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Abstract. The neuro-spike communication is conducted using electro-
chemical nervous signal transmissions between neurons and synapses.
The nervous signal is composed of a sequence of electrically charged ions
exchange in the neurons. It passes to other from one neuron to another
one through the process of release and a combination of chemical sub-
stances in synapses. The neuro-spike communication is subject to disrup-
tions due to different biological factors that impact the permanence of
neural communications. In this paper, we investigate the performance of
a neuro-spike communication between two neighboring neurons. We first
present a mathematical model to capture the inherent biological char-
acteristics of the nervous system. Next, the error probability of signal
detection as a function of biological parameters has been characterized.
Finally, we study the impacts of some specific medicines on the param-
eters of neuro-spike communication in the diseases of Multiple Sclerosis
and Alzheimer’s.

Keywords: Neural communication · axonal noise · cooperative commu-
nication synapses · synaptic channel · neuro-spike communication.

1 Introduction

Neuro-spike communication in biological nervous systems is a promising research
field that is expected to have impacts on brain-machine communication system
design and medical science. The neuro-spike communication is a heterogeneous
communication process comprising electrical and chemical communications. In
the nervous transmission, a signal may be blocked, may be changed into several
spikes, or maybe added to other spikes and makes complex or wrong patterns of
spikes. In addition, because of certain types of nervous system diseases or using
specific types of medicines, a fault signal may be generated while there has been
no nervous signal to transmit. It is a challenging task to model the biological
nervous system as a mathematical model.

Several statistical approaches have been investigated in [1], [2], and [3] to
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model nervous systems. Signal estimation and signal detection in a nervous
communication system subjected to noise and several random disturbances have
been investigated in [1]. In this work, a mathematical model for a neuro-spike
communication link has been developed for the cases of a synapse and mul-
tiple cooperative synapses. In [2], the binary stochastic channels are used to
model nervous processes. Also, the detection error at the receiver is computed.
In [4] the axonal-synaptic channel is modeled as a multiple-input-single-output
(MISO) communication link and the error probability of an optimum detector
for the axonal-synaptic channel is computed. In [3], several sources of random-
ness have considered in the model of a neuro-spike communication link, and
the bit error rate for signal detection is computed. Also, an optimum receiver
is designed in [3] to enhance the bit error rate. The authors have derived the
closed form equation for the signal detection threshold and the optimum input
spike rate. The results depicted a high efficiency in achievable bit rate with the
proposed system design. In [5], a model is presented for signal propagation in
nanomachine to neuron communications based on molecular communications,
where the behavior of such a system as a function of the frequency is character-
ized. It is shown that in a frequencies range of about 3-84 Hz, a nanomachine
is able to successfully communicate with a biological neuron with an acceptable
time delay of about 13.5-43 ms.

In this work, we consider a neuro-spike communication link between two
successive neurons with several synapses between them. We describe the trans-
mission of action potentials along the axon as an additive white Gaussian noise
(AWGN) and consider the axon in the presynaptic neuron as an AWGN channel.
Next, we use a stochastic binary Z-channel to model the release of neurotrans-
mitters. Because the communication in the synaptic cleft has a molecular nature,
we use a binary stochastic X-channel to model this process. Also, we model the
aggregation of synaptic channels effects as a binary Z-channel with an aggrega-
tion crossover probability. Finally, We compute the error probability of signal
detection using the developed model. The model and the underlying analysis
can be used to investigate the impact of different biological parameters on the
performance of the neuro-spike communication link. This study could serve as
an initial step in the analysis of the impacts of specific medicines or experimen-
tal treatments on special nervous system diseases such as Multiple Sclerosis and
Alzheimer. Since the access to real data regarding the communication in the
neocortex is difficult, similar to most related works in this field, our assumption
and findings are based on the insights from the physilogy of the brain.

