allows application of the simple summary 
statistics approach described above. Finally, the FDR approach, as described 
below, was used to threshold the resulting statistic map. Other examples of 
multisubject MEG studies can be found in Singh et al. (  2003  ), and Kiebel and 
Friston (  2004  ).      

Thresholding Statistical Maps and Establishing 
Statistical Signifi cance 

 The fi rst half of this chapter reviewed several approaches to creating statistical 
maps of brain activation in MEG distributed cortical imaging using the GLM 
methodology. Arbitrary thresholding of these maps can lead to different 
interpretations of brain activation ( Figure  10–3  ) and undermine the validity 
of a functional neuroimaging study. Objective assessment of the statistic maps 
requires a principled approach to identifying regions of activation. This 
involves testing thousands of hypotheses (one for each spatial/temporal/
frequency band or region of interest) for statistically signifi cant experimental 
effects ( Figure  10–4  ), and raises the possibility of large numbers of false positives 
simply as a result of multiple hypothesis testing.   

 In the following, we fi rst defi ne measures of false positives and show the 
important role that the maximum statistic plays in statistical inference. 
We then describe the Bonferroni correction, Random Field Theory (RFT), 
permutation methods, and False Discovery error Rate (FDR), which provide 
corrected thresholds for statistical maps.    

Figure 10–3 . A statistic map thresholded at several arbitrary levels. Do both 
hemispheres show experimental effects, or just the right one? Interpreta-
tion of these activation results clearly depends on principled selection of 
the threshold for signifi cance. 
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False Positive Measures 

 Thresholding statistical maps should control some measure of the false-
positive rate that takes into account the multiple-hypothesis tests. Several 
measures of false positives have been proposed, the most popular of which is 
the familywise error rate (FWER), i.e., the probability of making at least one 
false positive under the null hypothesis that there is no experimental effect. 
The Bonferroni method, and two approaches based on the maximum statistic 
distribution — RFT, and permutation test — control the FWER. Another mea-
sure that is becoming increasingly popular is FDR, which controls the expected 
proportion of errors among the rejected hypotheses. Other measures of false 
positives exist, such as positive false-discovery rate, false discovery-rate confi -
dence, and per-family error-rate confi dence (Nichols & Hayasaka,   2003  ), but 
they are not as common, and not covered in this chapter. 

 There are two types of FWER control: weak and strong. In  weak FWER 
control , false positives are controlled only when the complete null hypothesis 
holds, i.e., when there is no experimental effect at any location in the brain. If 
a cortical site (or a temporal/spectral band) is truly active, control of false 
positives is not guaranteed anywhere in the brain. Effectively, this implies that 
with weak FWER control we cannot achieve any localization of an experi-
mental effect, but rather only reject the complete null hypothesis. Conversely, 
in  strong FWER control , the false positives are controlled for any subset where 
the null hypothesis holds. So, even if there is true brain activation at some 
locations, false positives are still controlled at the other locations, and there-
fore we can localize experimental effects. Fortunately, the Bonferroni, RFT, 
and permutation methods achieve strong control of FWER, and therefore 
have localization power. On the other hand, the FDR method only has weak 
control of FWER. 

 FWER methods control the false positives at an  α  level, typically 5 % . This 
means that with 100 repetitions of the entire experiment only 5 of them will 

Figure 10–4 . A statistical map typically consists of activation measures at 
thousands of voxels Ti on the brain surface. In the case of multidimensional 
statistical maps, we acquire activation measures for multiple timepoints 
and frequencies at each voxel. 
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have one or more false positives, or type I errors, at any location in the brain. 
We now investigate how the FWER is related to the maximum statistic.     

Maximum Statistic 

 The FWER is directly related to the maximum value in the statistical image; 
one or more voxels  T 

i
   will exceed the threshold  u  

 α 
  under the null hypothesis 

 H  
0
  only if the maximum exceeds that threshold:

   max |

(FWER) ( { }| ) (Prob.any voxelexceedsthethreshold)

(max | ) (Prob.max voxelexceedsthethreshold)

1 ( ) (1-cum.density functionof max voxel)

1 (1 )
o

i i o

i i o

T H

P P T u H

P T u H

F u

α

α

α

α α

= ∪ ≥
= ≥
= −

= − − =
   

 (10–12)  

 where  F  
max

   
T
   
|
   
Ho

   is the cumulative density function of the maximum statistic 
under the null. Therefore, we can control the FWER if we choose the thresh-
old  u  

 α 
  to be in the (1 −  α )100  th   percentile of the maximum distribution 

( Figure  10–5  ).   
 To control FWER, random fi eld theory estimates the right tail of the 

maximum statistic distribution using a topological measure called the Euler 
Characteristic. Permutation tests, on the other hand, resample the data to 
estimate the empirical distribution of the maximum statistic. The Bonferroni 
method relies on the Bonferroni inequality and makes no use of the maximum 
distribution described here. 

 Rather than use the statistic values directly, these can fi rst be converted to 
P-values by either assuming a parametric distribution, or by estimating an 
empirical distribution at each location (Pantazis et al.,   2005b  ). P-values can 
improve control of FWER in cases where the distribution of the statistic is 
spatially variant. In this case we use the distribution of the minimum P-value 

Figure 10–5 . Probability density function of the maximum statistic. By 
choosing a threshold uα which leaves only  α (typically 5 %) of the distribu-
tion to the right of uα, we control the FWER at level α.



260 MEG: An Introduction to Methods

for control of FWER. As we see below, P-values are also used when controlling 
the FDR.     

Bonferroni Correction 

 The simplest approach to controlling the FWER is the Bonferroni correction 
method (Hochberg & Tamhane,   1987  ; Nichols & Hayasaka,   2003  ). It is based 
on the Bonferroni inequality, and assumes independence of each of the mul-
tiple hypothesis tests; under dependency, Bonferroni is still valid but can be 
very conservative. To control false positives at an  α  level, we threshold each 
voxel separately at the  α   

b
   =  α / V  level, where  V  is the total number of voxels.

   

(FWER) ( { }| )

( }| ) (Bonferroni inequality)
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    (10–13)  

 The Bonferroni method requires the estimation of the marginal distribu-
tion at each location in the statistical map, or equivalently, its conversion into 
a P-value map. We can do this either parametrically — by assuming for exam-
ple a Gaussian, t, or F distribution at each voxel — or non-parametrically, by 
resampling the data using a permutation scheme and estimating the empirical 
distribution separately at each voxel. In  Figure  10–8  , we estimated the distri-
butions using the latter approach. Since the cortical surface was defi ned using 
7501 nodes, the Bonferroni-adjusted 5 %  level threshold was  α   

b
   = 0.05/7501 = 

6.66·10 −6  and no voxel exceeded this very small threshold.  
 This is not suprising, as the Bonferroni method produces very conserva-

tive thresholds unless the tests are independent or have weak dependency 
(Nichols & Hayasaka,   2003  ). This is rarely, if ever, the case in MEG, since the 
number of MEG sensors rarely exceeds a few hundred, while the number of 
voxels in a statistical map may number several thousand. The inverse proce-
dure that maps from sensors into brain space will inevitably introduce cor-
relation among voxels. Many Bonferroni variants have been proposed, such 
as the Kounias inequality, and step-up or step-down procedures (Hochberg 
& Tamhane,   1987  ). However, they offer little improvement over the original 
Bonferroni method.     

Random Field Methods 

 As shown in Equation (10–12), the FWER can be determined directly from 
the probability distribution of the maximum statistic. Adler (  1981  ) demon-
strated that the expected value of the Euler Characteristic (EC), a topological 
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measure of the suprathreshold region of a statistical map, is a good approxi-
mation of this probability when the threshold is large. Therefore, Random 
Field Theory (RFT) approximates the upper tail of the maximum distribution 
 F 

maxT
   using the expected value of the EC of the thresholded image (Worsley 

et al.,   1996  ). Computational procedures for calculating this value are imple-
mented in several software packages for analysis of functional imaging 
data (SPM -  http://www.fi l.ion.ucl.ac.uk ; VoxBo -  http://www.voxbo.org ; 
and FSL -  http://www.fmrib.ox.ac.uk/fsl  among others), and are widely used 
in fMRI and PET functional neuroimaging studies. 

 Worsley et al. (  1996  ) provides a formula for the expected value of the EC 
that unifi es the results for all types of random fi elds:

   

0

(FWER) ( { }| )

( ) ( )

i i o
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d d
d

P P T u H
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=

= ∪ ≥

≈ ∑     (10–14)   

 This equation gives the probability of a FWER for threshold  u  in a 
 D -dimensional random fi eld  T 

i
   in a search region  S , which can be the cortical 

surface ( D  = 2) or the brain volume ( D  = 3). The term  R 
d
  ( S ) is the d-dimen-

sional RESEL (RESolution Element) count, a unitless quantity that depends 
only on topological features of the statistical map in the search region  S  
( Figure  10–6  ) and is a measure of smoothness of the fi eld under the null 
hypothesis. The term  ρ   

d
  ( u ) is the EC density that depends only on the thresh-

old  u  and the type of statistical fi eld (such as  z ,  t ,  X  2 , and Hotelling’s  T  2 ). In 
Equation 10–14 the lower dimensional terms ( d  <  D ) compensate for the case 
when the excursion set, i.e., the regions of voxels in a fi eld above a threshold 
 u , touches the boundary. They can usually be omitted because they have only 
a small impact on the RESEL count.  

 While in fMRI and PET the random fi elds can be assumed to be statisti-
cally stationary, in MEG we need to compensate for nonstationarity in the 
spatial, temporal, and spectral dimensions (Worsley et al.,   1999  ), both for 
maximum statistic inference and for cluster size tests (Hayasaka et al.,   2004  ). 

Figure 10–6 . Random fi eld theory uses the topological features of a sta-
tistical map to convert the voxels into RESELS, a dimensionless quantity 
that represents the image with interpretable units of smoothness. Under 
the null hypothesis of no experimental effects, it is the degree of spatial 
correlation in the noise in the statistical maps that determines the RESEL 
count.

http://www.fil.ion.ucl.ac.uk
http://www.voxbo.org
http://www.fmrib.ox.ac.uk/fsl
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Such corrections in the spatial dimension were applied by Pantazis et al. 
(  2005b  ), and Barnes and Hillbrand (  2003  ), to threshold 2D cortical maps and 
3D volumetric maps, respectively. Singh et al. (  2003  ) and Park et al. (  2002  ) 
used RFT as implemented in the SPM software to threshold beamformer and 
LORETA (Pascual-Marqui et al.,   1994  ) volumetric maps from a multisubject 
MEG/EEG study. Kilner et al. (  2005  ) used single channel EEG data to create 
time-frequency maps that were thresholded with SPM under the assumption 
of stationarity. Finally, Carbonell et al. (  2004  ) applied RFT on a 1D Hotelling 
 T  2  statistical map created from multichannel EEG data in the temporal 
dimension. 

 To derive corrected thresholds for statistical maps, RFT relies on several 
assumptions, including the following: the image has the same parametric dis-
tribution at each spatial location; the point spread function has two deriva-
tives at the origin; the fi eld has suffi cient smoothness to justify application of 
continuous RFT; and the threshold is suffi ciently high for the asymptotic 
results to be accurate. When these assumptions hold, RFT is a very powerful 
method; when this is not possible — for example, with statistical maps of non-
standard distribution — nonparametric alternatives should be considered. 

 To apply RFT in  Figure  10–8  , the statistical map was fi rst smoothed with 
the Laplace-Beltrami operator (Chung,   2001  ), a generalization of Gaussian 
smoothing on an arbitrary Riemannian manifold. The spatial fi ltering corre-
sponded to a 16.7mm Full-Width Half-Maximum (FWHM). Since the mean 
distance between the vertices in the tessellated cortical surface was 5.7mm, 
the spatial fi ltering was equivalent to 2.93 vertices FWHM, which is consid-
ered suffi cient when smoothing 3D Gaussian images (Hayasaka & Nichols, 
  2003  ). On the smoothed statistical map, RFT produced 334.91 RESELS from 
7501 cortical vertices or voxels. Using Equation 10–14, the adjusted 5 %  level 
threshold was 4.12. 

 RFT results are available not only for the maximum statistic (peak statis-
tic height), but also for the size of a cluster, the number of clusters, and joint 
inference on peak height and cluster size (Poline et al.,   1997  ; Hayasaka et al., 
  2004  ; Hayasaka & Nichols,   2004  ). Furthermore, the theory is applicable to the 
multivariate analog of the F-statistic, Roy’s maximum root, and therefore 
multivariate GLM modeling can also be used in conjunction with RFT 
(Worsley et al.,   2004  ).     

Permutation Methods 

 The standard approach to permutation tests is to fi nd units exchangeable 
under the null hypothesis. Units are exchangeable if, by randomly rearrang-
ing these units, we can create permutation samples that are statistically equiv-
alent under the null hypothesis to the original data. The simplest example 
involves a study in which we want to detect differences between two experi-
mental conditions. Under the null hypothesis that there is no difference, 
epochs from the two conditions can be exchanged. 
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 A test statistic is computed from each permutation sample and, together 
with the statistic representing the original data, constitute the reference set for 
determining signifi cance. The proportion of data permutations in the refer-
ence set that have test statistic values greater than or equal to the value for the 
experimentally obtained results, is the P-value (signifi cance or probability 
value). An excellent treatment of permutation tests can be found in Edgington 
(  1995  ) and in; Nichols and Holmes (  2001  ). 

 For FWER control, the test statistic is the maximum in the statistical 
map. Therefore, unlike the RFT approach, which estimates the upper tail of 
the maximum distribution based on geometrical features of a parametric sta-
tistical map, permutation methods resample the data and create an empirical 
maximum distribution. By setting a threshold at the  α 100th percentile of the 
upper tail of the empirical distribution, we have exact control of the FWER. 

 Since the permutation samples must be statistically equivalent to the 
original data, permutations that destroy the inherent correlation structure of 
the MEG data are not allowed. For example, we cannot exchange channel 
labels or randomize time-series because the spatial or temporal structure 
would be altered. Therefore, it is important to apply valid permutation 
schemes for both single-subject and multi-subject studies. 

 In single-subject studies, permutations are feasible between experimental 
conditions (Maris & Oostenveld,   2007  ). The MEG data are assigned to condi-
tions either beforehand, with respect to the baseline and types of stimuli pro-
vided, or on the fl y based on the subject’s responses, such as fast/slow button 
presses. In between-trials design, every trial is assigned to one experimental 
condition; in within-trials design, every trial is assigned to multiple experi-
mental conditions in different time segments. The latter is far more common, 
as a baseline is typically included before the presentation of a stimulus, and 
therefore a single trial has two conditions. Most researchers are willing to 
assume statistical independence between MEG trials, or between non-
overlapping time segments within trials, especially if they are separated by 
some minimum time interval, and thus satisfy the exchangability require-
ment.  Figure  10–7   shows an example permutation scheme used in Pantazis 
et al. (  2005b  ) to threshold minimum-norm cortical maps while controlling 
for false positives.  

 In multi-subject studies, permutations are only performed on the second-
level GLM for random-effect statistical inference (see description of multi-
subject studies earlier in the chapter). In the simple summary statistics 
approach in Equation 10–10, each subject’s estimated contrast  ˆT

kc b    is 
assumed to have a symmetric distribution around zero under the null hypoth-
esis. Therefore, randomly multiplying it by 1 or −1 does not change its distri-
bution under the null hypothesis. With  K  subjects (and thus  K  contrasts), a 
total of 2  K   permutation samples can be created, which can then each be fi tted 
to the second level GLM, to estimate permuted group parameters that are 
used in turn to estimate the empirical distribution of the group-averaged 
map. Such an approach was followed, for example, by Singh et al. (  2003  ) and 
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Pantazis et al. (  2007  ). Unfortunately, with small  K  the empirical distribution 
may be coarsely quantized, and more subjects may be necessary to achieve a 
desired FWER control. 

 Permutation tests have many advantages. They are exact, i.e., give precise 
control of FWER; they do not assume parametric distributions; they adapt to 
underlying correlation patterns in the data; and they are very fl exible, as any 
test statistic can be used. The only assumptions required are those to justify 
permuting the labels of the conditions, such as, that the distributions under 
the null hypothesis have the same shape or are symmetric. Even though we are 
free to consider any statistic summarizing evidence for the effect of interest at 
each location, it is usually best to use the same statistics for a non-parametric 
approach as we would for a comparable parametric approach. The reason is 
that parametric statistics often have optimal power; for example, a t-statistic is 
the most powerful in detecting differences between populations in many cir-
cumstances. Further, to achieve uniform specifi city, i.e., equal chances of false 
positives at any location in the statistical map, we should use statistics that 
have approximately homogeneous null permutation distributions. 

 Because of their fl exibility, permutation tests are more commonly used 
in MEG than the parametric RFT. Permutation tests have been proposed to 
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Figure 10–7 . Permutation scheme on a single-subject multi-trial MEG study. 
Top: averaging of original statistical maps, Bottom: generation of permu-
tation samples by randomly exchanging pre- and post-stimulus conditions 
within each trial. An empirical distribution of the maximum statistic is 
generated by averaging the permuted trials and computing the max over 
the cortex. The α level threshold at the upper tail of the empirical distri-
bution is applied to the original averaged data to control the FWER. 
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control false positives in the channel domain (Blair & Karnisky,   1993 ,  1994  ; 
Karnisky et al.,   1994  ; Maris,   2004  ; Achim,   2001  ; Galan et al.,   1997  ) and in the 
source domain (Park et al.,   2002  ; Pantazis et al.,   2003 ,  2005b  ; Chau et al., 
  2004  ; Singh et al.,   2003  ; Sekihara et al.,   2005  ). These methods have been 
applied in multiple MEG studies (Kaiser et al.,   2000  ; Lutzenberger et al.,   2002  ; 
Cheyne et al.,   2006  ; Bayless et al.,   2006  ; Itier et al.,   2006  ; Pantazis et al.,   2005a  ,c, 
2007). Reviews on the application of permuation tests in MEG are available in 
Maris and Oostenveld (  2007  ); and in Maris et al. (  2007  ). 

 Various thresholding methods are illustrated in  Figure  10–8  . The permu-
tation method was based on that described in Pantazis et al. (  2005b  ) and 
produced a threshold of 3.99, which controls FWER over the whole cortex at 
a 5 %  level.     

Control of the False Discover Rate (FDR) 

 In contrast to the above methods that control the FWER, FDR controls the 
expected proportion of errors among the rejected hypotheses (Benjamini & 
Hochberg,   1995  ; Genovese et al.,   2002  ). For example, if we set an  α  = 5 %  FDR 
threshold, then on average we should expect 5 %  of our suprathreshold voxels 
to be false positives. 

 The standard FDR method proposed by Benjamini and Hochberg (  1995  ) 
is conservative, as it controls the FDR at a  0V

V α    level, where  V  is the total num-
ber of voxels and  V  

0
  is the number of voxels where the null hypothesis is true:

   α
⎛ ⎞

= ≤⎜ ⎟⎝ ⎠
0false positives

E(FDR) E
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V
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Figure 10–8 . Simulated MEG source on the left hemisphere and recon-
structed dSPM statistical map, thresholded using several methods to con-
trol false positives. Uncorrected thresholding (P-value = 0.05) and FDR 
(P-value = 0.0065) produced many false positives. Permutations and ran-
dom fi eld theory gave thresholds  t = 3.99 and  t = 4.12, respectively. The 
Bonferroni approach was very conservative (P-value 0.05/7501 = 6.6610 −6)
and did not identify the source. 
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 When the true brain activation extends over broad areas,  V  
0
  may become 

small and the FDR procedure too conservative. Thus, a number of adaptive 
procedures improve on the original FDR approach by fi rst estimating  V  

0
 , and 

then using this estimate to tighten the threshold (Benjamini et al.,   2006  ). 
 The FDR methods adapt to the properties of the data; when a large number 

of voxels are truly active, the threshold will adjust to allow for more false posi-
tives; when no truly activated voxels exist, FDR controls the FWER, but in a 
weak sense (see False Positive Measures earlier in the chapter). They are more 
powerful than Bonferroni, random fi eld, and permutation control of FWER, 
and for this reason may become popular for thresholding MEG maps. 

 The FDR approach requires the estimation of the marginal distribution 
at each location in the statistical map, or, equivalently, conversion of the sta-
tistic value at each location into an equivalent P-value. We can do this para-
metrically or non-parametrically, as described for the Bonferroni approach. 

 Once the maps are converted to P-values, implementation of the stan-
dard FDR method is relatively straightforward (Genovese et al.,   2002  ). If  V  is 
the total number of voxels being tested, the procedure is as follows:  

   (1)  Order the voxel P-values from smallest to largest:

   (1) (2) ( )VP P P≤ ≤�     (10–16)    

   (2)  Let  r  be the largest  i  for which

   ( ) ( )i

i
P

V c V

α≤     (10–17)    

   (3)  Declare all voxels corresponding to the P-values  P  
(1)

,  … ,  P  
(
   
r
   
)
  active.    

 where  
1

( ) 1/
V

i
c V i

=
= ∑    if no assumptions on the joint distribution of the 

P-values across voxels is made, and  c ( V ) = 1 if the P-values in different voxels 
are independent or they have positive dependence (Benjamini & Yekutieli, 
  2001  ).  

 The procedure is demonstrated graphically in  Figure  10–9   for the FDR 
procedure applied to the statistical map in  Figure  10–8  . The estimated thresh-
old for 7501 cortical voxels at the 5 %  level was 0.065, and produced an 
extended region of suprathreshold voxels. Unfortunately, the large extent of 
the signifi cantly active region determined using FDR, is a result of the limited 
spatial resolution of MEG; many voxels surrounding the true simulated 
source exhibit signifi cant activity in the statistical map, and FDR is sensitive 
enough to identify them. Conversely, the more conservative thresholds from 
FWER control tend to reduce the size of activated regions, as also shown in 
 Figure  10–8  . Other examples of the application of FDR in MEG maps include 
Edwards et al. (  2005  ); Jacobs et al. (  2006  ); Pantazis et al. (  2007  ); and Jacques 
and Rossion (  2007  ).       
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Discussion

 We have presented a GLM framework to produce statistical maps from MEG 
distributed cortical imaging, and subsequently threshold them while control-
ling for false positives. Choosing a thresholding method depends on the data 
available: Bonferroni is simple and effi cient for a small number of tests with 
minimal dependence; random fi elds are robust when their parametric 
assumptions are satisfi ed, and strong correlation exists in the data; permuta-
tion tests are very general, adapt to the underlying data correlations, can use 
any statistic, and are more powerful than random fi elds for data with low 
degrees of freedom (e.g., studies with a few subjects); FDR is more powerful, 
works well with sparse signals, and is recommended when we can afford a few 
false positives. However, as we have shown in our simulations, FDR can pro-
duce large regions of signifi cant activation as a result of the limited resolution 
of MEG inverses. 

 A number of important statistical issues are beyond the scope of this 
chapter, such as conjunction analysis (Nichols et al.,   2005  ), i.e., the identifi ca-
tion of brain areas that are simultaneously active in multiple tasks; extraction 
of confi dence intervals for distributed solutions using the bootstrap (DiNocera 
and Ferlazzo,   2000  ; Gross et al.,   2003  ; Darvas et al.,   2005  ); and thresholding 
using cluster-size tests (Hayasaka et al.,   2004  ). Also, the theory was developed 
for distributed inverse methods in MEG. However, discrete solutions are also 
popular in MEG, especially with well localized activation when a few equiva-
lent current dipoles can represent most cortical activity. In this case, alternative 
approaches can be used to establish signifi cance; for example, the bootstrap 
resampling approach, or Monte Carlo simulations to fi nd localization accu-
racy and confi dence intervals for current dipoles (Darvas et al.,   2005  ; Braun 
et al.,   1997  ). 
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Figure 10–9 . Graphical representation of the FDR procedure. The blue line 
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 A related problem in MEG data analysis is testing for the statistical 
signifi cance of cortical interactions (Varela et al.,   2001  ; Gross et al.,   2001  ; Hui 
& Leahy,   2006  ; Jerbi et al.,   2007  ; Maris et al.,   2007  ). In some cases, a few corti-
cal locations are investigated and corrections for multiple comparisons are 
generally not employed. In the case where tests are made for interactions 
between multiple pairs of locations, the theory described in this chapter can 
be applied. The DICS algorithm, for example, can be used to investigate corti-
cal coherence at all locations in the cortex relative to a reference, which may 
be a single cortical location or an electromyograph reference signal (Gross 
et al.,   2001  ). The resulting maps are a measure of coherence at each cortical 
location for a single frequency band, but can be easily extended to multiple 
frequency bands. The methods described in this chapter for analysis of 
time-frequency representations of brain activity can be adapted to testing for 
signifi cant activation in these coherence maps.      
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Introduction 

Combining Techniques: The Enticements 

 Since any measurement technique has its own strengths and limitations, 
combining different experimental approaches to better probe a scientifi c 
question is a commonplace idea. In the human brain-imaging domain, it is 
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          Combining neuroimaging techniques is important to acquire a better • 
understanding of brain processes, and can be characterized by three 
types of combination: converging evidence, quantifi ed data with shared 
information, and generative models  
      Much remains to be understood about the complexity of the neural • 
mechanisms and their related biological phenomena before the 
combined results of different imaging techniques can be solidly 
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now common to combine two or more imaging techniques to investigate a 
cognitive process or a disease, in addition to using other measures such as 
behavioral testing. 

 Recently, the combination of electro- or magnetoencephalography with 
functional magnetic resonance imaging (fMRI) or positron emission tomog-
raphy (PET) has become more and more popular among neuroscientists. 
Clearly, if one could obtain the temporal resolution of the electric methods 
while maintaining the spatial precision of true imaging techniques that can 
resolve activity at the level of ocular dominance columns (Kim et al.,   2000  ), 
the data obtained would be immensely useful for understanding how the 
brain implements cognitive processes, or how it malfunctions in various 
pathologies. In this sense, the combination of techniques with different limi-
tations can be seen as the construction of a “super-technique” with much 
greater effectiveness. This argument is extremely widespread (e.g., Stippich 
et al.,   1998  ; Dale et al.,   2000  ; and many more). 

 Furthermore, the results obtained by combining neuroimaging techniques 
may be more than the sum of the results obtained separately. This is because 
different techniques observe different phenomena, and the interpretation of 
the data obtained in one modality may depend on parameters that are only 
accessible with the other (as, for example, in defi ning vigilance state or epilep-
tic activity). Rather than a “super-technique,” we may be able to construct a 
technique that allows us to look at other phenomena (Laufs et al.,   2003  ).     

Combining Techniques: The Diffi culties 

 While potentially extremely useful and sometimes necessary, combining 
information is a challenge at several levels — when designing the experimental 
paradigm, when acquiring the data and during the interpretation of the data. 
For instance, if the same cognitive protocol has to be conducted with MEG 
and fMRI on the same subjects, the effect on a subject of “having a second 
session” may have to be carefully considered. One may want to randomize the 
order of the acquisitions across imaging techniques, but the repetition effect 
would still have to be appropriately modeled. In other words, the constraints 
or additional complexity involved at the protocol design stage can be (and 
usually is, in our opinion) underestimated. 

 Multimodal acquisition of data may also prove to be a technical challenge. 
The simultaneous acquisition of both EEG and fMRI data is a typical exam-
ple. In this case, we may fi nd that the signal-to-noise loss on the EEG signal 
precludes fi ne studies of those signals (Benar et al.,   2003  ), while the fMRI 
echo planar imaging (EPI) acquisition quality is degraded as well (Krakow 
et al., 2000a; 2000b). While theoretically the best idea, the technological 
limitations may, in fact, render multimodal data useless for the study. 

 Thirdly, the interpretation of the data would often be more diffi cult. 
Because current models of brain functions and diseases are likely to be only 
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crude approximations, complex data may not easily fi t into the current model 
interpretation (here, “model” is taken in a loose sense, as the researcher’s 
formal or informal representation of the brain mechanism under investiga-
tion), and therefore be too big a step forward. Multimodal experiments add 
complexity, and are therefore even more likely to lead to large deviations 
from current models’ predictions. This phenomenon is accentuated when 
theoretical models are still under construction or poorly conceptualized, 
which is a common situation in neuroimaging. 

 For those reasons, multimodal studies should probably be planned even 
more carefully than others, and based on a solid theoretical framework for 
sound interpretation.     

Three Ways of Combining Information 

 “Fusion” and “combining” do not refl ect the same operations in the litera-
ture. In their article, “How can PET/fMRI and EEG/MEG can be combined?”, 
Horwitz and Poeppel (  2002  ) distinguish three levels of combination. Here, 
we briefl y summarize and comment on them. 

  Converging evidence.  This is simply the combination of different information 
originating from different experiments, and possibly different fi elds, to per-
mit better interpretation. A vast majority of studies use converging evidence 
within modalities, but also across modalities (Guy et al., 1999; Ball et al., 
  1999  ). For instance, Dehaene et al. (  1998  ) report the location, but also the 
timing, of the process of masked numerical primes using both fMRI and EEG 
techniques. Two diffi culties have been highlighted by Horwitz and Poeppel 
(  2002  ). First, it is very diffi cult to actually decide whether measurements from 
different studies or modalities refer to the same process or the same brain 
region. Second, not all evidence is usually accounted for. The most common 
problem is that “null results”, i.e., studies that failed to report activity, are not 
included as evidence. This problem is magnifi ed by the classical hypothesis-
testing framework, and by the strong publication bias towards “signifi cant” 
results. Adapted meta-analysis techniques could address this issue. It should 
be noted that converging evidence is certainly crucial for diagnosis in a clinical 
environment. 

  Quantifi ed data, shared information.  This relies on establishing quantitative 
relationships between measurements of a different nature. The shared infor-
mation can be inferred in the time or spatial domain, but the models used are 
phenomenological (correlation, registration between modalities; e.g., Singh 
et al.,   2003  ). If the models are crude, or might be based on invalid assump-
tions, then the presence or absence of shared information is diffi cult to interpret. 
The causes for the presence or absence of a given effect can be due to numer-
ous unknown factors. Nevertheless, this is probably a necessary fi rst step. 
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  Generative models.  The most ambitious and possibly most fruitful direction is 
to establish generative models for which parameters are estimated from data 
of different nature or provenance. Only a few examples of this can be found 
in the literature. One was proposed by Horwitz et al. (  1999  ) who considered 
the possibility of constructing a large-scale, biologically realistic neural 
network model that can perform a specifi c cognitive task. The model con-
struction would allow the simulation of fMRI/PET and MEG/EEG data that 
could be compared to experimentally observed values. Here, different data 
types with different spatiotemporal properties are  not directly compared , but 
are informing a  common neural model . Note that this model should include 
not only current knowledge about the neurophysiology and the measurement 
process, but also how the full model can achieve the cognitive operation under 
study. Pushing the idea further, one can use the data of different imaging or 
non-imaging techniques to estimate the parameters of the model.     

Combining Brain Imaging Techniques: On What Basis? 

 We briefl y review the biophysics principle underlying both BOLD (blood-
oxygen-level dependent) and MEG/EEG signals. For MEG/EEG, the signals 
are believed to originate from the synchronous postsynaptic currents in the 
pyramidal cells. An electric dipole is the simplest and most commonly used 
model to represent the electric activity. On the other hand, fMRI is based on 
the measure of the combination of three phenomena: the increased oxygen 
extraction, blood fl ow and blood volume following increased neural cell 
activity. Animal experiments using simultaneous BOLD and intracerebral 
electrode measures (Logothetis et al.,   2001  ) show that both action potentials 
and local fi eld potentials (LFPs) correlate with BOLD activity, the link with 
LFP being the strongest. Further work and references can be found in 
Logothetis (  2003  ) and in Logothetis & Wandell (  2004  , and references 27, 29, 
54, 55 and 81 therein). While the question of the effect of inhibitory signals on 
BOLD is still under study, negative BOLD has been convincingly reported 
as a consequence of decreased neural activity (Shmuel et al.,   2002  ; Duong 
et al.,   2000  ). 

 In human neuroimaging, a number of studies report correlation between 
electric and hemodynamic measures. For instance, using non-simultaneous 
data, Arthurs et al. (  2000  ) showed linear coupling between fMRI and ERP 
(evoked related response) amplitude in four out of fi ve subjects for the early 
N20-P22 amplitude (see also Sammer et al.,   2005  ). However, a number of 
other studies report discrepancies between the two measurements, such as in 
Nunez and Silberstein (  2000  ), that might be explained with blind sources or 
other non- direct links between LFP or action potential activity. 

 This very short summary leads to the following points:  

      BOLD activity can occur without EEG or MEG activity (MEG/EEG silent • 
sources). Specifi c spatial confi gurations of the cells or of the sources may 
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annihilate signals at the surface of the scalp. Electric signal synchronization is 
needed for MEG/EEG detection, but not necessarily for BOLD detection.  
      MEG/EEG activity can occur in the absence of BOLD activity (fMRI silent • 
sources) because synchronization may not necessarily consume enough 
energy to be seen in BOLD.  
      The two activities are not necessarily spatially congruent. Many studies • 
have found discrepancies between EEG dipolar localization and fMRI 
(in Bagshaw et al.,   2005  , up to 60 mm, but see also the differences reported 
for the early SI response in Kober et al., 2001; Stippich et al.,   1998  ). These 
values can be regarded as alarmingly large in the fi rst instance. However, 
the discrepancy can potentially be caused not only by the variability in the 
cell types and neuronal activities producing each particular signal of inter-
est, but also by the approximate modeling of dipolar activities.  
      The differences in the temporal scales make the direct comparison of the • 
process temporality diffi cult: BOLD cannot be resolved in time unless 
very strong assumptions are made both on the hemodynamic model and 
on the neuronal activity to allow a stable deconvolution process.     

