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SUMMARY

Bacteriophages with contractile tails and the bacte-
rial type VI secretion system have been proposed
to use a special protein to create an opening in
the host cell membrane during infection. These
proteins have a modular architecture but invariably
contain an oligonucleotide/oligosaccharide-binding
(OB-fold) domain and a long b-helical C-terminal
domain, which initiates the contact with the host
cell membrane. Using X-ray crystallography and
electron microscopy, we report the atomic structure
of the membrane-piercing proteins from bacterio-
phages P2 and f92 and identify the residues that
constitute the membrane-attacking apex. Both
proteins form compact spikes with a �10Å diameter
tip that is stabilized by a centrally positioned iron ion
bound by six histidine residues. The accumulated
data strongly suggest that, in the process of
membrane penetration, the spikes are translocated
through the lipid bilayer without undergoing major
unfolding.

INTRODUCTION

Bacteriophages with contractile tails, R-type pyocins, the Serra-

tia entomophila antifeeding prophage, the Photorhabdus viru-

lence cassette, and the type VI secretion system (T6SS) of

Gram-negative bacteria belong to the recently defined class of

contractile injection systems based on their apparent shared

ancestry (Bönemann et al., 2010; Leiman and Shneider, 2012;

Pukatzki et al., 2007). A contractile injection system is a complex

macromolecular machine composed of hundreds of protein

subunits of 10-20 different types that form the contractile sheath,

the internal noncontractile tube and the baseplate (Leiman

and Shneider, 2012). The machine is able to penetrate the host

cell envelope and to deliver specific proteins and/or DNA into

the cell.

Most of the information regarding the function and structure of

proteins involved in host attachment, as well as their location in
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the machine for all contractile injection systems, comes from

studies of the phage T4 tail (Aksyuk et al., 2009; Kostyuchenko

et al., 2005, 2003; Leiman et al., 2010, 2004). It was proposed

that a special spike-shaped protein complex, which forms an

extension of the tail tube (the ‘‘cell-puncturing device’’), is used

to pierce the outer cell membrane in the process of tail sheath

contraction (Kanamaru et al., 2002). The cell-puncturing device

is formed by T4 gene product (gp) 27, gp5 and a ‘‘tip protein,’’

which caps the C-terminal b-helical needle domain of gp5 and

is responsible for the first contact with the host cell membrane

(Kostyuchenko et al., 2003). Despite the availability of the

detailed description for the rest of the system, the identity of

this piercing tip protein has not been established.

The cell-puncturing devices are a conserved feature of

contractile tail-like systems (Leiman and Shneider, 2012). Even

though they are not annotated as such in the database, they

can be identified with modern bioinformatic tools (e.g., HHpred

(Söding et al., 2005)). Crystal structures of T4 gp27 orthologs

have been solved for some phages and prophages mostly within

the framework of structural genomics (Protein Data Bank [PDB]

IDs: 3cdd, 1wru, 3d37, 3gs9) (Kondou et al., 2005). No structural

information regarding any of the T4 gp5 orthologs from these or

other phages is available.

One of the most interesting orthologs of the T4 cell-puncturing

device is found in the T6SS. It is called VgrG (valine/glycine-

repeat protein G) (Pukatzki et al., 2007). VgrG contains T4

gp27, gp5, and—sometimes—an effector domain within a single

gene and represents one of the T6SS signature secreted

proteins. Using its T6SS, a bacterium can translocate VgrG

across the membrane directly into the cytoplasm of the eukary-

otic host cell (Pukatzki et al., 2007). The crystal structure of the

N-terminal part for one of the VgrG proteins containing the

complete gp27 module and the N-terminal domain of gp5 is

available (PDB ID 2p5z), but the structure of its C-terminal

membrane-piercing part is unknown (Leiman et al., 2009).

We addressed the question of the identification and structure

of the membrane-piercing proteins by studying two contractile

tail bacteriophages whose baseplates are somewhat simpler

than that of T4: phages P2 and f92. Phage P2 is one of the

few ‘‘model’’ phages with contractile tails that have been studied

in the laboratory formany years (Haggård-Ljungquist et al., 1995;

Nilsson and Haggård-Ljungquist, 2007). The protein composi-

tion of the P2 tail is well established, although very little is known
ights reserved
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Table 1. HHpred Analysis Shows that P2 gpV and f92 gp138 Contain an OB-Fold Domain, Also Found in the Central Spike Proteins

T4 gp5 and VgrG

Best matches

(PDB ID)

P2 gpV (211 Residues) f92 gp138 (245 Residues)

Aligned Residues

(gpV/Target) E Value p Value

Sequence

Identity

Aligned Residues

(gp138/Target) E Value p Value

Sequence

Identity

VgrG (2p5z) 18-99/386-484 1.6E-21 6.9E-26 17% 21-95/383-462 0.22 9.8E-06 18%

T4 gp5 (1k28) 20-100/12-115 0.00092 4E-08 16% Not matched

See also Table S1.
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about the structure of the baseplate (Haggård-Ljungquist et al.,

1995). Phage f92 infects a wide range of enterobacteria,

including, among others, the polysialic acid encapsulated

Escherichia coli strains K1 and K92 (Kwiatkowski et al., 1982).

The recently sequenced f92 genome (148.4 kb, EBI Accession

No. FR775895) contains 248 open reading frames (ORFs),

many of which are related to those of phages rv5 and PVP-SE1

(Santos et al., 2011). Putative tail genes are listed in Table S1,

available online (the full annotation of the f92 genome will be

published elsewhere).

Here, we present the crystal structures of P2 gpV and f92

gp138 and show that these proteins form the membrane-

piercing components of the phage with the help of cryoelectron

microscopy (cryoEM) of f92. Both proteins are spike-shaped

trimers consisting of an N-terminal oligonucleotide/oligosaccha-

ride-binding (OB-fold) domain, a tapering b helix, and the

C-terminal apex domain. The membrane-piercing tips of the

two proteins have similar topologies notwithstanding the last

swapped b strand. The apex domains of both spikes contain

an iron ion, coordinated by six histidine residues in the octahe-

dral fashion, with two histidines donated by each of the three

symmetry-related chains. Except for the iron-coordinating histi-

dines, the residues that form the piercing tip of the structure are

not conserved, although both phages infect E. coli. The structure

and biophysical data strongly support the earlier hypothesis that

the spike proteins serve as rigid piercing needles and do not

undergo refolding upon interaction with the membrane.

RESULTS

Identification of the Phage P2 and Phage f92
Cell-Piercing Proteins
An earlier study with immunogold labeling showed that gpV of P2

is located in the central part of the baseplate and exposed to the

milieu (Haggård-Ljungquist et al., 1995). In the literature, this

protein is called the ‘‘P2 tail spike,’’ which is almost identical to

the term ‘‘tailspike’’ used to describe host cell receptor-binding

molecules of phages with short noncontractile tails such as

P22, Sf6, K1F, and so forth (Israel et al., 1967; Leiman and

Molineux, 2008; Steinbacher et al., 1994). The latter have an

appearance of stubby spikes in electron microscopy (EM)

images tailspikes and are positioned at the tail’s periphery (Israel

et al., 1967). As the two types of spikes are clearly different, here

we use the term ‘‘central tail spike’’ or ‘‘central spike’’ to refer to

P2 gpV and its orthologs.

We surmised that the P2 central tail spike is an ortholog of T4

gp5; that is, both are membrane piercing but not host cell-

binding proteins, even though they show only 16% sequence
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identity over the first 100 residues (the C termini are more

diverged) and vary greatly in size (P2 gpV contains 211 residues

and T4 gp5 585). Despite these differences, both proteins

contain a valine/glycine-rich C-terminal region, which forms

a b helix in gp5 and is likely to formmultiple consecutive b strands

in gpV according to PSIPRED (McGuffin et al., 2000). More

important, HHpred analysis showed that, despite the low

sequence identity, the N-terminal domain of gpV is very likely

to have an OB-fold also found in gp5 and VgrG (Table 1).