The remainder of this paper is organized as follows. In Section 2, a physio-
logical background of the central nervous system is presented. A mathematical
system model for a neuro-spike communication link is described in Section 3. In
Section 4, the error probability of nervous signal detection using the developed
model is evaluated. The nervous communication performance subject to some
nervous system diseases using the developed model is discussed in Section 5.
Simulation and numerical results are presented in Section 6. Finally, concluding
remarks are drawn in Section 7.



A model for electro-chemical neural communication 3

Fig. 1. Structure of a neuron in the central nervous system representing its main func-
tional parts.

2 Biological background of neuro-spike communication

The human central nervous system consists of billions of interconnected neu-
rons that are connected successively together by synaptic clefts that are named
synapse [6]. A typical neuron, shown depicted in Fig. 1, mainly is made of several
segments that are named as dendrites, cell body (soma), and axon. The outer
layer of neuron is called a membrane. The axon is covered by myelin sheath with
periodic gaps that nodes of Ranvier are located on them. The myelin sheath
with insulating the axon speeds up signal propagation along the axon. A ner-
vous signal first, enters the neuron through dendrites which are located on the
top of soma, next, passes through the axon pathway and then, leaves neuron by
axon terminals. The synapse is a small gap that passes a nervous signal only in
one direction, from the presynaptic neuron to the postsynaptic neuron, see Fig.
2.

When there is no signal to transmit via the nervous system, the neuron is
in a resting manner and is polarized with an intracellular potential about -95
to -65 mV. Electrically charged ion flows of potassium (K+), sodium (Na+),
chloride (Cl-), cause the transmitting signal throughout the nervous system.
These ions enter the neuron or exit from that via the ion channels located on
the soma and dendrites (cation and anion channels) and, on the nodes of Ran-
vier (Sodium and potassium channels). The ion exchanges between inside and
outside of the neuron, change the membrane potential of the neuron to either
a higher level or lower than the resting manner potential. With a potential in-
creasing high enough about 20 mV to reaches a firing threshold level, the neuron
will be excited, the membrane will be depolarized, and the firing will happen.
When a neuron fires, an action potential (spike) about 90 mV at a time period
of 1 ms will be generated in the neuron. The potential increase is called the
excitatory-postsynaptic-potential (EPSP). Conversely, a potential decrease to a
lower value than the resting manner potential causes the hyperpolarization of
the neuron membrane that is called inhibitory-postsynaptic-potential (IPSP).
As firing happens, a spike passes along the axon. The spike jumps along the
axon, from a node to the next node, and reaches the axon terminals. It requires
to pass through the synapses to excite the next neuron [7]. When a spike reaches
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Fig. 2. Two successive neurons which are connected by chemical synaptic clefts; the
nervous signal passes from presynaptic neuron to the postsynaptic neuron via multiple
synapses.

an axon terminal, the depolarization leads to opening the calcium channels and
causes an influx of calcium ions (Ca++) into the presynaptic neuron [8]. An
increase in calcium ions causes the release of chemical substances called neu-
rotransmitters into the synapse cleft. Neurotransmitters, in turn, bind to the
receptor of the postsynaptic neuron, and by changing of permeability features of
the neuron, making the cation or anion channel open. Opening cation channels
conduct positively charged ions into the neuron, and thus, increases its potential
to a value larger than the threshold and leads to a spike firing. Inversely, with
opening anion channels, negatively charged ions conduct into the neuron, and
due to a decrease of potential to a smaller value of resting potential, the neuron
will be inhibited or in another point of view, its sensitivity to the next nervous
signal will be reduced.

3 Neuro-spike communication model

Fig. 3 depicts the mathematical model for a neuro-spike communication link
consisting of two successive neurons and multiple synapses between them, which
is shown in Fig. 2. This model is complex and heterogeneous and thus, it is split
to several blocks which are investigated separately in the following.

