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Infection with the recent Coronavirus [severe 
acute respiratory syndrome (SARS)-CoV2] leads to 
COVID-19, the severity of which derives from the 
host’s immune response (1), especially the release of a 
storm (2, 3) of pro-inflammatory cytokines (4-10) and 
prothrombotic molecules, such as platelet activating 
factor (PAF), leading to microemboli (11, 12).

The SARS-CoV-2 coronavirus infects cells by 
first binding to its surface receptor, Angiotensin 
Converting Enzyme 2 (ACE2), via its corona spike 
protein (13, 14). The spike protein is made up of the 
S1 subunit containing a receptor-binding domain 

(RBD) that attaches to ACE2 and the S2 subunit 
containing a transmembrane anchor that mediates 
fusion of viral and host cell membranes. A number of 
vaccines for COVID-19 were developed rapidly using 
either mRNA or adenovirus vector technology aimed 
at directing cells to produce the spike protein so that 
the body will generate neutralizing antibodies (15, 
16). However, recent papers have reported intriguing, 
but also disturbing, findings concerning detrimental 
actions of the spike protein (Table I).

One paper still in preprint stage at Cell reported 
that certain antibodies in the blood of patients infected 
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in an animal model via impaired mitochondrial 
function (18). A fourth paper reported that the 
spike protein could alter barrier function in an in-
vitro model of the blood-brain barrier (BBB); in 
particular, the S1 protein promoted loss of barrier 
ability in an advanced 3D microfluidic model of the 
human BBB (19). Finally, S1 protein was reported to 
actually cross the BBB and enter the brain of mice 
(20), possibly leading to neuroinflammation (21). 
In fact, another recent study reported blood vessel 
damage and inflammation, but no infection, in brains 
of patients with COVID-19 (22). 

These findings may help explain the pathogenesis 
of COVID-associated neurological (23-26) and 
mental (27-31) symptoms, especially “brain fog” 
(32, 33). Moreover, these results could be central in 
our understanding of Long-COVID syndrome (34, 
35) that may affect over 50% of COVID patients 
(32, 36, 37) and is characterized by neurologic (38) 
and psychiatric (39) symptoms (32, 34, 35, 40), as 
well as persistent fatigue apparently independent of 
the severity of the initial symptoms (41). Symptoms 

with SARS-CoV-2 appear to change the shape of the 
spike protein so as to make it more likely to bind to 
cells and infect them. Evidently, antibodies against 
the RBD are protective, but antibodies against 
the N-terminal domain (NTD) induced the open 
conformation of the RBD enhancing the binding 
ability and infectivity (https://www.cell.com/cell/
pdf/S0092-8674(21)006620.pdf). Another paper 
reported that the spike protein shares antigenic 
epitopes with human molecular chaperons resulting 
in autoimmunity against endothelial cells (17). In 
fact, the spike protein by itself (without being part of 
the corona virus) was shown to damage endothelium 

Table I. Detrimental effects of spike protein_____________________________________________
 • SARS-CoV-2 entry into target cells
 • Endothelial damage
 • Proinflammatory cytokine release
 • TLR activation
 • Microglia stimulation
 • Molecular mimicry with chaperon and heat shock proteins
______________________________________________
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• Microglia stimulation 
• Molecular mimicry with chaperon and heat shock proteins 

_______________________________________________ 

 

Fig. 1. Diagrammatic representation of how luteolin and methoxyluteolin could block SARS-
CoV-2 Spike protein from stimulating microglia. The biologic action of SARS-CoV-2 Spike 
protein could be via different steps (red rectangles): (1) Spike protein binding to its ACE2 
receptor; (2) Activation of serine proteinases responsible for “priming” the Spike protein for 
entry into the cells; (3) Viral replication within the nucleus; (4) Activation of TLR7/8 found in 
the endosomes by single-stranded RNA viruses like SARS-CoV-2; (5) Production of 
proinflammatory cytokines. Luteolin and methoxyluteolin could protect against SARS-CoV-2 
Spike protein-associated damage by interfering (green line) at practically all steps. 

  

Fig. 1. Diagrammatic representation of how luteolin and methoxyluteolin could block SARS-CoV-2 Spike protein from 
stimulating microglia. The biologic action of SARS-CoV-2 Spike protein could be via different steps (red rectangles): (1) 
Spike protein binding to its ACE2 receptor; (2) Activation of serine proteinases responsible for “priming” the Spike protein 
for entry into the cells; (3) Viral replication within the nucleus; (4) Activation of TLR7/8 found in the endosomes by single-
stranded RNA viruses like SARS-CoV-2; (5) Production of proinflammatory cytokines. Luteolin and methoxyluteolin could 
protect against SARS-CoV-2 Spike protein-associated damage by interfering (green line) at practically all steps.
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