In a parallel effort, we obtained the cryoEM reconstruction of

the phage f92 baseplate, which showed a central spike-shaped

structure, similar to those found in the phage T4 and phage

phiKZ baseplates. Using the same reasoning as in the analysis

of the P2 genome, we hypothesized that the f92 central spike

is formed by a protein homologous to T4 gp5 (and to P2 gpV);

thus, its N-terminal domain is likely an OB-fold and its C-terminal

domain is a b helix. The amino acid sequences of all 248 f92

genes were analyzed for the presence of valine/glycine-rich

regions known to form repetitive b strands and b helices (Kajava

and Steven, 2006). The HHpred analysis was then carried out on

several selected proteins. Gp138 was the only protein with the

N-terminal part predicted to have an OB-fold, albeit with a lower

degree of confidence than that of P2 gpV (Table 1). The amino

acid sequences of P2 gpV and f92 gp138 have 19% identity

and contain a conserved LHTHxHP motif near the C terminus

(Figure 1).

Crystallographic Analysis of P2 gpV and f92 gp138
Structure Determination and Structure-Aided Design

of Deletion Mutants

We solved the structure of P2 gpV using the single-wavelength

anomalous diffraction (SAD) technique with the help of a Se-

methionine (SeMet) derivative. For both SeMet and native

proteins, we were able to grow very large (>1 mm in size) crys-

tals, which showed no imperfections when observed under the

microscope. The best crystals diffracted X-rays to about 2 Å

resolution (Table 2), but the diffraction images had a blotchy

background indicating of internal disorder. The extent of this

disorder became apparent in the electron density (Figure S1A).

It was not possible to build the atomic model for about one

quarter of the crystallized protein (residues 1–6 and 164–211

were disordered). Notably, the disordered regions participate

in crystal lattice contacts (Figure S1A). A similar type of disorder

was observed in the crystals of the bacteriophage T4 short tail

fiber fragments (Thomassen et al., 2003; van Raaij et al., 2001).

Using the information from the partial model, we designed two

deletion constructs, gpVdS and gpVdL, which contained the

disordered C-terminal part of the protein and corresponded to
6–339, February 8, 2012 ª2012 Elsevier Ltd All rights reserved 327



Figure 1. Sequence Comparison of P2 gpV and

f92 gp138

The sequence alignment, calculated with the help of

ClustalW (Thompson et al., 1994), was instrumental in

designing the deletion mutants of gpV and gp138, which

are labeled with their corresponding names and black

arrows. Also shown is the information derived from the

crystallographic studies. The secondary structure ele-

ments are indicated with arrows (b strands) and a red bar

(the N-terminal a helix). The three domains constituting the

structure are labeled with distinct colors. The residues

disordered in all crystal forms and mutants are underlined

with a red dashed line. The ions buried within the apex

domain are shown as circles labeled Fe, Cl, and Ca.
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residues 122–211 and 96–211, respectively (Figure 1). The

shorter mutant (gpVdS) was insoluble on expression, but the

longer mutant (gpVdL) was soluble and formed a very stable

trimer in solution. Crystals of gpVdL had a very long unit cell

(49 Å 3 49 Å 3 464 Å; Table 2), but nevertheless diffracted

X-rays to better than 0.9 Å resolution. The PILATUS 6M

photon-counting detector was used to finely slice the reciprocal

space, making it possible to collect a 100% complete data set to

0.94 Å resolution (Table 2). We obtained initial phases from the

anomalous scattering signal of sulfur atoms of the methionine

residues using the data collected at a wavelength of 1.254 Å

corresponding to the Ta LIII edge. These phases were improved

by the atom-recycling procedure as implemented in ARP/wARP

(Morris et al., 2003) and allowed building the atomic model for

the C-terminal domain. The latter was then used to complete

the missing part of the full-length structure by superimposing

residues 97–140 found in both structures.

Despite extensive attempts and expected structural ho-

mology, we were unable to solve the structure of full-length

gp138 using any part of gpV as a molecular replacement (MR)

model in automatic searches or in the brute force search proce-

dure. SeMet-substituted gp138 failed to crystallize, and heavy

atom derivatization attempts were unsuccessful. Thus, we de-

signed a deletion mutant called gp138dL (residues 121–245),

which corresponded to gpVdL based on the sequence alignment

of gpV with gp138 (Figure 1). Crystals of gp138dL had an even

longer cell than those of gpVdL (48 Å 3 48 Å 3 553 Å; Table 2)

but nevertheless diffracted X-rays to 1.3 Å resolution. We solved

the structure of gp138dL using the SAD technique with the

anomalous scattering signal of strontium ions present in one of

the crystallization conditions. The structure of full-length gp138

was solved by MR with gp138dL as a search model.

Crystal Structure of gpV and gp138

Phage P2 gpV and phage f92 gp138 are spike-shaped trimers

about 125 Å and 120 Å long, respectively, and 42 Å and 53 Å

wide in their widest parts, respectively (Figure 2). The three poly-

peptide chains constituting the trimers are highly intertwined.

About 42% and 25% of all surface-exposed residues in the

monomers of gpV and gp138, respectively, are buried within

the trimer interface. The bioinformatic analysis outlined earlier
328 Structure 20, 326–339, February 8, 2012 ª2012 Elsevier Ltd All rights reserved
proved to be correct: both proteins have

a similar architecture and are composed of an

N-terminal OB-fold domain and a C-terminal

b-rich part. The latter consists of an extended
b helix, which tapers toward the C terminus and ends in a sharp

tip structure constituting the apex domain.

The N-Terminal OB-Fold Domain

Residues 1–17 of gpV form a short coiled-coil segment with

a typical hydrophobic core. The corresponding region of gp138

(residues 1–22) is disordered in the crystal structure but, accord-

ing to PSIPRED, is likely to form an a helix.

Residues 18–90 and 23–126 constitute the N-terminal OB-fold

domain in gpV and gp138, respectively (Murzin and Chothia,

1992). The OB-fold of gp138 contains an intramolecular disulfide

bond between C114 and C120. The distance between the two

corresponding Sg atoms is 2.07 Å, which is within the experi-

mental error of the average disulfide bond length of 2.05 Å.

The most significant difference of gpV and gp138 OB-folds,

compared to other OB-folds, is a 20 Å-long b-hairpin insertion

between strands b3 and b4 (Figure 3). This long arm forms the

first strand of the b helix and is also found in the structure of

two other known orthologs, T4 gp5 and T6SS VgrG (Kanamaru

et al., 2002; Leiman et al., 2009). The second and two subse-

quent strands of the b-helical domain are donated by a different

polypeptide chain but create a smooth b sheet (Figure 3).

Similar to gp5 and VgrG, the long axis of the gpV OB-fold

barrel is roughly parallel to the trimer axis. The OB-fold domain

of gp138 is tilted away from the trimer axis, making the diameter

of the gp138 OB-fold trimer significantly greater. This difference

in conformation is unlikely to be caused by the crystal lattice

contacts. The gp138 OB-fold contains a unique 26-residue

insertion between strands b4 and b5. Residues 92–117 form

a large loop that wraps around each of the OB-fold domains,

pushing them apart (Figure 3). The first ordered residue of

gp138 OB-fold (H22) is 14 Å away from its equivalents in the

other two chains, which is far too long to form an interaction to

create a coiled coil, partially explaining the reason for the disor-

dered N-terminal a helix.