 To summarize, much remains to be understood about the complexity of the 
neurotransmission mechanisms and their related biological phenomena before 
the combined results of different imaging techniques can be solidly interpreted. 

 Nevertheless, neural activity as seen by electric techniques should often 
consume enough energy to produce a measurable BOLD effect, even though 
the BOLD signal does not seem to correspond to the neural activity that con-
sumes the  most  energy (Attwell & Iadecola, 2002). The spatial precision of the 
BOLD effect that can be observed at the cortical column level (Kim et al., 
  2000  ) is also an argument in favor of a mechanism tightly coupled with local 
electrical activity. At a more macroscopic level, the literature also reports that 
in some parts of the brain, the spatial consistency can be excellent; for exam-
ple in the primary visual cortex (Moradi et al.,   2003  ). Therefore, while keep-
ing in mind the limitations listed above, neurophysiology provides us with a 
good basis for the fusion of the two types of information within a spatial and 
temporal range that could eventually be close to the cortical column activity.      

Non-Simultaneous MEG/EEG and fMRI: The Assumptions and 
Constraints on Protocol Design 

 With MEG, only non-simultaneous acquisitions are possible since there is 
(yet) no apparatus able to capture MRI and MEG signals concurrently (there 
are, however, projects that have combined MEG and MRI scanners). Since 
simultaneous acquisition for EEG and fMRI has only been made available 
recently, the fi rst techniques developed were for separate acquisitions. It is 
important to note that while MEG signals have to be acquired separately, 
they are better resolved in space (Leahy et al.,   1998  ) and may therefore be an 
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excellent choice for a multimodal experiment. For further discussion on the 
pros and cons of simultaneous versus nonsimultaneous acquisitions, see the 
section below, titled “Simultaneous EEG-fMRI.”    

Assumptions

 Non-simultaneous functional data fusion on one subject makes the assump-
tion that average signal over time will be a reproducible feature. Typically, a 
subject undergoing a MEG experiment designed to investigate working mem-
ory may have slightly different brain networks involved when scanned later 
with fMRI. While intrasubject reproducibility has been studied (for instance 
in fMRI, see Symms,   1999  ) and has been shown to be good in general, it is 
certainly not perfect, and variations are to be expected. In Schultz et al. (  2004  ), 
the reproducibility of the intraindividual data was evaluated on one subject, 
who was scanned 10 times with MEG and 5 times with fMRI.  Intra  subject 
position confi dence interval is shown to be often twice or three times less than 
the  inter subject variability. The reproducibility of combined studies has only 
recently begun to be investigated (Waites et al.,   2005  ). 

 These between-session variations can be different in nature. First, the 
networks involved are the same, but acquisition noise slightly alters the 
measured signals. In this case, signals are assumed to be stationary, and long 
sessions should reduce the estimator variability. Second, the specifi cities of 
the experimental environment lead to a variation in the networks involved. In 
this case, there is an unknown systematic bias that will be confounded with 
other factors such as the differing nature of the signals. A typical example, 
when comparing the MEG and fMRI environments, is the noise produced by 
the magnet gradient as a consequence of using a standard EPI sequence. The 
difference between the environment can be diminished by reproducing the 
EPI noise in the MEG scanner. For instance Kircher et al. (  2004  ) implemented 
this idea to study mismatched negativity responses in normal and schizo-
phrenic patients in a MEG–fMRI experiment. Third, subjects’ physiological 
and mental states at the moment of the scan can vary and infl uence the results. 
This might be thought of as an ‘intrasubject random effect factor’. This vari-
ance can be reduced by either measuring the signals with similar physiological 
states — for instance, avoiding scanning at different times during the day 
(Foucher et al.,   2003  ) — or by measuring several times and averaging results. 
Finally, time (experiment repetition) can be a signifi cant factor. In this case, and 
whenever possible, randomizing subjects’ order of acquisition should subtract 
bias while increasing subject-to-subject variability, and therefore should require 
an increased number of subjects for detecting a given signal. 

 In the time domain, the issue is complicated by the different time scale of 
MEG/EEG and fMRI. Often, the assumption is that the time course of the 
electrical signals are similar between experiments (intra- and intersubject 
alike). However, since it is not possible to retrieve the electrical (LFP) dynamic 
from BOLD data — in other words, to solve for the fMRI inverse problem — 
this assumption will never be adequately addressed. In principle, EEG recordings 
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could play a key role, for instance, in bridging the gap between modalities such 
as fMRI and MEG, using conjoint recordings in both cases. However, it is 
certainly not impossible that a different dynamic can be found within the 
same network of regions between the two acquisitions, which should permit 
the use of a common localization, but not of a common dynamical description. 

 In summary, non-simultaneous acquisitions rely on the strong assump-
tion of stationary signals in space and in time, and this needs to be further 
validated. 

 In the following, we review the techniques used to analyze jointly 
non-simultaneous signals (MEG-fMRI, non-simultaneous EEG-fMRI).     

Methods for Analyzing MEG and fMRI or Non-Simultaneous 
EEG and fMRI 

 As any combination or fusion (above, we distinguished these two notions) 
will rely on a common spatial localization, where the anatomical structure 
plays a fundamental role. 

 For group analyses, subjects can either be scanned with both modalities, 
or different groups may have to be chosen. The advantage of having two dif-
ferent groups is that there will be no repetition effect: each subject will undergo 
the experimental protocol only once. The disadvantage is that there is an 
additional variability due to subject sampling (Goncalves et al.,   2005  ) and this 
may require a larger number of subjects (e.g., 25). Fusion or combination of 
information will require a template of the anatomical space. 

 If individual subjects are scanned twice, the individual cortical gray 
matter (and subcortical structure) is the common space shared by all func-
tional signals, if inverse problems are solved. Nevertheless, we will see also 
that a number of techniques do not make use of the individual anatomical 
structure. The reason lies within the fundamental problem of inter-individual 
anatomo-functional variability. Since there is no simple mapping between 
the anatomy of a single subject to another or a template, group analyses have 
to perform approximations that blur anatomical sulcogyral details, but also 
individual functional details. In the rest of the chapter, we therefore distin-
guish between methods than can use the individual space (use of MRI for 
MEG/EEG source reconstruction, simultaneous EEG/fMRI acquisitions) and 
methods that have to rely on an average anatomy such as the MNI template. 
Clearly, fusion or multimodal combinations of information for intersubject 
analyses bring together two separate diffi culties: how to combine or fuse 
multimodal data, and how to extract summary knowledge from the data of a 
group of subjects.    

The Comparison of Separated Analysis Results 

    Dipolar Analyses    
 Most of the comparison data available in the literature are for the spatial 
domain. Early studies report the distances between fMRI or PET activations 
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with source localization, estimated using inverse problems on MEG or EEG. 
Those early studies often used simple tasks (Takanashi et al.,   1996  ; Rossini 
et al.,   1998  ; Ahlfors et al.,   1999  ) or, more recently, for interictal epileptic 
dipolar localization with simultaneous EEG/fMRI recordings (Lemieux et al., 
  2001  ; Bagshaw et al.,   2005  ; Benar et al.,   2006  ). If good concordances of local-
izations were occasionally observed, the mean distance between the dipoles 
and the hemodynamic activations has often been reported to reach 1 to 2 cm 
(for instance, in the somatosensory cortices; Del Gratta et al.,   2002  ). 
Furthermore, in epileptic analysis many sources seen with EEG were not 
detected as fMRI activations and, conversely, some fMRI activations did not 
correspond to close ECD (Equivalent Current Dipole) localization (Benar 
et al.,   2006  ). This may be explained by (1) the difference between the physi-
ological process observed, (2) the limitations of the dipolar localization 
method in MEG or EEG, or (3) by the fMRI detection sensitivity difference 
(Bagshaw et al.,   2005  ).     

   Distributed Models   
 If dipolar source reconstruction is the most widely used technique, some 
authors have employed other localization techniques, such as the distributed 
source model, to compare the results from different modalities. For example, 
Moradi et al. (  2003  ) have compared the localization obtained in a retinotopic 
experiment using fMRI with those obtained using Magnetic Field Tomography 
(MFT). They found small discrepancies between the two experiments, on the 
order of 3 to 5 mm.     

   Beamformer (scanning) Analysis   
 Perhaps the best way to compare MEG/EEG and fMRI activations is to use 
beamformer inverse techniques. Indeed, these techniques do not require 
averaging of the signals across events, and are better adapted to recover evoked 
or induced activities in different frequency bands. Furthermore, for those 
reconstructed data, one can use statistical detection procedures similar to 
those of fMRI at the individual and group levels. Comparisons are then 
straightforward. Singh et al. (  2002  ) have shown converging activated net-
works by comparing BOLD activations and event-related desynchronization 
or synchronization in different frequency bands. 

 Alternatively, results can be compared through the fMRI and MEG/EEG 
responses to different experimental conditions. The assumption is that the 
modulations of the electric responses can be attributed to regions showing 
differences in BOLD activity in the different conditions. In other words, the 
region responsible for the modulation of the ERP response must be the one 
that changes its activity under the same experimental modulation, while the 
timing of the change is obtained from the ERP response. This reasoning led to 
the localization in time and space of activity modulation without an inverse 
problem (Downing,   2001  ; Dehaene,   1998  ).      
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Finding Resemblances in MEG/EEG and fMRI Data: 
Multivariate Techniques 

 Since the two data sets share a common spatial dimension, it is, in principle, 
simple to look for the instances where the spatial information is the most 
coherent. This necessitates the reconstruction of distributed sources at a reso-
lution comparable to the fMRI, or degrading the fMRI spatial information to 
the point that it can be compared to MEG/EEG. Note that using the fMRI 
information to reconstruct the MEG/EEG source at this stage would bias 
results. Once the two data sets have exactly the same number of “voxels,” it is 
a straightforward matter to compute their cross-correlation. The result is a 
matrix (fMRI_time X MEG/EEG_time) in which high values indicate the 
times for which both electrical and metabolic maps are most correlated. 
The cross-correlation can then be decomposed by standard singular-value 
decomposition techniques, and corresponding BOLD pattern and MEG/EEG 
timing extracted. 

 To quantify this equivalence in an experiment combining MEG and fMRI 
to study the sensory cortex representation of digit and lip, Schultz et al. (  2004  ) 
describe the reconstruction of MEG activity with the SAM beamformer tech-
nique (SAM: Synthetic Aperture Magnetometry) and obtained an image with 
space-dimension equivalent to fMRI. The SAM images are constructed for dif-
ferent frequency bands, and a voxel-per-voxel multiplication is performed 
between the unthresholded fMRI and SAM images. The results are summarized 
through standard singular-value decomposition. The authors report some areas 
within SI that are not found by either fMRI nor MEG. While the idea is interest-
ing, the interpretation of the voxel-per-voxel multiplication of SAM and fMRI 
images is not clear, raises intensity and spatial normalization issues, and will 
cancel out signals that are not present in only one of the two modalities. 

 A similar approach considers the space defi ned by the scalp as the shared 
common space. While this would strongly diminish the fMRI resolution, it 
avoids the diffi cult source reconstruction step. Assuming — again — that the 
BOLD activity will coincide with sources having signifi cant electrical energy, 
a projection onto the scalp (or electrode) space would make the two data sets 
directly comparable. The MEG/EEG data would then be transformed to retain 
only the energy, and the same dimension-reduction techniques can be further 
used to decompose this cross-correlation and extract the conjoint time/space 
information.     

Using fMRI Information to Constrain EEG Localization Information 

 As the MEG/EEG inverse problem is underdetermined, and does not offer a 
unique solution, it seems at fi rst sight reasonable to use the localization infor-
mation given by fMRI to constrain the inverse problem, yielding an estimate 
of the activity time courses in the fMRI-detected regions. 
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 However, because of the different nature of the data (as reviewed in the 
introduction), this approach raises several questions: (1) What fMRI infor-
mation should be used? Spatial localization, or amount of activation? 
Information resulting from group or individual analysis? (2) Which types of 
constraints should be implemented — hard constraints (assuming complete 
equivalence between MEG/EEG and fMRI localizations), or enabling extra 
sources or small displacements (soft constraints)? (3) What is the infl uence of 
those constraints in the results? 

 As these different concerns depend on the EEG/MEG inverse method, we 
will address these questions separately for dipolar and distributed-source 
reconstructions. Those methods are described in detail in other chapters of 
this book, so we will review the literature only with respect to combining 
multimodal information. See also the review by Halchenko et al. (  2005  ) on 
this topic.    

   Dipole Reconstruction with fMRI Information   
 In this technique (Pouthas et al.,   2000  ; Ahlfors et al.,   1999  ; Toma et al.,   2002  ; 
Torquati,   2005  ), the MEG/EEG signals are fi rst modeled by a number of ECDs 
at or around the location of BOLD or PET peak activity. The time courses of 
these constrained dipoles are then obtained by simple linear minimization 
techniques. These time courses are most often obtained at the group level, 
since the evoked responses are commonly computed after averaging all 
subjects. Similarly, the fMRI activations often result from a group analysis, 
although the fMRI group of subjects is not necessarily the same as the MEG/
EEG group. A critical aspect of the procedure is that the set of regions is 
strongly dependent on the threshold chosen to detect BOLD activity, and the 
results may not be robust with this threshold. Our opinion is, therefore, that 
the technique should be used very carefully, and its results can only give a 
crude view of the spatiotemporal neuronal processes under investigation. 
Often, the “BOLD linked dipoles” are not suffi cient to account for the MEG/
EEG data and the goodness-of-fi t of the model can be improved by adding a 
number of dipoles with free locations. 

 The strategy can also be reversed by fi rst fi nding the ECD with no con-
straints, then adding a number of dipoles with positions close to regions that 
elicit BOLD activity. The detected ECDs without fMRI information can be 
constrained to their positions found initially (Brunetti et al.,   2005  ), or can be 
restricted to a location close to their initial position (Torquati et al.,   2005  ). 

 Another approach to using fMRI information for the dipolar analysis is 
to help in deciding which MEG inverse solution is better among those with a 
reasonable goodness-of-fi t. This is especially useful when the goodness-of-fi t 
for the dipole model is similar in two solutions, in which case the solution 
showing the closest resemblance to the fMRI activity would be preferred. 
(Ahlfors et al.,   1999  ) 

 Because fMRI activation can extend over several square centimeters, the 
activity of such a large region may not be well modeled by a single dipole 
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placed at the maximum, or center of mass, of the suprathreshold cluster. 
Fujimaki et al. (  2002  ) developed a method for constraining ECD in fMRI 
activation areas, but they divide large fMRI activation volumes into subvol-
umes, in each of which a dipole is placed. 

 Importantly, as many authors report distances between dipole position 
and BOLD localization estimated independently to be greater than the 
constraints put on the dipoles location, there are indications that  hard and 
soft constraints based on fMRI data for M/EEG reconstruction should be use 
cautiously .     

   Distributed Reconstruction with fMRI Information   
 Distributed-inverse techniques reconstruct the amplitudes of a great number 
of dipolar sources, uniformly spaced on multiple locations in a source space 
(volumic or surfacic) at each timepoint. The localization of active regions is 
derived from the variation of amplitudes in time and space. Clearly, the prob-
lem is undetermined (see Chapter 5), as the number of unknowns is greater 
compared to the number of EEG or MEG data, and additional information or 
constraints must be introduced. The selected solution would be the only one 
that satisfi es the constraints, and corresponds best to the  a priori  information. 
In this context, the information derived from fMRI can help defi ne prior 
constraints for the source reconstruction process. 

 Different source spaces may be considered. The seminal paper of Dale 
and Sereno (1993) showed how the cortical surface can be used to reduce the 
possible set of solutions for the inverse problem, and more precisely how the 
grey-white matter interface enables one to constrain both source localization 
and source orientation. Furthermore, because BOLD should originate mainly 
from the capillaries irrigating the cortex layers, cortical surface is the natural 
space on which fMRI and MEG/EEG should be merged. 

 In further work, Liu and collaborators have suggested that the local fMRI 
response can be used to bias the electrical activity estimate toward those regions 
that show the greatest fMRI response (Liu et al., 1998; Dale et al.,   2000  ; 
Bonmassar et al.,   2001  ; Liu et al., 2002). The principle of the method is to take 
fMRI signals into account in the diagonal elements of the  a priori  source cova-
riance matrix. Those diagonal elements represent the spatial locations of the 
potential sources. Liu et al. (1998) computed with large Monte Carlo simula-
tions that a coeffi cient of 1 and 0.1 respectively, for locations with and without 
fMRI activation, gave the “best” results. This corresponds to a 90 %  weighting 
toward locations that are believed to contain fMRI activity, and “best” is used 
in the sense that the dipoles were found to be infl uenced, but not too infl u-
enced, by fMRI information. However, simulation studies from the same 
authors show that the solution can then be easily overconstrained. If, as is pos-
sible, there are mismatches between the electrical and hemodynamic signals, 
the solution can then be seriously misplaced (Liu et al., 1998; Liu, 2000). 

 Using the same principles, Babiloni et al. (  2003  ) estimate the prior 
source covariance matrix using fMRI information on an individual basis. 
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They directly include the percentage increase of the fMRI signal in the diagonal 
elements of the matrix, and introduce in the non-diagonal elements the cor-
relation of the fMRI signals between the two corresponding areas. Simulations 
performed with this method showed that in the case of concordant activa-
tions, results are superior to those of a standard inverse problem with no 
constraints — and, crucially, solutions are equivalent when active sources  do 
not  correspond to fMRI spots. 

 Recently, Ahlfors et al. (  2004  ) formulated the problem as a geometrical prob-
lem. This is a classic interpretation of the linear model, as the least-square esti-
mate can be viewed as the orthogonal projection of the data onto a space spanned 
by the columns of the model. With this view, the bias introduced by fMRI 
data can be seen as a non-orthogonal projection, defi ned by fMRI activity. 

 To conclude the discussion of methods with hard or soft constraints: the 
work of Im et al. (  2005  ) again suggests a word of caution. They report, both 
in a simulation and in a lexical judgment experiment, cases where modifying 
the variance of the source in order to bias results towards fMRI data, may also 
weaken or eliminate actual MEG sources. They also suggest a technique to use 
in checking whether those sources are likely artifacts, or true sources. The 
diffi culty still lies in the lack of solid ground information on the actual local 
coupling between MEG sources and fMRI/BOLD activity. 

 Finally, Daunizeau et al. (  2006  ) have recently presented an interesting 
framework to test the relevance of fMRI priors in the inverse problem, using 
a Bayesian formalism. They constructed different priors under two different 
hypotheses. Under the fi rst one, H0, there is no correspondence between 
fMRI and MEG/EEG sources (the priors are simply defi ned as a independent 
zero-mean Gaussian with constant variance). Under the second hypothesis, 
H1, a link is assumed between the fMRI activation map and the source inten-
sities, and the corresponding prior is modifi ed by weighting the source vari-
ance by a factor that is proportional to a function of the fMRI activation. 
These two hypotheses are then compared, by computing the ratio between 
the posterior probability of the model H0 and H1, given the MEG/EEG 
data M: log(P(H1/M)/P(H0/M)). If this ratio is positive, then the fMRI-
constrained inverse problem solution should be favored.      

Fusion Model with Non-Simultaneous Acquisitions? 

 This line of research consists of defi ning large-scale neural models, generated 
with computer techniques, and simulating data at the neuronal level and at 
the system level. The neuronal-level parameters associated to the model can 
be estimated using single-unit electrophysiology recordings, and the system 
level parameters can be estimated using neuroimaging data (PET, fMRI, 
MEG/EEG). These models may help in understanding how interacting neural 
populations implement higher-level cognitive or sensorimotor activity. 
The ultimate goal of these models is to generate data and predict the results of 
both electrophysiology and multimodal imaging experiments. It is still unclear 
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if this can be achieved in the foreseeable future. It should be noted that more 
and more researchers are attempting to, at least partially, address the prob-
lem. Horwitz and colleagues in particular (Horwitz & Tagamets   1999  ; Husain 
et al.,   2004  ; Riera et al.,   2005  ; see Horwitz & Glabus,   2005  , for a review) have 
pursued these ideas in the context of cognitive systems interactions. Recently, 
Friston and colleagues (Friston et al.,   2003  ) described a model to study effec-
tive connectivity that expresses activity at the neuronal level, but estimates the 
parameters using fMRI data and the Balloon model (Buxton et al.,   1998  ). 

 In Babajani et al. (2005), an integrated model for MEG and fMRI is 
described in which the neural activity is related to the postsynaptic potentials 
(PSPs). In each voxel, the neural activity is modeled by a MEG ECD, and as 
input of extended balloon model in fMRI. The model shows that it is possible 
to detect fMRI activity but no MEG activity, and vice versa. The model could 
be used in the future to evaluate and compare different conjoint analysis 
methods of MEG and fMRI. 

 The major advantage of this approach is that one could work with a 
model able to reproduce the mechanism at the origin of signals — therefore, 
predictions, validation or refutations should be much easier to perform. In a 
sense, this is the grail that any neuroscientist is looking for. Unfortunately —
 and this constitutes a major issue in this research — there is simply no such 
model available at the level where it would be needed. While the balloon 
model sounds like a good approximation of the mechanistic aspects of the 
vascular properties of brain tissue, a full model that would truly permit the 
reproduction of even simple tasks are few, and are hardly convincing. In other 
words, while this direction of research seems to be the most appealing, it 
might not be fruitful until much more is known about how a simulated neu-
ral network can mimic brain processes and performances. At the moment, it 
is only too likely that those models are too restrictive, incomplete, or even 
wrong, and therefore will not help the fusion of data from several modalities. 
Nevertheless, it is worth noting the works that propose dynamic recurrent 
network models relating neuronal electrophysiological data to fMRI or PET 
(Corchs & Deco,   2002  ; Tagamets and Horwitz,   1998  ), as well as models 
that relate neuronal data to MEG/EEG signals (Arezzo & Vaughan, 1988, 
David et al.,   2006  ).       

Pros and Cons of Simultaneous EEG-fMRI versus MEG/EEG 
and fMRI 

Simultaneous Acquisition: What Can We Gain? 

 First, for individual subject or group analyses, simultaneous EEG and fMRI 
acquisition does not have to rely on the assumption of reproducible physiological 
or cognitive state between two scanning sessions. Since it is not possible in 
general to verify this assumption, the advantage is fundamental. At the level 
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of a group study, the additional assumptions are those necessary for fMRI 
alone, i.e., that there exists a common spatial and functional space in which 
the different subjects can be averaged. 

 Second, there are a number of research questions that can only be 
addressed by simultaneous acquisitions. For example, in the study of the 
vigilance state, to which alpha waves are associated (Goldman et al.,   2002  ), 
simultaneous recordings are mandatory. Another clear example of this is 
shown in the sleep studies (Portas et al.,   2000  ; Czisch et al.,   2002  ; Maquet 
et al.,   2003   &   2005  ) and the epileptic activation (Lemieux et al.,   2001  ; Salek-
Haddadi,   2002  ) for which the studied phenomenon is better defi ned through 
external measurements. In general, it is possible that simultaneous recordings 
are necessary for a correct interpretation of the fMRI data. 

 Third, joint recordings also allow one to investigate the link between the 
two kinds of measures, and may therefore set the basis and the limit for their 
combination in nonsimultaneous experiments. Here we describe further how 
the EEG-fMRI data covariation can be investigated locally.     

Simultaneous Acquisition: What are the Drawbacks? 

 There are a number of diffi culties inherent to EEG/fMRI measurements. They 
can be summarized as follows: loss of signals in EEG, loss of signals in fMRI, 
and experimental constraints. The high-static magnetic fi eld of the MRI scan-
ner necessitates special equipment such as nonmagnetic electrodes and ampli-
fi ers that may not be as sensitive as the usual MEG/EEG equipment. Second, 
magnetic gradients and radio-frequency pulses induce currents and generate 
large artifacts that have to be corrected (Allen et al., 2000; Niazy et al.,   2005  ; 
Wan et al.,   2006  ). The cardiac signal also requires special treatment. Third, 
because the experimental paradigm has to comply with both EEG and fMRI 
constraints, it cannot be fully optimized for both modalities and a trade-off 
has to be reached, depending on which is the most needed data for the question 
at stake. 

 In practice, a crucially important factor for the success of the combined 
information lies in the subject positioning, because the subject’s comfort will 
dictate his or her movements during the acquisition (Lemieux et al.,   1997  ). 
The discomfort can be such that subjects may not want to remain in the scan-
ner for the duration of the acquisition session. Clearly, the quality of the 
data — EEG data mostly, but also BOLD — is highly dependent on the subject’s 
movements. Standard cushions are usually not suffi cient, and the head will 
eventually put too much weight on the electrodes at the back of the head (O1, 
O2). Many have found that vacuum cushions are necessary because they allow 
the pressure to be more equally shared on a greater scalp surface; they also 
minimize subjects’ movements. Another important limiting factor is the 
experimental set-up time for each acquisition. This is a problem shared by 
conjoint EEG-MEG acquisitions. 
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 In summary, conjoint recording can be extremely harmful to the data, 
can impose important constraints to the experimental protocol and limit the 
number of subjects scanned, and therefore should not be used unless the 
question under investigation cannot be answered without such data (Garreffa 
et al.,   2004  ).     

Acquisition Schemes 

 First, we defi ne three acquisition schemes for simultaneous EEG–fMRI. We 
distinguish the spike-triggered acquisition — historically, the fi rst to be devel-
oped for epilepsy, which entails waiting for an interictal spike, detecting it 
with a fi lter, and triggering the fMRI acquisition (Lemieux et al.,   2001  ). The 
second kind of acquisition entails continuously recording the EEG and fMRI 
signals, and hoping that the artifacts generated by the fMRI can be appropri-
ately corrected (Allen et al., 2000; Lemieux et al.,   2001  ). The third principle is 
very much like a continuous acquisition, but with gaps of 1–2 seconds between 
BOLD volume acquisitions (Foucher et al.,   2003  ). This leaves some time to 
place interesting stimulations while the gradients are not operating. 

 We review here the paradigm constraints that are common to all simul-
taneous EEG–fMRI acquisitions, and those that depend upon whether the 
acquisition is spike-triggered, alternate, or continuous.  

       • Spike-triggered.  This requires having a good system to detect interictal 
spikes with suffi cient sensitivity and specifi city.  
       • Continuous acquisition . There are no specifi c constraints in addition to 
the usual constraints.  
       • Alternate acquisitions.  This technique relies on the slow dynamic of 
the hemodynamic response. An example of such a paradigm is shown in 
 Figure  11–1.   In this example, the BOLD response is sampled regularly 
every 3 seconds, with 1.5 seconds of gradient (actual BOLD recording) 
and 1.5 seconds of silence (no gradient, therefore no noise and no 
gradient artifacts). This requires that the stimulation giving rise to the 
evoked potential is short enough, so that its EEG response can be captured 
within the time window, taking into account that 100–200 ms should 
elapse before stimulus triggering, to facilitate recording the baseline. It 
also means that the scanner electronics and acquisition sequence will be 
able to sample the brain in a shorter time. Soon, “SENSE” imaging should 
enable much quicker acquisition and/or better resolution, but multiple-
canal head coils are, as yet, too small to place the EEG cap inside those 
coils. Specifi c head coils need to be developed.      

 Note that the same idea is used in fMRI for auditory or language para-
digms, for which the gradients-generated noise is a problem, but with a much 
longer delay between EPI acquisitions. For instance, the scanner is triggered 
for a couple of seconds, 4 to 5 seconds after the auditory stimulation, at the 



288 MEG: An Introduction to Methods

peak of the hemodynamic response. This is also known as “sparse event 
acquisition.” The diffi culty is that there are very few scans to be analyzed, and 
therefore the sensitivity is low and signals are diffi cult to detect (see, e.g., Belin 
et al.,   2000   regarding fMRI, and Brunetti et al.,   2005  , for a design in a joint 
MEG-fMRI study).     

Methods of Analysis (Simultaneous) 

Regression Analysis 

 This method is the most commonly applied technique, and its principles are 
very simple. Since the EEG data is thought to be linked to the BOLD signal 
through a linear convolution with a specifi ed hemodynamic function, in a 
fi rst approximation it is customary to look for correlations between BOLD 
and EEG “transformed” data. The steps of the method are: (1) choose the type 
of EEG signal to be related to BOLD, (2) convolve with a chosen hemody-
namic response, (3) subsample this signal at the resolution of the BOLD data, 
and (4) regress the results of step (3) onto BOLD data. In other words, a linear 
model such as those used in SPM, FSL, or other packages, is constructed with 
the explanatory variables originating from the EEG signal. The procedure is 
summarized in  Figure  11–2  .  

 The method has the following strengths and limitations. First, its main 
strength is its simplicity and applicability. Standard fMRI analysis methods 

A priori information if independently recorded

Avg. anatomy

Avg. E/MEG
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Avg. EEG-fMRI
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fMRI conjoint

MEG conjoint

Anatomical data

Summary technique

Individual subject Group of subject

MEG

EEG-

EEG

EEG-

Avg. BOLD positions

Avg. temporal ERP

Figure 11–1 . Group versus individual data analysis interplay: constructing 
summary measures across subjects should help to provide a priori infor-
mation on independently acquired data. 
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can then be used for detecting regions. It is also simple to interpret, as the 
maps produced can be easily thought of as correlation maps. The method is 
fl exible and has successfully been used in a number of previous works. The 
works of Laufs et al. (  2003  ), Goldman et al. (  2002  ), and others who have 
found regions where hemodynamic functions correlate most with increased 
alpha- or beta-frequency power, are based on this method. More recently, 
Foucher et al. (  2003  ) show that the gamma-band power is related to BOLD 
activity in an oddball detection task. In Debener et al. (  2005  ), EEG single-trial 
electric activity is computed as the minimum value in a temporal window, 
defi ned using the grand average of independent component analysis results. 
These amplitudes are convolved with the canonical hemodynamic response, 
and used as regressors for the fMRI analysis. This trial-by-trial EEG measure 
predicted the fMRI activity in the rostral cingulate zone, a brain region 
thought to play a key role in processing of response errors. Using the same 
principle, Parkes et al. (  2006  ) investigate the post-movement beta rebound 
(an increased in beta-frequency power following movement) and use a time-
frequency analysis of the EEG signal to construct regressors for the fMRI 
analysis — and, with the EEG, detect an additional region in the post-central 
sulcus for this task. Interestingly, signals of no interest can be treated simi-
larly, to remove fMRI artifacts such as the cardiac beat (Liston et al.,   2005  ). 
These are but very few of the examples that can be found in the literature, and 
it is expected that many more studies will use this method to relate the two 
types of information. 

Extract relevant
temporal information

EEG/MEG

Construct
statistical

map Sampling every RT

Linear m
odal

design m
atrix

Convolve with
hemodynamic

response

Figure 11–2 . Principle of the construction of a BOLD brain volume activity 
from simultaneous EEG acquisitions. 
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 However, there are limitations to the technique. First, it is important to 
note that the hemodynamic model is not constant across the brain —  for 
example, with epileptic patients (Kang et al.,   2003  ; Gotman et al.,   2004  ), and 
with normal subjects (Neumann et al.,   2003  ). Therefore, the models relating 
the local BOLD response to the electric signals have to be estimated locally, 
and the relationship on a larger scale in space is yet to be investigated. Second, 
in optical imaging studies (near-infra red optical imaging, or NIOI) that have 
high spatial precision and can reveal the oxy and deoxy components of the 
BOLD signal, Devor et al. (  2003  ) demonstrated that there is a nonlinear rela-
tionship between neural activity and the local evoked hemodynamic. 
Tuunanen et al. (  2003  ) also observed differing dependency of the BOLD and 
MEG responses on interstimulus intervals. While this can be seen as invali-
dating the linear models that are widely used for describing the link between 
the two kinds of measures, it is still possible that a linear approximation is a 
good description for a given range of neural signal timing and magnitude. 
Third, the so-called silent BOLD phenomenon during registration of the 
MEG/EEG signals may produce poor correlations.     

