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The Human Cell Atlas
Abstract The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a

growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all

cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to

define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to

connect this information with classical cellular descriptions (such as location and morphology). An open

comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic

study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also

provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its

potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a

commitment to open data, code, and community.
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Introduction
The cell is the fundamental unit of living organ-

isms. Hooke reported the discovery of cells in

plants in 1665 (Hooke, 1665) and named them

for their resemblance to the cells inhabited by

monks, but it took nearly two centuries for biolo-

gists to appreciate their central role in biology.

Between 1838 and 1855, Schleiden, Schwann,

Remak, Virchow and others crystalized an ele-

gant Cell Theory (Harris, 2000), stating that all

organisms are composed of one or more cells;

that cells are the basic unit of structure and func-

tion in life; and that all cells are derived from

pre-existing cells (Mazzarello, 1999; Figure 1).

To study human biology, we must know our

cells. Human physiology emerges from normal

cellular functions and intercellular interactions.

Human disease entails the disruption of these

processes and may involve aberrant cell types

and states, as seen in cancer. Genotypes give

rise to organismal phenotypes through the inter-

mediate of cells, because cells are the basic

functional units, each regulating their own pro-

gram of gene expression. Therefore, genetic var-

iants that contribute to disease typically manifest

their action through impact in a particular cell

types: for example, genetic variants in the IL23R

locus increase risk of autoimmune diseases by
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altering the function of dendritic cells and T-cells

(Duerr et al., 2006), and DMD mutations cause

muscular dystrophy through specific effects in

skeletal muscle cells (Murray et al., 1982).

For more than 150 years, biologists have

sought to characterize and classify cells into dis-

tinct types based on increasingly detailed

descriptions of their properties, including their

shape, their location and relationship to other

cells within tissues, their biological function, and,

more recently, their molecular components. At

every step, efforts to catalog cells have been

driven by advances in technology. Improvements

in light microscopy were obviously critical. So

too was the invention of synthetic dyes by chem-

ists (Nagel, 1981), which biologists rapidly

found stained cellular components in different

ways (Stahnisch, 2015). In pioneering work

beginning in 1887, Santiago Ramón y Cajal

applied a remarkable staining process

discovered by Camillo Golgi to show that the

brain is composed of distinct neuronal cells,

rather than a continuous syncytium, with stun-

ningly diverse architectures found in specific

anatomical regions (Ramo�n y Cajal, 1995); the

pair shared the 1906 Nobel Prize in Physiology

or Medicine for their work.

Starting in the 1930s, electron microscopy

provided up to 5000-fold higher resolution, mak-

ing it possible to discover and distinguish cells

based on finer structural features. Immunohis-

tochemistry, pioneered in the 1940s

(Arthur, 2016) and accelerated by the advent of

monoclonal antibodies (Köhler and Milstein,

1975) and Fluorescence-Activated Cell Sorting

(FACS; Dittrich and Göhde, 1971; Fulwy-

ler, 1965) in the 1970s, made it possible to

detect the presence and levels of specific pro-

teins. This revealed that morphologically indis-

tinguishable cells can vary dramatically at the

molecular level and led to exceptionally fine

classification systems, for example, of hemato-

poietic cells, based on cell-surface markers. In

the 1980s, Fluorescence in situ Hybridization

(FISH; Langer-Safer et al., 1982) enhanced the

ability to characterize cells by detecting specific

DNA loci and RNA transcripts. Along the way,

studies showed that distinct molecular pheno-

types typically signify distinct functionalities.

Through these remarkable efforts, biologists

have achieved an impressive understanding of

specific systems, such as the hematopoietic and

immune systems (Chao et al., 2008; Jojic et al.,

2013; Kim and Lanier, 2013) or the neurons in

the retina (Sanes and Masland, 2015).

Despite this progress, our knowledge of cell

types remains incomplete. Moreover, current

classifications are based on different criteria,

such as morphology, molecules and function,

which have not always been related to each

other. In addition, molecular classification of

cells has largely been ad hoc – based on markers

discovered by accident or chosen for conve-

nience – rather than systematic and comprehen-

sive. Even less is known about cell states and

their relationships during development: the full

lineage tree of cells from the single-cell zygote

to the adult is only known for the nematode C.

elegans, which is transparent and has just ~1000

cells.

At a conceptual level, one challenge is that

we lack a rigorous definition of what we mean

by the intuitive terms ’cell type’ and ’cell state’.

Human

Gastrointestinal system

Intestinal
epithelial cells

Intestinal
epithelium

Small intestine

Figure 1. A hierarchical view of human anatomy. A graphical depiction of the anatomical

hierarchy from organs (such as the gut), to tissues (such as the epithelium in the crypt in the

small intestine), to their constituent cells (such as epithelial, immune, stromal and neural

cells).

DOI: https://doi.org/10.7554/eLife.27041.002

Regev et al. eLife 2017;6:e27041. DOI: https://doi.org/10.7554/eLife.27041 2 of 30

Feature article Science Forum The Human Cell Atlas

https://doi.org/10.7554/eLife.27041.002
https://doi.org/10.7554/eLife.27041


Cell type often implies a notion of persistence

(e.g., being a hepatic stellate cell or a cerebellar

Purkinje cell), while cell state often refers to

more transient properties (e.g., being in the G1

phase of the cell cycle or experiencing nutrient

deprivation). But, the boundaries between these

concepts can be blurred, because cells change

over time in ways that are far from fully under-

stood. Ultimately, data-driven approaches will

likely refine our concepts.