The b Helix

Residues 98–190 in gpV and 138–215 in gp138 form the b helix or

b prism domain. The highly intertwined all-b domains are called

‘‘b helices,’’ ‘‘b prisms,’’ and ‘‘b rolls’’ in the literature (Kajava

and Steven, 2006). Here we call the all-b domains of gpV and

gp138 ‘‘b helices’’ for simplicity, despite their different



Table 2. Crystallographic Data Collection and Refinement Statistics

Phage P2 f92

Protein/Mutant Name gpV gpVdL gp138 gp138dL

Dataset Name

SeMet f00

Peaka
High- Resolution

Native

Low-Energy

S-SAD Phasing Native

High- Resolution

Native

Strontium f00

Peak

Data collection

Beamline SLS PXI SLS PXI SLS PXII SLS PXIII SLS PXI SLS PXIII

Wavelength (Å) 0.9795 0.8000 1.2537 1.0000 1.0000 0.7688

Space group P321 H32 H32 H32 H32 H32

Cell dimensions a = 68.54 Å a = 49.07 Å a = 49.28 Å a = 65.14 Å a = 48.08 Å a = 48.04 Å

c = 132.18 Å c = 463.90 Å c = 464.51 Å c = 329.38 Å c = 553.20 Å c = 552.21 Å

Asymmetric unit content

(polypeptide chains)

1 2 2 1 2 2

Resolution range (Å) 66.09–2.03 27.33–0.94 42.49–1.30 55.61–2.64 41.52–1.29 41.20–1.93

Unique reflections 24032 141144 48286 8322 61805 35668

Redundancy 17.4 6.0 16.4 10.5 16.6 10.2

Completeness (%) 99.9 (100.00)b 99.9 (99.9) 88.1 (18.4) 99.7 (98.1) 98.6 (96.6) 99.5 (97.1)

Rsym (%) 5.9 (34.3) 5.8 (25.6) 4.9 (27.5) 8.4 (46.9) 8.2 (75.9) 8.6 (43.9)

I/s(I) 27.6 (7.5) 16.6 (5.8) 50.6 (4.5) 18.4 (4.5) 17.6 (4.3) 19.6 (3.6)

Refinement

R (%) 25.97 10.23 19.56 12.29

Rfree (%) 30.50 11.20 25.33 15.98

B factor (Å2) 35.67 6.41 43.81 12.50

Rmsd of bond lengths (Å) 0.004 0.017 0.004 0.016

Rmsd of bond angles (o) 0.996 1.991 0.836 1.751

No. of residues 156 228 208 212

No. of water molecules 224 477 165 420

Other ligands: FefCafClfNafK 0f0f1f0f0 2f2f2f1f0 2f0f0f0f1 2f0f0f7f0
PDB ID 3QR8 3QR7 3PQI 3PQH

See also Table S1.
a f00 is the imaginary component of the atomic scattering factor.
b The number in parentheses describes the statistics for the highest resolution shell.
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topologies. The three chains of the gpV b helix are fully inter-

twined with each chain, forming a long corkscrew structure

(similar to T4 gp5), whereas the gp138 b helix is composed of

three antiparallel b sheets,which swap threeC-terminal b strands

with each other around the threefold axis (Figure 2). Despite the

low sequence similarity (Figure 1), the two domains are likely to

have a common ancestor from which they both diverged by

many domain/chain/b strand swapping events.

The b helix tapers toward the C terminus from about 32 Å in

diameter (the distance between the outermost Ca atoms) to

20 Å or 25 Å for gpV and gp138, correspondingly. There are six

residues per b strand in the beginning of the b helix and five start-

ing from about its middle part to the end. The C-terminal part of

the helix contains several large charged residues (arginines,

lysines, and glutamates) that extend into the solution, increasing

the actual diameter of the molecular surface. Nevertheless, most

of the b helix does not display a prominent electrostatic charge.

A significant negatively charged patch is located at the point of

junction of the b helix with the OB-fold domain in both gpV and

gp138 (Figures S2A and S2B). Most of the large charged resi-

dues are found near the corners of the triangular cross-section

of the b helix (i.e., in the beginning or at the end of b strands).
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Neither the gpV nor gp138 b helix contains an obvious binding

site for an oligosaccharide or oligopeptide. No heavy atom, cry-

oprotector, or other small molecule was found to bind to either of

the b helices in any of the available crystallization conditions and

many soaking experiments.

The interior of the b helix is hydrophobic and formed by

valines, leucines, isoleucines, and occasional phenylalanines,

methionines, and cysteines (Kajava and Steven, 2006). b-helical

proteins are generally characterized by an increased content of

valines and glycines compared to the average found for all

known proteins, and this skewed distribution is often used to

predict a b helix-like fold (Kajava and Steven, 2006). In agree-

ment with this observation, the glycine content of the gpV and

gp138 b helices is greater than the UniProt database average

(10%–14% versus �7%) (Figure 4). However, their valine

content does not fully follow this trend. The gpV b helix contains

a high percentage of valines (�13% versus the UniProt average

of �7%), whereas the valine content of the gp138 helix (�5%) is

significantly below the database average (Figure 4).

It is surprising that both the gpV and gp138 b helices contain

an unusually large number of threonines (�14% versus the data-

base average of �5%). Most of these threonines are located in
6–339, February 8, 2012 ª2012 Elsevier Ltd All rights reserved 329



Figure 2. Structure of P2 gpV and f92 gp138

Trimers of P2 gpV (A) and f92 gp138 (B) are shown as

ribbon diagrams. Residue numbers are indicated in stra-

tegic positions. The three domains constituting the

structure are labeled. (C) and (D) show the topology of one

of the three constituent polypeptide chains in gpV and

gp138, respectively. See also Figure S2.
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the middle of the b strands with their side chains pointing

outward. The elevated threonine and glycine content makes

them TG-rich, but not VG-rich, domains, a feature that is also

apparent in the amino acid composition of the complete protein

sequences of gpV and gp138 (Figure S3).

The content of other amino acids in the two b helices is

different, most possibly because of their different topologies

(the corkscrewlike gpV versus the b prism-like gp138) and
330 Structure 20, 326–339, February 8, 2012 ª2012 Elsevier Ltd All rights reserved
because of the insufficient number of residues

to amount to good statistics. Notably, the

gp138 b helix is characterized by a high content

of asparagines: �10% versus the UniProt

average of �4% and �3% for the gpV b helix

(Figure 4). Most of these asparagines are part

of or near the sharp turns of the polypeptide

chain between the b strands, with their head

groups forming interchain hydrogen bonds

and thus stabilizing the trimer. In summary,

amino acids of three most prevalent types—

glycines, threonines, and valines—constitute

a total of �38% and 33% of all residues in

gpV and gp138 b helices, respectively.

The Structure of the Apex Domain

The b helices end in the apex domain (residues

191–211 and 216–245 in gpV and gp138,

respectively) (Figure 5). The monomeric unit of

this trimeric structure is composed of three

b strands, with the first short strand being

perpendicular to the trimer axis and the two

subsequent strands forming two antiparallel

b strands roughly aligned with the trimer axis.

The structure of the apex domain in both

proteins is conserved apart for the last b strand

being swapped between the symmetry-related

chains.

In both structures, the apex domain tapers

from about 23 Å to 9 Å in diameter. The gpV

apex tip is formed by three b-hairpins, which

come together like petals in a flower bud. Resi-

dues D203-S203-G204 comprise the sharp turn

of the b-hairpins, ensuring the small diameter of

the tip. The last b strand of gp138 is threaded

under the symmetry-related polypeptide chain,

making the tip appear to be less sharp than

that of gpV. This impression is incorrect, as

the tip of gp138 contains a well-defined apex

residue E231, which points along the axis of

the trimer and form the actual extremity. The
head groups of the three symmetry-related glutamates (E231)

are only 3.4 Å away from each other and 1.9 Å away from the

trimer axis (Figure 5).