Coupling Detection: Local Versus Nonlocal 

 With the regression technique, a map is constructed. This permits the descrip-
tion of local phenomena and, to some extent, their interpretation. However, 
the actual  local  correlation of the electrical signal with the BOLD signal is 
never computed, and cannot be until a local estimation of the EEG signal 
is estimated through an inverse solution. In Lahaye et al. (  2004  ), this local 
correlation is computed and the locations of high correlations are compared 
to the position of the highest BOLD signal and EEG signals. This is a challeng-
ing task, since the number of electrodes used for simultaneous acquisitions, 
and the associated signal-to-noise ratio issues, make the source reconstruction 
particularly diffi cult. In this work, a parcellation of the surface of the brain was 
computed to reduce the number of possible sources to 1000 per hemisphere, 
and the local hemodynamic responses were computed on those parcels 
(Ciuciu et al.,   2003  ). The correlation could then be computed using a local 
regression analysis technique, by convolving the EEG source-reconstructed 
signal of interest by the local hemodynamic function. Because the experimental 
paradigm was designed as event-related, it was also possible to correlate each 
event BOLD-magnitude to the event EEG-summary measure. Preliminary 
results show that the location of the highest correlation does not coincide 
closely either with the location of the reconstructed sources with the strongest 
energy, nor to the mean maximum BOLD value across events. This confi rms 
other fi ndings that indirectly compared the positions of the MEG/EEG recon-
structed sources and the BOLD activity. 

 This local coupling can then be used to constrain the inverse problem in 
an iterative scheme. Lahaye et al. (  2004  ) have proposed to weight differently 
the source covariance matrix, using the coupling coeffi cient derived locally on 
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a trial by trial basis. This allows a new estimate of an optimized spatial fi lter in 
a beamformer formalism. fMRI priors on localization are introduced only 
where a signifi cant coupling is demonstrated.     

Conjoint Linear Multivariate Analysis a la Martinez-Montes (2005) 

 One diffi culty with the standard regression analysis described above is that 
the EEG data to be convolved and regressed must be specifi ed, and may not 
be clearly known from the literature. To solve for this, Martinez-Montes 
(  2004  ) proposes a multivariate linear analysis using a technique originally 
developed in the domain of chemometrics. Its basic idea is to extend the 
Partial Least Square technique for data with higher dimensions than are pos-
sible with PLS. fMRI data has dimension time and voxels, while the EEG data 
has dimension time (shared dimension), frequency, and electrodes. The 
method proposed will fi nd the weights of a BOLD image and the weights of 
electrodes and frequencies, such that the correlation of the two time dimen-
sions is maximized. In other words, the technique will fi nd a BOLD image on 
the one hand, a frequency spectrum, and the topographic map on the other 
hand. In this way, the linear combination of the BOLD time series weighted 
by the found BOLD image will maximally correlate with the linear combina-
tion of the EEG time series weighted by the topographic map and frequency 
spectrum. The method is interesting as a means to quickly summarize the 
important features of the covariation of such large data. It does require that a 
constant model of the hemodynamic response is chosen  a priori , and that the 
EEG data are preprocessed to remove muscle and motion artifacts. When 
applied to the data used by Goldman et al. (  2002  ), the results show that the 
time dimensions are well correlated in the alpha band, less in the theta, and 
not in the gamma. Spatially, the alpha and gamma spatial representation 
is found to be in the occipital, while the theta has a pattern less clearly 
interpretable.       

Conclusion

 The combination of neuroimaging techniques is an intense research domain, 
which will grow in the future due to the increasing number of noninvasive 
imaging techniques and their technological advances. If this chapter is mainly 
concerned with the fusion between electromagnetic and hemodynamic 
signals for brain mapping, other imaging modalities or information can be 
considered (diffusion MRI, optical imaging, etc.) but the corresponding 
literature is still meager on the use of those with MEG/EEG data. 

 Could a MEG with good spatial localization power replace conjoint 
EEG-fMRI recording? 

 With the progress of inverse resolution techniques in MEG, one can ask 
the question whether suffi cient spatial and temporal resolution can be reached 
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with this technique alone, and whether performing cumbersome simultaneous 
or non-simultaneous recordings is helpful. The answer at the time of the writing 
of this text is yes. The fi rst argument is that the MEG/EEG inverse problem 
has, fundamentally, not a unique solution, and fMRI provides additional 
means to assess the localization of active regions. However, as seen before, for 
a number of physiological reasons the networks seen in MEG/EEG may not 
be identical to those seen in fMRI, in which case fMRI is not an appropriate 
response to the problem of the nondetermination of MEG/EEG inverse solu-
tions (see Babiloni [  2004  ] for an example of study with fMRI, EEG, and MEG 
and the localization problem). 

 Nevertheless, this very observation may turn out to be the strongest argu-
ment in favor of the fusion: data recorded in both modalities do not refl ect 
the exact same neuronal and physiological processes. The conjoint use of 
those modalities should reveal brain processes invisible to any single modality 
alone. In the course of time, when more knowledge is available on the physi-
ological coupling, the combined recordings may allow a more complete 
description of the neural and metabolic brain processes. In this sense,  combi-
nation of MEG/EEG and fMRI is more informative than fusion between MEG 
and EEG  issued from the same neuronal signals, even if the sensitivities of these 
two techniques are different according to position and source orientations. 

 EEG can also be seen as a key measure, since it is one that can be made 
during both MEG and fMRI experiments. In this sense, EEG signals could 
defi ne a common temporal reference linked to the experimental paradigm 
(for instance, using evoked potential), relating MEG and fMRI nonsimulta-
neous acquisitions. More specifi cally, the early or late components of evoked 
potential can be localized with both EEG/MEG and EEG/fMRI signals, estab-
lishing a precise relationship for the localization obtained with these two 
modalities. In this domain, the ongoing development of new acquisition 
systems such as simultaneous EEG/MEG recordings may provide more com-
fortable simultaneous recordings, yielding better spatial and time resolution 
than those currently available with EEG/fMRI. 

 The most interesting future research may come from diffusion imaging. 
As brain imaging moves from purely localization issues to the understanding 
of brain interactions and their dynamics (e.g., Babiloni et al.,   2005  ), diffusion 
MRI imaging is likely to play a crucial role in determining anatomical con-
nectivity. In conjunction with the localization power of MEG and fMRI, and 
the studies of functional signals interactions with MEG/EEG and fMRI via 
coherence or correlation analysis, one may hope that a model of function will 
emerge at the level of neuroimaging information. So far, little has been pub-
lished on the subject (Kamada et al.,   2003  ). Concerning MEG/EEG, DTI 
imaging has only been used to infer models of anisotropic conductivity from 
DTI diffusion tension, for the computation of forward models, but this data 
is shown to correlate with behavior (Tuch et al.,   2005  ). To our knowledge, no 
research has been done to relate information about MEG/EEG synchronies or 
coherences to anatomical knowledge of the main connectivity paths in the brain. 
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In this domain, linking an increase or decrease of synchronization patterns in 
a population with an abnormal diffusion MRI pattern or fMRI activity 
(Mizuhara et al.,   2005  ) will certainly be of particular interest in understand-
ing the dysfunctions associated with some pathologies. But this requires better 
knowledge of the diffusion MRI pattern in the normal population.      
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      MEG is well-suited for studies of pain-related cortical areas  • 
  Various stimulation methods can be used to record pain-related • 
activity with MEG, but painful laser stimulation and intracutaneous 
epidermal electrical stimulation are recommended  
  With MEG’s excellent temporal resolution, it is possible to separate • 
nociceptive activation mediated by the two fi ber systems, Aδ- and 
C-fi bers      

Somatosensory Function 

Introduction 

 In the twenty years since the averaged MEG values following somatosensory 
stimulation, i.e., the somatosensory evoked magnetic fi eld (SEF), were fi rst 
reported (Brenner et al.,   1978  ; Kaufman et al.,   1981  ; Hari et al.,   1983 ,  1985  ; 
Wood et al.,   1985  ; Sutherling et al.,   1988  ), many studies have been conducted, 
and their number continues to increase. In this chapter, therefore, we will 
introduce basic methods for the beginner; that is, how to record a clear SEF. 
In addition, we will introduce basic information and fi ndings related to SEF, 
particularly unique and interesting aspects. 

 Since the landmark studies of Foerster (1936) and Penfi eld and Boldrey 
(  1937  ) on the motor and sensory representations in the human cerebral 
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cortex based on direct electrical stimulation of the cortical surface, it has been 
established that the primary sensorimotor cortex is organized in an orderly 
somatotopic way, which has been termed the ‘homunculus’ representation of 
the cutaneous body surface. SEFs following stimulation applied to various 
parts of the body in normal subjects have been reported to examine the 
homunculus noninvasively. 

 MEG detects only a specifi c orientation of brain current tangential to the 
skull. Therefore, dipoles generated in area 3b of the primary somatosensory 
cortex (SI) and/or 4 of the primary motor cortex (MI), each of which is 
located on the posterior and anterior bank of the central sulcus, respectively, 
are easily detected — but dipoles in area 1 or 3a in SI, which is located on the 
crown and the bottom of the central sulcus, respectively, are not ( Figure  12–1  ).      

Postcentral gyrus

Intraparietal sulcus

Posterior
parietal lobule

Central sulcus

Lateral
sulcus

SII

SI

Postcentral gyrus
Intraparietal
sulcus

Deep input
Cutaneous
input
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3b

1

24

Central
sulcus

7

5

Figure 12–1 . Anatomy of the primary somatosensory and motor cortex. 
Signals following electrical and mechanical stimulation (cutaneous input) 
reach mainly area 3b, and signals following passive movement (deep 
input) reach mainly area 3a. 
From Kandel, & Jessel (1991). 
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Methods (Key Points for Recording a Clear SEF) 

 SEFs are usually recorded following electrical or mechanical stimulation. 
Since the signal-to-noise (S/N) ratio is much larger following electrical stimu-
lation than mechanical stimulation, most SEF studies have been performed 
using electrical stimulation. However, the fi rst major problem which research-
ers face when recording SEFs is the presence of stimulus artifacts caused 
by the stimulator. In our experience, the stimulus artifacts from an electric 
stimulator used for animal studies were too large to record clear SEF. We 
eventually selected a stimulator in a commercially available machine used for 
recording evoked potentials (EPs), which was designed for recording clear 
EPs in surgical theaters — that is, monitoring during surgery (intraoperative 
recording) — i.e., Nihon-Kohden MEB series. However, even using such a 
good stimulator, one has to be careful of various factors. When a high-intensity 
electrical stimulation is applied from the beginning of recording SEFs, many 
coils may be greatly affected, and their baseline not stable for some period. 
Therefore, we slowly and gradually increase the intensity until the necessary 
strength, which is slightly over the motor threshold of the corresponding 
muscles. When we cannot avoid stimulus artifacts despite being very careful 
of the stimulus described above, we have to reduce the intensity. In such a 
case, we try to prolong the stimulus duration to some degree; for example, 
1 or 2 ms (usually 0.1 or 0.2 ms), to get enough strength for producing muscle 
contraction. However, the SEF has a great advantage with regard to stimulus 
artifacts compared to the averaged electroencephalogram (EEG) somatosen-
sory evoked potentials (SEPs). That is, a very short duration (period) of stim-
ulus artifacts, usually less than 5 ms following stimulation, to return to the 
baseline of the waveform. For example, when we try to record SEPs following 
stimulation of the face (lip, tongue, ear or facial skin), we cannot identify the 
short-latency subcortical and cortical components within 20 ms following the 
stimulation, due to long-lasting large stimulus artifacts. However, we can 
record clear short-latency SEFs following stimulation of those parts, due to 
short-lasting stimulus artifacts (see below on SEF following stimulation of 
various parts of the body). 

 Even if the duration of stimulus artifacts of SEF is shorter than that of 
SEP, however, when we stimulate sites very close to the magnetic coils, for 
example, facial skin (Nguyen et al.,   2004  ;   2005  ) and tongue (Sakamoto et al., 
  2008a , b  ), it is frequently impossible to record clear SEFs due to large stimulus 
artifacts. In such a case, mechanical stimulation is frequently used. The most 
popular method of mechanical stimulation is the use of a pressure-induced 
device, which consists of a small balloon attached to the site to be stimulated 
( Figure  12–2  ). Air pressure is needed to infl ate the small balloon. This device 
elicits a clear tactile sensation (Hoshiyama et al.,   1995  ; Nguyen et al.,   2004  ; 
  2005  ). When using mechanical stimulation, one has to note the following 
two points:  

   (1)  Since the S/N ratio following mechanical stimulation is smaller than that for 
electrical stimulation, the recorded waveforms are noisy and not very sharp.  
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   (2)  It is diffi cult to record short-latency components such as N20m and 
P30m following electrical stimulation. The peak latency of the fi rst recog-
nizable component is 20 – 40 ms longer following mechanical stimula-
tion than electrical stimulation (Nakamura et al.,   1998  ).          

SEFs Following Stimulation of Various Parts of the Body 

 There are many important reports on the receptive sites following stimulation 
of the lower limb (Hari et al.,   1984  ; Kaukoranta et al.,   1986  ; Huttunen et al., 
  1987  ; Rogers et al.,   1994  ; Kakigi et al.,   1995a  ; Hari et al.,   1996  ; Shimojo et al., 
  1996a  ), the urogenital organs (Nakagawa et al.   1998  ), the truncus (Itomi 
et al.,   2000a  ), the neck and shoulder (Itomi et al.,   2000b  ), the upper limb 
(Huttunen et al.,   1987  ; Tiihonen et al.,   1989  ; Rossini et al.,   1989 ,  1994  ; 
Baumgartner et al.,   1991  ; Suk et al.,   1991  ; Gallen et al.,   1994  ; Buchner et al., 
  1994  ; Akhtari et al.,   1994  ; Schnitzler et al.,   1995a , b  ; Kawamura et al.,   1996  ; 
Mauguiere et al.,   1997a , b  ; Xiang et al.,   1997a  ; Shimizu et al.,   1997  ; Tecchio 
et al.,   1998  ; Jousmaki and Hari,   1999  ; Wasaka et al.,   2003 ,  2005  ; Inui et al., 
  2004  ), face (Karhu et al.,   1991  ; Mogilner et al.,   1994  ; Hoshiyama et al.,   1995 , 
 1996  ; Nihashi et al.,   2001 ,  2003  ; Nguyen et al.,   2004 ,  2005  ; Sakamoto et al., 
  2008a , b  ) and multiple sites (Narich et al.,   1991  ; Yang et al.,   1993  ; Gallen et al., 
  1994  ; Nakamura et al.,   1998  ; Inoue et al.,   2005  ). 

 For example, we made a complete homunculus in 5 normal subjects 
(Nakamura et al.,   1998  ). We recorded SEF following stimulation of 19 sites — 
 tongue, lower lip, upper lip, thumb, index fi nger, middle fi nger, ring fi nger, 

Figure 12–2 . A sensory output device (mechanical stimulator) consisting of 
a small balloon (1 cm in diameter) attached to the stimulation site. The air 
pressure infl ates the small balloon. 
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little fi nger, radial palm, ulnar palm, forearm, elbow, upper arm, chest, thigh, 
ankle, big toe, second toe and fi fth toe — and put their ECD on the MRI of 
each subject ( Figure  12–3  ). These representative areas were generally arranged 
in the above order from inferior to superior, lateral to medial, and anterior to 
posterior. The changes in the coordinates were compatible with the anatomy 
of the central sulcus and the homunculus. The location of the ECD for the 
upper lip could be distinguished from that on the lower lip, with the former 
positioned more superior than the latter in all subjects. Each representation 
of the thumb, index fi nger, middle fi nger, ring fi nger and little fi nger was 
distinguishable. They were represented sequentially from thumb to little 
fi nger, ascending the postcentral sulcus. Next, we introduce some interesting 
fi ndings.     

The Lower Limb Stimulation 

 We recorded SEFs following the stimulation of various nerves of the lower 
limb — the posterior tibial (PT), and sural (SU) nerves at the ankle, the per-
oneal nerve (PE) at the knee, and the femoral nerve (FE) overlying the inguinal 

Figure 12–3 . Detailed somatosensory receptive map represented by MEG. 
The 3D brain image was reconstructed using MRI of this subject. Each 
receptive area, which was estimated to be located in the posterior bank 
of the central sulcus, was projected onto the cortical surface. The size 
of each ellipse refl ects the presumed size of the activated cortical area. 
Note that the receptive area for the toes is on the medial side of the left 
hemisphere.
Adapted from Nakamura et al. ( 1998).
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ligament — in 7 normal subjects (14 limbs; see  Figure  12–4   and Shimojo 
et al.,   1996b  ). The ECDs of the 14 limbs were classifi ed into two types accord-
ing to the distance of ECD between PT and FE; Type 1 ( > 1 cm, nine limbs) 
and Type 2 (<1 cm, fi ve limbs) ( Figure  12–5  ). The ECD following FE stimula-
tion was located on the crown of the postcentral gyrus or at the edge of the 
interhemispheric fi ssure in Type 1, and was close to the ECDs following PT 
and SU stimulation along the interhemispheric fi ssure in Type 2. The ECD 
following PE stimulation was located along the interhemispheric fi ssure in all 
14 limbs, as for PT and SU. Its location was slightly but signifi cantly higher 
than that of PT and SU stimulation in Type 1, and was close to the ECDs fol-
lowing PT and SU stimulation in Type 2. The present fi ndings indicated that 
approximately 65  %  (9 of 14) of the limbs showed particular receptive fi elds 
compatible with the homunculus. The large inter- and intraindividual (left-
right) differences found in this study indicated signifi cant anatomical varia-
tions in the area of the lower limb in the sensory cortex in humans.       

Figure 12–4 . Chart showing SEFs following stimulation of the posterior tib-
ial and sural nerve at the ankle, the peroneal nerve at the knee, and the 
femoral nerve overlying the inguinal ligamentum of the right lower limb 
in one subject. Waveforms recorded at 37 channels are superimposed. 
Four components indicated by arrows are identifi ed in each waveform. 
Adapted from Shimojo et al. ( 1996a).
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Figure 12–5 . MRIs showing the location and direction of ECDs of the 1M 
following stimulation of 4 nerves of the right lower limb in 2 subjects. 
In Subject 1, the ECD following the femoral nerve stimulation is located 
on the crown of the postcentral gyrus, directed to the inferior and post-
erior sides. In contrast, the ECDs following stimulation of the other nerves 
are located along the interhemispheric fi ssure directed to the right hemi-
sphere. The ECDs of the other nerves are located very close together, 
but that following peroneal nerve stimulation is slightly higher than that 
following the stimulation of the other two nerves. This type of receptive 
fi eld is classifi ed as Type 1. In Subject 2, the ECDs following the stimula-
tion of each nerve are located close together, along the interhemispheric 
fi ssure. Those following stimulation of the posterior tibial and sural nerve 
were directed to the right hemisphere horizontally, but those following 
stimulation of the peroneal and femoral nerves were directed anteriorly 
and posteriorly, respectively. This type of receptive fi eld is classifi ed as 
Type 2. L = left, R = right. 
Adapted from Shimojo et al. ( 1996a).
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Upper Limb Stimulation 

 There have been a great number of reports on SEFs following stimulation of 
the upper limb. Although numerous anatomical and electrophysiological 
fi ndings in animal studies have supported a hierarchical scheme of soma-
tosensory processing, the precise activation timing of each cortical area in 
humans is not known. Therefore, we examined the temporal relationship of 
activities among multiple cortical areas in detail using a multidipole model, 
brain electric source analysis (BESA) established by Scherg et al. (1995, MEGIS 
Software GmbH, Munich, Germany). We found activations in Brodmann’s 
areas 3b, 4, 1, and 5, and in the secondary somatosensory cortex (SII) region 
in the right hemisphere following transcutaneous electrical stimulation of the 
dorsum of the left hand ( Figure  12–6  ). The mean onset latencies of each corti-
cal activity were 14.4, 14.5, 18.0, 22.4 and 21.7 ms, respectively. The differ-
ences of onset latencies among these activations indicated the serial mode of 
processing both through the postcentral gyrus and through the SI and SII.  

 Kanno et al. (  2003  ) reported that SEFs following stimulation of the 
median nerve detected responses in ipsilateral area 3b in 18 hemispheres of 
14 individuals (1 normal subject and 13 patients with brain diseases) among 
482 consecutive subjects. The three major peaks in the ipsilateral response 
were named iP50m, iN75m, and iP100m, based on the current orientation in 
the posterior, anterior, and posterior directions and a latency of 52.7  + /− 6.2, 
74.1  + /− 9.4, and 100.2  + /− 15.8 ms (mean  + /− standard deviation), respec-
tively. Dipoles of iP50m and cN20m were similarly located on the posterior 
bank of the central sulcus. Therefore, the somatosensory afferent pathway 
from the hand may directly reach ipsilateral area 3b, at least in part of the 
human population. These ipsilateral responses were also reported using fMRI 
(Nihashi et al.,   2005  ).     

Ear Stimulation 

 The somatotopic representation of the ear in the SI is not clarifi ed in the 
homunculus, though it may be located near the representation of the face or 
neck. We stimulated three parts of the left ear: the helix, lobulus, and tragus 
(Nihashi et al.,   2001  ;   2003  ). SEFs were successfully measured in 7 of 13 sub-
jects, since the regions stimulated are very close to the magnetic coils. Short-
latency responses were analyzed using both single dipole and multidipole 
models (BESA). From the single dipole model, the ECD following the helix’s 
stimulation was estimated to be near the neck area of SI in all the subjects. On 
stimulation of the lobulus, the ECDs were estimated to lie around the neck 
area of SI in four subjects, in the face area in one subject, and in the deep 
white matter in two subjects. On stimulation of the tragus, the ECDs were 
estimated to lie around the neck area of SI in three subjects, in the hand area 
of SI in two subjects, and in the deep white matter in two subjects. When the 
ECDs were estimated to be located in unlikely sites (hand area and deep white 
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Figure 12–6 . Procedures and results of the data analysis. (A) Sensor lay-
out. (B) Superimposed waveforms recorded from 37 channels (a), residual 
magnetic fi elds obtained by a subtraction of those due to one (b), two 
(c), three (d), four (e) and six (f) sources determined from the recorded 
data. Isocontour maps at the peak latency of a selected defl ection (verti-
cal bars) are shown on the right side of each trace. (C) Time course of each 
strength. (D) Schematic drawings of the location and orientation of each 
source. Bars indicate the direction of upward defl ections of the corre-
sponding waveforms in (C). (E) Superimposition of sources on a subject’s 
brain surface image. White circles in (A) and isocontour maps indicate the 
position of the sensor (channel 3) that is just on the central sulcus. SII +,
secondary somatosensory cortex plus adjoining areas; PPC, posterior pari-
etal cortex; RV, residual variance. 
Adapted from Inui et al. ( 2004).
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matter), a two-dipole model — (1) the neck area of SI and (2) face area of 
SI — was found to be the most appropriate ( Figures  12–7 ,  12–8 ,  12–9  ). These 
results indicated that receptive fi elds of some parts of the ear, such as the 
lobulus and tragus, might be present in both the neck and face areas of SI. 
These fi ndings suggested that the “ear area” of SI has variability between sub-
jects, unlike the other areas of SI, possibly because the ear is located on the 
border between the neck and face. We confi rmed this fi nding by fMRI 
(Nihashi et al.,   2002  )        

Shoulder, Posterior Neck and Lower Part of Head Stimulation 

 The shoulder, posterior neck and lower part of the head occupied a strange 
area of the homunclus between the trunk and arm, separate from the face area 
of the homunclus. We recorded SEF following stimulation of the lower part 
of the posterior head around the mastoid and shoulder (Itomi et al.,   2000b  ). 
In most subjects, the ECDs on stimulation of the mastoid and shoulder were 
located in an area slightly lateral and inferior to the ECD for the trunk’s stim-
ulation. However, in a small number of subjects, the ECD for the mastoid 
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Figure 12–7 . Two-dipole model calculated by BESA for the responses to 
the electrical stimulation of the lobulus and tragus in Subject 6. Source 1 
and 2 were located near the neck and facial areas of the SI, respectively. 
Sources 1 and 2 corresponded to the M40 component and the gray area 
shows the window for BESA. 
Adapted from Nihashi et al. ( 2001).
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stimulation was located near that of the face stimulation ( Figure  12–9  ). This 
may be due to anatomical variations in the subjects.     

Face Stimulation 

 Since Penfi eld and Boldrey (  1937  ) revealed the somatotopic body surface 
representation in the primary somatosensory cortex (SI), many studies using 
various methods have confi rmed this somatosensory homunculus. Regarding 
the representation of the face in the SI, the face area drawn by Penfi eld and 
Boldrey (  1937  ) is organized along the central sulcus with the forehead in the 
superiomedial region adjacent to the hand area, and the chin in the inferiolat-
eral region. Many authors have reported the locations in the SI of the lip 
(Nakamura et al.,   1998  , Hoshiyama et al.,   1995  ; Mogilner et al.,   1994  ), tongue 
(Karhu et al.,   1991  ; Sakamoto et al.,   2008a , b  ), oral cavity (Hari et al.,   1993  ), 
and ear (Nihashi et al.,   2003  , Nihashi et al.,   2002  , Nihashi et al.,   2001  ). 
However, there are only a few reports (Servos et al.,   1999   and Yang et al., 
  1994  ) on skin-covered areas of the face such as the forehead, cheek and chin 
in humans. Interestingly, some results showed the representation of an 
inverted face along the central sulcus of the human brain (Servos et al.,   1999  , 
Yang et al.,   1994  , Pons et al.,   1991  ), which is not consistent with the homun-
culus map drawn by Penfi eld and Boldrey (  1937  ). Therefore, to investigate 
the representation of facial skin areas in SI, we recorded magnetic fi elds 
evoked by air-pressure-induced tactile stimulation applied to six points on 
the face, lower lip and thumb ( Figure  12–10  ). The thumb area in the SI was 
located more medial and superior to the lip area, which was consistent with 
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Figure 12–8 . Two sources of M40 in a representative subject overlapping 
on MRI. 
Adapted from Nihashi et al. ( 2001).
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Penfi eld’s homunculus. However, the representations of all skin-covered 
areas including forehead, cheek, nose and chin in the SI were located between 
the thumb and lower lip area ( Figure  12–11  ). There was no signifi cant differ-
ence in location among the six facial points. Our results imply that lips occupy 
a large area of the face representation in the SI, whereas only a small area 
located between the thumb and lip areas is devoted to skin-covered surfaces. 
This is the fi rst study showing that the facial skin areas in the human SI are 
located between the thumb and lower lip areas and close together.        

Topography of SII 

 One of the major advantages of SEF is that it easily records activities in the SII, 
where it is diffi cult for SEP to detect activities due to the location and direction 

Figure 12–9 . ECD location following stimulation of various sites in a repre-
sentative subject, using results of the present study as well as our previous 
reports.
Adapted from Nihashi et al. ( 2001).



Figure 12–10 . Schematic drawing of the points stimulated on the face – six 
sites were stimulated as shown in the fi gure. 
Adapted from Nguyen et al. ( 2004).

Figure 12–11 . Locations of the eight ECDs in Subject 1. The locations of 
all sources are superimposed on a single axial and coronal MRI slice, with 
which the ECD for stimulation of the lip was estimated, to show their 
relative relationships. The ECD location for the thumb is illustrated by a 
square, that for the lip by a triangle, and that for the six points of facial 
skin by dots. 
Adapted from Nguyen et al. ( 2004).
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of dipole sources (Hari et al.,   1983 ,  1990 ,  1993  ; Elbert et al.,   1995a  ; Forss et al., 
  1995 ,  1998  ; Mima et al.,   1997 ,  1998a  ). A random or long interstimulus inter-
val stimulation rate (Wikstrom et al.,   1996  ; Nagamine et al.,   1998  ), and the 
oddball paradigm, using rare and frequent, or target and non-target stimuli, 
(Hari et al.,   1990 ,  1993  ; Forss et al.,   1995  ; Mima et al.,   1998a  ) cause the SII 
components to increase in amplitude. This fi nding suggested that SII activi-
ties are more affected by volitional or attention effects than SI activities. 

 We analyzed the topography of SII on somatosensory stimulation applied 
to various parts of the body of normal subjects using SEF (Maeda et al.,   1999  ; 
Nguyen et al.,   2005  ; Sakamoto et al.,   2008a , b  ). SII components were found 
about 80-100 ms after the stimulation as middle-latency components. SII in 
the bilateral hemisphere was activated on stimulation of the unilateral side of 
the body; that is, SII in humans has a “bilateral function.” Although there 
were large interindividual differences, the receptive fi elds ranked ( Figure  12–12  ) 
as follows: (1) Anterior–posterior direction; lower lip – upper lip – thumb – 
middle fi nger – foot; (2) Medial–lateral direction; foot – middle fi nger – 
thumb – upper lip – lower lip; and (3) Lower–upper direction; lower 
lip – upper lip – thumb – middle fi nger – foot. In general, these fi ndings are 
similar to those obtained in studies of animals (Whitzel et al.,   1969  ) and 
humans (Hari et al.,   1993  ). However, the differentiation was not as clear as 
that seen in the homunculus in the SI. The SII is located anterior to, medial 
to, and above the auditory cortex.      

SEF Studies on Plasticity in SI 

 Plasticity of the SI is one of the most interesting topics in the study of SEF. 
A change of homunculus is reported to be due to limb deafferentation after 
amputation (Yang et al.,   1994  ; Elbert et al.,   1994 ,  1997  ; Flor et al.,   1995  ; 
Knecht et al.,   1995 ,  1996 ,  1998  ; Weiss et al.,   1998  ). Yang et al. (  1994  ) and 
Elbert et al. (  1994  ) fi rst reported the marked intrusion of facial representa-
tions into the digit and hand area after upper limb amputation. Further ,  
Knecht et al. (  1996  ) reported that phantom sensations could be evoked from 
sites on the face and the trunk ipsilateral, but also contralateral to the ampu-
tation, and that the amount of reorganization strongly correlates with the 
number of sites, be it ipsi- or contralateral, from where painful stimuli evoked 
the referred sensation. These fi ndings suggested the involvement of bilateral 
pathways, and demonstrated that the perceptual changes go beyond what can 
be explained by shifts in neighboring cortical representational zones. 

 Mogilner et al. (  1993  ) reported somatosensory cortical plasticity in 
patients who were studied before and after surgery for webbed fi ngers (syn-
dactyly). The presurgical maps displayed shrunken and nonsomatotopic rep-
resentations of the hand. Within weeks of the surgery, cortical reorganization 
occurring over distances of 3–9 mm was evident, correlating with the new 
functional status of the separated digits. Such a reorganization of the SI was 
also reported in patients with stroke and neoplasm (Rossini et al.,   1998a , b  ). 
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 Elbert et al. (  1995b  ) reported an interesting study. They examined SEFs 
following stimulation of the thumb and little fi nger of the left hand in string 
players, and compared their results with controls. They found that the corti-
cal representation of the digits of the left hand of string players was larger 
than that in controls, and that the amount of cortical reorganization in the 
representation of the digits correlated with the age at which the person had 
begun to play. These results suggest that the representation of different parts 
of the body in the SI of humans depends on use, and changes to conform to 
the current needs and experiences of the individual. Sterr et al. (  1998a , b  ) 

Figure 12–12 . ECD location in SII following somatosensory stimulation 
applied to various parts of the body and auditory stimulation overlapped 
on MRI in a representative subject. All ECD are projected to a slice in which 
the ECD for the thumb stimulation was found, since it is easily understood 
by this procedure, and since it is impossible to show all slices in which each 
ECD is located. The relationship of each ECD was easily found with these 
fi gures. There was a large interindividual topographic difference in the SII, 
but no clear topographic order in the SII, unlike the homunculus in the SI. 
However, there was a tendency for a topographic order as follows: 
Anterior-posterior direction: Lower lip–upper lip–thumb–middle fi nger–
tibial nerve (lower limb). 
Medial–lateral direction: Tibial nerve (lower limb)–middle fi nger–
thumb–upper lip–lower lip, 
Lower–upper direction: Lower lip–upper lip–thumb–middle fi nger–tibial 
nerve (lower limb).  The auditory cortex is located at a site more poste-
rior, lateral and lower than the SII. 
Adapted from Maeda et al. ( 1999).
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studied SEFs in blind multifi nger Braille readers. They found that the cortical 
somatosensory representation of the fi ngers was frequently topographically 
disordered in these subjects; in addition, the subjects frequently misperceived 
which of their fi ngers was being touched by a light tactile stimulus. Therefore, 
use-dependent cortical reorganization can be associated with functionally rel-
evant changes in the perceptual and behavioral capacities of the individual.      

Plasticity and Pain 

 Flor and her coauthors showed that the extent of the reorganization after 
limb amputation was positively correlated with the perceived strength of 
phantom limb pain; i.e., the stronger the pain, the larger plastic changes are 
observed at the cortex (Flor et al.,   1995  ). Reorganization of the somatosen-
sory cortex has also been observed in chronic pain syndromes without any 
evidence of peripheral nerve lesions. For example, in CRPS (Complex Regional 
Pain Syndrome) Type 1 patients with unilateral persistent upper limb pain, 
the distance between the thumb and the little fi nger representations was sig-
nifi cantly shorter in the affected hemisphere (contralateral to the painful 
upper extremity) compared with the healthy side (Juottonen et al., 2002). 
These results indicated, for the fi rst time, that plastic changes occur in the 
somatosensory cortex in association with chronic pain without nerve deaf-
ferentation. These fi ndings have been later on confi rmed and extended by 
several other groups (Maihofner et al., 2003; Pleger et al., 2004) and they have 
clinically important implications. Objectively measurable changes of the rep-
resentation areas underlines the role of the central nervous system in chronic 
pain disorders. The above-mentioned studies have also indicated that the 
observed plastic changes are at least to some extent reversible, suggesting that 
rehabilitation should be targeted to “turn back the clock” for regaining the 
orderly somatotopic arrangement at the SI cortex (Maihofner et al., 2004).    