3.1 Transmitter (presynaptic neuron)

A presynaptic neuron as a transmitter should pass the nervous signal through
the axon and then, releases neurotransmitter into synapses. The nervous signal,
as the input of the neuro-spike communication model, could be modeled as a
sequence of delta functions that is so-called spike train and is defined as follows
[1]:

x(t) =
∑
i

δ(t− ti), (1)
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Fig. 3. Representation of the mathematical model for a neuro-spike communication
link.

where δ(t) expresses the delta function, and ti is the time duration in which the
i-th spike occurs. The achieved signal at the axon terminal is obtained as

a(t) = x(t) + n(t), (2)

where n(t) implies the axonal noise that is assumed to have Gaussian distribution
over a bandwidth BWn with the variance σ2

n. The power-spectral-density of n(t)
is [3]

Sn(f) =

{
σ2
n

2BWn
, −BWn ≤ f ≤ BWn

0 ,o.w.
(3)

therefore, the axon signal to noise ratio (SNR) can be obtained as follows:

SNRax =
1

Sn(f)

∫ ∞
0

x2(t)dt =
2BWn

σ2
n

∫ ∞
0

x2(t)dt. (4)

The axon SNR depends on the characteristics of the axon. Therefore, the
higher value of SNR implies the enhancement of the axon health and leads
to the more smoothing pathway of the nervous signal transmission throughout
the axon. The main reason for some nervous system diseases such as multiple
sclerosis (MS) [9] is the weak passing of signals through the axon. Therefore,
the value of axon SNR in these nervous diseases is small. It is expected that
specific nervous medicines and treatments be effective to smooth the pathway
of transmitting nervous spikes in the axon and thereby increase the value of
SNRax.

The process of releasing neurotransmitters into the synapse can be modeled
as a stochastic binary Z-channel, with a crossover probability of pR. The binary
input of this channel is equal to 1 when there is ’a spike’ or is equal to 0 when
there is’no spike’. Also, the binary output R(t) is 1 or 0, respectively when



6 M. Hosseini et al.

neurotransmitters release happens or not. The probabilities pR and 1−pR imply
the cases of a noisy spike leads to the release and a noisy spike is failed to leading
to the release. The proper synthesis of neurotransmitters, the on-time opening
of calcium channels, and the influx of sufficient calcium ions into the neuron,
and the perfect chemical combination in the axon terminals increase the value
of pR [10].

3.2 Synaptic channel

Communication in the synaptic channel is mainly due to the activity of released
chemical substances by the presynaptic neuron, and the opening and closing of
ion channels on the postsynaptic neuron. Therefore, the synaptic channel has
a molecular nature and we model it by a Z-binary channel with synaptic error
probabilities pc0 and pc1. The binary input of this channel is R(t), that repre-
sents the release or not release of neurotransmitter into the synapse. Besides
that, the binary output is C(t) which is equal to 1 and deals to the opening of
cation channels, otherwise is 0. Probabilities 1 − pc1 and 1 − pc0, respectively
are equivalent to cases that neurotransmitters are released and cation channels
open, and there is no release and cation channels remain closed. Somewhere in
this paper, all these stochastic parameters are called synaptic parameters.

The values of synaptic parameters mainly dependent on the synaptic chan-
nel characteristics. Therefore, in some special nervous system diseases due to
synaptic disruptions, the values of pc0 and pc1 are considerably high, while with
the appropriate performance of synaptic channel the values of these parameters
are negligible. To facilitate the describing of the synaptic channel performance
we use a new concept as synapse operation probability which is obtained as

pCh = 1− pChe , (5)

where pChe
expresses the error probability of synaptic channel and is defined as

follows:

pChe
= pC0pr {R = 0}+ pC1pr {R = 1} . (6)