The external surface of the apex’s tip in gpV and gp138 is

formed by small residues S203-G204-G205-T206 and T232-

G233-G234-S235-T236, respectively. However, large positively

charged residues protrude away from the backbone further

away from the tip. In gpV, these are three symmetry-related



Figure 3. The Conserved Organization of the Spike Proteins

OB-fold domains and the first strands of the b helix of P2 gpV, f92 gp138, T4 gp5, and T6SS VgrG are shown in (A), (B), (C), and (D), respectively. The conserved

b-hairpin, which starts the b helix, is highlighted in orange. This b-hairpin is disordered in the crystal structure of T6SS VgrG. As the gpV b-hairpin has the same

number of residues, it was used to model the VgrG b-hairpin, shown in red in (D). The extra loop, which changes the orientation of the OB-fold domain in f92

gp138, is shown in red in (B).
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K198, which are �15 Å from the tip. In gp138, R228 is�8 Å from

the Ca atoms of the tip and�14 Å from E231 head groups. D240

and K241 are found further down the gp138 surface. They are

�19 Å and�24 Å away from the E231 head groups, respectively

(Figure 5).

The Apex Domain Contains an Iron Atom

The most remarkable feature of the gpV and gp138 apex

domains is the organization of their interior. Each of the three

chains constituting the apex domain contains two histidine resi-

dues—H197 and H199 in gpV and H223 and H225 in gp138—

that point to the structure interior. Three pairs of these histidines

create a perfect octahedral coordination shell for the iron ion

positioned on the axis of the trimer (Figure 5). The average
Structure 20, 32
distance between the Nε2 atom of histidines and the iron ion is

2.20 ± 0.01 Å in gpV and 2.23 ± 0.01 Å in gp138. This is longer

than the average found in other iron-containing proteins

(2.08 Å). The presence of the iron atomwas unexpected because

the proteins, their deletionmutants, or their crystals did not show

any color or any unusual spectroscopic properties in the UV-Vis

spectrum associated with all known iron-containing proteins.

The presence of iron was confirmed by X-ray fluorescent emis-

sion spectra of gpV, gpVdL, gp138, and gp138dL and later using

Raman spectroscopy. Preliminary combined X-ray diffraction/

Ramanmeasurements showed no obvious changes in the struc-

ture of the iron coordination site after prolonged exposure to

intense X-rays indicating tight binding.
6–339, February 8, 2012 ª2012 Elsevier Ltd All rights reserved 331



Figure 4. The Histogram of Amino Acid Composi-

tion of P2 gpV and f92 gp138 b-Helices

UniProt is the histogram of amino acid usage frequencies

averaged over the entire database of the Universal Protein

Resource (http://www.uniprot.org/) in January 2011. Red

stars identify the most prevalent amino acids in gpV and

gp138 b-helices. See also Figure S3.
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A similar octahedral hexahistidine coordination of iron ions

was found recently in the structure of the C-terminal domain

(called gp37C) of the phage T4 long tail fiber protein gp37 (Bar-

tual et al., 2010). The needle-shaped gp37C trimer contains

seven iron atoms dispersed through the length of the molecule.

As in gpV and gp138, the gp37C iron ions are positioned on

the threefold axis of the protein and are bound to the HxHmotifs.

Again, similar to gpV and gp138, the UV-Vis spectral properties

of gp37C protein solution or crystals gave no indication of their

high iron content. The average distance between the iron ions

and the Nε2 atom of histidines in gp37C is 2.31 ± 0.06 Å, which

is even greater than that of gpV or gp138. It is possible that the

long distances, which characterize the iron-binding sites in

gpV, gp138, and gp37C, contribute to the absence of color in

these proteins.

The position and binding of the iron ions in gpV and gp138

have one significant difference compared to those of gp37C.

None of the iron ions in gp37C is found at the extremities of

the molecule. In fact, all iron atoms are part of gp37C middle

domain. The distal and proximal ends of gp37C are formed by

globular domains, which are free from any metal ions.

Despite obtaining the electron density map of exceptional

quality, in which many of hydrogen atoms are visible (0.94 Å

resolution and Rfree of 11%; Figure S1F), we were unable to reli-

ably estimate the oxidation state of the iron ion using refinement

of crystallographic data. Both of the two common oxidation

states of iron (+2 or +3) gave similar crystallographic residuals

and approximately similar residual difference map peaks, albeit

the residual peaks in the Fe3+ map were slightly smaller. Elec-

tronic paramagnetic resonance experiments turned out to be

inconclusive. Therefore, we made a tentative assignment of the

iron oxidation state as +3.

Beside the iron ion, the interior of the gpV apex domain

contains two other ions—a calcium and a chlorine—both of

which are positioned on the trimer axis, one below the other.

The calcium ion is coordinated by the head groups of three

D202 and S203 and is located just below the molecular surface

formed by the Og atoms of S203. The geometry of the calcium-

binding site is not unusual (Figure 5), but the chlorine-binding

site is quite remarkable. It is created by the backbone nitrogen

atoms of D202 (which are 3.30 Å away), the D202 head group
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oxygen atoms (3.30 Å away), and the calcium

ion mentioned earlier (4.02 Å away). The gp138

apex tip is hydrophobic and is free from these

or any ions because of its more interwoven

topology.

Structure of the Phage f92 Baseplate
In an effort parallel to those of the crystallo-

graphic studies of the central spike proteins,
we analyzed the structure of the f92 particle using cryo-electron

microscopy and image reconstruction (cryoEM). The structure of

the distal part of the tail, containing the baseplate and part of the

sheath was reconstructed to a resolution of�26 Å (Figure 6). The

structures of the capsid and the rest of the tail will be reported

elsewhere. The hand of the reconstruction was determined

with the help of atomic force microscopy (AFM) (Figure S4) and

by fitting the crystal structure of a sheath protein homolog

(PDB ID 3HXL) into the cryoEMmap. Only one hand of the recon-

struction gave a reasonable fit if the orientation of the sheath

protein subunit was assumed to be roughly similar to that found

in the T4 tail sheath.

The f92 baseplate is significantly different from that of the

phage T4 and phage phiKZ studied earlier (Fokine et al., 2007;

Kostyuchenko et al., 2003). Several long fibers point away from

the f92 baseplate like different tools in an open Swiss army knife

(Figure 6). The f92 genome contains a large cluster of genes,

which are responsible for forming these fibers (Table S1), but

not every phage particle might contain a full complement of

fibers/tailspikes leading to the observed difference in their occu-

pancies. It is also possible that one type of fibers is less mobile

and, hence, much better defined in the cryoEM map than the

others. Still another alternative explanation is that one large

fibrous structure on the baseplate periphery adapts at least three

distinct conformations, with the conformations ‘‘down’’ and ‘‘up’’

being the most and the least populous, respectively. Because of

the limited size of the data set, we were unable to classify parti-

cles according to the fiber occupancy and/or conformation. We

are addressing this question using cryotomography.

The central part of the f92 baseplate is well ordered. It is

possible to uniquely assign the central spike density to the

gp138 trimer. The axial orientation of gp138 can be established

with twofold ambiguity because the density is sixfold averaged,

whereas the structure is trimeric. In contrast, the translation of

gp138 along the spike density is determined uniquely. The

crystal structure of gp138 fully occupies the density of the central

spike, with the iron-containing apex domain constituting the tip

of the spike (Figure 6). As the structure of gpV is homologous

to that of gp138, gpV is likely to occupy the same position in

P2 baseplate with the apex domain forming the tip of the central

tail spike.

http://www.uniprot.org/


Figure 5. Structure of the Apex Domain

(A) and (B) show a close-up view of the ions buried within the apex domains of P2 gpV and f92 gp138, respectively. (C) is a stereo diagram of the two super-

imposed apex domains demonstrating the conserved topology and swapping of the last b strand. See also Figure S4.
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DISCUSSION

P2 gpV and f92 gp138 Form the Membrane-Piercing
Spikes
Information available from earlier studies and modern bio-

informatic tools allowed us to surmise that P2 gpV and f92

gp138 are orthologs of the phage T4 central spike protein gp5.