Clinical Application of SEF 

 The clinical application of MEG including SEFs is an important subject. 
However, the number of papers on it is still small. SEF is used for neurosur-
gery (Kamada et al.,   1993  ; Gallen et al.,   1993  ; Sobel et al.,   1993  ; Nakasato 
et al.,   1996 ,  1999  ). SEF before surgery is used to localize the central sulcus, 
since space occupying lesions such as tumors frequently shift the central 
sulcus. As compared with a direct recording of SEP from the cortex using 
subdural electrodes, a noninvasive SEF recording is much safer. 

 In the fi eld of neurology, SEF is useful to detect functional abnormalities 
in patients with cerebrovascular diseases (Makela et al.,   1992  ; Maclin et al., 
  1994  ; Wikstrom et al.,   1996  ; Rossini et al.,   1998a ,  2001  ; Gallien P et al., 
  2003  ; Huang et al.,   2004  ). Wikstrom et al. (  1996  ) reported SEF fi ndings in 
15 patients in the acute stage of stroke involving sensorimotor cortical and/or 
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subcortical structures in the area of the middle cerebral artery. Patients with 
pure motor stroke showed no alterations in SEFs, but patients with pure sen-
sory stroke showed markedly attenuated or absent SEFs. Abnormal SEF fi nd-
ings were more clearly correlated with an impairment of two-point discrimi-
nation than of joint-position or vibration senses. 

 A SEP of large amplitude (giant SEP) is recorded in patients with cortical 
refl ex myoclonus. We reported that giant SEPs are generated in area 3b of the 
SI (Kakigi et al.,   1987  ). Recent SEF studies confi rmed this hypothesis (Uesaka 
et al.,   1993 ,  1996  ; Karhu et al.,   1994  ; Mima et al.,   1998b  ). In addition, Mima 
et al. (  1998b  ) found other components located in the anterior bank of the 
central sulcus, and suggested the importance of the motor cortex for generation 
of the cortical refl ex myoclonus. 

 Karhu et al. (  1992  ) reported SEFs in 10 patients with multiple sclerosis. 
Seven patients showed SEFs of abnormally large amplitude at 60–80 ms; 5 of 
them had multiple lesions around lateral ventricles. In 2 patients with plaques 
at the level of the 3rd and 4th ventricles and medulla, the 30-ms responses 
were enlarged. The results suggest that early- and middle-latency SEF compo-
nents refl ect the parallel processing of somatosensory inputs. Signifi cant 
changes not only in the SI but also in the SII responses has been also reported 
in patients with genetically verifi ed progressive myoclonus epilepsy (Forss 
et al., 2001).     

High-frequency Oscillations (HFOs) 

 One of the recent topics of SEF study is high-frequency oscillations (HFOs) 
( > 300 Hz) whose latency was almost the same as that of the primary compo-
nent of SEF (Curio et al.,   1994  ; Hashimoto et al.,   1996  ; Sakuma et al.   1999a , b  ; 
Tanosaki et al.,   2002  ; Inoue et al.,   2004  ). They were generated in the SI, and 
much reduced in amplitude during sleep (Hashimoto et al.,   1996  ). Hashimoto 
et al. (  1996  ) hypothesized that the somatic evoked high-frequency oscilla-
tions represent the activity of GABAergic inhibitory interneurons, controlling 
output pyramidal cells in the cortex.      

Pain Processing 

 Recently a number of studies have appeared where MEG has been applied in 
studies of the human nociceptive system.The results have shown that MEG is 
very suitable to study pain-related cortical areas, especially the cortical areas 
processing the sensory aspects of the nociceptive signal. Prior MEG studies 
have observed activation of the SII, PPC and SI to painful electric or laser 
stimuli (Kakigi et al., 1995,   2003 ,  2005  ; Bromm   1996  , Ploner et al.,   1999 ,  2000  ; 
Forss et al., 2005). In contrast, activation of deep brain structures that are 
more related to emotional aspects of the pain processing (like anterior cingu-
lated cortex, anterior insula and amygdala) may be diffi cult to detect in MEG 
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measurements because of the methodological limitations. However, by applying 
different analysis methods, or by using grand average data instead of indi-
vidual data sets, activation of some of these areas may be detected (Ploner 
et al., 2002). 

 Various stimulation methods have been used to record pain-related evoked 
fi elds such as high-intensity electrical nerve stimulation (Kitamura et al.,   1995 , 
 1996  ), dental pulp stimulation (Hari et al.,   1983  ), CO 

2
  gas applied to the nasal 

mucosa (Huttunen et al.,   1986  ; Hari et al.,   1997  ), painful impact stimulation 
(Arendt-Nielsen et al.,   1999  ) and intracutaneous epidermal electrical stimula-
tion (Inui et al.,   2002a , b  ;   2003a , b  ; Wang et al.,   2004  ; Inui et al.,   2006  ). 

 Although each stimulation method has its own advantages and disadvan-
tages, many of the abovementioned methods are problematic in MEG mea-
surements because of their very long rise time and/or stimulus duration, 
which does not allow studies of the temporal aspects of cortical pain process-
ing. The ideal painful stimulation for MEG measurements should be pain-
specifi c, controllable, safe and reproducible. At present, two methods seem 
appropriate for recording pain-related SEFs — painful laser stimulation and 
intracutaneous epidermal electrical stimulation.    

Painful Laser Stimulation 

 Thulium laser stimulates selectively nociceptive fi bers, and has fast rise time 
and short duration (typically 0.5 ms). Commercially available laser stimula-
tion equipment is nowadays safe and easy to use. Short laser pulses to skin 
provide highly selective and temporally precise noxious stimuli that evoke 
prominent EEG and magnetoencephalographic (MEG) responses. In MEG 
measurements we have used laser stimuli (1 msec in duration, 2,000 nm in 
wavelength) that were produced by a thulium-YAG stimulator (BLM 1000 
Tm:YAG; Baasel Lasertech, Starnberg, Germany), and the laser beam was 
conducted to the magnetically shielded room via an optic fi ber. To keep the 
distance stable between the optic fi ber and the stimulated skin area, the hand 
piece can be connected by a wire to the top of the neuromagnetometer. 

 An assistant directs the laser beam of approximately 10 mm 2  to the skin. 
To avoid skin burns and adaptation, the stimulus site should be moved after 
each pulse to a random direction in the skin area of approximately 5 cm in 
diameter. Stimulus intensity can be adjusted individually to equal twofold the 
subjective pain threshold.    

Stimulation of A δ- and C-fi bers 

 The majority of functional brain imaging studies on pain have described cor-
tical activation to A δ -fi ber mediated pain, or to a combination of A δ -and 
C-fi ber pain, because it has been diffi cult to selectively stimulate the C-fi ber 
system without signifi cant activation of the A δ -fi bers. For example, Ploner 
and his coworkers 1999 showed that brief painful laser stimuli evoke 
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sustained cortical activity corresponding to sustained pain perception, com-
prising early fi rst pain-related and late second pain-related components. 

 Cortical responses to selective C-fi ber stimulation have been recorded by 
using conduction blockade of A δ -fi bers (Bromm & Treede, 1987) or temperature-
controlled laser heat stimuli (Magerl et al. 1999). Bragard et al. (  1996  ) directly 
and selectively activated C-fi bers by delivering the stimuli to a tiny area 
(0.15 mm 2 ) of skin. In contrast, stimulation of a larger area (15.5 mm 2 ) with 
high-energy pulses elicited cortical responses related to A δ -fi ber activity. 
C-fi ber-related responses were also obtained if large-area stimuli were given 
with the lower stimulus intensity. The physiological basis for this stimulus 
selectivity is the higher density and lower activation threshold of the C-fi bers 
than the A δ -fi bers of the skin (Ochoa & Mair, 1969; Scmidt et al.   1994  ; Treede 
et al.,   1994  ). Therefore, laser stimulation delivered to a tiny skin area with low 
total energy is likely to activate predominantly the unmyelinated C-fi bers. 
Recently, the fi rst reports describing cortical activation patterns to selective 
C-fi ber stimulation have appeared (Opsommer et al., 2001; Tran et al., 2002; 
Kakigi et al.,   2003   Tran et al.,   2001 ,  2002a  ,b; Qiu et al.,   2001  ,   2004 ,  2002  ,   2003  ; 
Forss et al., 2005). 

 Prior studies have introduced two different ways to reduce the size of the 
laser beam to activate the C-fi bers. We used a thin (0.1 mm in depth) alumi-
num plate (40 mm in length and 60 mm in width). In a 25 × 25 mm square on 
this plate, 26 parallel lines were drawn every 1 mm, so that there were 26 × 26 
intersections. A total of 676 (26 × 26) tiny holes were drilled at these intersec-
tions, each with a diameter of 0.4 mm, corresponding to an area of 0.125 mm 2  
for each hole. This thin plate was used as a spatial fi lter and placed on the 
skin at the site of stimulation. The stimulus intensity was approximately 
2–4 Watts, which was much smaller than that used for recording the late LEP 
relating to A δ -fi bers, approximately 6–8 Watts. Following the stimulation, 
some subjects felt that it was similar to so-called second or burning pain, but 
others only felt pressure, touch, or slight pain. Selective activation of the 
C-fi bers was confi rmed by using microneurography (Qiu et al.,   2003  ) and 
EEG (Tran et al.,   2001 ,  2002a  ; Qiu et al.,   2001 ,  2002 ,  2003  ; Kakigi et al., 
  2003  ). The conduction velocity (CV) of C-fi bers using this method is approx-
imately 1 m/sec (Tran et al.,   2001  ) and the CV ascending through the spinal 
cord, probably the spinothalamic tract, is 1–3 m/sec (Tran et al.,   2002a  , Qiu 
et al.,   2001  ). The ultra-late LEFs were measured and two components — 1M 
and 2M, whose peak latency was approximately 750 and 950 ms, respective-
ly — were identifi ed (Tran et al.,   2002b  ; Qiu et al.,   2004  ). They were clearly 
identifi ed in both hemispheres ipsilateral and contralateral to the side stimu-
lated, but the shorter-latency small component generated in the SI, which 
was recorded by ES (Inui et al.,   2003a , b  ), was not consistently recorded fol-
lowing the stimulation of C-fi bers. The generators for 1M and 2M were 
almost the same as those following A δ  stimulation. 

 Another possibility is to attach a small diaphragm to the handpiece of 
the laser stimulator and direct the laser beam through a tiny hole made to 
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the diaphragm. The benefi t is that this method allows fl exible usage of the 
C-fi ber stimulation to any part of the body. Using this method, the A δ - and 
C-fi ber responses were compared in 10 healthy subjects (Forss et al., 2005). 
Laser evoked fi elds were measured to 1-ms thulium-laser stimuli delivered to 
the dorsum of the subject’s left hand. The earliest cortical responses peaked at 
165  ±  7 ms, agreeing with the conduction velocity of A δ -fi bers. To stimulate 
unmyelinated C-fi bers, the total energy of the laser beam was decreased and 
the size of the stimulated skin area was restricted to 0.2–0.3 mm 2 . The earliest 
cortical responses to these stimuli peaked at 811  ±  14 ms. In addition to the 
consistent activation of the SII cortices, activation was observed in the poste-
rior parietal cortex (PPC). Activation of PPC to painful stimuli could be 
related to the sensorimotor coordination that is needed to precisely defi ne the 
site of the painful stimuli with respect to other parts of the body, and the 
outer space to reduce or prevent the pain. In contrast to some earlier studies, 
our data did not indicate participation of the primary somatosensory cortex 
(SI) in processing of the painful laser stimuli. The results imply that the noci-
ceptive inputs mediated by the two fi ber systems are processed in a common 
cortical network in different time windows. Characterization of cortical 
responses to fi rst and second pain offers a practical tool for clinical neurosci-
ence to study the two distinctive pain fi ber systems.     

ISI and Number of Averages 

 In order to obtain clear and replicable cortical responses to painful stimuli, it is 
important to remember a couple of important points. Measurement noise 
decreases proportional to the square root of the number of averaged responses, 
but the number of averages must be limited in order to shorten measurement 
time as much as possible; like most long-latency responses, pain responses are 
very vulnerable to changes in vigilance and attentional state. On the other hand, 
interstimulus interval (ISI) affects response amplitudes; the responses increase 
along with increasing ISI to a certain extent. Thus the optimal signal-to-noise 
ratio during a fi xed measurement time is achieved by using optimal ISI. For 
A δ  stimuli, a recent study indicated that the SII response amplitudes increase 
strongly with ISIs from 0.5 s to 4s, and saturated at ISIs of 8 to 16 s (Raij et al., 
2003). Typically, 40–50 averaged responses are enough for good signal-to-noise 
ratio. The “ultra-late” C-fi ber responses habituate even faster; according to 
Tran et al. (  2001  ), the optimal number of averages is 10 in one session to avoid 
attenuation of responses due to habituation. Sessions can then be repeated after 
a break that exceeds the recovery cycles of the responses. Alternatively, ISI may 
be increased but this, of course, results in extended measurement times. So far, 
exact recovery cycles for C-fi ber responses have not been reported. 

 Not only attention and vigilance but also anticipation of pain may affect 
pain-evoked responses. Therefore, it may be necessary to use random ISIs 
(for example, between 4–6 s) to avoid time-locked anticipation effects on 
cortical responses.      
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Intracutaneous Epidermal Electrical Stimulation 

 The nociceptive fi ber terminals are located in the epidermis and superfi cial 
layer of the dermis (Kruger et al.,   1985  ; Novotny & Gommert-Novotny, 
  1988  ), while other fi bers run more deeply in the dermis (Munger & Halata, 
  1983  ). Therefore, we have recently developed a method utilizing a pushpin-
like needle electrode to stimulate the epidermal area for activating A δ -fi bers 
(epidermal electrical stimulation, ES) (Inui et al.,   2002a     b ,  2003a     b ,  2006  ) 
( Figure  12–13  ). The soft stop device protrudes 1.0 mm from the plate, and the 
tip of the needle, in turn, protrudes 0.2 mm from the soft stop device. By 
pressing the electrode plate against the skin gently, the needle tip is inserted 
adjacent to the free nerve endings of the thin myelinated fi bers in the epider-
mis and superfi cial part of the dermis. The insertion of the needle electrode 
causes no bleeding or visible damage to the skin. The stimulus intensity is 
very small, approximately 0.2–0.3 mA. Compared with other stimuli, such as 
laser stimulation and CO 

2
  gas stimulation of the nasal mucosa, time locking 

of the ES method is much better, since it is an electrical stimulus. Recently, we 
developed a system to produce this ES needle with Nihon Kohden, Inc., and 
can now offer the needle on request. 

 The early processing of pain perception can be analyzed in detail using 
the ES needle. We used a multidipole model, BESA (MEGIS Software GmbH, 
Munich, Germany, 1995). We recorded MEG in detail following not only ES 
stimulation (see Chapter 3) but also TS (transcutaneous electrical) stimulation 
to compare the results (Inui et al.,   2003a , b  ). The TS was a conventional SEP, 
with signals ascending through cutaneous (A β ) fi bers. TS activated two 
sources sequentially within the SI, areas 3b and 1. ES (A δ  fi bers) activated one 
source within the SI, whose location and orientation were similar to those of 

Figure. 12–13 . Picture of a needle electrode (left) and a schematic draw-
ing of its insection in the epidermis (right). In the most superfi cial layers, 
there are only free nerve endings, which emerge from the subepidermal 
nerve plexus of the A δ– and C-fi bers (Novotony & Gommert-Novotony, 
1988). Encapsulated endings and myelinated A β afferents are situated in 
the deepest papillae of the epidermis or in the deeper structures. Note 
that the intracutaneous area is enlarged ten times. 
Adapted from Inui et al. ( 2002a).
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the TS-activated area-1 source ( Figure  12–14  ). Activities from this source 
consisted of three components peaking at 88, 98 and 109 ms, before the SI 
activity reported in previous MEG studies (Ploner et al.,   2000  , Kanda et al., 
  2000  ). The reason these studies failed to identify the early SI components 
largely lies in the fact that early SI components are very weak and easily 
overlooked. 

 Then, a clear and large component, 1M, whose peak latency was approxi-
mately 160 msec, was identifi ed in both hemispheres. The generators for 1M 
were the SI, SII and insula — mainly the SII and insula. The 1M recorded from 
the ipsilateral hemisphere was signifi cantly longer in latency in all the sub-
jects, and the interhemispheric difference in latency was approximately 
10-20 ms. This difference probably indicates transcallosal transmission. We 
found that the dipole for insular activity was located more anterior following 
ES than TS, though SII activity showed no signifi cant difference between the 
two ( Figure  12–15  ). The results suggested that cortical processing was similar 
between noxious and innocuous stimulation in the SII, but different in the 
insular cortex. The anterior location of pain-related activation in the insula 
was consistent with the results of most functional imaging studies (for review, 
see Schnitzler & Ploner,   2000  ). Neuroimaging studies have reported that 
vibrotactile stimulations activated more posterior parts of the insula (Coghill 
et al.,   1994  ; Davis et al.,   1998  ) in human studies, supporting our results. 

 Following 1M, a rather complicated component, 2M, whose peak latency 
was approximately 250 ms, was identifi ed. The main generators for 2M were 
the cingulate cortex and midtemporal region (MT) around the amygdala 
and/or hippocampus. Neuroimaging techniques such as positron emission 
tomography (PET) and functional magnetic resonance imaging (fMRI) have 
found extensive activity in the cingulate cortex following laser stimulation 
(Xu et al.,   1997  , Svensson et al.,   1997  ; Sawamoto et al.,   2000  ; Peyron et al., 
  2002  ; Qiu et al.,   2006  ). Intracranial EEG recordings also clearly identifi ed 
strong activity there (Lenz et al.,   1998  ). However, it has been rather diffi cult 
for the MEG to detect it (Bromm et al.,   1996  ; Watanabe et al.,   1998  ; Yamasaki 
et al.,   1999  ; Ploner et al.,   1999  ; Kanda et al.,   2000  ; Nakata et al.,   2004  ; Kakigi 
et al.,   1995b ,  1996  ) with some exceptions (Kitamura et al.,   1995 ,  1997  , Inui et al., 
  2003a , b   and Figure 12–16, 12–17). This is probably due to the fact that the 
dipoles generated in the right and left cingulate cortex cancel each other out, 
which is inconvenient for MEG. In addition, a dipole generated in a deep 
region such as the cingulate cortex is not easily detected by MEG. 

 The role of the MT region around the amygdala and hippocampus is still 
controversial. Watanabe et al. (  1998  ) and Inui et al. (  2003a   & 2000b),detected 
it using MEG (Figure 12–16, 12–17). Garcia-Larrea et al. (  2003  ) agreed with 
the possibility that this region is activated by painful stimulation, since the 
amygdala is thought to contribute to the emotional processing (i.e., aversive 
nature) of painful events, rather than the sensory-discriminative aspects of 
pain (Büchel et al.,   1998   and Bornhövd et al.,   2002  ), while activation of the 
hippocampal formation seems to be enhanced when the pain is not expected 



Figure 12–14 . Comparison of cortical responses to noxious (ES) and innocu-
ous (TS) stimulation in a single subject. A: magnetic fi elds following TS 
(transcutaneous stimulation); Aa, superimposed waveform recorded 
from 37 channels; Ab-d, residual magnetic fi elds obtained by subtrac-
tion of those due to the 20/30-SI source (b), 20/30-SI and 26/36-SI sources 
(c) and all three sources (d) from the recorded data. Isocontour maps at 
the peak latency of a selected defl ection (vertical bars) are shown on 
the right side of each trace. B: time course of the source strengths in TS. 
C: magnetic fi elds following ES (epidermal stimulation); Ca, recorded 
data; Cb, c, residual magnetic fi elds obtained by a subtraction of those 
due to the SI source (b) and SI and SII sources from the recorded data. 
D: time course of the source strengths in ES. E: source locations overlaid on 
MR images. SI, primary somatosensory cortex; SII, secondary somatosen-
sory cortex; 20/30-SI, the fi rst SI source in TS whose activity peaked at 
21 and 30 ms; 26/36-SI, the second SI source in TS whose activity peaked 
at 26 and 36 ms. 
Adapted from Inui et al. ( 2003b).
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(Ploghaus et al.,   2000  ) or when the painful stimulus is associated with anxiety 
(Ploghaus et al.,   2001  ).     

Problems with MEG Studies on Human Pain Perception 

 A thorough evaluation of pain using phased painful stimuli has been per-
formed with MEG. The biggest advantage of MEG is that one is able to clarify 
the temporal information on pain processing, in the order of ms. However, 
MEG cannot be used to evaluate continuous tonic pain such as cancer pain. 
Neuroimaging techniques such as PET and fMRI may be more useful in this 
respect, but physiological functions cannot be evaluated by neuroimaging. 
One promising method in electrophysiological studies for this particular 
problem is to analyze a change of frequency band using the fast Fourier trans-
form (FFT) during some period, for example, the alpha wave power change 
in each region between a nonpainful state and painful state (Stancak et al., 
  2005  ). This method will probably be used for not only basic research but also 
clinical studies in the near future.    

Safety Issues 

 Although thulium laser is probably safer than CO 
2
  laser as a pain stimulus, it 

may cause skin burns if the stimulator is too close to the skin or, alternatively, 

Figure 12–15 . Locations of activation in the secondary somatosensory cor-
tex (SII) and insula. A representative case for locations of cortical activa-
tions in the secondary somatosensory cortex (SII) and insula (Subject 1). 
Vertical lines, a–g, in a sagital image indicate positions A–P of correspond-
ing coronal images. Horizontal lines in coronal images indicate the level 
6 cm superior to the interaural line. 
Adapted from Inui et al. ( 2003a).



Figure 12–16 . Temporal profi le of cortical activities following painful epi-
dermal stimulation (ES). Cortical responses to ES in a subject. The upper 
three traces are superimposed waveforms recorded from 37 channels in 
both hemispheres, and evoked potentials recorded at Cz. The lower seven 
traces are temporal profi les of each source strength. Filled circles indicate 
a group of early SI activities. Arrowheads indicate the peak latency of 
early and late SI activity. (Right) Locations of source generators overlaid 
on MRI scans. Magnetic fi elds were recorded from two probes that were 
centered on the C4 (hemisphere contralateral to the stimulation) and C3 
(hemisphere ipsilateral to the stimulation) positions based on the Inter-
national 10–20 system. 
Adapted from Inui et al. ( 2003a).
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Figure 12–17 . Source generators analyzed by BESA following C fi ber stimulation during Control and Distraction in one subject. 
SI and SII-insula seem to be the main generators for 1M, while MT and cingulate cortex seem to be the main generators for 2M. 
During Distraction, the activities of the SI, SII-insula, MT and cingulate cortex were much reduced. Note the difference in cur-
rent strength scale —10 nA for SI and SII-insula and 30 nA for MT and Cingulate. These source locations overlapped on MRI. 
Adapted from Qiu et al. ( 2004).
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stimulus intensity or frequency is too high. For example, we have noticed that 
it is safe to use on average 52mJ/mm 2  intensity to a skin area of 10 mm2 for 
A δ -stimulation (total energy 500 mJ), whereas for C-stimuli, in which the 
area is restricted to 0.2-0.3 mm 2,  suitable energy is about 190 mJ/mm 2  (total 
energy 50 mJ). To avoid skin burns, the stimulus site can be slightly moved 
after each stimulus to a random direction within a limited area, for example 
10 cm 2 . In addition, the eyes of the subject and of the researcher handling the 
stimulator need to be protected with goggles to avoid possible damage if the 
laser beam is accidentally refl ected toward the eye.       

Motor Function 

 When motor function is examined by MEG, movement related cortical fi elds 
(MRCFs) or background activities (brain rhythm) related to movement are 
recorded.    

MRCFs

 MRCFs correspond to the movement-related cortical potential (MRCP) that 
is recorded by averaging EEG. However, since it is much more diffi cult to 
record MRCFs than MRCPs, the number of MRCF studies is relatively small 
(Cheyne et al.,   1989  ; Kristeva et al.,  1991  ; Kristeva-Feige et al.,   1994  ; Nagamine 
et al.,   1994  ; Praamstra et al.,   1999  ; Erdler et al.,   2000  ; Huang et al.,   2004  ; 
Mayville et al.,   2005  ). 

 MRCPs are recorded before and after voluntary movement, mainly 
fi nger extension or fl exion ( Figure  12–18  ). An MRCP consists of three main 
components (Shibasaki et al.,   1980  ; Neshige et al.,   1988  ; Ikeda et al.,   1992  ): 
(1)  Readiness Potential  (Bereitschaftspotential). It starts approximately 2 or 
3 sec before movement onset, and its amplitude gradually increases. The gen-
erator for this is mainly the supplementary motor area (SMA) in both hemi-
spheres and M1 in the hemisphere contralateral to movement, but mainly the 
former. (2)  Negative Slope . It starts approximately 0.3 sec before movement 
onset and its amplitude steeply increases overlapping Readiness Potential. 
The generators for this are mainly the bilateral SMA and M1 in the hemi-
sphere contralateral to movement, mainly the latter. (3)  Motor Potential.  It 
starts just before the movement, overlapping Readiness Potential and Negative 
Slope. The generator for this is mainly M1 in the hemisphere contralateral to 
movement. Since Readiness potential is a very slow potential, a very wide 
high-pass fi lter, 0.001 sec or DC, is needed to record it clearly. However, if 
such a wide fi lter is used when recording MRCFs, the baseline will fl uctuate 
and an accurate analysis of the results cannot be performed. Therefore, we 
have to use a relatively narrow bandpass fi lter, 0.01 or 0.1 Hz for recording 
MRCF, so Readiness Potential cannot be clearly recorded. In addition, the 
fact that ECDs generated in the right and left SMA, which is the main generator 
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for Readiness Potential cancel each other out, is inconvenient for MRCF. 
However, Erdler et al. (  2000  ) succeeded in detecting activity in the SMA using 
an elegant analytical method.  

 We investigated MRCFs to identify the motor and sensory brain activities 
at the instant of a unilateral fi nger movement (Hoshiyama et al.,   1997  ). We 
focused on the source of the events tightly linked to movement onset, and 
used BESA to model the sources generating MRCFs during the interval from 
200 ms before to 150 ms after the movement onset ( Figures  12–19  and  12–20  ). 
Four sources provided satisfactory solutions for MRCF activities in this inter-
val ( Figures  12–19  and  12–20  ). Sources 1 and 2 — which were located in the 
pre-central regions in the hemisphere contralateral and ipsilateral to the 
moved fi nger, respectively — generated readiness fi elds (RF), but Source 1 was 
predominant just before movement onset. The motor fi eld (MF), the peak of 
which was just after movement onset, was mainly generated by Source 1. 
Sources 3 and 4 were located in the post-central regions in the hemisphere 
contralateral and ipsilateral to the moved fi nger, respectively. The fi rst motor 

RF

MF

MEF-I MEF-III

MEF-II RR

Contralateral (left)
hemisphere

Ipsilateral (right)
hemisphere

EMG

−1000 −800 −600 −400 −200 0 200 400 600 msec

10 mV

EOG (horizontal)

EOG (vertical)

200fT

Figure 12–18 . Movement-related cortical fi elds (MRCFs) during right mid-
dle fi nger movement recorded from the C3 and C4 position (hemisphere 
contralateral and ipsilateral to the moved side, respectively). Thirty-seven 
superimposed waveforms for one subject are shown to illustrate the 
nomenclature for each identifi able component. RF: readiness fi eld. MF: 
motor fi eld. MEF: motor evoked fi eld. RR: reafferent response. Although 
the RF was recorded in each hemisphere, the subsequent responses were 
obtained dominantly in the hemisphere contralateral to the moved side. 
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evoked fi eld (MEF-I), the peak of which was about 80 ms after the movement, 
was mainly generated by Source 3, but with the participation of Sources 1, 2 
and 4. The results indicated that the activities of both pre- and post-central 
regions in both hemispheres were related to voluntary movements, although 
the predominant areas varied over time.   

 We also investigated the vocalization-related cortical fi elds (VRCFs) fol-
lowing the vocalization of vowels (Gunji et al.,   2000 ,  2001  ). A multiple-source 
model, BESA, was used to elucidate the mechanism generating VRCF in 
the period from 150 ms before to 150 ms after the onset of vocalization 
( Figure  12–21  ). Six sources provided satisfactory solutions for VRCF activi-
ties during that period (Figure 12–21). Sources 1 and 2, which were activated 

Subject 1
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Figure 12–19 . Temporal activation patterns of each source obtained by 
spatiotemporal source analysis in six subjects. The horizontal bar indicates 
the time axis (extending from –1000 to +700 ms). Dashed and continu-
ous lines in the lower part of each column show the average global fi eld 
power (GFP) and goodness-of-fi t (GOF), respectively, on a logarithmic 
scale over the fi tted interval (-200 to  + 150 ms, gray area). 
Adapted from Hoshiyama et al. ( 1997).
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from approximately 150 ms before the vocalization onset, were located in 
laryngeal motor areas of the left and right hemispheres, respectively. Sources 
5 and 6 were located in the truncal motor area in each hemisphere, and were 
very similar to Sources 1 and 2 in terms of temporal change of activities. 
Sources 3 and 4 were located in the auditory cortices of the left and right 
hemispheres, respectively, and appeared to be activated just after the vocaliza-
tion onset. However, all six sources temporally overlapped in the period 
approximately 0-100 ms after the vocalization onset. The present results sug-
gested that the bilateral motor cortices, probably laryngeal and truncal areas, 
were activated just before the vocalization. We considered that the activities 
of the bilateral auditory areas after the vocalization were the response of the 
subject’s central auditory system to his/her own voice. The motor and audi-
tory activities temporally overlapped, and BESA was very useful for separating 
the activities of each source.  

 MRCFs relating to movement of the foot (Endo et al.,   2004  ) and tongue 
(Nakasato et al.,   2001  ; Loose et al.,   2001  ) were also reported, and the results 
were almost the same as for the MRCF related to fi nger movement.     

Background Activity Related to Motor Function 

Mu Rhythm 

 The human cortical mu rhythm, prominent in the rolandic areas both in 
electoencephalographic (EEG) and magnetoencephalographic (MEG) record-
ings, consists of dominant ~10 and ~20 Hz frequency bands (for a review 
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Figure 12–20 . Head diagram indicating the locations of the dipole sources 
of two subjects. The line and its length from each point indicate the direc-
tion and magnitude of the dipole current, respectively. 
Adapted from Hoshiyama et al. ( 1997).
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see Hari & Salmelin,   1997  ). Reactivity of the cortical mu rhythm to external 
stimuli can be studied with TSE-method (Temporal Spectral Evolution, see 
page.x). For example, electric median nerve stimuli result in an initial decrease 
of the mu rhythm level, followed by strong rebound within 1000 ms after 
stimuli. The rebound is suppressed during fi nger movements (Salenius et al. 
1997), motor imagery (Schnitzler  et al.  1997), and even by viewing another 
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Figure 12–21 . The MEG waveforms and the results of the source analysis 
of Subject 1. Upper right: the VRCF following the vocalization at the left 
and right hemispheres (around C3 and C4) in Subject 1. The waveforms 
recorded from 37 channels were superimposed. Left: temporal activity of 
each source obtained by spatiotemporal source analysis (BESA ). Lower 
right: the localization and orientation of the dipole on the spherical head 
model. The line from each point indicates the direction of the dipole cur-
rent. Sources 1 and 2 were located in the laryngeal motor areas. Sources 
3 and 4 were located in the auditory areas, and sources 5 and 6 were in 
the truncal motor areas. The sources in the motor areas (sources 1, 2, 5, 
6) were activated approximately 100 ms prior to the vocalization onset, 
while the activity of the auditory sources (sources 3 and 4) appeared after 
the vocalization onset. All six sources temporally overlapped after the 
onset of vocalization. 
Adapted from Gunji et al. ( 2000).
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person making movements (Hari et al. 1998). Previous MEG and TMS stud-
ies have suggested that increase of the 20-Hz rhythm after stimuli (“rebound”) 
may refl ect decreased excitability of the motor cortex (Salmelin and Hari, 
1994; Chen et al. 1999). Therefore, reactivity of the 20 Hz rhythm has been 
used as a tool to study the functional state of the motor cortex. For example, 
analysis of the reactivity of the 20-Hz rhythm in patients with progressive 
myoclonus epilepsy revealed abnormal excitation of the motor cortex (Silen 
et al., 2000).     

Pain and Motor Cortex 

 Many chronic pain patients show signs of motor dysfunction, such as decreased 
muscle strength and restriction of the active range of movement. Further, a 
motor cortex stimulator has been used to alleviate chronic pain, suggesting 
that the pain and the motor systems are functionally coupled. 