3.3 Receiver (postsynaptic neuron)

There are hundreds to thousands of synapses between adjacent every pair of
successive neurons[6]. While a spike transmission, each synapse has a basic role
in the decreasing or increasing the membrane potential of the postsynaptic neu-
ron, respectively. The excitation or inhibition impacts of all synapses, aggregate
in the soma of the postsynaptic neuron. Synapses that open cation channels
on the postsynaptic neuron and cause to increase of membrane potential are
called cooperative synapses. Also, the operation which leads to the aggregation
of cooperative synapses impacts is called spatial summation [6]. The process of
spatial summation between two neurons i and j can be modeled as a stochastic
binary Z-channel with the crossover probability pSij . Considering the physiology
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background presented in Section 2, this probability increases by an increase in
the number of cooperative synapses between two neurons [11], and it will be
decreased by increasing of firing threshold of the postsynaptic neuron. We can
model the spatial summation as

pSij =
1

| Vthj − Vrestj |

(
1

| Vthj − Vrestj |
+

exp(−NijplChij
)

)−1
,

(7)

where Nij is the number of cooperative synapses between presynaptic neuron i
and postsynaptic neuron j. Vrestj and Vthj state the resting potential and fir-
ing threshold of the postsynaptic neuron. Also, plChij

represents the operation
probability of the l-th synapse between two neurons i and j, which is obtained
by equation (5).

The output signal of the binary spatial summation Z-channel is S(t), which
in a short time slot is indicated by the binary variable S. Therefore, S = 1
implies a spike firing that means cooperative synapses successfully excite the
postsynaptic neuron. Besides, S = 0 express that excitation of the postsynaptic
neuron is failed and no spike is generated. Also, the binary input variable of
this channel is C = 1, equivalent to the opening of cation channels and entering
positive ions into the postsynaptic neuron or C = 0 which means cation channels
are not opened. Notice that indices i and j can be removed because a general
neuron link has been considered in this model.

On the other side, after a neurotransmitter release, the membrane potential
changing of the postsynaptic neuron lasts about 15 ms. Therefore, another neu-
rotransmitter that opens the same channel still could increase the membrane
potential, and thereby, the excitation rate increases. Thus, the results of succes-
sive releases of neurotransmitters aggregate together. This process that states
the postsynaptic neuron response to the successive releases is called temporal
summation [6] and can be modeled as q.h(t). In this modeling, h(t) corresponds
to the EPSP waveform and deals to the postsynaptic neuron response to a single
neurotransmitter release, and q deals to the variable amplitude of the tempo-
ral summation. The value of q changes with the number of neurotransmitters
releases. Also, h(t) is modeled as an alpha function as follows [1]:

h(t) =
hp
tp
exp

(
1− t

tp

)
u(t), (8)

where hp and tp are the peak EPSP magnitude and the corresponding time,
respectively, and u(t) indicates the unit step function whose value is one for
t > 0, and zero otherwise. Also, the probability density function (PDF) of q can
be represented as the k-th order Gamma-distribution [12]

p(q) =
βk

(k − 1)!
q(k−1)exp(−β), (9)
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both β and k determine the distribution spread. The parameter k modify the
variability of q therefore, the case with k = 1 refers to an exponential distribution
with the highest variability and k =∞ refers to a delta-function is independent
to the variability in q.

4 Nervous spike detection

In this section, we evaluate the bit error rate (BER) of nervous spike detection
in a neuro-spike communication link. As shown in Fig. 3, the binary variable X
implies the existence or absence of a nervous spike in the presynaptic neuron,
respectively by X= 1 and 0. Also, Y states the binary decision of spike existence
or absence in the postsynaptic neuron, respectively by Y= 1 and 0. The output
signal in the receiver measured over the period 0 ≤ t ≤ T is:

y(t) = h(t) ∗
∑
i

qiSiδ(t− ti), (10)

where qi is the variable amplitude of EPSP waveform in response to the i-th
nervous spike. Si is a binary variable stating the spike fire in the soma of the
postsynaptic neuron. Also, the symbol ∗ indicates the convolution operation.
We consider the period T is divided into several time slots, and each time slot
is small enough in which only one spike may occur. We can express the output
signal in a single time slot as follows:

y(t) = S.q.h(t). (11)

Thus, the following rules (Y0, Y1) relates the output signal to its binary equiv-
alent:

Y0;Y = 0 −→ y(t) = 0,
Y1;Y = 1 −→ y(t) = S.q.h(t).