The combined crystallographic and cryoEM analysis presented
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here confirms this hypothesis and provides key additional infor-

mation about the structure and organization of the central spike

proteins of contractile tail-like systems (phage tails, R-type pyo-

cins, T6SS, etc.). The membrane-piercing tip of the central spike

proteins contains a buried, centrally positioned, hexahistidine-

coordinated iron ion, which is bound to the conserved HxHmotif.

The iron ion is likely to have a dual function: it participates in

the folding of gpV into a trimer by helping to keep the three
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Figure 6. CryoEM Structure of f92 Baseplate

(A) CryoEM micrograph of f92 phage particles. The red box shows the reconstructed part of the particle.

(B and C) Tilted and side views of the cryoEM density map contoured at 2s above the mean. The map is colored in a rainbow pattern starting from the center (red)

to the periphery (blue). A key relating the color to the radius in Å is given in the lower right corners of (B) and (C).

(D) Fitting of the gp138 crystal structure into the cryoEM map. The molecular surface of gp138 is colored according to the trace of each of the three polypeptide

chains constituting the trimer. A slice (�60 Å thick) of the cryoEM map is shown. See also Table S1 and Figure S5.
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polypeptide chains, which are about to be folded, in register; and

it provides an increased stability to the tip structure once the

protein has folded.

Both phages P2 and f92 require calcium for infection. A

calcium ion is found at the tip of P2 gpVdL, crystallized in several

conditions containing no calcium. Furthermore, the protein was

incubated with EDTA at a concentration of 1.5 mM overnight

during purification (see Experimental Procedures). Therefore,

this calcium ion is unlikely to have a regulatory function in phage

infectivity but is important for the structural stability of gpV. This

reasoning is further confirmed by the structure of the gp138 apex

domain, which is free from calcium or any other divalent metal

ions when crystallized in the presence of potassium, calcium,

or strontium at concentrations as high as 0.4 M. The conforma-

tion of the protein backbone in all of these crystallization condi-
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tions is unchanged. Therefore, calcium is most probably

required for the initial adsorption of either phage to the host

cell surface, which is mediated by other baseplate proteins. It

is possible that P2 and f92 baseplates have a similar calcium-

dependent activation mechanism proposed for noncontractile

tail phages infecting lactic acid bacteria (Sciara et al., 2010).

Alignment of the amino acid sequences of P2 gpV and f92

gp138 to the protein database shows that the double-histidine

H3H motif responsible for iron binding at the C-terminal end of

the protein is very well conserved (Figure S5), suggesting that

the apex domains are likely to contain iron and to have the

same foldwith apossibility for occasional chain swapping, similar

to gpV and gp138. In some spike proteins, for example in R-type

pyocins, the double-histidine motif forms the C terminus of the

structure. In some others, the double-histidine motif is followed
ights reserved



Figure 7. Thermal Stability of gpV, gp138, and gpVdL

See also Figure S6.
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by a sequence containing more than 20 residues. A stretch of

small residues (G, S, T, D, and P) is always present in the middle

of this sequence, indicating the position where the polypeptide

chain turns back, and forms the pointy tip of the structure. In

general, the sequence of the apex tip residues for phages infect-

ing the same bacterial species is not conserved, suggesting that

no specific binding of the tip to the host cell membrane occurs.

Earlier studies showed that a G64/Emutation in gpV leads to

a temperature-sensitive phage phenotype (Haggård-Ljungquist

et al., 1995). This glycine is located in the beginning of strand

b5 of the OB-fold domain on the surface of the protein. The

glycine residue has backbone angles corresponding to those

found in an a helix and can be easily replaced with a glutamate

with the head group pointing into the solution (Figure S2C).

Multiple sequence alignment shows that a glycine is a predomi-

nant residue in this position, but an aspartate is also found in

some homologs (this glycine corresponds to position 93 in Fig-

ure S5A). Thus, the G64/E mutation is likely to negatively

influence the interaction of gpV with other baseplate proteins,

in particular with gpJ (the P2 ortholog of T4 gp6) to a greater

degree than the folding of gpV.

Interaction of the Spike Proteinwith the HostMembrane
Host cell attachment is followed by contraction of the tail sheath,

which causes the tail tube tip to cross the host cell membrane

(Liu et al., 2011; Simon and Anderson, 1967a, 1967b). The

central spike protein forms the membrane-attacking tip of the

tube and plays a critical role in this process (Kanamaru et al.,

2002; Kostyuchenko et al., 2003). A hypothesis that the central

spike complex of phage T4 functions to pierce the outer

membrane was proposed (Kanamaru et al., 2002), albeit later

studies showed that the T4 spike protein gp5 is capped with

an unknown protein significantly undermining the membrane-

piercing concept (Kostyuchenko et al., 2003).

The structure of the apex domain of P2 gpV and f92 gp138

shows that the tip of the spike is a very sharp and stable structure

formed by three intertwined and iron-coordinated polypeptide

chains. GpV, gp138, and their deletion mutants constituting the

membrane-attacking regions are resistant to dissociation into

monomers in the presence of denaturing agents such as urea

and SDS. They also display high stability to heat denaturation.

The half-life of the full-length gpV and gp138 trimers at 65�C is

�37 and �26 min, respectively (Figure 7, Figure S6). Further-

more, gpV, gpVdL, gp138, and gp138dL do not aggregate at

concentrations exceeding 20 mg/ml in a neutral pH buffer con-

taining little or no salt. In summary, gpV, gp138, and their

C-terminal fragments are exceptionally stable and soluble

proteins, which show no lipid-binding propensity.

These properties of the spike proteins very strongly support

the piercing hypothesis that the central spike protein of

a contractile tail is translocated through the membrane without

major unfolding or any specific interaction with it but instead is

used as a rigid needle to create an opening in the membrane.

The fine details of the apex domain interaction with the

membrane are not clear, but their progressively greater diameter

starting from the tip and going to the N-terminal OB-fold domain

(Figure 6D, Figure S2) suggests that the initial opening can be

enlarged by the spike as it is translocated through themembrane

by the incoming tail tube.
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The spike protein is located in the center of the baseplate and

is inserted into a donut-shaped baseplate hub protein (a T4 gp27

ortholog), which terminates the tube (Kostyuchenko et al., 2003).

The spike protein thus serves as the distal plug of tail tube

channel and might regulate the process of the phage DNA and

protein ejection into the host cell. It is interesting that the density

corresponding to the region of interaction between the spike

and the hub protein is weak in the cryoEM reconstructions of

both the T4 and f92 tails (Figure 6D) (Kostyuchenko et al.,

2003). It is possible that the spike protein interacts with the

hub protein (and the tube) weakly and is posed for an easy disso-

ciation once the membrane is breached. In T4, the dissociation

of the spike and hub proteins (gp5 and gp27) can be triggered

by lowering the pH of the solution, which mimics the conditions

of the periplasm.

The energy for the translocation of the spike and the tube

through the membrane and the movement itself is generated

by the sheath, whose contraction results a lower energy state

of the entire system. Participation of other factors that can

supply additional energy for the translocation (e.g., DNA, which

is packaged under high pressure inside the phage capsid) is

unlikely. The cell-puncturing complex, identical to that of phage

P2, is found in many contractile injection systems (e.g., in R-type

pyocins) that constitute a ‘‘capsidless’’ and DNA-free phage

tail-like structure (Nakayama et al., 2000).