 A recent study showed with 10 healthy subjects that acute pain modulates 
the functions of the motor cortex (Raij  et al.  2004); laser stimuli delivered to 
the dorsum of the hand elicited long-lasting attenuation of the motor cortex 
rhythm, indicating a prolonged activation of the motor cortex in association 
with acute pain. In line with these fi ndings, signifi cantly altered reactivity of 
the motor cortex has been shown in patients suffering from chronic pain: in 
CRPS patients, rebound of the mu rhythm was diminished, suggesting that 
inhibition of the motor cortex may be defective in chronic pain (Juottonen 
et al., 2002). This view is in line with recent transcranial magnetic stimulation 
studies showing signs of disinhibition or hyperexcitability of the motor cortex 
in CRPS patients (Schwenkreis et al., 2003), and also agrees with the clinically 
frequently observed defi cits of motor functions in chronic pain patients. The 
close interaction between the pain and motor systems may explain benefi cial 
effects of mirror therapy and motor imagery in rehabilitation of CRPS 
(McCabe et al. . , 2003; Moseley, 2004).             
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       Introduction 

 It is usually assumed that when we see a familiar word, like ‘brain’, the visual 
features must be processed fi rst before the analysis can proceed to the con-
tent, apparently fi rst at the level of single letters and then as a whole word, 
which further activates the word’s meaning and its sound form. How much 
these later processing stages interact, and whether they occur sequentially or 
in parallel, as a single interactive process, is an issue currently under debate 
(Coltheart et al.,   1993  ; Plaut et al.,   1996  ). These theoretical models of reading 
are based largely on analysis of behavioral reaction times and error types in 
acquired and developmental reading disorders. 
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 When seeking to describe the organization of normal reading at the level 
of the brain, it would seem reasonable to use the theoretical models as a con-
ceptual framework rather than as a strict guideline of specifi c processes and 
their relationships. First, it is not certain that models derived from language 
disorders fully correspond to the normal function; second, the computations 
performed by the brain may not be divisible into the blocks suggested by 
the model; third, current theoretical models tend not to make quantitative 
predictions of measures that may be extracted with neuroimaging (timing, 
activation strength, localization). 

 For data-driven characterization of cerebral implementation of reading, 
knowledge of both location and timing of the activation is essential. This 
chapter focuses on the use of MEG in studying neural processes of fl uent and 
impaired reading (for a review of MEG research into other aspects of 
language processing, see Salmelin,   2007  ). We will fi rst track the cortical 
sequence of activation when reading familiar words and, thereafter, consider 
the case of unfamiliar words. After contrasting the sequence of activation in 
reading with that in speech perception, we will focus on cortical correlates of 
dyslexia. A comparison of reports on neurophysiological and hemodynamic 
signatures of reading then follows. We will close the chapter with a glimpse 
into recent advances and possible future directions.     

Cortical Dynamics of Reading Familiar Words 

Pre-lexical Analysis 

  Figure  13–1   depicts a paradigm used to tease apart early pre-lexical processes 
in reading (Tarkiainen et al.,   1999  ). The subjects were shown (Finnish) words, 

Figure 13–1 . Paradigm for focusing on prelexical processes in reading. The 
amount of features to analyze (four levels of noise) and word-likeness of 
the stimuli (symbols; letters, syllables, words) were varied parametrically.
Modifi ed from Tarkiainen et al. ( 1999).
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syllables, and single letters, imbedded in a noisy background, at four different 
noise levels. For control, the sequences also contained symbol strings. One 
sequence was composed of plain noise stimuli. The stimuli were thus varied 
along two major dimensions: The amount of features to process increased 
with noise and with the number of items in the string, letters or symbols. On 
the other hand, word-likeness was highest for clearly visible, complete words, 
and lowest for symbols and noise.  

  Figure  13–2   shows MEG data recorded from one subject. Time runs from 
50 ms before stimulus onset to 250 ms after it. Within this time interval, there 
were two strong magnetic fi eld patterns. The signal fi rst concentrated over the 
right occipital cortex about 130 ms after stimulus onset (Type I). Here, the 
response was strongest to the highest noise level and smallest for words and 
symbols with no noise. It was followed by a prominent left-hemisphere 
activation at about 150 ms after word onset (Type II) which showed the oppo-
site behavior: it was strongest and earliest for words with no noise, somewhat 
smaller and later for symbol strings, and nonexistent for the very noisy words. 
These types of responses were observed in almost every subject.  

 As illustrated in  Figure  13–3  , the data showed a clear dissociation between 
two processes within the fi rst 200 ms: Visual feature analysis occurred at 
about 100 ms after stimulus presentation (detected in 9 of 12 subjects), with 
the active areas around the occipital midline, along the ventral visual stream. 
This signal increased with increasing noise and with the number of items in 

Figure 13–2 . MEG responses to letter and symbol strings in one subject. The 
orange curves show responses to words with no noise, the green curves to 
words at the highest noise level, and black curves to symbol strings. A 
clear response particularly to noisy words (Type I) was followed by a left-
hemisphere response that was strongest to the noiseless words (Type II).
Modifi ed from Tarkiainen et al. ( 1999).
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the string, similarly for letters and symbols. Only 50 ms later, at about 150 ms 
post-stimulus, the left inferior occipitotemporal cortex showed letter-string 
sensitive activation (10 of 12 subjects). This signal increased with the visibility 
of the letter strings. It was strongest for words, weaker for syllables, and still 
weaker for single letters. Crucially, the activation was signifi cantly stronger 
for letter than symbol strings of equal length.  

 One may ask how specifi c these processes are to reading, or whether they 
refl ect a more general transformation from visual to cognitive analysis. 
Category-specifi c occipitotemporal responses within the fi rst 200 ms have been 
reported not only for letter-strings but, for example, also for numbers and 
faces—that is, for particularly important types of objects in our visual world 
(e.g., Allison et al.,   1994  ). Tarkiainen and colleagues chose faces as test stimuli. 
The faces were masked the same way as the letter-strings, and the subjects’ 
task was to identify the expressions on the faces (Tarkiainen et al.,   2002  ). 
Here, the control stimuli were pictures of objects.  Figure  13–4   compares early 
processing of letter-strings and faces in the same individuals. The stage of 
visual feature processing at about 100 ms was the same for both stimulus 
types. The timing, activated areas, and increase of activation with noise were 
indistinguishable. Thereafter, the processing routes diverged. The timing of 
the category-specifi c processing stage at about 150 ms was exactly the same 
for letter-strings and faces, and the activated areas showed large spatial over-
lap. However, the hemispheric balance was different. While both left and 
right occipitotemporal cortex respond to these stimuli (Cornelissen et al., 
  2003  ; Salmelin et al.,   1996  ), letter-string-sensitive differentiation was detected 
essentially in the left hemisphere, whereas face-sensitive processing was more 
bilateral, with slight right-hemisphere predominance (Tarkiainen et al.,   2002  ).  

Figure 13–3 . Dissociation of basic visual feature and letter-string analysis 
within 200 ms post-stimulus. Dots represent centers of active cortical 
patches collected from the individual subjects. Arrows indicate increasing 
strength of activation. Amount of features to analyze is the relevant vari-
able at the fi rst stage (~100 ms) and content at the next stage (~150 ms). 
From Salmelin ( 2007).
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 What type of process does the activation at ~100 ms actually refl ect? In 
order to obtain a simple estimate of the visual complexity of the stimulus 
images, Tarkiainen and colleagues computed the standard deviation of the 
gray values along each column, and then their mean value across the whole 
image (Tarkiainen et al.,   2002  ). Equally well, one could compute the standard 
deviations along the rows. This measure of visual complexity is shown on the 
vertical axis in  Figure  13–5  . The horizontal axis depicts the cortical activation 
strength, normalized to the condition with highest noise, when this type of 
activation was strongest. The dots give the mean values for each stimulus 
category, averaged across subjects. The activation strength increased linearly 
with this very simple measure of visual complexity of the images, independent 
of the stimulus type. Accordingly, this processing stage seems to be determined 
directly by basic visual properties of the stimulus.  

 The content of the stimulus starts to matter in the subsequent category-
specifi c processing stage, where the activation reaches the maximum at about 
150 ms. In addition to the difference in hemispheric balance, there was a 
small but signifi cant difference in location, with the face-sensitive activation 
centered about 6 mm anterior to the sources of the letter-string-specifi c 
response (Tarkiainen et al.,   2002  ). The MEG data are in fairly good agree-
ment with intracranial data, both with respect to the timing and location of 
letter-string-specifi c activation (Nobre et al.,   1994  ), and the slightly more 
anterior center of activation for faces than for letter-strings (Nobre et al., 
  1994  ; Puce et al., 1996). The inferior occipitotemporal activation at ~150 ms 
apparently refl ects pre-lexical analysis, as the response does not differentiate 

Figure 13–4 . Letter-string and face analysis within 200 ms after stimulus 
presentation. (a) Cortical sequence of activation collected from individ-
ual subjects. Red indicates processing of letter-string stimuli and orange 
processing of face stimuli. (b) Mean (± SEM) location of category-specifi c 
activation at the base of the occipitotemporal cortex.
Modifi ed from Tarkiainen et al. ( 2002).
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between words, nonwords, or consonant strings (Cornelissen et al.,   2003  ; 
Salmelin et al.,   1996  ; Wydell et al.,   2003  ), again in agreement with intracranial 
recordings (Nobre et al.,   1994  ).     

Lexical–Semantic Analysis 

 The subsequent stage of reading comprehension may be characterized with the 
help of a well-established paradigm (Connolly & Phillips,   1994  ; Kutas & Hillyard, 
  1980  ), which uses sentences that create a very high expectation for a certain fi nal 
word, and the researcher then varies the appropriateness of that word in the 
sentence context. Helenius and colleagues used four types of (Finnish) sen-
tences: the fi nal word was either the expected one ( e.g., The piano was out of 
tune ); rare, but semantically possible, ( e.g., When the power went out the house 
became quiet , instead of  dark ); semantically wrong, but sharing the fi rst letters 
with the expected word, referred to as the ‘phonological’ condition ( e.g., The 
gambler had a streak of bad luggage , instead of  luck ); or totally anomalous ( e.g., 
The pizza was too hot to sing ). The sentences were shown one word at a time, and 
the responses were averaged with respect to the onset of the fi nal word. 

 As illustrated in  Figure  13–6  , systematic stimulus-dependent variation 
was observed particularly in and around the left superior temporal cortex. 
The two types of semantically wrong sentence-ending words (phonological, 
anomalous) resulted in a prominent activation, reaching the maximum at 
about 400 ms after word onset. The signal was signifi cantly weaker and short-
er-lasting (maximum at ~350 ms) for the rare but semantically possible fi nal 

Figure 13–5 . Effect of visual complexity on the occipital 100-ms response. 
Data from letter-string experiment in red and data from face experiment 
in orange. Strength of activation in this area was driven directly by basic 
visual properties, regardless of stimulus content.
Modifi ed from Tarkiainen et al. ( 2002).
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words, and essentially non-existent for the expected words. This response is 
usually referred to as the N400 in EEG literature (N400m in MEG) and its 
behavior is generally considered as a signature of lexical-semantic processing 
(Kutas & Hillyard,   1980  ; Osterhout & Holcomb,   1995  ). In the right hemi-
sphere, only about half of the subjects showed a qualitatively similar N400-
type response (Helenius et al.,   1998  ). In reading, lexical-semantic processing 
thus seems to be fairly strongly lateralized to the left hemisphere.  

 In fact, the complete suppression of the N400m response to the expected 
fi nal words is far more remarkable than generation of the strong response to 
the semantically wrong words. Isolated words and the fi rst words of sentences 
all elicit a strong N400/N400m response. When one proceeds along the sen-
tence the response is gradually reduced to each word (Van Petten,   1995  ) until 
the expectation built by the context (semantic priming) is strong enough to 
entirely suppress the response to the expected word. 

 The onset of the N400m response, characterized by the latency at half the 
maximum response on the ascending slope, was positively correlated with the 
reaction time for recognizing real words in a lexical decision task (Helenius 
et al.,   1998  ). In a series of MEG studies, Marantz, Pylkkänen and colleagues 
have demonstrated that the onset latency of the N400m activation (referred 
to as M350 in their studies) refl ects lexical frequency. By varying both pho-
notactic probability and neighborhood density, these authors concluded that 
the response is related to lexical access rather than postlexical processing 
(Embick et al.,   2001  ; Pylkkänen & Marantz,   2003  ; Pylkkänen et al.,   2002  ). 

 When the active areas are modeled as Equivalent Current Dipoles (ECDs; 
cf. Chapter 6), sources of the N400m response are consistently localized to the 
superior temporal cortex (Halgren et al.,   2002  ; Helenius et al.,   1998  ; Pylkkänen 

Figure 13–6 . Lexical-semantic processing in the left hemisphere. Left:
Source areas sensitive to semantic manipulation, collected from 10 sub-
jects. Right: Mean (± SEM) time course of activation in the left superior 
temporal cluster. Colors indicate three different types of sentence-ending 
words (presented at time 0). The expected words did not evoke activation 
that would have exceeded the noise level.
Modifi ed from Helenius et al. ( 1998).
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& Marantz,   2003  ; Salmelin et al.,   1996  ; Simos et al.,   1997  ), in the immediate 
vicinity of the auditory cortex (Helenius et al.,   1998  ). Distributed models (cf. 
Chapter 8) suggest further spreading of activation to the anterior temporal 
and inferior frontal cortex (Halgren et al.,   2002  ; Marinkovic et al.,   2003  ). 
Involvement of the left temporal pole in semantic processing would agree 
with previous intracranial recordings (Halgren et al.,   1994  ; Nobre & McCarthy, 
  1995  ) which did not, however, probe the superior temporal cortex. 

  Figure  13–7   summarizes the cortical dynamics of silent reading, as 
revealed by these MEG studies. First, there is basic visual feature analysis 
around the occipital midline, at about 100 ms; then, 50 ms later, lateralization 
to the left occipitotemporal cortex for letter-string analysis. Reading compre-
hension is refl ected in the subsequent activation of the left superior temporal 
cortex at 200 to 600 ms.  

 The strong left-hemisphere lateralization of lexical-semantic processing 
in reading, at least in Finnish-speaking subjects, could possibly serve as a 
diagnostic tool. It has been used to evaluate cerebral implementation of read-
ing comprehension in an aphasic patient with deep dyslexia (Laine et al., 
  2000  ). The central features of deep dyslexia are the abolishment of nonword 
reading, and semantic errors in reading: the patient may, for example, read 
the word “moon” as “crescent” (Coltheart,   1980  ). It has been suggested that 

Figure 13–7 . Cortical dynamics of silent reading in fl uently reading sub-
jects. Activation advanced from visual feature analysis in the occipital cor-
tex (~100 ms) to letter-string analysis in the left occipitotemporal cortex 
(~150 ms) and further to activation of the left superior temporal cortex 
refl ecting lexical-semantic analysis.  
Modifi ed from Salmelin et al. ( 2000).
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in deep dyslexia, where extensive left-hemisphere damage leads to severely 
impaired reading, language processing is no longer subserved by the damaged 
left hemisphere but by the intact right hemisphere. The strange semantic 
errors would then refl ect the limited capacity for word recognition in the 
right hemisphere (Weekes et al.,   1997  ). The deep dyslexic patient studied by 
Laine and colleagues had a massive lesion in the left hemisphere, extending 
from the parietal and temporal to medial frontal areas (Laine et al.,   2000  ). 
Nevertheless, when the patient was tested with the sentences ending with a 
congruent or incongruent word (Helenius et al.,   1998  ), the remaining strip of 
the left superior temporal cortex still generated a sustained response that was 
graded by semantic relatedness, similar to the N400m identifi ed in controls 
(cf.  Figure  13–6  ). A simultaneous, weaker activation of the right superior 
temporal cortex did not vary with semantic congruity. Even in deep dyslexia, 
lexical-semantic processing thus seems to be subserved by the damaged left 
hemisphere like in normal subjects.      

Cortical Dynamics of Reading Unfamiliar Words 

 When we encounter an unfamiliar word or a nonword the infl uential dual-
route model of reading ( Figure  13–9  ; Coltheart et al.,   1993  ) states that 
we cannot use the lexical route because there is no representation for these 
letter-strings in our mental lexicon. Instead, we are supposed to process the 
letter-strings letter-by-letter and convert each letter to its corresponding 
sound in order to obtain a sound form for the letter-string, which again may 
lead to some type of semantic association.   

 The dual-route model predicts that for real words the lexical route domi-
nates and, in that case, the word length has little effect. Processing of nonwords, 
on the other hand, would rely on the letter-level grapheme-to-phoneme con-
version, and subsequent phonological processing. Nonword length should thus 
have a strong effect on the amount of phonological processing required. 

Figure 13–8 . Outline of the dual-route model of reading.
Modifi ed from Coltheart et al. ( 1993).



MEG and Reading: From Perception to Linguistic Analysis  355

Behaviorally, it has been found that naming latencies are shorter for short than 
long words, and that this length effect is markedly enhanced when naming non-
words (Weekes,   1997  ). The use of the phonological route, and thus the length 
effect, is thought to be particularly pronounced in a regular orthography. 

 The Finnish language has an exceptionally regular one-to-one correspon-
dence between graphemes and phonemes and should, therefore, be well suited 
for cortical evaluation of the potential lexical-semantic vs. phonological routes 
of reading. Wydell and colleagues varied the letter-string length and lexicality 
by presenting short and long real Finnish words (4 and 8 letters) and short and 
long pronounceable nonwords in a randomized order (Wydell et al.,   2003  ). The 
subjects were occasionally prompted to read the string aloud, in an unpredict-
able fashion, thus emphasizing full phonological encoding of the letter-strings. 

 There were only two areas and time windows where the activation showed 
systematic dependence on stimulus lexicality or length ( Figure  13–9  ; cf. 
Chapter 6 where this data set was used as an example in demonstrating source 
analysis of complex cognitive data). An early length effect was evident in the 
occipital midline at about 100 ms after stimulus onset. The long letter-strings 
grouped together and evoked a stronger response than the short letter-strings, 
regardless of letter-string type (lexicality). Based on previous knowledge 
about cortical dynamics of silent reading, reviewed above, this response is 
likely to refl ect basic visual feature analysis. The subsequent activation in the 
left inferior occipitotemporal cortex, interpreted as letter-string-sensitive acti-
vation (cf.  Figure  13–7  ), did not vary with length or lexicality, in agreement 
with existing MEG and intracranial data (Cornelissen et al.,   2003  ; Nobre et al., 
  1994  ; Salmelin et al.,   1996  ). 

Figure 13–9 . Cortical effects of letter-string length and lexicality. Colors 
denote short and long words (SW, LW) and short and long nonwords 
(SNW, LNW). A pure length effect (LW, LNW > SW, SNW) was observed in 
the occipital cortex at 100–150 ms. Interaction between length and lexi-
cality (LNW >> SNW, LW ≥ SW) was detected in the left superior temporal 
cortex at 250–800 ms.
Modifi ed from Wydell et al. ( 2003).
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 Lexicality affected the activation pattern from about 250 ms onwards, in 
line with previous MEG observations (Salmelin et al.,   1996  ). The effect was 
found most consistently in the left superior temporal cortex. For short and 
long real words, the response was remarkably similar. However, the long 
nonwords evoked an activation that was signifi cantly stronger and lasted 
twice as long as that for the short nonwords. The cortical differentiation thus 
seemed to agree with the behavioral pattern that letter-string length has a 
particularly strong effect on nonword naming. 

 The cortical area and time window displaying the lexicality-by-length 
interaction is very similar to that of the N400m activation that was evident in 
the sentence reading task, and clearly sensitive to semantic manipulation (cf. 
 Figure  13–6  ; Helenius et al.,   1998  ). But here the picture is more intricate, 
because the stimulus length also infl uences the activation. If we accept the 
dual-route model then the length effect should be interpreted as refl ecting 
phonological processing. 

 In fact, when one considers the sentence-reading task in more detail, it 
turns out that the responses to the two different types of semantically wrong 
sentence-ending words were not identical. When the word had the wrong 
meaning but the same initial letters as the expected word, referred to as the 
phonological condition, the response lasted about 50 ms longer than for the 
completely wrong word (Helenius et al.,   1998  ). Sublexical information thus 
affected the response at this late stage, from ~350 ms onwards. Accordingly, 
these data sets on Finnish-speaking subjects seem to suggest that there is both 
semantic and phonological infl uence at 250 to 600 ms after stimulus onset 
in the left superior temporal cortex, which shows in activation strength 
and duration when reading words and nonwords (Salmelin et al.,   1996  ; 
Wydell et al.,   2003  ), and in duration in the sentence-reading task (Helenius 
et al.,   1998  ). 

 English language has a highly irregular correspondence between graph-
emes and phonemes, which allows generation of stimuli that are expected to 
require specifi cally lexical-semantic processing (exception words) or phono-
logical encoding (pseudohomophones, pseudowords). Using this type of stim-
uli in their MEG study, Simos and colleagues (Simos et al.,   2002a  ) reported 
activation of the left superior temporal gyrus for all word types, and involve-
ment of the middle temporal gyrus and mesial temporal lobe in semantic anal-
ysis. This pattern could be specifi c to the type of processing required in reading 
English, or it might refl ect the data analysis approach chosen by the authors, 
where dipolar sources are sought every 4 ms and comparisons are based on the 
number of dipolar sources identifi ed within each region of interest (instead of, 
for example, dipole source amplitudes or their time courses of activation). 
However, a recent study using that same analysis approach for characterizing 
cortical dynamics of word and pseudoword reading in English-speaking sub-
jects, found identical areas of activation for both word types (Wilson et al., 
  2005  ). Differences between word types only emerged in the left superior 
temporal cortex, in activation strength (pseudowords>words) and timing 
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(words<pseudowords), thus essentially agreeing with the pattern observed in 
Finnish-speaking subjects (Salmelin et al.,   1996  ; Wydell et al.,   2003  ).     

Perception of Written vs. Spoken Language 

 The N400m activation refl ecting lexical-semantic processing in reading is 
generated remarkably close to the auditory cortex (1–2 cm; Helenius et al., 
  1998  ). An intuitive and tempting interpretation would be to suggest that the 
development of language comprehension is driven by speech perception, 
hence the spatial nearness, and that this process develops into a supramodal 
mechanism (Marinkovic et al.,   2003  ) that eventually serves all (language) 
comprehension, independent of input modality. Nevertheless, a reading-
evoked N400m response in the left superior temporal cortex, infl uenced by 
semantic priming, has been detected also in a congenitally deaf subject 
(unpublished data) which speaks against auditorily driven development of 
the semantic N400m activation during language acquisition – but obviously 
does not preclude possible auditorily driven predisposition to semantic pro-
cessing in the superior temporal cortex that could have developed over the 
course of human evolution. 

 When subjects listen to sentences with semantically congruent or incon-
gruent endings (Helenius et al.,   2002b  ) or perform semantic judgment on spo-
ken words (Marinkovic et al.,   2003  ) MEG data show an N400m response graded 
by semantic relatedness, very similar in timing and location to that observed in 
reading ( Figure  13–10a  ). As illustrated in  Figure  13–10b  , simple tones and 
synthetic single vowels and consonant–vowel syllables typically evoke only a 
prominent response at about 100 ms post-stimulus (e.g., Hari,   1990  ; Parviainen 
et al.,   2005  ; Salmelin et al.,   1999  ). When listening to natural speech, words and 
sentences, the N100m response is followed by a pronounced N400m response 
(e.g., Biermann-Ruben et al.,   2005  ; Helenius et al.,   2002b  ; Marinkovic et al., 
  2003  ), with a brief reduction of activity in between, at about 200 ms. 

 The speech signals arrive as sound waves (acoustic features), and from 
these signals the brain extracts speech sounds (phonetic features) and speech 
sound sequences (phonology), which further activate the meaning of the 
word. MEG studies have shown that processing of acoustic-phonetic features 
of speech is refl ected in the N100m response (Parviainen et al.,   2005  ; Poeppel 
et al.,   1996  ). Categorical perception of phonemes occurs by ~150 ms (Phillips 
et al.,   2000  ; Vihla et al.,   2000  ). 

 Qualitatively, the sequence is thus relatively similar in reading and speech 
perception, with language-specifi c activation emerging by 100–150 ms and 
evidence for lexical-semantic processing from 200–300 ms onwards. In both 
modalities, brief reduction of time-locked activity is detected at about 200 ms. 
The specifi c process(es) within the time window approximately from 150 to 
300 ms post-stimulus remain poorly understood in both reading and speech 
perception.     
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Cortical Correlates of Developmental Dyslexia 

 Dyslexia is characterized by a diffi culty in learning to read and write in the 
absence of any obvious defi cit in general intelligence, or in the ability to 
acquire new information. Problems in phonological processing are also typi-
cally reported in dyslexia, and they are often thought to be the underlying 
cause of this disorder (Bradley & Bryant,   1983  ). What is the neurophysiological 
basis of impaired reading in dyslexia? 

 The fi rst MEG study on reading in dyslexia compared passive viewing of 
7- to 8-letter Finnish words and nonwords in fl uently reading and dyslexic 
adults matched for age and level of education (Salmelin et al.,   1996  ). In con-
trol subjects, activation proceeded from occipital to inferior occipitotemporal 
cortex bilaterally, and further to the left superior temporal cortex and the 
sensorimotor cortex in both hemispheres (cf.  Figure  13–7  ). Systematic differ-
ences between control and dyslexic subjects were observed only in the left 
hemisphere ( Figure  13–11  ). The dyslexic subjects did not activate the left 
occipitotemporal and superior temporal cortex but showed, instead, activa-
tion of the left inferior frontal cortex at about 300 ms post-stimulus. Shaywitz 
and colleagues, in their functional magnetic resonance imaging (fMRI) study 

Figure 13–10 . Time course of activation in the superior temporal cortex. 
(a) Lexical-semantic processing in visual vs. auditory perception, as indi-
cated by a graded response to semantically congruent and incongruent 
sentence-ending words. The white dot indicates location of the auditory 
cortex, as determined from the N100m response to simple 1-kHz tones. 
(b) Activation evoked by different types of auditory stimuli. Note the 
emergence of the N400m response when advancing from artifi cial conso-
nant-vowel (CV) syllables to natural spoken words. 
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(Shaywitz et al.,   1998  ), reported a qualitatively similar combination of poste-
rior underactivation with anterior overactivation in dyslexia.   

 Early cortical processes of reading in dyslexia were targeted in a follow-up 
study that employed words masked by various levels of noise and symbol 
strings, as illustrated in  Figure  13–1   (Helenius et al.,   1999b  ). The data demon-
strated that the response at ~100 ms refl ecting low-level visual feature analysis 
was intact in dyslexia, but that the subsequent activation of the left occipito-
temporal cortex associated with letter-string analysis at ~150 ms was 
nondetectable or abnormally weak in dyslexic subjects ( Figure  13–12  ). When 
lexical-semantic processing was probed using sentences that ended with 
semantically congruent or incongruent words, the onset of the N400m 
response was found to be delayed by about 100 ms in dyslexic subjects as 
compared with controls (Helenius et al.,   1999a  ).  

 These fi ndings point to disruption of the reading process at the stage of 
letter-string analysis, at about 150 ms after seeing a word. In fl uent readers, 
this activation is likely to be the gateway from visual to linguistic analysis, a 
fast route that automatically sets letter-strings apart from other visual objects 
and facilitates fast reading. The lack of this fast route for written language is 
most probably the immediate reason for the slow and inaccurate reading per-
formance that is characteristic to dyslexia. 

 However, this result is clearly no fi nal answer. It raises further questions: 
are the problems limited to words, or does the abnormally weak activation 

Figure 13–11 . Differences in cortical activation between dyslexic and control 
subjects in silent reading of isolated words and nonwords. The white rect-
angles denote cortical areas and time windows in which a salient response 
was detected in fl uently reading subjects but not in dyslexic individuals.
Modifi ed from Salmelin et al. ( 1996).
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refl ect a more general defi cit in the left occipitotemporal cortex—or, possibly, 
in the time window of category-specifi c processing when we start to deal with 
entities? Tarkiainen and colleagues tested these options by using face stimuli 
that were masked the same way as the letter-strings (cf.  Figure  13–1  ). Occipital 
activation refl ecting basic visual feature analysis was again found to be intact. 
The subsequent category-specifi c activation to faces in the inferior occipito-
temporal cortex was normal as well, with timing and hemispheric balance 
similar to that in controls (Tarkiainen et al.,   2003  ). Presence of a salient face-
sensitive response at ~150 ms in the left inferior occipitotemporal cortex speaks 
against a general functional defi cit in this cortical area or time window. The 
left occipitotemporal underactivation thus seems to be fairly specifi c to letter-
strings. Abnormally weak activation in the left occipitotemporal cortex in 
dyslexic subjects is a consistent fi nding in hemodynamic imaging studies of read-
ing as well (Brunswick et al.,   1999  ; Paulesu et al.,   2001  ; Shaywitz et al.,   1998  ). 

 It should be noted, however, that in a series of MEG experiments on 
word and nonword reading in English-speaking children with dyslexia, Simos 
and colleagues did not fi nd differences between participants with dyslexia and 
control participants in an early (less than 200 ms) activation that they identi-
fi ed at the base of the temporal cortex (Simos et al.,   2000a  ; Simos et al.,   2000b  ; 
Simos et al.,   2002b  ). At present, it remains unclear if this apparent discrep-
ancy is due to the participants’ age, their native language, or the applied MEG 
analysis technique. 

Figure 13–12 . Cortical dynamics of silent reading in dyslexic (color) and 
fl uently reading subjects (gray). In dyslexic subjects, there was a marked 
lack of activation in the left occipitotemporal cortex at ~150 ms and delay 
in activation of the left superior temporal cortex at ~400ms.
Modifi ed from Salmelin et al. ( 2000).
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  Figure  13–13   displays the time course of lexical-semantic activation in 
dyslexic and control subjects to different types of unexpected sentence-ending 
words (Helenius et al.,   1999a  ). Apart from the striking 100-ms delay at the 
onset, the pattern in the dyslexic subjects differed from that in controls in 
other ways as well. In fl uent readers, the responses to completely anomalous 
words and to the wrong words beginning with the expected letters (‘phono-
logical’) were equally strong, suggesting that these subjects read a word as a 
whole, and detected immediately if it was wrong. In dyslexic subjects, how-
ever, the response to the phonological words was signifi cantly weaker than to 
the anomalous words. This difference suggests either that the responses to the 
phonological word type were quite variable in latency or, which is more likely, 
that the dyslexic subjects occasionally mistook the phonological word for the 
expected one, which resulted in reduction of the averaged response. In any 
case, it seems that the dyslexic subjects did not take a word in as a whole, but 
rather advanced in smaller units. The signals were overall smaller in dyslexic 
than control subjects, indicating involvement of a smaller or less synchronous 
neuronal population.  

Figure 13–13 . Lexical-semantic activation in dyslexic subjects and fl uently 
reading controls. Note the 100-ms delay at the onset in the dyslexic group. 
The diminished activation to the phonological word type (wrong mean-
ing but initial letters the same as in the expected word) as compared with 
the anomalous sentence-ending words suggests a sublexical infl uence in 
dyslexic reading.
Modifi ed from Helenius et al. ( 1999a).
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 In dyslexia, cortical abnormalities in reading apparently start in letter-
string-sensitive analysis at ~150 ms, with further effects in later processing 
stages. Recent MEG studies on speech perception in dyslexia have shown a 
qualitatively similar pattern, with differences between dyslexic and control 
groups emerging within the fi rst 200 ms (Helenius et al.,   2002a  ; Nagarajan 
et al.,   1999  ; Parviainen et al.,   2005  ), and a delay (~50 ms) in the onset of the 
subsequent stage of semantic processing (Helenius et al.,   2002b  ). It thus seems 
that in dyslexia there are abnormalities in both auditory and visual language 
perception, but the discrepancies are particularly pronounced in the visual 
domain. Indeed, the relationship between audition and vision would seem 
reasonable from a developmental point of view. Cortical specifi city to letter 
strings must certainly arise with experience. Children fi rst learn to listen to 
spoken words and only much later make the connection between the sym-
bolic written words and the original phonological code. Effi cient integration 
of written and spoken language is clearly a prerequisite for learning to read. 
Problems in cerebral implementation of speech perception could certainly 
impede and be further amplifi ed in neural organization of reading.     

Neurophysiological vs. Hemodynamic View Of Reading 

Pre-Lexical Analysis 

 Both neurophysiological and hemodynamic imaging studies indicate that in 
the left inferior occipitotemporal cortex, there are neurons that are particu-
larly interested in letter-strings (Cohen et al.,   2000  ; Nobre et al.,   1994  ; 
Tarkiainen et al.,   1999  ) and that this activation is abnormally weak in dyslexic 
individuals who have diffi culties in learning to read and write (Helenius et al., 
  1999b  ; Paulesu et al.,   2001  ). This is apparently quite an amazing correspon-
dence between fundamentally different techniques, and it seems very attrac-
tive. Because of that, it is all the more important to consider whether the 
neurophysiological and hemodynamic signatures refl ect the same, unitary 
process. 

 There seems to be a small difference in the mean location of the letter-
string-sensitive activation as determined with MEG, or with fMRI and posi-
tron emission tomography (PET). Based on anatomical landmarks, the source 
area in MEG falls on Brodmann area 19 (Tarkiainen et al.,   2002  ) whereas 
fMRI/PET studies report activation of area 37 (Cohen et al.,   2000  ; Cohen 
et al.,   2002  ). When the MEG coordinates are converted into Talairach space 
the source area is found to be centered 1–2 cm posterior and about 0.5 cm 
medial to the center of the hemodynamically determined maximum 
(Tarkiainen et al.,   2002  ). 