(12)

Considering initial probabilities as p0 = pr {X = 0} and p1 = 1 − p0 =
pr {X = 1}, we can formulate the likelihood ratio for the model as follows [2]:

Lx(y) =
f {Y |X = 1}
f {Y |X = 0}

, (13)

in this equation, f{Y |X = 1} implies the probability distribution function of the
binary output in the postsynaptic soma conditioned on the spike existence in
the presynaptic neuron. Thereby, we can write decision rules according to the
model, base on (10) as [1]{

if Lx(y) ≥ L0 then Y1 is true
if Lx(y) ≤ L0 then Y0 is true

(14)

where L0 states the decision threshold which can be defined as follows:

L0 =
p0 + 1

SNRax

p1
. (15)
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We can also represent the likelihood ratio as a function of other stochastic
parameters of the model. Therefore, we rewrite it as

LS(y) =
f {Y |S = 1}
f {Y |S = 0}

, (16)

and thereby, the decision rules change to{
if LS(y) ≥ L1 then Y1 is true
if LS(y) ≤ L1 then Y0 is true

(17)

where L1 is the new decision threshold and is defined as

L1 =
L0A1 −A3

−L0A2 +A4
, (18)

where

A1 = pr {S = 0|X = 0} = 1− pC0pS

A2 = pr {S = 1|X = 0} = pC0pS

A3 = pr {S = 0|X = 1} = 1− pC0 + pR(pC0 − pS + pSpC1)

A4 = pr {S = 1|X = 1} = pRpS(1− pC1) + (1− pR)pSpC0.

(19)

Now, according to [13], the LS(y) can be represented as follows:

LS(y) =

∫ ∞
0

p(q)
pr {Y |q : S = 1}
pr {Y |S = 0}

dq (20)

where pr {Y |q : S = 1} represents the binary output probability conditioned on
the variable amplitude of the EPSP waveform. Then, supposing the AWGN
bandwidth is large enough to satisfy BWntP > 1, we can simplify LS(y) as
follows:

LS(y) =

∫ ∞
0

βkq(k−1)

(k − 1)!
exp(−βq + 2q.r(y)− q2Eh)dq, (21)

where r(y) =
∫ T
0
h(t)y(t)dt, and Eh =

exp(2)Tph
2
p

4 .

Finally, the average error probability of spike detection in the receiving neu-
ron can be represented as

perror = p0pfalse + p1pmiss (22)

where

pfalse =pr {Y = 1 | X = 0} = pr {LS(y) ≥ L1 | S = 0} (1− pSpC0)

+ pr {LS(y) ≥ L1 | S = 1} (pSpC0),
(23)

and

pmiss =pr {Y = 0 | X = 1} = pr {LS(y) < L1 | S = 0} (1 + pSpR(−1 + pC1)

+ (1− pR)(−pSpC0)) + pr {LS(y) < L1 | S = 1} (pR(1− pC1)pS

+ (1− pR)(pSpC0)).
(24)
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5 Discussion on nervous system diseases and the
impact of medicines on neuro-spike communication
performance

In this section, the relation between random parameters of the developed model
and some nervous system diseases is investigated. Considering the communica-
tion background of the nervous system presented in Section 2, a nervous signal
may be blocked either while passing the axon, or transmitting in the synaptic
channel.

For example in Multiple Sclerosis (MS) which is a mobility disability ner-
vous disease, due to the demyelination of axon, the spike may be disrupted or
blocked while passing the axon [9], [14]. In MS disease, while passing a spike in
the axon, a large number of positive ions flow out of the neuron and the nervous
spike will be blocked. Therefore, the value of (SNRax) in such diseases is low.
Fampridine (Fampyra R©) is known as an efficient medicine for MS and walking
disability diseases [15]. Fampridine by blocking the potassium channels prevents
excessive efflux of positive electrical charges. As a result, SNRax increases, and
the transmission of the nervous signal through the axon facilitates.