The Conserved Organization of Spike Proteins
The four available crystal structures of the spike proteins (P2gpV,

f92 gp138, T4 gp5, and T6SS VgrG) allow us to analyze the
6–339, February 8, 2012 ª2012 Elsevier Ltd All rights reserved 335



Table 3. Putative Spike Proteins from Several Diverse Contractile Tail Systems

Contractile System Name

Type of Susceptible

Organism Protein Name

GenBank

Reference

N-terminal

Domain

Putative C-terminal

Domain Structure

C-terminal HxH

Motif Present?

Pseudomonas phage SN Gram-negative PPSN_gp43 YP_002418849 OB-fold b helix Yes

Iodobacteriophage fPLPE Gram-negative phiPLPE_59 ACG60381 OB-fold b helix Yes

Cronobacter phage ESSI-2 Gram-negative ADX32369.1 ADX32369 T4 gp27 plus

OB-fold

b helix Yes

Haemophilus phage HP1 Gram-negative orf35 NP_043506 T4 gp27 plus

OB-fold

b helix Yes

Listeria phage A511 Gram-positive gp99 AAY52880 OB-fold Coiled coil No

Staphylococcus phage A5W Gram-positive gp ORF085 ACB89078 OB-fold a/b structure No

Brochothrix phage A9 Gram-positive BrPhBA9_gp101 YP_004301434 OB-fold b helix No

Staphylococcus

phage Twort

Gram-positive ORF010 YP_238569 OB-fold a/b structure No

Bacillus phage SPO1 Gram-positive gp12.2 YP_002300362 OB-fold b helix No

Geobacillus

bacteriophage D6E

Gram-positive

thermophile

D6E-ORF13Aa OB-fold b helix Yes/nob

Natrialba phage PhiCh1 Halobacterium

(Archeon)

orf28 NP_665946 OB-fold b helix Yes

Serratia entomophila

antifeeding prophage (afp)

Grass grub Costelytra

zealandica

afp8c YP_026144 T4 gp27 plus

OB-fold

b helix No

Photorhabdus luminescens

strain W14 necrotizing factor

Heterorhabditidae

nematode

orf19c AAN64223 T4 gp27 plus

OB-fold

b helix No

All gpV orthologs were identified with the help of HHpred. In all cases, the T6SS spike protein VgrG (PDB ID 2p5z) was the best match to the search

query.
a D6E-ORF13A is not annotated as a gene product in the current edition of the phage DE3 genome (GenBank ID: GU568037). The genome location and

amino acid sequence of D6E-ORF13A is given in the Supplemental Information.
b Instead of HxH, D6E-ORF13A contains the HRxH motif, which might be able to bind iron or some other metal ion.
c These ORFs are correctly annotated in the database as an ortholog of P2 gpD plus P2 gpV. P2 gpD is a homolog of T4 gp27.
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conservation of the spike structure in great detail. Besides the

OB-fold domain, the following features are common to all struc-

tures: (1) the hairpin insertion between OB-fold strands b3 and

b4, which serves as the start of the b helix; (2) the spatial relation-

ship of the OB-fold and its hairpin insertion to the b helix; and (3)

the topology of the first four b strands of the b helix (Figure 3). The

OB-fold domains of gpV, gp138, T4 gp5, and VgrG, however,

display very low sequence similarity, making the conservation

of these structural features particularly striking (Table S2).

The OB-fold domain with its hairpin insertion represents a very

distinct structural marker, which can be used to find orthologs of

the spike protein in other contractile tail-like systems with the

help of HHpred and gene clustering analysis. gpV orthologs

are present in phages infecting Gram-positive bacteria and in

contractile ejection systems acting on eukaryotes (Table 3). In

some systems, the spike protein is part of a larger gene that

also encodes the baseplate hub protein (T4 gp27 ortholog)

immediately in front of theOB-fold domain, such as, for example,

in T6SS VgrG proteins. The requirement for the conserved iron-

containing structure of the membrane-piercing apex domain

appears to be common to bacteriophages infecting Gram-nega-

tive bacteria (Table 3). It is possible that this requirement extends

to all contractile ejection systems acting on Gram-negatives.

The exact composition of the membrane-binding tip of the

spike complex in Gram-positive contractile tail phages and

eukaryotic contractile systems is unknown, but their spike

proteins appear to have significantly diverged from those of
336 Structure 20, 326–339, February 8, 2012 ª2012 Elsevier Ltd All r
Gram-negativephages (Table 3). InmanyGram-positive contrac-

tile tail phages the OB-fold is followed by a large coiled coil

domain, which is sometimes capped by another protein or do-

main lacking the double-histidine motif (e.g., gp99 from phage

A511; Table 3). In eukaryotic contractile systems, the b helix is

present at the C terminus of VgrG proteins, but its fold, topology,

and whether it is capped by another protein are unknown. In

many VgrG proteins, the b helix is extended by a functional

domain, which confers pathogenicity to the entire T6SSmachine

(Pukatzki et al., 2007). The structure of the gpV and gp138 apex

domains shows that three polypeptide chains can form a very

sharp tip and turn back, taking the C termini away from the tip

and making them open for fusion with functional domains.

The T4 gp5 spike protein studied earlier contains a lysozyme

domain, which is located between the OB-fold and the b helix

in the protein sequence and interacts with the N-terminal part

of the b helix in the gp5 trimer (Kanamaru et al., 2002). It was

proposed to be required to digest the intermembrane peptido-

glycan layer during infection, although more recent studies

showed that T4 particle containing a mutated lysozyme domain

with a 10-fold reduced activity retains thewild-type level of infec-

tivity (Kanamaru et al., 2005). Thousands of phage genomes are

deposited into the GenBank and only few—mostly very close

relatives of T4—contain a lysozyme domain within their spike

protein. It is interesting that a relatively close relative of T4, the

broad range Vibrio phage KVP40, contains no lysozyme domain

in its spike protein (gene 335, GenBank ID: 34419568) or in any
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other baseplate protein (Rossmann et al., 2004). KVP40 shows

a very high similarity to T4 overmost of its virion genes and there-

fore must have the same infection mechanism, which somehow

does not involve a lysozyme domain.

The other feature of the T4 spike is the mysterious additional

small protein that caps the spike’s b helix and forms the actual

membrane-piercing tip (Kostyuchenko et al., 2003). Analysis of

the entire T4 genome shows that there is only one gene with the

double-histidine iron-bindingmotif (H3H) near its 30 end: gene 26.
Gp26hasbeenproposed toparticipate in T4baseplate assembly,

but it is not found in the mature phage particle. Gene 26 contains

an internal in-frame translation initiation site corresponding to a

protein with a molecular weight (MW) of �10 kDa (GenBank ID:

20067601). This is in agreement with the MW assigned to the tip

protein in the earlier cryoEM study of the baseplate (Kostyu-

chenko et al., 2003). The small MW explains why gp26 was not

identified as a virus particle component in previous studies.