 Functionally, there are also potentially important differences. The MEG, 
EEG, or intracranial response does not differentiate between real words, 
pseudowords or even consonant strings (Allison et al.,   1994  ; Cornelissen 
et al.,   2003  ; Nobre et al.,   1994  ; Salmelin et al.,   1996  ; Wydell et al.,   2003  ). 



MEG and Reading: From Perception to Linguistic Analysis  363

It appears to be interested in letter-like strings, potential language. 
Hemodynamic studies, on the other hand, have often reported a signifi cantly 
stronger response in this area to real words than consonant strings (Brunswick 
et al.,   1999  ; Paulesu et al.,   2000  ). BA 37 has, in fact, been recently dubbed a 
Visual Word Form Area, where neurons would become attuned to the ortho-
graphic system of the language during reading acquisition (Cohen et al.,   2000  ; 
Cohen et al.,   2002  ); this interpretation has been challenged (Price & Devlin, 
  2003  ). 

 One plausible way to reconcile the fi ndings is to assume that MEG detects 
the onset of letter-string-sensitive analysis which is not detected in, or does 
not dominate, the hemodynamic signal. fMRI/PET would detect subsequent 
activation along the ventral stream, where neurons would be increasingly 
sensitive to the word-likeness of the letter-strings but show weaker synchro-
nization, or be less rigorously time-locked to stimulus presentation, and 
might thus go undetected in MEG, at least with the usual analysis techniques 
(Cornelissen et al.,   2003  ; Salmelin and Helenius,   2004  ). 

Semantic and Phonological Analysis 

 As for the subsequent stages of semantic and phonological analysis, the MEG 
data reviewed above suggest that the left superior temporal activation at 200 
to 600 ms refl ects both of those processes ( Figure  13–14a  ). The response is 
reduced by semantic priming, and there is stronger activation to pseudowords 
than real words. 

 During the past few years, the representation of semantic and phonologi-
cal processes in reading has been addressed in a number of fMRI/PET studies. 
Jobard and others, based on a meta-analysis of 35 reports (Jobard et al.,   2003  ), 
suggest the pattern sketched in  Figure  13–14b  . Semantic processing was most 
consistently associated with activation of the triangular part of the inferior 
frontal gyrus, posterior middle temporal gyrus, and basal temporal cortex, 
whereas phonological processing was refl ected in activation of the superior 
temporal cortex, supramarginal gyrus, and opercular part of the inferior 
frontal gyrus. 

 There is some agreement between neurophysiological and hemodynamic 
methods for phonological processing, but apparently none for semantic anal-
ysis. The left superior temporal cortex is implicated in phonology both by 
MEG and hemodynamic measures, but only MEG assigns it a role in seman-
tics. For this particular pattern, one could consider a rather simplistic account: 
In fMRI/PET studies the active brain areas are determined by specifi c sub-
tractions. Based on the dual-route model of reading, areas involved in phono-
logical analysis are thought to be revealed by subtracting activations to real 
words from those to pseudowords. Areas involved in semantic processing, on 
the other hand, would be sought by the inverse subtraction. Based on the 
MEG data, and assuming that both semantic and phonological manipulation 
affects essentially the same neuronal population, such subtractions would 
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indeed show activation of the left superior temporal cortex for the compari-
son pseudowords > words (phonology) but none for the comparison words 
> pseudowords (semantics). 

 On the other hand, one may also ask whether the differences might be 
due to the choice of language. Most of the MEG studies were performed using 
Finnish, whereas English has been the prevalent language in fMRI/PET studies. 
A recent fMRI study used Japanese language, which has a highly regular 
orthography, like Finnish (Ischebeck et al.,   2004  ). One of the tasks—silent 
articulation of visually familiar and unfamiliar words and pseudowords—was 
very similar to that used in the MEG study of word and pseudoword reading 
described above (Wydell et al.,   2003  ). Nevertheless, in the fMRI pattern, there 
was again a striking lack of left superior temporal activation, now also for 
phonological processing. Clearly, it will be essential to establish the similari-
ties and differences between hemodynamic and MEG measures, what they tell 
about the processes involved in reading, and how these processes are organized 
in the brain.     

Figure 13–14 . Cerebral loci associated with semantic and phonological 
analysis of written words using (a) MEG and (b) fMRI/PET. For MEG, time 
course of activation in the left superior temporal cortex is shown as well. 
From Salmelin and Kujala ( 2006).
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Recent Advances and Future Directions 

Cortical Sequence of Activation in Children Learning To Read 

 In developmental dyslexia, irregularities in the cortical sequence of reading 
(and speech perception) are most obvious from about 150 ms until 300–
350 ms after word presentation. Disturbingly, this is the time window that 
remains rather poorly understood in cortical dynamics of fl uent reading as 
well. What happens after the initial letter-string-specifi c activation in the left 
occipitotemporal cortex, and before lexical-semantic processing refl ected in 
activation of the left superior temporal cortex? Does the former directly drive 
the latter? 

 The possible interdependence between the early occipitotemporal and 
subsequent superior temporal activation, is diffi cult to establish in adult sub-
jects with relatively little interindividual variability in response timing, and 
rigid neuronal implementation of language function. Children at the verge of 
becoming fl uent readers are an interesting subject population in this respect, 
as one would expect clearly more interindividual variability in (timing of) 
activation sequences in children than adults. Even more importantly, one 
should be able to establish whether the strength or timing of the occipitotem-
poral letter-string activation is correlated with the developing reading skills 
or, possibly, if this activation rapidly appears at a specifi c point in functional 
and/or anatomical maturation. 

 A recent MEG study mapped neural correlates of letter-string perception 
in 7–8-year-old children who were in the fi rst grade of elementary school 
(Parviainen et al.,   2006  ). Based on a set of standardized behavioral tests, these 
children were expected to become fl uent readers.  Figure  13–15   depicts the 
cortical sequence of silent reading in children and in adults (cf.  Figure  13–7  ). 
The sequence of activation was functionally quite similar in the two groups, 
with visual feature analysis in the occipital cortex, subsequent letter-string-
sensitive activation in the left occipitotemporal cortex and, fi nally, sustained 
activation in the left superior temporal cortex. However, in children the acti-
vation was delayed in time as compared with the adults, by about 50 ms at the 
stage of visual feature analysis, and by about 100 ms at the stage of letter-
string analysis. Importantly, there was a signifi cant correlation in both timing 
and strength of activation between the occipital and left occipitotemporal 
responses, on the one hand, and between the occipitotemporal and left tem-
poral responses, on the other hand, thus implying a causal sequence of activa-
tion from occipital via left occipitotemporal to left superior temporal cortex.   

 A letter-string-sensitive response in the left occipitotemporal cortex was 
detected in about half of the children, which is clearly a smaller percentage 
than in fl uently reading adult subjects (detected in almost every individual). 
In those children who did show a salient letter-string response, the cortical 
activation strength was strongly correlated with the child’s ability to analyze 
speech sounds. The cortical activation strength was decreased with better 
phonological skills, thus approaching the adult level of activation, which 
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is generally much lower than in children. Since the ability to analyze speech 
sounds is considered a prerequisite for reading acquisition (Bradley & Bryant, 
  1983  ), this intriguing correlation again points to an important role for the 
left inferior occipitotemporal cortex in reading acquisition and fl uent 
reading. 

 Studies on children learning to read are likely to prove essential also for 
understanding the relationship between perception of spoken and written 
language. Cortical activation patterns in dyslexic adults seem to point to 
impaired integration of auditory and visual information that may be specifi c 
to language, or possibly refl ects a more general diffi culty in multisensory inte-
gration. This type of interactions between input modalities, particularly in the 
interesting early time windows (< 300 ms), are quite diffi cult to assess in the 
relatively rigid adult brain. The developing brain of a child could provide a 
clearer view into such processes.     

Extracting Information from Rhythmic Background Activity 

 The different components of reading are typically probed with rather artifi cial 
experimental setups that allow good control of the task and the stimulus 
properties. While this is a well-argumented and necessary approach, the brain 
correlates of language processing may appear quite different in more natural 
contexts that the brain is tuned for. For example, how important is the occip-
itotemporal letter-string area when we are reading continuously, in more 
realistic conditions? 

Figure 13–15 . Cortical dynamics of silent reading in children (color) and in 
fl uently reading adults (black). In children, the sequence of activation was 
qualitatively similar to that in adults but delayed in time.
Modifi ed from Parviainen et al. ( 2006).
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 In order to move from stimulus-driven to increasingly realistic language 
tasks, one needs to fi nd new ways to analyze the MEG data. Because no exter-
nal trigger signals are available, the activation sequence must be determined 
directly from brain activity. Although, theoretically, MEG is well suited for 
identifying brain areas with correlated time courses of activation, it is a con-
ceptually, mathematically, and computationally challenging problem. 
Dynamic Imaging of Coherent Sources (DICS; see Chapter 9) is a tool for 
performing connectivity analysis on non-averaged MEG data (Gross et al., 
  2001  ) that was initially applied for characterization of the motor system where 
muscle activity provides an external, non-brain reference signal (Gross et al., 
  2001  ; Gross et al.,   2002  ). 

 Recently, this method was further developed for use on cognitive tasks, in 
which there are typically no external reference signals available (Kujala et al., 
  2007  ; Salmelin and Kujala,   2006  ). Subjects were reading stories that were 
shown to them word by word, in rapid serial visual presentation that simu-
lates natural reading but without need for making saccades (Kujala et al., 
  2007  ). Words were shown at three rates that were selected individually for 
each subject according to their cognitive performance. At the fast rate the 
subject could not understand the story, at the medium rate the subject was 
able to understand part of the text, with effort, and at the slowest rate the 
story was easy to follow. 

 Coupling between brain areas ( Figure  13–16  ) was detected at a frequency 
of about 10 Hz, which seems to represent an inherent carrier frequency in the 
brain, as it was not affected by the rate at which the words were presented. 
The nodes of the left-hemisphere network formed an interesting compilation 

Figure 13–16 . Coupling between brain areas during a continuous read-
ing task. The network included the occipito-temporal cortex, superior, 
anterior and medial temporal cortex, face motor cortex, insula, cerebel-
lum, and prefrontal and orbitofrontal cortex (indicated by black circles; 
surface projection). (a) The nodes formed a strongly interconnected net-
work; the larger the black circle the more connections between that node 
and the other nodes. (b) Connections were mostly bidirectional, but for 
part of the connections there was a dominant direction of information 
fl ow, indicated by the arrowheads.
Modifi ed from Kujala et al. ( 2007).
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of brain areas that have been identifi ed in activation studies on various aspects 
of language function, using either MEG, fMRI or PET, or intracranial record-
ings: The occipitotemporal node corresponds approximately to the letter-
string area, and the superior, anterior and medial temporal areas have been 
suggested to be involved in semantic and phonological analysis. Face motor 
cortex, insula and the cerebellum are typically reported in language produc-
tion, thus suggesting a connection between sensory and motor processes even 
in silent reading. The prefrontal and orbitofrontal cortex have been associated 
especially with visual recognition and working memory.  

 The entire network was strongly interconnected ( Figure  13–16a  ). The 
connections were mostly bidirectional, but for part of the connections there 
was a dominant direction of information fl ow, as evaluated with Granger 
causality ( Figure  13–16b  ). Intriguingly, the left inferior occipitotemporal cor-
tex, together with the cerebellum, turned out to be the main forward-driving 
node of the network, again emphasizing the signifi cance of this area in reading. 
Indeed, in the light of this network structure it is not surprising that impaired 
neural processing in this area in dyslexia may seriously affect the ability to 
read fl uently. 

 Rhythmic cortical activity also shows event-related modulation that is 
not as tightly time-locked to the stimulus or task onset/offset as the strictly 
phase-locked evoked responses, and may offer important complementary 
information of brain function (see Chapters 6–9). Localization of rhythmic 
activity, and especially of those areas in which rhythmic activity is reduced, is 
not straightforward. Recently, methods have been developed that allow visu-
alization and localization of brain areas where the level of rhythmic activity 
within a specifi c frequency range is suppressed below a predefi ned base level; 
DICS, mentioned above, is one of those methods. Within the domain of MEG 
as a measure of brain function, it will be essential to understand the relation-
ship between evoked responses, event-related modulation of cortical rhythms 
and connectivity patterns, as regards their location, timing and functional 
dependence on parametric variation of stimuli and tasks. Furthermore, the 
relationship of these MEG signatures with hemodynamic measures, such as 
the fMRI BOLD signal, will need to be established for effi cient use of neu-
roimaging methods in unraveling the principles of neural processing.     

Interaction and Labeling of Linguistic Processes at the Neural Level 

 A relevant issue in reading that will need to be clarifi ed in detail is the 
spatiotemporal representation of semantic and phonological processing, and 
their possible interaction. The brain may well turn out to be uninterested in 
such divisions but, for the time being, such labels serve as a reasonable con-
ceptual framework for clarifying the neural basis of language function. An 
additional concept to consider is syntax and its interplay with semantics, in 
time and space (Service et al.,   2007  ). Furthermore, the modality-specifi c vs. 
supramodal nature of semantic, phonological, and syntactic processing, and 
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the nearness of both visually and auditorily evoked N400m response to the 
primary auditory cortex, deserve careful investigation. 

 Perhaps the time is now ripe for starting to let the brain inform us about 
the ways in which it prefers to cope with written language, and the types of 
processes implemented at the neuronal level. Combined spatial and temporal 
information will be essential in that endeavor.       
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Introduction 

 Search for clinical applications has paralleled the development of MEG from 
its early phases in the seventies (Hughes et al.,   1977  ). The possibilities of MEG 
in clinical use were fi rst demonstrated by studies of patients with several types 
of epilepsy (Barth et al.,   1982  ; Modena et al.,   1982  ; Barth et al.,   1984  ). At the 
time, data were obtained sequentially by moving the one-sensor instrument, 

14

The Use of MEG in Clinical Settings 

Jyrki P. Mäkelä

      Clinical MEG measurements need to provide useful information for • 
diagnostics or treatment in individual patients  
  At present, this condition is realized in patients with medically • 
intractable epilepsy going through workup for epilepsy surgery, or 
in patients going to the surgery of tumors in the vicinity of eloquent 
cortical regions  
  As errors in data interpretation may produce harmful effects on • 
the patients, particular care for measurement accuracy and artifact 
rejection, and close collaboration with the team responsible for the 
treatment are needed in clinical MEG measurements  
  Search for diagnostic MEG markers in several neurodegenerative • 
diseases and in traumatic brain injury patients will probably provide 
the new clinical applications of MEG in the future      
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using simultaneously-measured EEG signal as a trigger for averaging, to detect 
epileptic spikes in the MEG signal from measurements at different sites (Barth 
et al.,   1984  ). Already these early efforts demonstrated that MEG is able to 
identify source locations of epileptiform spikes and their spread to the oppo-
site hemisphere 20 ms later (Barth et al.,   1982  ), and multiple sources of epi-
leptic activity in individual patients (Barth et al.,   1984  ). Recordings of soma-
tosensory evoked fi elds (SEFs) with small-coverage instruments were also 
able to locate the central sulcus accurately, as compared with intracranial 
recordings (Sutherling et al.,   1988  ). The co-registration of the source localiza-
tion of evoked responses with anatomical magnetic resonance imaging (MRI) 
paved the way for use of MEG in preoperative planning (Gallen et al.,   1993  ; 
Kamada et al.,   1993  ). 

 The need for multichannel detectors for clinical practice has been obvi-
ous since the very fi rst clinical studies (Modena et al.,   1982  ). The develop-
ment has led to instruments covering the whole scalp (Ahonen et al.,   1993  ; 
Vrba et al.,   1993  ). These devices have considerably speeded up MEG record-
ings, and made large-scale utilization of MEG feasible in clinical patients. 
With these instruments, one can observe simultaneous magnetic activity from 
the entire scalp surface. Moreover, a possible inaccuracy caused by repetitive 
probe positioning is avoided. Functional landmarks in several sensory modal-
ities can be created within a single measurement session, and the spread of 
epileptiform activity can be followed across the lateral cortical surfaces. Both 
spontaneous MEG and evoked responses can be used to depict active cortical 
areas, by superimposing the source locations of the spontaneous activity and 
evoked fi elds on the patient’s MRIs. MEG provides accurate data on individ-
ual patients; averaging across patients, which would blur individual differ-
ences and diminish clinical applicability, is not needed. The noninvasiveness 
of MEG allows repeated recordings as often as desired. Despite impressive 
development of instruments, identifi cation of epileptogenic cortical areas, 
and localization of eloquent cortices, have remained the mainstay of clinical 
MEG—although MEG teams are making an extensive search for individually 
useful MEG signals, e.g., in patients suffering from stroke, Parkinson’s disease, 
chronic pain, or Alzheimer’s disease.     

General Aspects 

 The use of MEG in clinical settings requires an approach different from that 
in research. Typically, individual features in measurements are of crucial 
importance in clinical patient studies, whereas they are of minor interest or 
even confounding in research settings that aim to reveal general features of 
the brain function. Different approaches in the practical performance of mea-
surements are also apparent. Healthy control subjects are often familiar with 
the recording environment, whereas patients seldom visit a MEG unit more 
than one or two times. However, high motivation for obtaining personally 
signifi cant results from measurements often produces excellent cooperation 
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by patients, despite the unfamiliar environment. Careful explanation of the 
recording procedures to the patient, as well as taking into account the func-
tional problems caused by the patient’s condition in planning and executing 
the measurements, improve the obtained results. It is useful to have a nurse 
with a patient in the shielded room to improve communication and explain 
the needed procedures. This can reduce the patient’s anxiety, as well as serv-
ing the need to monitor the patient to prevent unexpected events, particularly 
when acute cases are studied. 

 Furthermore, the research questions in clinical patients need to refl ect 
the needs of clinical practice, not the interests of the researcher. A close col-
laboration between the team performing MEG recordings, and the persons 
responsible for clinical decisions, is quintessential in obtaining the best 
results.     

Technical Aspects Relevant in Clinical Settings 

 The high quality of the data is of prime importance in measurements infl u-
encing clinical decisions, e.g., on extent of surgery in the region of epilepto-
genic brain, or in the vicinity of irretrievable cortical areas. The effects of 
various artifact sources on the results need to be fully understood.    

Data Quality 

 Epileptic discharges produce MEG activity with a signal-to-noise ratio suffi -
cient to allow reliable analysis without signal averaging. When sensory 
responses or motor function are studied, signal averaging is needed; it is use-
ful to average the responses alternately to two different bins for evaluation of 
their reproducibility. In patients with cortical lesions, interstimulus interval 
or stimulus intensity may need modifi cation from those applied in healthy 
control subjects, to ensure that the responses are robust enough for analysis. 
The signal-to-noise ratio can be improved by signal processing; for example, 
by digital or spatial fi ltering. In studies of evoked responses, the averaged sig-
nals are often low-pass fi ltered digitally, to suppress the high-frequency noise. 
Spatial fi lters are based on an assumption that the distribution of the target 
signal differs from that of environmental noise, biological artifacts, or brain 
activity outside the function studied (Hämäläinen and Hari,   2002  ). These 
fi lters allow the removal or suppression of noise subspace—caused, e.g., by 
cardiac artifacts—from the data (Jousmäki and Hari,   1996  ). The fi lter types 
need to be selected on the basis of clinical details of the patient, and the loss of 
clinically useful information should not occur.     

Magnetic Artifacts 

 MEG signals are extremely tiny, and the recordings are sensitive to artifacts 
produced by moving magnetic materials. Even hair dyes or cosmetics may 
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contain magnetic particles. Naturally, any magnetic material worn by the 
patient needs to be removed. Use of nonmagnetic laboratory garments may 
be useful. As in basic research, eye movements, producing strong magnetic 
signals, need to be recorded to remove related artifacts from brain signals. 
It is essential to strive toward signals that are as artifact-free as possible, 
although new signal-processing methods for artifact removal make a more 
relaxed attitude tempting. 

 Unfortunately, in studies of patients, the possibilities for non-removable 
artifact sources abound. Dental materials, shunts needed to treat hydroceph-
alus, clips closing aneurysms, or lid springs needed in the treatment of the lid 
lag in facial paresis, may all be magnetic. Occasionally, ferromagnetic dust 
due to drilling in a previous neurosurgical operation may produce distur-
bances that lower signal quality. MR imaging may aggravate these artifacts; 
consequently, it is a useful policy to perform MRI  after  the MEG recordings, 
if possible. Use of demagnetization instruments may turn out to be helpful in 
some cases. Occasionally, the exclusion of the most affected channels may 
facilitate the data analysis. In studies of patients with epilepsy, magnetic elec-
trodes—including sphenoidal electrodes, or magnetic leads—may produce 
severe disturbances. Vagus nerve stimulators or pacemakers may render MEG 
recordings useless. These problems can occasionally be prevented by selecting 
electrodes and instrumentation carefully. The magnetic artifacts sometimes 
consist of slow drifts, and can be removed if the signals of interest are in a 
higher frequency range. However, high-pass fi ltering may deform signifi -
cantly the waveforms of fast signals, and thus it is often ineffi cient in artifact 
removal. 

 Recent developments may, fortunately, alleviate artifact-related prob-
lems. Computational removal of artifacts is developing quickly. The signal 
space separation algorithm allows the recognition of magnetic signals from 
different subspaces, e.g., from the head and its surroundings. The method 
utilizes Maxwell’s equations, and exact information about the geometry and 
sensitivity of the sensor array, to decompose the multichannel MEG signals 
into a device-independent representation, separating contributions of sources 
internal and external to the sensor array. Further suppression of artifacts in 
the internal space is obtained by detecting signals with similar temporal pat-
terns in the signals of both spaces that are emanating from strong artifact 
sources not completely suppressed by the basic geometrical separation. These 
common temporal patterns are then projected out of the signals originating 
in the internal space. This leaves the tiny brain signals intact (Taulu & Simola, 
  2006  ). This method suppresses artifacts generated, e.g., by eye blinks or by 
dental fi llings. Even very strong artifacts generated by a vagus nerve stimula-
tor (Tanaka et al.   2009  ), or electric stimulation of subthalamic nucleus in 
Parkinsonian patients, are suppressed—provided that the amplifi ers of the 
MEG system do not drift completely out of the measurement range (Mäkelä 
et al.,   2007  ). Similarly, signal processing that applies the beamformer method 
attenuates spatially correlated noise, and makes it feasible to obtain recordings 
from patients with magnetic dental fi llings (Cheyne et al.,   2007  ). One case 
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report describes the use of beamformers in suppression of magnetic noise 
caused by a deep brain stimulator for treatment of chronic pain (Kringelbach 
et al.,   2007  ).     

Accuracy of MEG-MRI Overlay 

 In clinical applications, the MEG device coordinate system needs to be related 
to the anatomical coordinate system of the subject’s head. This is usually 
accomplished by attaching head position indicator coils on scalp locations 
related to the fi ducial points on the head, and by calculating the head position 
from magnetic signals produced by weak currents at the coils. Naturally, 
accuracy at this phase is crucial in preoperative measurements, because errors 
in the transformation of the coordinates are directly refl ected as inaccuracy 
in the fi nal results. It is useful to utilize signals from at least four indicator 
coils, and digitize tens of sites of the patient’s scalp and face, in addition to 
fi ducial points, for a fi t with the MR images later on. Digital photographs 
of the fi ducial points add confi dence in locating them later from the MR 
images. Well-established physiological landmarks—such as sources of early 
median nerve SEFs and auditory evoked fi elds—provide confi dence in the 
success of the MEG-MRI overlay, particularly when their source orientations 
match the gyral anatomy. These should be recorded, in addition to spontane-
ous activity recordings used in location of the epileptic cortical areas. As some 
diseases may alter brain anatomy relatively rapidly due to edema or rapid 
growth, the time lapse between MRI and MEG recordings should not be 
too long. 

 The detection of head movements during the MEG measurement is 
important for the accuracy of the MEG source localization. Whereas adult 
patients are usually highly motivated and remain motionless, with about 
1 mm standard deviation of the measured head positions (Uutela et al.,   2001  ), 
movements may increase inaccuracy in pediatric measurements, or, e.g., in 
epileptic seizures. Continuous head position monitoring has been developed 
to monitor the position of the patient’s head during MEG recordings (Uutela 
et al.,   2001  ; Medvedovsky et al., 2007), and appears to be useful in ictal epi-
lepsy recordings (Vitikainen et al.,   2009  ). The present compensation systems 
operate in a range of a few centimeters, and may strengthen noise signals 
(Uutela et al.,   2001  ). Combined artifact suppression alleviates this problem 
(Medvedovsky et al., 2007). The accuracy of the source localization will 
increase further with these applications, particularly in pediatric neurology. If 
such solutions are not available, head fi xation with cushions may turn out to 
be useful. The head can also be lined to one side of the helmet dewar to 
enhance the signal amplitude on the side of the interest.     

Patient Safety 

 Unexpected events, such as epileptic seizures or drug-induced respiratory 
suppression, are more probable in studies of patients than in control subjects. 
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If studied supine, safety belts or railings may prevent the subject from falling 
off the bed in such instances. The examiners should be well versed on how to 
get the subject quickly out of the gantry if needed. Resuscitation equipment, 
oxygen system and, preferably, suction instrumentation need to be prepared 
for an emergency.      

Routine Clinical Applications 

MEG in Epilepsy 

 MEG recordings are a useful adjunct in planning epilepsy surgery. MEG appears 
to be particularly benefi cial in the study of patients with non-lesional neocor-
tical epilepsy, and in patients with large lesions, where it may provide unique 
information on the epileptogenic zone in relation to the lesion (for reviews, 
see Pataraia et al.,   2002  ; Barkley & Baumgartner,   2003  ; Knowlton & Shih, 
  2004  ). Naturally, the preoperative localization of eloquent cortices can be made 
with the same methods in epileptic patients as in control subjects, and their 
relation to epileptic zone can be visualized ( Figure  14–1  ). Sources of epileptic 
spikes can be integrated into neuronavigation systems (Iida et al.,   2005  ). 
It has been suggested that MEG source localization, using a single-dipole 
model, can provide unique localization information not available with other 
noninvasive methods in patients with epilepsy (Mamelak et al.,   2002  ). The 
clustering of the sources of individual interictal spikes ( Figure  14–2  ) has dem-
onstrated a high correlation with electrocortigography (ECoG) (Lamusuo 
et al.,   1999  ; Mamelak et al.,   2002  ). If source clusters are located in the nonre-
sectable eloquent cortex, residual seizures remain probable (Iida et al.,   2005  ), 
and a high correlation of the resection volume with the brain region contain-
ing MEG source clusters of epileptic spikes has been shown to predict favorable 
outcome in epilepsy surgery (Fischer et al.,   2005  ). MEG can also encourage 
epilepsy surgery when displaying focal epileptiform activity, whereas tradi-
tional methods suggest multifocal activity or demonstrate bilateral, multifocal 
or diffuse ictal onset, indicating an unfavorable candidate for epilepsy surgery 
(Schwartz et al.,   2008  ).      

Temporal Dynamics of Epileptiform Activity 

 Excellent temporal resolution of MEG makes it possible to describe, in addi-
tion to interictal spike source locations, the temporal sequence of spike prop-
agation by using multidipole models. In some patients, it is possible to follow 
the spread of epileptic activity from one hemisphere to another (Figure 14-1), 
or within a hemisphere. The identifi cation of the earliest source of epileptic 
activity naturally makes the localization of the epileptogenic zone more reli-
able (Hari et al.,   1993  ; Paetau et al.,   1999  ; Lin et al.,   2003  ; Yu et al.,   2004  ; Hara 
et al.,   2007  ). The analysis of epileptiform MEG by using multidipole models 
is more demanding and time-consuming than applying a single dipole model 
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into each spike and calculating the clusters of sources—but should be 
attempted, as the obtained additional data may signifi cantly aid in the clinical 
decision-making. Application of minimum norm estimate and dynamic sta-
tistical parametric mapping may be used to study the temporal development 
of epileptiform activity as well (Hara et al.,   2007  ).     

Figure 14–1 . MEG signal from a triggered epileptic seizure. The patient 
has partial epilepsy with seizures triggered by touching of the left gum 
or corner of the mouth, including left facial jerking. The whole seizure 
from the channel showing the maximum signal in the right hemisphere is 
depicted in the box above. Below, the sections A, B and C show the devel-
opment of the seizure, as well as activity in the corresponding region in 
the left hemisphere, in enlarged form. Before the seizure onset, spikes 
emerge more frequently and become polyphasic in the right frontopari-
etal region. No notable activity over the left hemisphere is seen during 
the fi rst 6 s; afterwards, the spike discharge spreads to the left side as 
well. After the seizure, interictal spikes are absent. The sources of epilep-
tic activity (spikes) cluster to the face motor cortex representation. Sources 
of median nerve SEFs and AEFs are shown to indicate irretrievable areas. 
Modifi ed from Forss et al. ( 1995).
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Sensitivity of MEG in Epilepsy 

 Although methodological properties limit feasible recording times in epilep-
tic patients, the average sensitivity of MEG for epileptiform activity has been 
found to be 70% in a series of 455 patients going through presurgical epilepsy 
evaluation (Stefan et al.,   2003  ). Similar general sensitivity of 73%, with the 
yield of 92% in patients with extratemporal, and 50% in patients with medial 
temporal lobe epilepsy, has been described (Knowlton et al.,   1997  ). 
Information crucial for fi nal decision making has been obtained by MEG in 
about 10% of the studied patients (Stefan et al.,   2003  ; Sutherling et al.   2008  ). 
Abnormal slow-wave activity may also occur in the vicinity of the epilepto-
genic area. The MEG sources of this activity were concordant with the con-
sensus fi nding, based on other evaluation methods, concerning the presumed 

Figure 14–2 . (A) Dipolar fi eld patterns from two different epileptiform 
spike types in the right parietal and temporal lobe in a patient with 
intractable epilepsy, going through epilepsy surgery evaluation. (B) Clusters 
of spike sources superimposed on the patient’s 3D MRI. (C) PET data dem-
onstrating hypometabolism in right temporal and parietal lobe (arrows). 
SEEG demonstrated right temporal and parieto-occipital epileptiform 
activity. MRI showed a small region of atrophy in the right parietal region. 
Right parietal region was operated, resulting in worthwhile reduction of 
seizures (Engel’s classifi cation IIIa). 
Modifi ed from (Lamusuo et al.  1999).
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epileptiform region in 48% of the patients—as often as ictal noninvasive 
video EEG monitoring (Gallen et al.,   1997  ). Combining source localization of 
the abnormal slow-wave activity with interictal epileptiform spikes enhanced 
localization of the affected hemisphere in patients with temporal epilepsy 
(Fernandez et al., 2004), and should be included in the analysis of epilepti-
form activity when available. In intracranial EEG recordings, high-frequency 
oscillations in the 60–100 Hz range appear to be highly localized in the seizure 
onset zone, in patients with nonlesional neocortical epilepsy (Worrell et al., 
  2004  ). Time will tell if these signals can be reliably picked up and analyzed by 
MEG as well.     

Enhancing the Gain of MEG in Studies of Epileptic Patients 

 One factor diminishing the yield of MEG in patients with epilepsy is the lack 
of epileptiform activity in the limited time window of the recording. Usually, 
a recording of at least 30 minutes of spontaneous activity, including periods 
of drowsiness, is needed. Hyperventilation for 3 minutes is a practical way to 
enhance the appearance of spikes in MEG measurements. MEG artifacts often 
abound during hyperventilation, but the study of the post-hyperventilation 
period may turn out to be useful. Photostimulation, routinely used in EEG 
recordings, is more inconvenient to use effectively in the MEG setup. Sleep 
deprivation during the night preceding the recording will increase the prob-
ability of the detection of the epileptic activity, although the quality of evoked 
fi elds may decrease due to the lowered vigilance. Monitoring occipital MEG 
signals to detect alpha rhythm changes may be useful to guarantee good quality 
of the evoked fi elds. 

 Tapering of antiepileptic medication may provoke epileptiform activity; 
follow-up on the hospital ward is needed for this procedure. Some epilepti-
form activity can be detected only during sleep; consequently, recording dur-
ing the night may prove useful. The yield of MEG recordings has been claimed 
to approach 100% when patients with temporal lobe epilepsy were on sub-
therapeutic anticonvulsant levels, and sleep was encouraged (Assaf et al., 
  2004  ). Video recording may provide useful clues of the epilepsy syndrome 
and signal interpretation, if seizures occur during the MEG measurement. 