In some other nervous system diseases, the release probability pR is too small.
In such cases, special medicines such as clonidine act on the presynaptic neuron
and through a prolonged inhibition of this neuron increase the release probabil-
ity of neurotransmitters [10].

Also, synaptic channel disruptions cause some nervous diseases such as,
Parkinson, Schizophrenia, and Alzheimer [16], [17], [18], and [19]. In these dis-
eases in which the nervous spike passing is failed at the synaptic channel, the
value of synaptic parameters pC0 and pC1 are high. Exercise, enough and good
quality sleep as well as the hormone Leptin act on the nervous system to facil-
itate nervous signal passing through the synaptic channel. Thus, values of pC0

and pC1 decrease and abilities of learning and memorizing [20] will be improved.

6 Numerical results

In this section, the bit error rate (BER) of a neuro-spike communication link
based on the developed model is investigated. Simulations are carried out in
the environment of MATLAB [21]. According to [1], we set the predefined pa-
rameters as hp = 2 mV and Tp = 1 ms for the EPSP waveform. The variable
amplitude of EPSP waveform, q, is considered as a Gamma distribution with
parameters β = 1 and k = 1. We also considered 107 transmitted spikes and
computed the average performance. In the following, the results of the error
probability analysis versus stochastic parameters are depicted.

Fig. 4 shows the error probability of spike detection in the postsynaptic neu-
ron versus the axon SNR changes. It is observed that by an increase in SNRax,
the spike transmission in the neuron facilitates and as a result, the error prob-
ability improves. In cases of axonal diseases such as MS who suffer from weak
passing of signal in the axon, SNRax is low and thus, as we can observe in Fig. 4,
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Fig. 4. The average probability of error versus the axon SNR in a neuro-spike commu-
nication link with pR = 0.8, pC0 = 0.01, pC1 = 0.01, pS = 0.4.

the correct spike detection in the receiver with a high probability will be failed.
In Fig. 5, the average error probability versus the releases probability of neu-

rotransmitters pR for different cases of pC1 = 0.05, 0.1, and 0.8 is depicted. It
can be seen that with an increase of pR, the error probability of spike detection
decreases. Also, it is observed that for the worst case of pC1 = 0.8 increasing pR
could not change the error probability. The reason is that in such a case, the
synaptic channel is approximately disrupted and thus, the error probability is
not sensitive to other parameters.

In Fig. 6, the average error probability versus the spatial summation proba-
bility is shown. With an increase of pS , the average error probability decreases.
The reason is that spatial summation probability directly is dependent on the
number of cooperative synapses between two neurons. Therefore, more synapses
cooperate to excite the postsynaptic neuron the detection of the signal will be
more successful.

7 Conclusion

In this paper, the performance of a neuro-spike communication link has been
studied. First, we developed a model of neuro-spike communication which con-
sists of two successive neurons that are connected via multiple synapse cleft.
Next, we evaluated the error probability of signal detection in this system using
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Fig. 5. The bit error probability curves versus the relase probability for different pa-
rameters of the synaptic channel in a neuro-spike communication link with pC0 = 0.009,
pS = 0.6, SNRax = 15 dB.
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Fig. 6. The bit error rate versus the spatial summation probability in a neuro-spike
communication link with pR = 0.8, pC0 = 0.01, pC1 = 0.09, SNRax = 15 dB.
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the proposed model. The simulation results reveal the strong dependence of sig-
nal detection to the disruption factors such as axonal noise, release probability of
neurotransmitters, synaptic channel parameters, and spatial and temporal sum-
mation. We also have studied the impact of different nervous system medicines
on these stochastic parameters. As part of our future work, we model the coop-
eration of synapses as a biological concept of synaptic plasticity and develop the
neuro-spike communication model by considering the medicine effect.
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