Gp26 and its double-histidine motif is well conserved in T4 rela-

tives with very few orthologs containing a HxxH motif and even

fewer—only one histidine. Whether these distant gp26 orthologs

lacking the HxH motif are part of the spike complex is unclear.
The Alternative Crystal Structure of the gpV
C-Terminal Domain
When this article was formatted for journal submission, a paper

describing the crystal structure of the C-terminal fragment of

P2 gpV containing residues 87–211 came out (Yamashita

et al., 2011) (PDB ID: 3AQJ). The 3AQJ structure and the four

crystal structures reported here were deposited into the PDB

at approximately the same time. Having independently identified

and crystallized essentially the same fragment of gpV (residues

87–211 versus 96–211), Yamashita et al. reported the same

chemical composition (the hexahistidine coordinated iron ion

and the C-terminally located calcium and chlorine ions) and the

same intertwined b helix fold. However, lacking the structure of

the N-terminal domain or any other structural data, Yamashita

et al. assumed that six gpV trimers are located at the periphery

of the baseplate and participate in host cell binding (Yamashita

et al., 2011). This contradicts the earlier study by immuno-EM,

which clearly shows that gpV is found at the center of the base-

plate (Haggård-Ljungquist et al., 1995). Our results are in line

with the immuno-EM study. Furthermore, we show that there is

only one copy of the spike protein per particle and that it

comprises the membrane-piercing spike in its entirety. As indi-

cated earlier, we were unable to detect any membrane-binding

propensity of gpV as reported by the same laboratory in an

earlier paper (Kageyama et al., 2009). The spike proteins and

their membrane-piercing apex domains from phages infecting

the same bacterial species do not show any detectable

sequence conservation, suggesting that their weak membrane-

binding properties might be due to nonspecific binding by

several surface-exposed positively charged residues, some of

which are mentioned in the Results section.
EXPERIMENTAL PROCEDURES

Cloning, Expression, and Purification

PCR-amplified fragments corresponding to gpV, gpVdL, gpVdS, gp138, and

gp138dL were cloned into the pEEVa2 expression vector using the primers
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given in the Supplemental Information. pEEVa2 was derived from pET23a by

introducing a TEV protease cleavage site in front of the BamHI restriction

site. The resulting proteins contained the MGSSHHHHHHSSGQNLYFQGSGS

tag at the N terminus, which can be cleaved off with TEV. The native N-formyl-

methionine was replaced with the last S from the aforementioned sequence.

Protein expression was performed in the 23TY medium supplemented with

ampicillin (100 mg/ml). The plasmid-carrying cells were grown to the optical

density OD600 of 0.6 and induced with IPTG to a final concentration of

0.75 mM. The cells were then incubated overnight at 18�C with rigorous

shaking. The cells were pelleted at 8000g, resuspended in a lysis buffer

(50 mM TrisCl, pH 8.0, 200 mM NaCl), and disrupted by sonication at 4�C–
10�C. The insoluble fraction was removed by high-speed centrifugation for

20 min at 27000g. The clarified cell lysate was loaded on to a 5-ml GE HisTrap

FF Ni-charged column, and the protein was eluted with imidazole-containing

buffer (50 mM TrisCl, pH 8.0; 200 mM NaCl; 250 mM Imidazole) using either

a continuous or step gradient. The eluted protein was dialyzed overnight into

50mMTrisCl buffer, pH 8.0. The His-tag was removed by TEV digestion, which

was carried out at 20�C overnight in the presence of 3 mM DTT and 1.5 mM

EDTA. The TEV:target protein ratio was 1:40. The digested protein was

dialyzed into 10 mM TrisCl, pH 8.0, overnight and then further purified by

ion-exchange chromatography (MonoQ 10/100 GL column). The fractions

containing the target protein were pulled together and passed through a

1-ml GE HisTrap Ni column to remove the undigested protein. The final purifi-

cation step was size exclusion chromatography with the Superdex 200 HiLoad

16/60 column in a buffer containing 20mM TrisCl, pH 8.0, and 150 mM NaCl.

The SeMet derivatives of gpV and gp138 were obtained with the help of the

Met-auxotrophic E. coli 834/DE3 strain grown in the presence of SeMet.

The SeMet mutants were purified by following the procedure established for

the native proteins.

Crystallization and Structure Determination

The purified proteins were concentrated to levels in the range of 20–50 mg/ml

in a buffer containing 20 mM TrisCl, pH 8.0, and 50 mM NaCl and were

subjected to 960-condition crystallization screening using crystallization kits

from Jena Biosciences. This search resulted in several hits for each

protein, which were further refined to produce large diffraction quality crystals

(Table S3).

The X-ray fluorescent emission spectra of gpV, gpVdL, gp138, and gp138dL

crystals showed the presence of iron, although crystals had no spectroscopic

features often associated with iron-containing proteins, such as color or addi-

tional absorption bands in the near-UV to visible optical range. Except for one

crystal form of gp138dL, the protein threefold axis always coincided with

a crystallographic threefold, placing the iron atom on a crystallographic three-

fold. This negated the anomalous scattering contribution of the iron atoms to

the diffraction pattern, and phasing with iron atoms resulted in poor maps.

The diffraction data were integrated with XDS (Kabsch, 2010), MOSFLM

(Leslie, 2006), or HKL2000 (Otwinowski andMinor, 2006), and the data set dis-

playing the best statistics was chosen for subsequent analysis. The heavy

atom sites were found with the help of SHELX (Sheldrick, 2008). In cases

when the SHELX solvent flattened map was not good enough for model

building, the SHELX sites were used in PHENIX (Adams et al., 2011) for

a new round of phasing and density modification. The CCP4 program suite

(Winn et al., 2011), SHELX, and PHENIX were used in data processing and

refinement. The atomic models were built with COOT (Emsley and Cowtan,

2004).

In general, the structure solution procedures were routine except for two

cases. First, despite being emerald green in color, a TaBr-soaked crystal of

gpVdL showed a very week anomalous diffraction signal at the Ta LIII edge

(1.2537 Å), suggesting that bound Ta atoms did not have crystalline order.

Nevertheless, the structure was solved with this data set. We located the

‘‘heavy’’ atoms in this data set and calculated the electron density map with

the help of SHELX. Of the 10 found heavy atoms, only 4 were not on the crys-

tallographic threefold axis. They were later identified to be the sulfur atoms of

the four methionines contained in the asymmetric unit. As most of the phasing

atoms were located on the crystallographic threefold axis, we attempted to

use noncrystallographic symmetry averaging by processing the data and

calculating the electron density in the C2 space group in addition to the true

space group H32. Both the C2 and H32 electron density maps were equally
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fragmented, noisy, and uninterpretable on visual inspection, but the C2 map

could be improved to become interpretable with the help of the atom recycling

procedure as implemented in ARP/wARP (Morris et al., 2003).

The second nonroutine point of crystallographic analysis was the MR solu-

tion of the full-length gp138 data set using the gp138dL mutant structure as a

search model. Several MR programs successfully placed the gp138dL

structure into the gp138 unit cell, but the resultant phases proved to be very

difficult to improve to produce an interpretable density for the N-terminal

domain. In the end, the only procedure that resulted in an interpretable map

was MR with PHASER (McCoy et al., 2007) followed by density modification

with PARROT (Cowtan, 2010).

Electron Microscopy

The E. coli strain Bos12 (O16:K92:H–) was used for propagation of phage f92,

which was purified using a procedure similar to the one described in (Gerardy-

Schahn et al., 1995). E. coli Bos12 (ATCC 35860) and phage f92 (‘‘phi 92’’;

ATCC 35860-B1) were obtained from ATCC. High-purity samples used in

EM were obtained by two successive CsCl gradient ultracentrifugation runs

and subsequent dialysis into the SM buffer (50 mM TrisCl, pH 7.5; 100 mM

NaCl; 8 mM MgSO4).

Low-dose cryoEM was performed as described in (Baker and Henderson,

2006). The images were recorded on Kodak SO-163 film using a Philips

CM300 FEG microscope at a magnification of 333000, with a radiation dose

of �20 e�/Å2 and a defocus of �2.0 to �3.5 mm. The images were scanned

using a Zeiss SCAI scanner, with a 7 mm step size, and were binned to obtain

a pixel size of 2.108 Å.