 Anesthesia may be needed when studying children between ages 6 
months–5 years; an anesthetic regimen using propofol appears not to reduce 
the occurrence of epileptiform activity, and has caused no problems in asso-
ciation with MEG recordings (Balakrisnan et al.,   2007  ; Szmuk et al.,   2003  ), 
although it may produce seizures in rare cases (e.g., Mäkelä et al.,   1993  ). 
Appearance of epileptiform activity is enhanced by clonidine (Kettenmann 
et al.,   2005  ), and by some anesthetic agents and, consequently, recordings 
under anesthesia may even enhance detection of the epileptic spikes. Naturally, 
particularly careful monitoring of the patient by oximetry and heart rate 
detection is required if anesthesia or sedation is used. Administration of anxi-
olytic drugs may also be necessary in some cases (e.g. Schwartz et al.,   2008  ).     
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Interictal vs. Ictal MEG 

 Ictal measurements are possible in several types of epilepsy ( Figure  14–1  ), 
although body movements may render the signal non-analyzable. However, 
the initiation of the epileptiform discharges may be detected before the onset 
of body movements even in these cases. Sources of interictal spikes were 
found to be in the same area as the sources of ictal spikes (Shiraishi et al., 
  2001  ; Tilz et al.,   2002  ; Tang et al.,   2003  ); thus interpretation of interictal spikes 
in MEG appears to be a useful and effective noninvasive method for localizing 
primary seizure foci (Tang et al.,   2003  ). However, ictal MEG produced local-
izing information superior to interictal MEG in three out of six patients 
(Eliashiv et al., 2002); our experience also indicates that ictal recordings 
should be done when they are logistically feasible. New, more comfortable 
gantries and continuous head position localization make this type of experi-
ment more feasible (Vitikainen et al.,   2009  ).     

Comparison of MEG with Electrocorticography 

 Invasive video EEG monitoring has been a gold standard for defi ning the epi-
leptogenic cortex prior to surgery. However, it is quite demanding for the 
patient and may cause bleeding or infections (Hamer et al.,   2002  ). As epilepsy 
surgery is usually elective, such events should be prevented if possible. 
Furthermore, a rough estimate concerning the epileptogenic cortical areas is 
required before the insertion of the intracranial electrodes. MEG source local-
ization aids in selecting sites for grids to be used in subdural EEG recordings 
(Mamelak et al.,   2002  ; Vitikainen et al.   2009  ; Knowlton et al.   2009  ; Sutherling 
et al.   2008  ). It has been suggested as particularly useful in the detection of 
epileptic activity after lesionectomy, or unsuccessful removal of the epileptic 
zone, because dural adhesions may hamper the insertion of subdural elec-
trode grids in these patients (Kirchberger et al.,   1998  ). 

 Comparisons of preoperative MEG fi ndings with ECoG have occasion-
ally found almost complete matches (Lamusuo et al.,   1999  ; Otsubo et al., 
  2001  ), whereas some others report lower values (Mamelak et al.,   2002  ). The 
patient populations have been quite variable, and the location of the seizure 
focus probably affects the degree of correlation between MEG and invasive 
EEG recordings. 

 Combination of MEG with ictal SPECT may replace invasive EEG moni-
toring (Knowlton,   2006  ). Combining MEG with navigated transcranial mag-
netic stimulation may also turn out to be useful in diminishing invasive EEG 
measurements (Vitikainen et al.,   2009  ). MEG appears to be as accurate as 
interictal and ictal invasive video-EEG (Papanicolau et al.,   2005  )—and ictal 
MEG recordings produced localization equivalent or superior to invasive 
EEG in fi ve out of six patients (Eliashiv et al., 2002). Nevertheless, although 
MEG predicted 82% of fi ndings in invasive recordings of 49 patients, epilep-
togenic cortex remained nonlocalized in 7 of them by MEG, whereas invasive 
recordings were diagnostic (Knowlton et al.,   2006  ).     
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Complementary Properties of MEG and EEG in Clinical Settings 

 MEG and EEG signals look similar, and the knowledge of different visual pat-
terns of epileptiform phenomena, collected since the 1920s, can be applied in 
MEG analysis. Nevertheless, MEG source modeling provides information not 
available in EEG. In simultaneous recordings of epileptiform activity by MEG 
and subdural ECoG it has been estimated that at least 4 cm 2  of synchronously 
active cortex is needed to produce a detectable MEG spike (Mikuni et al., 
  1997  ). However, even cortical spikes associated with 6–10 cm 2  of synchro-
nous activity in ECoG rarely generate scalp-recordable EEG interictal spikes; 
an area exceeding 10 cm 2  is required for recognizable scalp potentials (Tao et al., 
  2005  ). Indeed, in a cohort of 70 candidates for epilepsy surgery, whole-head 
MEG detected epileptiform activity in 72%, and simultaneous 70-channel 
EEG in 61% of the patients. MEG revealed epileptiform activity in one third 
of the EEG-negative patients, particularly in patients having lateral neocortical 
epilepsy or cortical dysplasia (Knake et al., 2006). Furthermore, a higher ratio 
of spikes unique to MEG (8/12 patients) compared with EEG (2/12 patients) 
is detected when the signals are overlapped by sleep changes; this has been 
attributed to stronger contribution of radial sources of sleep spindles and 
vertex waves on EEG (Ramantani et al.,   2006  ). MEG may be useful in detect-
ing epileptic activity deep in the sulci, masked in EEG by more superfi cial 
radial activity in the gyri (Merlet et al.,   1997  )—e.g., in Landau-Kleffner syn-
drome, in which the spike activity typically resides deep in the Sylvian fi ssure 
(Paetau et al.,   1999  ; Iwasaki et al.,   2003  ). Consequently, MEG can be applied 
also in patients with suspected epilepsy but with a normal EEG, and in 
epilepsy patients whose epilepsy type remains unclassifi ed on the basis of 
the EEG. 

 The simultaneous recording of MEG and EEG, and the use of both meth-
ods in modeling the epileptiform activity, is crucial for a complete view of the 
epileptogenic zone. Combined MEG and EEG can identify the source areas 
and their activation sequences in more detail, thereby helping to select patients 
with a single pacemaker area and prospects for good outcome after surgery 
(Lewine et al.,   1999  ; Paetau et al.,   1999  ), and should at least be included into 
analysis of particularly diffi cult cases of intractable epilepsy. Strategies for a 
unifi ed model of brain electric activity as recorded both by MEG and EEG 
have been delineated (Huang et al.,   2007  ); however, they have not yet been 
utilized in the analysis of epileptiform activity.      

Detection of Mesial Epileptiform Activity by MEG? 

 Direct detection by MEG of epileptic activity in the mesial temporal cortex 
and deep orbitofrontal cortices is diffi cult because gradiometers are relatively 
insensitive to deep sources (Mikuni et al.,   1997  ). It has been proposed that 
source current orientations in the temporal region separate between mesial 
and lateral neocortical epileptiform activity (Assaf et al.,   2004  ), but the fi nd-
ing appears not to extend to all patients (Lamusuo et al.,   1999  ). However, new 
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MEG instruments contain magnetometers, which are more sensitive to deep 
sources (and to noise). The “brain noise” in magnetic measurements is clearly 
stronger in the low- than high-frequency range; consequently the relative 
signal-to-noise ratio in magnetometers is better for signals having high-
frequency components (Parkkonen and Curio, personal communication). 
Accordingly, magnetic auditory brainstem responses have been detected by 
magnetometers after applying intense averaging (Parkkonen et al.,   2009  ). 
This indicates that magnetometers may pick up deep fast-frequency epilepti-
form activity in a data-driven manner, and should be used when study of 
deep sources is necessary. Indeed, such activity has recently been observed in 
magnetometer signals of patients with temporal lobe epilepsy (Enatsu et al., 
  2008  ). Consequently, magnetometer signals should be analyzed particularly 
carefully when, e.g., mesial or insular epileptiform activity is implicated by 
clinical semiology.     

Localization of Eloquent Areas in Patients with Brain Tumors 

 Tumors or vascular malformations may distort brain anatomical landmarks, 
making it impossible to identify, e.g., motor areas on the basis of anatomy. 
Functional landmarks depicting eloquent brain areas have been suggested as 
a valuable planning adjunct before brain tumor surgery (e.g., Gallen et al., 
  1995  ; Bittar et al.,   1999  ; Lehericy et al.,   2000  ; Kober et al.,   2001b  ; Mäkelä et al., 
  2006  ). MEG landmarks may encourage surgery in cases where key cortical 
areas are displaced but unaffected by tumor masses, and may facilitate maxi-
mal resection in tumors abutting the eloquent cortex. In patients with tumor 
invasion into eloquent cortical regions, they suggest the selection of alterna-
tive treatment strategies (Ganslandt et al.,   2004  ). Several types of functional 
landmarks—produced, e.g., by sources of somatosensory, auditory, visual or 
speech-related evoked fi elds—enable presurgical mapping tailored to indi-
vidual patient needs. The distance between these landmarks and the area 
needing operation has been shown to predict the risk of complications (Hund 
et al.,   1997  ). In 119 patients with gliomas, 46% were not considered for sur-
gery because MEG source localization indicated tumor invasion of eloquent 
cortex; 54% of the patients were operated, and 6% suffered from neurological 
deterioration. This compared favorably with functionally signifi cant defi cits 
reported previously in 17-20% of the operated patients (Ganslandt et al., 
  2004  ). 

 The identifi cation of MEG sources, superimposed on 3-dimensional MRI 
surface rendering, helps presurgical planning to fi nd the optimal “surgical 
corridor” to the lesion (Kamada et al.,   1993  ; Gallen et al.,   1995  ). Preoperative 
discussion with the patient about surgical alternatives—e.g., the trade-offs 
involved between the amount of resection and the possible functional 
defi cit—is also made more accurate with this approach, and it should be 
made available when clinical symptoms suggest close proximity of eloquent 
areas and brain pathology. 
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 During surgery, the orientation to the brain in a limited fi eld of view is 
facilitated by 3-D reconstructions of brain anatomy including cortical veins, 
and with superimposed functional landmarks ( Figure  14–3  ). If intraoperative 
stimulation or recordings are required, the selection of stimulation sites, or 
the adequate grid position for monitoring of evoked potentials during cran-
iotomies, is made easier by functional landmarks, which serve as “intraopera-
tive road maps” for the most effi cient sites (Mäkelä et al.,   2001  ; Schiffbauer 
et al.,   2002  ).  

 The most common application of functional mapping is the localization 
of the central sulcus ( Figure  14–3  ). The sources of the somatosensory evoked 
fi elds (SEFs) to median nerve stimuli are located in the posterior wall of the 
central sulcus (Sutherling et al.,   1988  ). Preoperative functional localization 
with MEG generally agrees with direct intraoperative mapping of the soma-
tosensory cortical areas. About 200 cases of SEF source localizations and 
intraoperative cortical mapping have been published, with a satisfactory 
concordance (for references, see Mäkelä et al.,   2006  ), suggesting that han-
dling of the inverse problem in dipole modeling matches the neurophysio-
logical reality. The reported mean difference of about 10 mm between the 
pre- and intraoperative localizations (Mäkelä et al.,   2001  , Rezai et al.,   1996  , 

Figure 14–3 . A 3D MR surface rendering (including veins) of a patient with 
a recurring GIII glioma in the left temporal lobe.(A) Dots indicate SEF 
sources of tibial (red), median nerve (light blue) and lip (dark blue) stimu-
lation, and coherence maxima to wrist (purple) and ankle (yellow) exten-
sions. (B) A sagittal MR section demonstrates that the source of responses 
to lip stimuli is in the close vicinity of the tumor. (C) Intraoperative view 
from the tumor region. Dural adhesions from the previous operation 
blur the anatomy, but the vein bifurcation (arrow) close to the source of 
lip SEFs, and tumor, is readily identifi able and enables estimation of the 
tumor location and its relation to the somatosensory cortex. 
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Schiffbauer et al.,   2002  ) needs to be related to methodological factors. For 
example, SEF sources are typically located within sulci, and cortical stimula-
tion and recordings are performed from the visible gyral surface. No clear 
information exists about the spread of the stimulation current within the 
cortex. Schiffbauer et al. (  2002  ) observed that the same response to cortical 
stimulation was obtained from sites with spatial variation of 11 ± 1 mm. 
Moreover, the 1-cm separation of electrode centers in the grids used to 
record intraoperative cortical SEPs, does not allow millimeter-scale compar-
isons between pre- and intraoperative recordings. 

 Motor evoked fi elds, recorded by time-locking of MEG signal with move-
ments, identify the motor cortex in the anterior wall of the central sulcus, but 
are complex to interpret because of concomitant somatosensory activity 
(Rezai et al.,   1996  ); they have been deemed not particularly useful in clinical 
settings (Lin et al., 2007). Correlograms between electromyography (EMG) 
and cortical spontaneous MEG during, e.g., wrist or ankle extension (Salenius 
et al.,   1997  ) yield fast and selective localization of the motor cortex in most 
patients. Statistically signifi cant MEG–EMG coherence can be recorded in 
about two out of three patients, and it independently confi rms the SEF local-
ization of the central sulcus. With proper signal analysis, the applicability of 
the coherence method approaches 100% (Kim & Chung,   2007  ). The com-
bined use of several functional landmarks makes the localization of the cen-
tral sulcus more accurate, increases the detection of possible methodological 
errors (Mäkelä et al.,   2001  ), and should be used routinely.    

Functional Localization in Planning Radiotherapy 

 Stereotactic radiation therapy with high single doses is suitable for lesions 
with sharp boundaries, such as cortical meningioma, and for high-grade 
glioma recidives. When applying high doses, it is important to avoid radiation 
to the surrounding intact brain areas. MEG source locations may provide use-
ful information for the dose planning if the lesion is located close to eloquent 
brain areas (Aoyama et al.,   2003  ).     

Fusion of MEG Localizations with Neuronavigation Systems 

 MEG landmarks (Rezai et al.,   1996  ; Ganslandt et al.,   1997  ; Schiffbauer et al., 
  2002  ), and sources of epileptiform activity (Iwasaki et al.   2003  ) can be incor-
porated into image-guided stereotactic methods for a more precise naviga-
tion during operation. However it has been shown that the cortical surface 
shifts 5–10 mm after dural opening during the surgery (Roberts et al.,   1998  ). 
The largest shift sometimes occurs near the center of the craniotomy, which 
is usually the brain region of the greatest interest (Hill et al.,   2000  ). These 
shifts may introduce problems for pre- and intraoperative site comparison. 
Depicting surface veins in combination with 3-D brain structures and 
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functional landmarks can be used for visual feedback in intraoperative 
navigation (e.g. Mäkelä et al.,   2001  ).      

Comparison of MEG with fMRI in Localization of the Central Sulcus 

 Functional MRI (fMRI) provides information about the location of the sen-
sorimotor cortex in about 90-95% of the studied patients (Krings et al.,   2001  ; 
Pujol et al.,   2008  ). Although the method is not applicable in patients with a 
complete hand paralysis, it is needed in about 7% of patients harboring an 
intracranial mass (Pujol et al.,   2008  ). Differences in central sulcus localization 
by MEG and fMRI have been reported; a 15 ± 5 mm mean difference of the 
SEF source location, and the somatosensory elicited activation in fMRI in the 
same patients (Kober et al.,   2001b  ) may exceed the gyral width. In patients 
with tumors in the vicinity of the central sulcus, the fMRI and MEG localiza-
tion of the central sulcus were discordant in about 20% of the affected hemi-
spheres; MEG localizations matched with the intraoperative mapping (Inoue 
et al.,   1999  ; Korvenoja et al.,   2006  ). As fMRI integrates brain activity over a 
period of several seconds, it reveals the whole cortical network participating 
in the processing of external stimuli or a task. Limited resolution in the time 
domain may consequently result in diffi culties in separating the primary 
areas from secondary processing areas. Strong fMRI activations in nonpri-
mary areas may, therefore, confound the interpretation of activation maps 
(Korvenoja et al.,   2006  ). This drawback is avoided in MEG measurements 
detecting cortical activity with millisecond temporal accuracy, which sepa-
rates the primary somatosensory cortex response from secondary activations 
(Hari & Forss,   1999  ); MEG should be used when detailed central sulcus 
localization is needed.      

Approaching MEG Applications in Clinical Settings 

Combination of MEG with Subcortical Pathway Mapping 

 Subcortical pathway mapping with intraoperative electrical stimulation of the 
white matter fi bers related to sensorimotor and language areas have been sug-
gested to optimize the risk-benefi t ratio in the surgery of low-grade gliomas 
invading eloquent regions (Duffay et al.,   2003  ). The combination of MEG 
source localization with 3D anisotropy contrast imaging allows such optimi-
zation preoperatively. The eloquent motor system including pyramidal tracts 
(Kamada et al.,   2003  ), the anatomy of the optic radiation, and the functional 
localization of the primary visual cortex (Inoue et al.,   2004  ), as well as the 
arcuate fasciculus joining the posterotemporal auditory MEG sources to the 
frontal cortex (Kamada et al.   2007  ), have been visualized for optimal preop-
erative planning of the tumor surgery. Evidently, in the near future this 
approach will be useful for highly detailed surgical planning. Integration of 
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MEG and diffusion tensor imaging is also suggested to be more sensitive than 
conventional imaging methods in detecting subtle neuronal lesions in mild 
traumatic brain injury (Huang et al.,   2009  ).     

Language Lateralization by MEG 

 The detection of language lateralization is important for the presurgical eval-
uation of some neurosurgical patients. Hemispheric language dominance is 
assessed by the “Wada test,” injection of amobarbital into internal carotid 
artery to stop the function of one hemisphere at a time. Concomitantly, the 
language and memory functions of the non-anesthetized hemisphere are 
tested. However, because the procedure involves a risk of complications, is 
sensitive to the cross-fl ow of amobarbital to the other hemisphere, poses dif-
fi culties in interpretation especially when verbal memory is tested, and can be 
replicated extremely seldomly (Klöppel and Büchel,   2005  ), a reliable nonin-
vasive test for language dominance would be desirable. 

 Search for language lateralization with MEG has often been based on cal-
culations of sequential single dipole sources accounting for auditory evoked 
fi elds (AEFs) 50–700 ms after the stimulus onset, elicited by recognition 
memory task for spoken words. In a series of 100 patients, these AEFs were 
not applicable to laterality analysis in 15% of the patients; complete agree-
ment with Wada test was obtained in 87% of the remaining patients. Although 
the sequential single dipole model probably does not capture the complex 
speech-related processes, the activity in the perisylvian auditory areas detected 
by this method has been considered useful for preoperative planning 
(Papanicolaou et al.,   2004  ; Merrifi ed et al.   2007  ). The method combines 
speech lateralization and activation of short-term memory processes; both 
provide useful information in planning of temporal lobe surgery. Listening to 
synthetized vowel sounds produced late AEFs with dipole sources lateralized 
to the left hemisphere in 85% of the patients in whom intraoperative cortical 
stimulation found left-hemisphere sites essential for language, and demon-
strated right-sided lateralization in two patients with right-hemisphere pre-
dominance in the Wada test (Szymanski et al.,   2001  ). More simple tests, based 
on stronger 100-ms AEF in the dominant auditory cortex for speech than 
nonspeech stimuli, have been developed (Gootjes et al.,   1999  ; Parviainen 
et al.,   2005  ; Kirveskari et al.,   2006  ), but the results have not yet been com-
pared with the Wada test. Silent naming of visually presented pictures sup-
presses spontaneous MEG activity in the 8–100 Hz range; the laterality of 
stronger suppression in the inferior frontal gyrus region was congruent with 
the result of the Wada test in 95% of the patients (Hirata et al.,   2004  ). Similarly, 
the speech laterality estimation from 13–25 Hz activity-decrease in the infe-
rior frontal regions during responses to deviant stimuli in an auditory oddball 
task comprised from short words agrees with results of the Wada Test in 95% 
of the cases (Kim & Chung,   2008  ). These promising approaches to language 
lateralization require further studies.     
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MEG Localization of Speech-Related Activity Within Hemispheres 

 The preoperative localization of speech-related areas within the hemispheres 
would also be benefi cial in planning surgical approaches in some neurosurgi-
cal patients. The functional localization of the auditory cortex by using sources 
of N100m AEFs is useful for planning surgery in the left temporal lobe, 
because the left auditory cortex is often surrounded by the language-related 
cortex (Nakasato et al.,   1997  ). Current MEG techniques cannot identify the 
whole set of speech-related cortical areas directly, and it is not obvious which 
aspect of language should be mapped for clinical purposes. The study could 
be guided, e.g., by an identifi cation of disease-induced problems in specifi c 
aspects of language. A targeted stimulus design could then be used for func-
tional localization of brain areas involved in the affected processing stage, for 
example, by studying activations related to naming objects, or elicited by 
visually presented words (Salmelin,   2007  ). 

 Visually presented words forming sentences elicit MEG responses in the 
vicinity of the left auditory cortex at about 400 ms after the word onset 
(Helenius et al.,   1998  ). Anomalous words ending sentences activate the left 
perisylvian cortex more strongly than the words producing expected endings. 
Although the source modeling of the widespread activity related to language 
tasks requires expertise, it may produce useful information as functional 
landmarks ( Figure  14–4  ). It is probable, however, that modeling of the speech-
related brain activity by current dipoles shows only some parts of the cortical 
network related to reading, speech production, and perception. Minimum-
norm or minimum-current estimates may turn out to be useful in analyzing 
widespread activation patterns related to speech perception or reading (Kober 
et al.,   2001a  ; Hirata et al.   2004  ). 

 Surgery of tumors or epileptic foci near eloquent areas is occasionally 
performed during awake craniotomy, which allows the patient to report sen-
sations elicited by cortical stimulation. This approach is exciting in studies of 
speech-related activity, and allows comparison of pre- and intraoperative 
functional localization. However, the access to cortical areas is limited by the 
size of the craniotomy, and the number of tasks that can be done to a waking 
patient during surgery is restricted. Consequently, these studies require care-
ful planning. Testing multiple aspects of speech perception and production, 
in a time scale sensible for study of a clinical patient, is particularly demanding. 
Standardized series of activation paradigms have been suggested to be desir-
able in fMRI studies of language lateralization and representation in the brain 
(Klöppel & Büchel,   2005  ). This is true for MEG studies of language as well.       

Future Applications of MEG in Clinical Settings 

 To add regular clinical MEG indications (see, e.g., recommendations of 
American Academy of Neurology   2009  ), extensive search for new ways to use 
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MEG in clinics is underway. Most promising approaches include detection of 
plastic changes elicited by different types of brain or peripheral nervous system 
pathology. Modifi cation of spontaneous MEG signals, detected by various 
signal analysis methods in patients with stroke, head trauma or degenerative 
brain diseases, may also provide clinically useful information in the future. 

 For interpretation of MEG results in terms of clinical research, it is useful 
to obtain as much information as possible about the studied patients by com-
bining clinical data from various directions—such as genetic properties, 
clinical details, anatomic and functional MR imaging, neuropsychology, 
physiotherapy, etc. Occasionally, joining a study of a clinical patient group 
already collected for another research purpose, with a MEG examination, 
may turn out to be useful. If the study is prospective, careful planning of 
patient selection criteria is mandatory, and usually not as easy as expected. 

Figure 14–4 . (A) Sources of responses elicited by reading of visually 
presented words forming sentences, which had potentially abnormal 
endings. Last words produce clear responses; the source locations are 
superimposed on patient’s 3D MRI surface rendering. The yellow dots 
display the sources of early activations and the red ones are sources acti-
vated later on. Green dot indicates the source of the N100m AEF. (B) and 
(C) Sagittal and horizontal MR sections show that the activations elicited 
by reading are in close vicinity of the tumor. (D) The arrow points to the 
“surgical corridor” selected by the neurosurgeon. (E) 3D MRI reconstruc-
tion with digital section in the parietal lobe illustrates the 3D extent of 
the tumor. During awake craniotomy, stimulation of the cortex in the 
posterior margin of the tumor produced diffi culties in seeing the writ-
ten words, whereas the stimulation of lower and upper margin disturbed 
the understanding of the sentence meaning. The surgeon approached 
the tumor exactly from its center and carefully extended the resection 
to the margins of the tumor. No clear defects in speech production or 
understanding were observed after the operation. 
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Strict criteria prolong the research project, whereas too loose a patient selection 
makes interpretation of the results diffi cult.    

Cortical Reorganization 

 Objective means to predict potential for rehabilitation and to follow its course 
would be useful in the follow-up of neurological patients. It has been sug-
gested that extensive practice, or lack of use, of a certain body part may change 
the somatotopic organization of the primary sensory cortex. Cortical repre-
sentations of fi ngers, as depicted by SEF sources elicited by tactile fi nger stim-
ulation, have been shown to differentiate after the treatment of syndactyly 
(Mogilner et al.,   1993  ). Moreover, the amputation of the arm modifi es SEF 
source structure in a manner suggesting plastic changes in the primary 
sensory cortex (Flor et al.,   1995  ). MEG studies have recently shown that mod-
ifi cations of SEF source locations occur in association with chronic pain 
without nerve deafferentation (Juottonen et al.,   2002  ; Maihöfner et al.,   2003  ). 
Furthermore, abnormal ipsilateral SEFs developed in association with the 
mirror-like spread of chronic regional pain from one upper limb to another, 
during a 3-year follow-up of one patient (Forss et al.,   2005  ). Such changes 
might be useful as objective correlates of perceived pain. The changes in SEF 
source organization are, at least to some extent, reversible, suggesting that 
rehabilitation should be targeted for regaining the orderly somatotopic 
arrangement at the primary sensory cortex (Maihöfner et al.,   2004  ). An objec-
tive follow-up of such changes is an intriguing new possibility for clinical 
applications. 

 Experiments related with a possible cerebral plasticity underlying recov-
ery after stroke, have searched for changes in SEF source organization. 
Narrowed cortical area harboring the sources of SEFs in patients with fi rst-
ever monohemispheric stroke have been described (Rossini et al.,   2003  ), but 
so far, except for some source displacement possibly due to perilesional 
edema, no unusual source structure has been demonstrated. Instead, source 
strengths and response latencies appear to be correlated with the severity of 
the clinical picture (Wikström et al. 1999; Gallien et al. 2003; Oliviero et al. 
2005). Enhanced excitability of the affected hemisphere and spared posterior 
parietal responses have been linked with high functionality of the affected 
hand, whereas the enhanced excitability in the unaffected hemisphere has 
been linked with large cortical lesions in the affected hemisphere (Oliviero 
et al.,   2004  ). 

 Use of a single dipole model in analyzing possible plastic changes may 
not be as straightforward as it seems. For example, the orderly tonotopic 
organization of AEF N100m sources has formed a basis for the investigation 
of such phenomena as reorganization of auditory cortex in tinnitus subjects, 
or possible anomalies of auditory cortex in schizophrenic patients. However, 
a recent carefully executed study has shown that organization of AEF sources 
demonstrated no signifi cant frequency dependence at all in most healthy 
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subjects, causing concern about the conclusions in clinical studies based on 
orderly tonotopic organization in control subjects (Lütkenhöner et al.,   2003  ). 
The quantitative differences of source locations derived from single dipole 
modeling pertinent in these studies require large normative data bases to fully 
realize the signifi cance of these changes. 

 Low-grade gliomas frequently invade eloquent structures, but may pro-
duce little or no neurological defi cit at the phase they present with seizures. It 
has been suggested that functional tissue may persist within the tumor, that 
eloquent areas may be redistributed around the tumor, or that the function 
disturbed by the tumor is compensated with activity in remote areas within 
the same or opposite hemisphere The type of reorganization naturally affects 
directly the presurgical planning (Duffay,   2005  ). Arteriovenous malforma-
tions reaching central sulcus region have been suggested to modify SEF 
sources in about 30% of the patients; in 10%, the shifts of sources to the oppo-
site hemisphere were observed (Vates et al.,   2002  ). However, the clearest shifts 
to the opposite hemisphere occurred in sources of SEFs to lip stimulation, 
known to have bilateral representation in healthy subjects as well. Occasionally, 
incomplete tumor resections may induce reshaping of functional cortex, and 
a total removal of the tumor may be feasible after a few years (Duffay,   2005  ). 
Follow-up of such development obviously provides new vistas for functional 
mapping by MEG.     

Modifi cations of Spontaneous MEG by Neurological Diseases 

 Pathological, low-frequency spontaneous brain electric activity, surrounding 
focal ischemic brain lesions, has been described in MEG recordings, and it has 
been associated with preserved and metabolically active but acidotic cortical 
tissue, contributing to salvageable tissue surrounding stroke (Kamada et al., 
  1997  ). Some studies (e.g., Mäkelä et al.,   1998b  ; Tecchio et al.,   2005  ) have 
shown modifi cations of the spontaneous activity in the non-stroke hemi-
sphere as well. The functional signifi cance of slow wave activity in the affected 
and unaffected hemispheres remains to be elucidated (Butz et al.,   2004  ). 
However, synchronous low-frequency activity has been suggested to form a 
part of brain plasticity and anatomical reorganization within the adult brain, 
since it is strongly correlated with axonal sprouting in the animal model of 
ischemic brain lesions (Charmichael & Chesselet,   2002  ). It is well known that 
ischemic injury to one brain area changes function in numerous connected 
brain regions (Cramer,   2004  ). Tracking such changes and correlating them 
with clinical recovery of the patients is an exciting direction for future MEG 
studies in patients; new signal processing tools may ease the analysis of the 
rich patterns of activity displayed in spontaneous MEG. 

 Abnormalities of spectral content of the spontaneous MEG have been 
associated with memory disorders in patients after herpes simplex encephali-
tis (Mäkelä et al.,   1998a  ), thalamic strokes (Mäkelä et al.,   1998b  ), in patients 
with mild head trauma having cognitive problems (Lewine et al.,   2007  ; 
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Huang et al.,  2009  ), and in Alzheimer’s disease (Fernandez et al.,   2006a  ,b; 
Osipova et al.,   2005  ). Although patients suffering from these disorders display 
differences from age-matched control subjects on the group level, no clear 
factors separating individual patients from control subjects have emerged. 
Furthermore, no robust correlations between the spectral abnormalities and 
neuropsychological fi ndings have been reported. Time will tell, whether 
new analysis methods searching for cortico-cortical spatial (Schnitzler and 
Gross,   2005  ), phase-related (Palva et al.,   2005  ), and temporal correlations 
(Linkenkaer-Hansen et al.,   2005  ) of spontaneous MEG activity will produce 
more robust differences in individual patients. 

 The vistas produced by new artifact-rejection methods to study effects of 
electric stimulation of central brain and peripheral nervous system, are prom-
ising completely new research possibilities by mapping the effects of this 
causal intervention in different patient groups with MEG. Pathophysiology 
of, e.g., Parkinson´s disease, chronic pain, depression, obsessive-compulsive 
disorders, or minimal cognitive state, can be studied in a controlled manner, 
as neurostimulators appear to be useful in these conditions. The stimulation 
effects are reversible, unlike those of lesions, and even blinded methods are 
possible after artifact removal (Kringelbach et al.,   2007  ). 

 As demands for evidence-based treatments are increasing, there is, in 
addition to fi guring out better and better ways to study patients, also a need 
to show the benefi t of the MEG measurements by well-designed, prospective, 
randomized studies of large patient groups by, hopefully, demonstrating 
improved results (see, e.g., Sutherling et al.,   2008  , Knowlton et al.   2009  ), and 
shortened treatment times. Obviously, these studies would benefi t from 
joint efforts of several laboratories involved in clinical applications of MEG. 
Although this type of research may not appeal to neuroscientists, the MEG 
community should direct energy towards these studies as well, as the future 
availability of clinical MEG may be infl uenced by lack of such studies.      

Conclusions

 MEG is a valuable tool to use in clinical settings. Nevertheless, it is clear that 
it is only a part of a multifaceted clinical evaluation deriving information 
from all available sources for the benefi t of the patient. The relative weight of 
MEG in this evaluation depends on individual clinical details of each patient. 
The emerging applications are highly exciting, and will provide new opportu-
nities for MEG studies in clinical settings.     
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 Recent developments in deep brain stimulation (DBS) of specifi c targets in 
the human brain have been successful in alleviating the symptoms of other-
wise treatment-resistant movement and affective disorders (Anderson & 
Lenz,   2006  ; Kringelbach et al.,   2007b  ; Perlmutter & Mink,   2006  ). However, 
while the treatment and associated neurosurgical methods have shown remarkable 

15

Using Magnetoencephalography to Elucidate 

the Principles of Deep Brain Stimulation 

Morten L. Kringelbach, Peter C. Hansen,
Alex L. Green, and Tipu Z. Aziz

              The correlational nature of neuroimaging makes it diffi cult to • 
understand neural mechanisms  
  However, deep brain stimulation (DBS) used together with • 
magnetoencephalography (MEG) can provide a powerful causal tool 
for both elucidating the fundamental oscillatory mechanisms of brain 
networks, as well as fi nding new, more effi cacious DBS targets  
  First, we briefl y describe the underlying techniques and mechanisms • 
for DBS  
  We then describe the preliminary results of using DBS and MEG in • 
two patients with chronic pain and cluster headache  
  The fi ndings demonstrate the potential of this technique and highlight • 
the mid-anterior orbitofrontal cortex as a potential future candidate 
for DBS in patients with treatment-resistant chronic pain      



404 MEG: An Introduction to Methods

promise, the underlying neural mechanisms for DBS are not understood, and 
in particular it is not at all clear how DBS of specifi c brain targets changes the 
neural activity in wider cortical and subcortical regions. 