A total of 985 images of the distal part of the tail containing the baseplate

were picked from 38 micrographs. The contrast transfer function was deter-

mined and then corrected for with EMAN (Ludtke et al., 1999). The images

were binned further to give a pixel size of 4.216 Å and a map of 200 3

200 3 200 voxels. The T4 baseplate-tail tube complex was used as the initial

model. The SPIDER (Frank et al., 1996) and EMAN software suites were used in

image processing. We found the resolution of the reconstruction to be 26 Å

using the Fourier shell correlation coefficient method, assuming the limit of

resolution to be when the correlation coefficient drops to below 0.5.

Fitting of the gp138 crystal into the f92 cryoEM map was performed with

UCSF Chimera (Pettersen et al., 2004). The cryoEMmap of f92 was deposited

into the EM databank with the accession number 10191.

Thermal Stability Assay of gpVdL, gpV, and gp138

The thermal stability assay was based on the procedures carried out by (Chen

and King, 1991). Briefly, 100 ml of 5 mg/ml samples of each gpVdL, gpV, and

gp138 were prepared in a low-salt neutral pH buffer (50 mM TrisCl, pH 8.0;

20 mMNaCl). Thermal denaturation was carried out at 65�C in a heating block,

and 10-ml samples were withdrawn at the following time points: 0, 180, 360,

600, 900, 1,800, 3,000, 4,800, and 7,200 s, and mixed with 23 Laemmli SDS

sample buffer and placed on ice to stop the reaction until analysis was carried

out with SDS-PAGE. Gels were stained with Coomassie Blue R-250, digitally

scanned, and band intensity quantified with the software GelQuant.NET

(http://biochemlabsolutions.com/GelQuantNET.html). The results were

plotted with KaleidaGraph (http://www.synergy.com/).

Molecular Graphics

Figures 2, 3, and 5 were prepared with Pymol (Schrödinger, LLC). Figure 6 was

made with UCSF Chimera.
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Haggård-Ljungquist, E., Jacobsen, E., Rishovd, S., Six, E.W., Nilssen, O.,

Sunshine, M.G., Lindqvist, B.H., Kim, K.J., Barreiro, V., Koonin, E.V., and

Calendar, R. (1995). Bacteriophage P2: genes involved in baseplate assembly.

Virology 213, 109–121.

Israel, J.V., Anderson, T.F., and Levine, M. (1967). in vitro MORPHOGENESIS

OF PHAGE P22 FROM HEADS AND BASE-PLATE PARTS. Proc. Natl. Acad.

Sci. USA 57, 284–291.

Kabsch, W. (2010). XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132.

Kageyama, Y., Murayama, M., Onodera, T., Yamada, S., Fukada, H., Kudou,

M., Tsumoto, K., Toyama, Y., Kado, S., Kubota, K., and Takeda, S. (2009).

Observation of the membrane binding activity and domain structure of gpV,

which comprises the tail spike of bacteriophage P2. Biochemistry 48,

10129–10135.

Kajava, A.V., and Steven, A.C. (2006). Beta-rolls, beta-helices, and other beta-

solenoid proteins. Adv. Protein Chem. 73, 55–96.
ights reserved

http://GelQuant.NET
http://biochemlabsolutions.com/GelQuantNET.html
http://www.synergy.com/
http://dx.doi.org/doi:10.1016/j.str.2011.12.009
http://dx.doi.org/doi:10.1016/j.str.2011.12.009


Structure

Structure of Membrane-Piercing Spike
Kanamaru, S., Leiman, P.G., Kostyuchenko, V.A., Chipman, P.R.,

Mesyanzhinov, V.V., Arisaka, F., and Rossmann, M.G. (2002). Structure of

the cell-puncturing device of bacteriophage T4. Nature 415, 553–557.

Kanamaru, S., Ishiwata, Y., Suzuki, T., Rossmann, M.G., and Arisaka, F.

(2005). Control of bacteriophage T4 tail lysozyme activity during the infection

process. J. Mol. Biol. 346, 1013–1020.

Kondou, Y., Kitazawa, D., Takeda, S., Tsuchiya, Y., Yamashita, E., Mizuguchi,

M., Kawano, K., and Tsukihara, T. (2005). Structure of the central hub of bacte-

riophage Mu baseplate determined by X-ray crystallography of gp44. J. Mol.

Biol. 352, 976–985.

Kostyuchenko, V.A., Leiman, P.G., Chipman, P.R., Kanamaru, S., van Raaij,

M.J., Arisaka, F., Mesyanzhinov, V.V., and Rossmann, M.G. (2003). Three-

dimensional structure of bacteriophage T4 baseplate. Nat. Struct. Biol. 10,

688–693.

Kostyuchenko, V.A., Chipman, P.R., Leiman, P.G., Arisaka, F., Mesyanzhinov,

V.V., and Rossmann, M.G. (2005). The tail structure of bacteriophage T4 and

its mechanism of contraction. Nat. Struct. Mol. Biol. 12, 810–813.

Kwiatkowski, B., Boschek, B., Thiele, H., and Stirm, S. (1982). Endo-N-acetyl-

neuraminidase associated with bacteriophage particles. J. Virol. 43, 697–704.

Leiman, P.G., and Molineux, I.J. (2008). Evolution of a new enzyme activity

from the same motif fold. Mol. Microbiol. 69, 287–290.

Leiman, P.G., and Shneider, M.M. (2012). Contractile tail machines of bacterio-

phages. In Viral Molecular Machines,M.G. Rossmann and V.B. Rao, eds. (New

York: Springer), in press.

Leiman, P.G., Chipman, P.R., Kostyuchenko, V.A., Mesyanzhinov, V.V., and

Rossmann, M.G. (2004). Three-dimensional rearrangement of proteins in the

tail of bacteriophage T4 on infection of its host. Cell 118, 419–429.

Leiman, P.G., Basler, M., Ramagopal, U.A., Bonanno, J.B., Sauder, J.M.,

Pukatzki, S., Burley, S.K., Almo, S.C., and Mekalanos, J.J. (2009). Type VI

secretion apparatus and phage tail-associated protein complexes share

a common evolutionary origin. Proc. Natl. Acad. Sci. USA 106, 4154–4159.

Leiman, P.G., Arisaka, F., van Raaij, M.J., Kostyuchenko, V.A., Aksyuk, A.A.,

Kanamaru, S., and Rossmann, M.G. (2010). Morphogenesis of the T4 tail

and tail fibers. Virol. J. 7, 355.

Leslie, A.G. (2006). The integration of macromolecular diffraction data. Acta

Crystallogr. D Biol. Crystallogr. 62, 48–57.

Liu, J., Chen, C.Y., Shiomi, D., Niki, H., andMargolin,W. (2011). Visualization of

bacteriophage P1 infection by cryo-electron tomography of tiny Escherichia

coli. Virology 417, 304–311.

Ludtke, S.J., Baldwin, P.R., and Chiu, W. (1999). EMAN: semiautomated soft-

ware for high-resolution single-particle reconstructions. J. Struct. Biol. 128,

82–97.

McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C.,

and Read, R.J. (2007). Phaser crystallographic software. J. Appl. Cryst. 40,

658–674.

McGuffin, L.J., Bryson, K., and Jones, D.T. (2000). The PSIPRED protein struc-

ture prediction server. Bioinformatics 16, 404–405.

Morris, R.J., Perrakis, A., and Lamzin, V.S. (2003). ARP/wARP and automatic

interpretation of protein electron density maps. Methods Enzymol. 374,

229–244.

Murzin, A.G., and Chothia, C. (1992). Protein architecture: new superfamilies.

Curr. Opin. Struct. Biol. 2, 895–903.

Nakayama, K., Takashima, K., Ishihara, H., Shinomiya, T., Kageyama, M.,

Kanaya, S., Ohnishi, M., Murata, T., Mori, H., and Hayashi, T. (2000). The

R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the

F-type is related to lambda phage. Mol. Microbiol. 38, 213–231.
Structure 20, 32
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