 DBS offers a novel and unique possibility for  in vivo  investigation of the 
functional role of the underlying neural circuitry in humans, by using stimu-
lation parameters which yield different clinical results, and by switching 
the stimulator on and off. The ensuing changes in whole-brain activity can 
then be mapped using neuroimaging methods. Yet, some of the most-used 
neuroimaging technologies—functional magnetic resonance imaging (fMRI) 
and positron tomography (PET)—are, due to their intrinsic properties, less 
ideal for this purpose. 

 In contrast, MEG is of a noninvasive nature, and with its high spatial and 
temporal resolution holds great promise for elucidating the underlying whole-
brain neural mechanisms of DBS by, for example, measuring oscillatory 
communication between brain regions (Schnitzler & Gross,   2005  ). 

 Here, we fi rst provide an introductory overview of the current state-
of-art of DBS, and the previous use of neuroimaging techniques with DBS. We 
then describe the methods and results of using MEG to measure both low- and 
high-frequency stimulation. We discuss the importance of the fi ndings, as well as 
potential confounds and future possibilities of combining MEG and DBS.     

Deep Brain Stimulation 

 Direct electrical stimulation of the brain has been in use at least since 1870, 
when Fritsch and Hirtzig showed that electrical stimulation of the motor 
cortex of the dog can elicit limb movement (Fritsch & Hitzig,   1870  ). Direct 
neuromodulation and recordings have since proved to be very useful for 
improving human neurosurgical procedures, as fi rst shown in 1884 by Horsley 
(Gildenberg,   2005  ). Implantation of DBS pacemaker in select brain regions 
has become the basis of highly successful therapies for treating otherwise 
treatment-resistant movement and affective disorders. 

 Despite the long history of DBS, the underlying principles and mecha-
nisms are still not clear. But it has been proposed that DBS of the normal 
and diseased brain must fundamentally depend on a number of parameters 
including, most importantly, (1) the physiological properties of the brain 
tissue, which may change with disease state; (2) the stimulation parameters, 
including amplitude and temporal characteristics; and (3) the geometric 
confi guration of the electrode and the surrounding tissue (Kringelbach 
et al.,   2007c  ). Overall, the weight of the evidence so far suggests that the 
most likely mode of action for DBS is through stimulation-induced modula-
tion of brain activity, and thus that the similar therapeutic effects of DBS 
and brain lesions are likely to be achieved through different neural 
mechanisms.    
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DBS for Movement Disorders 

 The most effi cacious targets for treating movement disorders with DBS have 
been the structures in the basal ganglia. The internal globus pallidus (GPi) 
and subthalamic nucleus (STN) have been demonstrated as safe and effi ca-
cious targets for Parkinson’s disease (Aziz et al.,   1991  ; Bergman et al.,   1990  ). 
Long-term benefi ts of using high-frequency (130-185Hz) DBS for Parkinson’s 
disease are well documented (Bittar et al.,   2005a  ; Krack et al.,   2003  ). Substantial 
improvements in the symptoms of Parkinson’s disease (as measured by motor 
and daily living scores) (Fahn & Elton,   1987  ), as well as reductions in the 
patients’ level of medication for Parkinson’s disease, have been found in 
extensive DBS trials for Parkinson’s disease (Benabid et al.,   1996  ; Krack et al., 
  2003  ; Siegfried & Lippitz,   1994  ). Recently, translational research has identi-
fi ed the brainstem pedunculopontine nucleus (PPN) as a potential new 
Parkinson’s disease target in monkeys (Jenkinson et al.,   2005  ; Jenkinson et al., 
  2004  ; Jenkinson et al.,   2006  ; Nandi et al.,   2002  ) and humans (Mazzone et al., 
  2005  ; Plaha & Gill,   2005  ; Stefani et al.,   2007  ). 

 The preferred target for dystonia and spasmodic torticollis is the GPi 
(Bittar et al.,   2005c  ; Kumar et al.,   1999  ). The DBS parameters for dystonia 
differ from Parkinson’s disease, with a broader pulse width (200–400 μs) and 
higher voltage (typically between 2.2–7V) (Krauss et al.,   2004  ), leading to 
rapid battery consumption. Blinded, controlled GPi trials have shown 30–50% 
improvements in patients over 12 months (Vidailhet et al.,   2005  ). 

 Essential tremor is usually treated with DBS in the ventral intermediate 
nucleus of the thalamus (VIM) (Hassler,   1955  ; Lenz et al.,   1994  ), while the DBS 
target for Parkinson’s disease tremor is the STN (Krack et al.,   1997  ). Long-term 
effects of DBS in VIM have shown an average tremor reduction of over 80% in the 
majority of patients (Koller et al.,   1999  ; Rehncrona et al.,   2003  ). Thalamic DBS was 
found to signifi cantly improve tremor compared to thalamotomy, and have fewer 
adverse effects (Schuurman et al.,   2000  ). A large multicenter study showed contin-
ued improvements in tremor ratings in patients with essential tremor after six 
years of follow-up (Sydow et al.,   2003  ).     

DBS for Affective Disorders 

 DBS for chronic pain has been used for over fi fty years since the initial studies 
using DBS in the hypothalamus (Pool et al.,   1956  ). More recent effi cacious 
targets are in the thalamus (Hosobuchi et al.,   1973  ; Mazars et al.,   1973  ; Mazars 
et al.,   1960  ) and periventricular-periaqueductal gray region (PVG/PAG) 
(Hosobuchi et al.,   1977  ; Richardson & Akil,   1977a  ; b; c). Following two failed 
clinical trials (Coffey,   2001  ), FDA approval was not sought by device manu-
facturers. During the last decade only fi ve centers outside the U.S. have pro-
duced case series of more than six patients: (Bittar et al.,   2005b  ; Green et al., 
  2006  ; Hamani et al.,   2006  ; Krauss et al.,   2002  ; Marchand et al.,   2003  ; Nandi 
et al.,   2003  ; Owen et al.,   2006a  ; Owen et al.,   2006b  ; Tronnier,   2003  ). These 
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studies have shown signifi cant improvements for patients with, primarily, 
pain after amputation and stroke, and head pain including anaesthesia dolo-
rosa. Patients with cluster headache have been successfully treated with DBS 
in the hypothalamus (Franzini et al.,   2003  ; Leone et al.,   2004  ). 

 Other affective disorders that have been successfully treated with DBS 
include depression, where targets have included inferior thalamic peduncle 
(Andy and Jurko,   1987  ; Jimenez et al.,   2005  ) and the subgenual cingulate cor-
tex (Mayberg et al.,   2005  ). DBS for obsessive compulsive disorder have tar-
geted the anterior internal capsule (Nuttin et al.,   2003  ). DBS of the thalamus 
(Visser-Vandewalle et al.,   2003  ) and GPi (Ackermans et al.,   2006  ) have been 
reported effective in treating Tourette syndrome.     

The Mechanics of DBS: Frames, Targeting and Batteries 

 The specifi c methods used for DBS vary among neurosurgical teams. Here, 
we present the methods adopted in Professor Aziz’s lab in Oxford and focus 
specifi cally on the procedures used for DBS for pain relief (see  Figure  15–1  ).  

 A T1-weighted MRI scan of each patient’s brain is performed several 
weeks before surgery. For surgery, a Cosman-Roberts-Wells base ring is 
applied to the patient’s head under local anesthesia. A stereotactic computed 
tomography (CT) scan is then performed and, using the Radionics Image 
Fusion® and Stereoplan® (Integra Radionics, Burlington, MA) program, the 
coordinates for the PVG/PAG and ventro-posterior lateral thalamus (VPL) 
are calculated. A double-oblique trajectory is used, with an entry point just 
anterior to the coronal suture, and laterality of approach dictated by ventricu-
lar width. The PVG/PAG target is proximally located 2–3 mm lateral to the 
wall of the third ventricle and 2 mm anterior to the level of the posterior com-
missure, and distally, the deepest electrode is placed in the superior colliculus. 
The VPL is located 12 mm lateral and 5–8 mm posterior to the mid-commis-
sural point, at the depth of the anterior/posterior commissure plane. After 
washing the patient’s scalp with alcoholic chlorhexidine, a parasaggital poste-
rior frontal scalp incision 3.0 cm from the midline is made, contralateral to 
the side of pain. 

 The VPL is usually implanted with a Medtronic 3387 (Medtronic, Minneapolis, 
MN) electrode, where stimulation induces parasthesia in the area of pain. The 
PVG is also implanted with a Medtronic 3387 electrode where stimulation induces 
relief of pain or a sensation of warmth in the area of pain. The deepest electrode 
is noted to be in a satisfactory position if eye bobbing is induced at intensity of 
stimulation at least twice that required for sensory effects. The electrodes are fi xed 
to the skull with a miniplate prior to externalization. In most patients, the 
electrodes are externalized for a week of trial stimulation. 

 Pain is assessed before surgery and during stimulation by a self-rated 
visual analog scale. If the patients are satisfi ed with the degree of pain relief, full 
implantation of a Medtronic pulse generator is performed in the following 
week under general anesthesia.     



Figure 15–1. The neurosurgical procedures involved in DBS. (A) Schematic 
of the principles of DBS. (B) Illustration of the process of the neurosurgi-
cal pre-planning. (C) Application of the CRW stereotactic head frame on 
the patient. Note that the base ring is parallel to the orbitomeatal line. 
(D) The precise positioning of the electrode through perforating the cal-
varium with a twist drill. (E) Securing the electrode to the skull with a 
titanium miniplate and screws. (F) Placement of the implantable pulse 
generator in a subcutaneous pectoral pouch. 
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Safety and Complications with DBS 

 The safety of the DBS procedure has been demonstrated in many worldwide 
trials, and in the longterm follow-up in DBS for the treatment of chronic pain 
(Hosobuchi,   1986  ). The long-term effi cacy of DBS depends on the genera-
tors, where most will last around 3–5 years depending on the current demands 
of the pulse protocol, although in the case of dystonia, this can be less than one 
year. Radiofrequency rechargeable pulse generators are available for spinal 
cord generators, and are being trialed for DBS. 

 Stereotactic procedures always carry a signifi cant risk, and can lead to 
intracranial bleeding, usually in around 2.0–2.5% of DBS implants (Benabid 
et al.,   1996  ; Beric et al.,   2001  ). Other potential risks include hardware-related 
complications such as dislocation, lead fracture, and infection (6%). The 
infection rate is equal to that of other surgical procedures, but may necessitate 
explantation of the stimulator (Hariz,   2002  ). Stimulation-induced side effects 
(3%) are also quite common, such as aggression (Bejjani et al.,   2002  ), mirth-
ful laughter (Krack et al.,   2001  ), depression (Bejjani et al.,   1999  ), penile 
erection (Temel et al.,   2004  ) and mania (Kulisevsky et al.,   2002  ).      

Functional Neuroimaging and DBS 

 In experimental animals, direct neural recordings and measurements of neu-
rotransmitter release have been very useful in mapping the detailed local and 
monosynaptic effects of DBS. In humans, with the progress in functional 
neuroimaging, it has become possible to elucidate the whole-brain responses 
elicited by DBS.    

Problems with Using PET and fMRI for DBS 

 Neuroimaging methods such as PET and fMRI can measure indirect changes 
of neural activity such as blood fl ow, blood oxygenation and glucose consump-
tion. It is presently not entirely clear how well these indirect measurements 
correlate with various aspects of neural activity, but some progress in our 
understanding has been made under normal physiological conditions 
(Lauritzen,   2005  ; Logothetis & Wandell,   2004  ). In addition, it is important to 
realize that these methods entail a number of assumptions that may or may not 
prove to be important for interpreting the subsequent results. 

 It has become clear that fMRI studies pose a large degree of risk to DBS 
patients, since the large magnitude of the magnetic fi elds will interfere with 
active pulse generators and DBS electrodes. While several studies have been 
published showing the feasibility of using fMRI of DBS (Rezai et al.,   1999  ; Uitti 
et al.,   2002  ), there may well be signifi cant problems using the BOLD signal as a 
measurement, since near-infrared spectroscopy showed considerable variations 
in blood oxygenation in the frontal cortex, following GPi and thalamic stimula-
tion (Sakatani et al.,   1999  ). Another study has shown that extreme caution 
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must be exercised when studying fMRI with DBS, since strong heating, high 
induced voltage, and even sparking at defects in the connecting cable have been 
observed (Georgi et al.,   2004  ). A case report has, however, shown that fMRI can 
be used to study STN stimulation in a patient with Parkinson’s disease, who 
showed increases in the BOLD signal in primary motor areas, and decreases in 
supplementary motor areas, during stimulation (Stefurak et al.,   2003  ). 

 PET is comparably safe, although not without health risks due to the ion-
ized radiation, and has been used for measuring the effects of DBS. Due to the 
long acquisition periods for PET, usually up to a full minute, investigators 
have to carefully address the potential movement artifacts when studying 
movement disorders. 

 Using PET for Parkinson’s disease is therefore rather challenging, and 
requires careful observation of any movement and removal of potentially 
confounding scans. One PET study took such precautions while scanning 13 
Parkinson’s disease patients and showed that STN stimulation led to increased 
blood fl ow in the thalamus, GP and midbrain (including STN), and reduced 
blood fl ow in frontal parietal and temporal cortices (Hershey et al.,   2003  ). 
Similarly, a PET study of VIM thalamic stimulation in patients with essential 
tremor showed increases in blood fl ow in the thalamus and the cortical tar-
gets of thalamic output (Perlmutter et al.,   2002  ). Other studies did not moni-
tor and consider the behavioral effects of patients during the PET scans, and 
must therefore be cautiously interpreted (Fukuda et al.,   2001  ; Hilker et al., 
  2004  ). Taken together, however, these results suggest that STN stimulation 
increases rather than inhibits the activity of STN output neurons, which in 
turn leads to increases of inhibition of thalamocortical projections, with 
subsequent decreases in blood fl ow in cortical regions. 

 Using PET to study DBS for affective disorders is less challenging in terms 
of potential movement artifacts. One PET study investigated the effects of 
hypothalamic stimulation for cluster headache in 10 patients (May et al., 
  2006  ). Stimulation compared with no stimulation elicited signifi cant increases 
in activity in the ipsilateral hypothalamic gray (at the site of the stimulator 
tip), as well as in structures in the known pain processing network, including 
the ipsilateral thalamus, somatosensory cortex and praecuneus, the anterior 
cingulate cortex, and in the ipsilateral trigeminal nucleus and ganglion. 
Decreases in activity were found in the posterior cingulate cortex, middle 
temporal gyrus, and contralateral anterior insula. The results suggest that 
hypothalamic stimulation for cluster headache functions mainly through 
modulating the pain processing network. 

 Another PET study, using stimulation of subgenual cingulate cortex for 
treatment-resistant depression in four patients, showed marked reduction in 
activity in cortical and subcortical areas (Mayberg et al.,   2005  ). The results 
are harder to interpret, given the small numbers of patients and the paucity 
of knowledge about the brain structures involved in depression, but again 
suggest that the mode of functioning of DBS would appear to be one of 
modulating an existing network of interacting brain regions.      
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Using MEG and DBS 

 PET and fMRI are not, however, the only neuroimaging techniques currently 
available. As shown in this book, MEG is noninvasive and without risks to use 
in patients, and can provide novel spatiotemporal information on the under-
lying whole-brain activity, with the current density of MEG sensors affording 
sensitivity such that the spatial resolution is comparable to fMRI (typically 
around 5 mm 3 ) but with much better temporal resolution (in milliseconds) 
(Hillebrand & Barnes,   2002  ). 

 The fi rst MEG study of DBS was carried out in a patient with low-
frequency PVG/PAG stimulation for severe phantom limb pain (Kringelbach 
et al.,   2006  ; Kringelbach et al.,   2007a  ) ( Figure  15–2  ). We have since investi-
gated the MEG effects of high-frequency hypothalamic stimulation for cluster 
headache (Ray et al.,   2007  ) and are in the process of analyzing the results 
of a whole series of cases. In the following, we provide the details of the two 
published cases.     

Case 1: Phantom Limb Chronic Pain Patient 

 The 58-year old right-handed male patient, RM, was referred with a 4-year 
history of severe phantom limb pain in the left leg, stemming from fracturing 
his leg in May 2001 with subsequent complications including an MRSA infec-
tion culminating in an above-the-knee amputation in October 2001. 
Sympathectomy, spinal cord nerve stimulation, hypnosis and a wide variety 
of medications had provided little relief. Preoperative testing showed an 
abnormal neuropsychological profi le, with poor performance on all verbally 
mediated tests and at a level of “caseness” for both anxiety and depression, 
probably linked to his level of medication, which was repeated prescriptions 
of Morphine sulphate 380 mgm over 24 hours. 

 The patient RM was then implanted with a DBS in the right PVG/PAG, 
and he experienced excellent pain relief. The patient later fell, fracturing the 
deep-brain electrode, and this caused immediate return of the pain, After 
surgical revision, pain relief returned. Effective settings for stimulation in RM 
were 1.5 volts, frequency, 7 Hz and pulse width, 300 μs. This has signifi cantly 
decreased the level of chronic pain in the patient to a manageable level, reducing 
the patient’s McGill pain score by 74%.     

Case 2: Cluster-headache Patient 

 The second patient was a 56-year old male, YY, with an 11-year history of 
cluster-headache attacks. The headaches had a seasonal pattern starting in 
September or October every year, and occurred 3–4 times a day, lasting 
for 45 minutes on average. The pain originated over the right forehead and 
radiated to the ipsilateral vertex, and was associated with lacrimation and 
excess rhinorrhea. 
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 The patient YY was previously tried on carbamazepine, methysergide 
(2 mg three times daily), cafergot, co-proxamol, verapamil (240 mg twice daily), 
lithium (800 mg twice daily), amitryptiline and, at the time of referral, was par-
tially controlled on injections of sumatriptan and high-dose prednisolone. 

 The patient YY was implanted with DBS in the right posterior hypo-
thalamus, and he experienced excellent initial pain relief from his cluster-
headaches. Whereas the patient had previously been having 3–4 attacks daily, 
during the week after the operation he had no further attacks. Given this, the 
electrodes were internalized and connected to a pacemaker. He was given a 
patient programmer to turn the stimulator on in the event of an attack, with 
contacts 1 negative, 2 positive; frequency 180 Hz, pulse width 90 microseconds. 
No further cluster attacks have occurred following surgery.     

Figure 15–2. DBS for chronic pain. (A) Axial MRI slice showing the implan-
tation of electrodes in PVG/PAG and thalamus in a patient. (B) Schematic 
illustration of the vertical placement of electrodes in the PVG/PAG in a 
series of chronic pain patients. (C) Three-dimensional rendering of human 
brain showing the placement of the two electrodes in the PVG/PAG and 
thalamus, as well as some of the important subcortical structures. (D) 
Three-dimensional rendering showing the whole-brain DBS induced 
activity from stimulation in the PVG/PAG. (E) The connectivity of the PVG/
PAG measured with diffusion tensor imaging. 
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Experimental Setup 

 Patient RM was initially scanned with MEG for 10 minutes, with DBS switched 
on while resting. He was asked to continuously report his subjective experi-
ence of pain using a visual rating scale from 0–9 (where 0 is “not painful” and 
9 is “very painful”) every 20 seconds. This was then repeated three times 
with the stimulator switched off, during which his pain scores increased 
with time. 

 Patient YY’s stimulator was turned off 30 minutes prior to scanning. We 
attached electrodes to his forearm in order to measure EMG. He was then 
scanned for 10 minutes. He rated his pain state in the same way as RM. 

 The patient’s stimulator was then turned on and set to the non-effective 
setting of 7 Hz. After a further 5 minutes we began the second 10-minute scan 
with the rating task. The protocol was then repeated a fi nal time, with the 
stimulator set at the effective frequency of 180 Hz.    

Data Acquisition 

 MEG data were collected using a 275-channel CTF Omega system (CTF 
Systems Inc., Port Coquitlam, Canada) at Aston University. Data were sampled 
at 2400 Hz with an antialiasing cut-off fi lter of 200 Hz. The patient directly 
viewed the visual pain rating scale on a computer monitor. 

 Before and after surgery the patients were scanned with MRI to get 
high-resolution T1 volumes with 1x1x1 mm voxel dimensions. Immediately 
after fi nishing data acquisition in the MEG laboratory, the head coils were 
registered to the patients’ MRIs using a 3D digitizer (Polhemus Fastrack, 
Polhemus Corporation, Colchester, VT, U.S.) to digitize the shape of the par-
ticipant’s head relative to the position of the head coils with respect to the 
nasion, left and right ear on the headset.     

Image Analysis 

 The MEG data were analyzed using Synthetic Aperture Magnetometry (SAM), 
which is an adaptive beamforming technique for the analysis of EEG and 
MEG data (Vrba & Robinson,   2001  ). SAM has been previously used in a vari-
ety of studies on the functions of the motor cortex (Taniguchi et al.,   2000  ), 
the human somatosensory cortex (Hirata et al.,   2002  ), and visual word recog-
nition (Pammer et al.,   2004  ). In addition, SAM has been shown to be able to 
unveil changes in cortical synchronization that are spatially coincident with 
the hemodynamic response found with fMRI (Singh et al.,   2002  ). 

 The SAM analysis links each voxel in the brain to the detection array, 
using an optimal spatial fi lter for that particular voxel (Robinson & Vrba, 
  1999  ). The data from the MEG sensors is then projected through this spatial 
fi lter to give a weighted measure of current density, as a function of time, in the 
target voxel—which means that the time series for each voxel has the same 
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millisecond time-resolution as the original MEG signals. Fourier analysis was 
used to calculate the total amount of power in the specifi ed frequency band 
within each of the  active  and  passive  time epochs of the time series. The jack-
knife statistical method is used to calculate the difference between the spectral 
power estimates for the  active  and  passive  states over all epochs to produce a 
true  t  statistic. A 3-dimensional image of differential cortical activity is pro-
duced by repeating this procedure for each voxel in the whole brain. 

 In this experiment, the SAM analysis created a volume covering the whole 
brain in the patient, with a voxel size of 5 x 5 x 5 mm. The  passive  state was 
defi ned as the time period between -1000 and 0 ms before pain rating; and the 
 active  state was defi ned as the time window of from 0 – +1000 ms starting at 
each rating period. Power changes between the  active  and  passive  states were 
calculated in the frequency bands of 10–20, 20–30 and 30–60Hz, for DBS on 
and off. Each t-map was thresholded at  t >2.3, except for  a priori  predicted 
regions of interest (e.g., the insula, cingulate, and orbitofrontal cortices).      

Results Case 1: Phantom Limb 

Subjective Pain Experience 

 After the stimulator was turned off, RM’s subjective reports of pain on the 
visual rating scale signifi cantly increased with time over the four scans. In the 
fi rst run with the stimulator on, the ratings were 4.68 ± 0.25 (mean ±s.e.). 
With this knowledge, the stimulator was then turned off and in the second, 
third and fourth runs the ratings were 4.68 ± 0.19, 4.97 ± 0.18 and 5.48 ± 0.20, 
respectively. Thus, in the fourth run, starting 25 minutes after the stimulator 
was switched off, the level of reported subjective pain had signifi cantly 
increased (p< 0.009) compared to both when the stimulator was off, and the 
fi rst and second runs where the stimulator was on. It should be noted that 
during the short period that the stimulator was turned off, pain levels did not 
approach pre-implantation levels, and the stimulator was turned on as soon 
as the fourth run was fi nished.     

Neuroimaging Data 

 In the  pain  condition when DBS was switched off, and when RM’s subjective 
pain ratings were signifi cantly higher than during the fourth period after the 
DBS had been switched on, signifi cant activity was found in regions involved 
in the pain network that have previously been identifi ed using fMRI and PET 
(see  Figure  15–3   and  Table  15–1   for list of activations). These regions included 
the insula, and the primary and secondary somatosensory, lateral orbitofron-
tal, and anterior cingulate cortices. Activity was also found in the motor net-
works related to the rating process. In the 10–20 Hz frequency band signifi cant 
differences in activity were found in somatosensory cortices (SI, SII), intrapa-
rietal cortex, motor cortex, premotor area (PMA), middle and posterior 
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insula cortices, occipital lobe, and middle frontal gyrus. In the 20–30Hz band, 
signifi cant differences were found in motor, parietal, insula, fusiform and 
motor cingulate cortices, as well as lateral orbitofrontal cortex/anterior insula. 
In the 30–60Hz band we found signifi cant differences in the parahippocam-
pal, motor and fusiform cortices.   

 In the  pain relief  condition, during the fourth period after the DBS had 
been switched on, signifi cant activity was found in brain regions previously 
identifi ed with fMRI as the pain relief network (see  Table  15–1   for list of 
activations). In the 10–20Hz band, signifi cant differences in activity were 
found in SI, brainstem, the mid-anterior orbitofrontal cortex and subgenual 
cingulate cortex. In the 20–30Hz band there were differences in activity in a 
motor network comprising supplementary motor area (SMA), parietal and 

Figure 15–3. Brain activity when the patient reported subjective pain relief 
(DBS on) and pain (DBS off). Top part of fi gure shows that in the pain 
relief condition there was signifi cant activity in the left mid-anterior orb-
itofrontal cortex and right subgenual cingulate cortex. Activity in these 
regions was not found in the pain condition (bottom part of fi gure). 
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      Table 15–1.  Active Brain Regions  

   Laterality    MNI x    MNI y    MNI z    t score   

  DBS off (pain)   

  10–20 Hz   

  Somatosensory cortex (SI, SII)
   Intraparietal cortex  
 Motor cortex  
 Left posterior insula  
 Occipital lobe  
 Premotor cortex  
 Middle frontal gyrus  
 Middle insular cortex 

 R
  R
  R   
L 
 R
  R
  R
  R 

 54
  4  

58  
−38  

36  
42  

6  
46 

 −38  
−82

  −2  
−34
  −94  

22
  6 

 −10 

 56
  56  
44  
18  
16
  50  
66 
  16 

 2.8  
2.7
  2.7
  2.7

  −2.6
  2.4  
2.3
  2.0∗  

  20–30 Hz   

  Motor cortex  
 Parietal cortex  
 Anterior insula/lateral 
  orbitofrontal cortex
   Occipital lobe  
 Fusiform cortex  
 Anterior insula cortex  
 Rostral anterior cingulate cortex
   Motor cingulate cortex 

 R
  R  
R  

L  
R
  R
  R  
R 

 58  
46  
48  

−30  
22  
36  

2  
12 

 4  
−68

  36  

−96  
−70  

28  
−8  
−6 

 28
  42

  −10  

−4  
-10  

4  
36  
66 

 3.9
  3.0
  2.6

  −2.6  
−2.4

  2.4  
2.2∗  
2.1∗  

  30–60 Hz   

  Parahippocampal cortex  
 Motor cortex
   Fusiform cortex 

 L
  R
  R 

 −12  
66  
46 

 −44  
−12  
−70 

 0  
24  

−10 

 2.8
  2.6
  2.4  

  DBS on (pain relief)   

  10–20 Hz   

  Somatosensory cortex (SI)  
 Brainstem  
 Mid-anterior orbitofrontal cortex  
 Subgenual cingulate cortex 

 R
  R
  L  
R 

 56
  12

  −34  
4 

 −36  
−18  

26  
6 

 54  
−40
  −10  
−8 

 2.4
  2.3
  2.0∗

  −1.8∗  

  20–30 Hz   

  Supplementary motor cortex  
 Parietal cortex  
 Motor cortex 

 L  
R  
L 

 −56  
28

  −48 

 12
  −78  
−2 

 30  
46  
54 

 2.8
  −2.5

  2.3  

  30–60 Hz   

  Superior temporal gyrus  
 Middle temporal gyrus  
 Occipital Lobe  
 Parietal cortex  
 Posterior cingulate cortex 

 L
  L
  L  
L  
R 

 −54
  −52
  −18
  −56

  8 

 −64  
−40

  −102  
−58  
−60 

 18  
−18  
−10  
40  
44 

 3.1  
2.7
  2.5
  2.4
  2.3  

   Activations are signifi cant at t>2.3, uncorrected; unless indicated with * for a priori predicted 
regions. All brain coordinates are in the standard space of MNI (Montreal Neurological Institute).   
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motor cortices. In the 30–60Hz band, signifi cant differences were found in 
the superior and middle temporal gyri, occipital lobe, parietal and posterior 
cingulate cortices.      

Results Case 2: Cluster Headache 

 The brain regions active in patient YY measured with MEG in all conditions 
regardless of stimulator activity, which were very similar to those found in 
patient RM. In all conditions somatosensory and motor cortices were acti-
vated in the active (button-press) condition, compared with passive (100ms 
before the button press). We also found signifi cant activity in the 10–20Hz 
frequency band in the PAG only when the patient’s stimulator was turned off. 
When the stimulator was turned on, there was activity in frontal brain regions 
including the orbitofrontal cortex, associated using fMRI with the pain relief 
network.     

Discussion

 These studies show that it is feasible to use MEG to map whole-brain changes 
in neural activity induced by both low- and high-frequency DBS. We found 
signifi cant changes in brain activity in patient RM with implanted low-fre-
quency DBS in the right PVG/PAG, for severe phantom limb pain in the left 
leg. This patient reported signifi cantly more pain relatively soon after the DBS 
was turned off compared to when DBS was switched on. 

 Similarly, we were able to measure the whole-brain changes during low- 
and high-frequency stimulation of the posterior hypothalamus for cluster-
headache, on MEG recordings. The posterior hypothalamus contains several 
neurochemically distinct cell groups. One of these is the Hypocr/Orx neurons 
that are activated by nociceptive stimuli and reach structures involved in 
nociceptive relay and modulation, including the PAG (Baldo et al.,   2003  ). We 
found activity in the PAG only when patient YY’s stimulator was turned off, 
which may be related to these patterns of connectivity. In an fMRI study it 
was found that PAG was activated if participants were anticipating a painful 
stimulus, even before they were subjected to pain (Fairhurst et al.,   2007  ). 
Patient YY in the present study was aware that his stimulator had been turned 
off, and thus the activity in his PAG may have been related to the anticipation 
of his pain returning. 

 The obtained changes in brain activity related to both pain and pain relief 
are consistent with previous fi ndings reported with fMRI and PET (Petrovic 
& Ingvar,   2002  ). Testifying to the utility of our method, irrespective of DBS 
we also found activity in brain regions that are part of the motor network, 
related to the patient using button-presses to rate his pain. 

 Pain-specifi c activity was found when DBS was switched off, and the sub-
jective pain scores were signifi cantly higher than in the pain relief condition 
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(with DBS on). Signifi cant activity was found in the well-documented 
extended pain network, including insular, SI, SII, lateral orbitofrontal and 
anterior cingulate cortices (Petrovic & Ingvar,   2002  ). 

 Importantly, in the pain-relief condition with effective stimulation 
parameters in both patients, we found activity in the mid-anterior orbitof-
rontal cortex, which is a region previously implicated in pain relief. The mid-
anterior orbitofrontal cortex has been shown to be more active in placebo-
responders than in placebo nonresponders (Petrovic et al.,   2002  ), and it has 
also been shown to correlate with the subjective pleasantness of various pri-
mary and secondary reinforcers (Kringelbach,   2005  ; Kringelbach et al., 
  2003  ). This fi nding opens up the possibility that the mid-anterior orbitof-
rontal cortex may be a potential future candidate for DBS in patients with 
chronic pain.     

Potential Problems 

 The MEG artifacts induced by both unilateral low-frequency stimulation of the 
right PVG/PAG and high-frequency stimulation of the posterior hypothala-
mus, would appear to be minimal, although the presence of the magnetic 
battery can induce long-term data drift (which is present regardless of whether 
the stimulation is on or off). This long-term drift appears to be linked to the 
breathing cycle. It should be noted, however, that the reported fi ndings are 
preliminary and will need further confi rmation in more subjects. 

 Other sources of MEG artifacts include high-amplitude artifacts origi-
nating from the percutaneous extension wire, which are locked to the heart 
beat. Careful experimentation has shown that beamforming is capable of sup-
pressing these artifacts and have quantifi ed the optimal regularization 
required (Litvak et al.   2010  ). It is also important to realize that the brain of a 
patient may not be entirely normal, which is why it is important to also care-
fully investigate the anatomical structure and connectivity of the patient’s 
brain using high-resolution MRI, CT and DTI. This information can then be 
used to constrain the MEG analysis.     

Future Possibilities 

 While the MEG results presented here have been obtained from DBS elec-
trodes with both low- and high-frequency stimulation, the experiments were 
conducted in patients who did not move in the scanner. It would be of great 
interest to extend these studies to movement disorders such as Parkinson’s 
disease, dystonia and essential tremor—but as mentioned above, great care 
will have to be taken to minimize head movements in these patients. Another 
exciting possibility will be to use the recordings from DBS electrodes (while 
still externalized) as an EEG channel, which can then be used in the subsequent 
analysis together with the MEG signals.      
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Conclusion

 The results of these studies have demonstrated the feasibility of using MEG to 
map changes in whole-brain activity induced by both low- and high-frequency 
DBS. The fi ndings have highlighted the mid-anterior orbitofrontal cortex as 
potential future candidate for DBS in patients with chronic pain. From a systems 
neuroscience point of view, the combination of the causal, interventional 
nature of DBS with the high temporal resolution of MEG, has the makings of 
a powerful and sophisticated tool for unraveling the fundamental mechanisms 
of normal human brain function.      
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