The desirability of having much deeper

knowledge about cells has been well recognized

for a long time (Brenner, 2010; Eberwine et al.,

1992; Shapiro, 2010; Van Gelder et al., 1990).

However, only in the past few years has it begun

to seem feasible to undertake the kind of sys-

tematic, high-resolution characterization of

human cells necessary to create a systematic cell

atlas.

The key has been the recent ability to apply

genomic profiling approaches to single cells. By

’genomic approaches’ we mean methods for

large-scale profiling of the genome and its prod-

ucts, including DNA sequence, chromatin archi-

tecture, RNA transcripts, proteins, and

metabolites (Lander, 1996). It has long been

appreciated that such methods provide rich and

comprehensive descriptions of biological pro-

cesses. Historically, however, they could only be

applied to bulk tissue samples comprised of an

ensemble of many cells, providing average

genomic measures for a sample, but masking

their differences across cells. The result is as

unsatisfying as trying to understand New York,

London or Mumbai based on the average prop-

erties of their inhabitants.

The first single-cell genomic characterization

method to become feasible at large-scale is

trancriptome analysis by single cell RNA-Seq

(Box 1; Hashimshony et al., 2012; Jaitin et al.,

2014; Picelli et al., 2013; Ramsköld et al.,

2012; Shalek et al., 2013). Initial efforts first

used microarrays and then RNA-seq to profile

RNA from small numbers of single cells, which

were obtained either by manual picking from in

situ fixed tissue, using flow-sorting or, later on,

with microfluidic devices, adapted from devices

developed initially for qPCR-based approaches

(Crino et al., 1996; Dalerba et al., 2011;

Marcus et al., 2006; Miyashiro et al., 1994;

Zhong et al., 2008). Now, massively parallel

assays can process tens and hundreds of thou-

sands of single cells simultaneously to measure

their transcriptional profiles at rapidly decreas-

ing costs (Klein et al., 2015; Macosko et al.,

2015; Shekhar et al., 2016) with increasing

accuracy and sensitivity (Svensson et al., 2017;

Ziegenhain et al., 2017). In some cases, it is

even possible to register these sorted cells to

their spatial positions in images (Vickovic et al.,

2016). Single-cell RNA sequencing (scRNA-seq)

is rapidly becoming widely disseminated.

Following this initial wave of technologies are

many additional methods at various stages of

development and high-throughput implementa-

tion. Techniques are being developed to assay:

in situ gene expression in tissues at single-cell

and even sub-cellular resolution (Chen et al.,

2015b; Ke et al., 2013; Lee et al., 2014;

Lubeck et al., 2014; Shah et al., 2016;

Ståhl et al., 2016); the distribution of scores of

proteins at cellular or sub-cellular resolution

(Angelo et al., 2014; Chen et al., 2015a;

Giesen et al., 2014; Hama et al., 2011;

Susaki et al., 2014; Yang et al., 2014); various

aspects of chromatin state (Buenrostro et al.,

2015; Cusanovich et al., 2015; Farlik et al.,

2015; Guo et al., 2013; Lorthongpanich et al.,

2013; Mooijman et al., 2016; Rotem et al.,

2015a; Rotem et al., 2015b; Smallwood et al.,

2014); and DNA mutations to allow precise

reconstruction of cell lineages (Behjati et al.,

2014; Biezuner et al., 2016; Shapiro et al.,

2013; Taylor et al., 2003; Teixeira et al.,

2013). Various groups are also developing sin-

gle-cell multi-omic methods to simultaneously

measure several types of molecular profiles in

the same cell (Albayrak et al., 2016;

Angermueller et al., 2016; Behjati et al., 2014;

Darmanis et al., 2016; Dey et al., 2015;

Frei et al., 2016; Genshaft et al., 2016;

Macaulay et al., 2015).

As a result, there is a growing sense in the

scientific community that the time is now right

for a project to complete the Human Cell Atlas

that pioneering histologists began 150 years

ago. Various discussions have taken place in a

number of settings over the past two years, cul-

minating in an international meeting in London

in October 2016. In addition, several pilot efforts

are already underway or in planning – for exam-

ple, related to brain cells and immune cells.

Prompted by such efforts, funding agencies,

including the NIH, have sought information from

the scientific community about the notion of cre-

ating cell or tissue atlases.

The goal of this article is to engage the wider

scientific community in this conversation.

Although the timing is driven by technologies

that have recently appeared or are expected to

mature in the near-future, the project itself is

fundamentally an intellectual endeavor. We
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Box 1: Key experimental methods for single-cell genomics

Over the past several years, powerful approaches have emerged that make it possible to mea-

sure molecular profiles and signatures at single-cell resolution. The field remains very active, with

new methods being rapidly developed and existing ones improved.

Single-cell RNA-Seq (scRNA-seq) refers to a class of methods for profiling the transcriptome of

individual cells. Some may take a census of mRNA species by focusing on 3’- or 5’-ends

(Islam et al., 2014; Macosko et al., 2015), while others assess mRNA structure and splicing by

collecting near-full-length sequence (Hashimshony et al., 2012; Ramsköld et al., 2012). Strate-

gies for single-cell isolation span manual cell picking, initially used in microarray studies

(Eberwine et al., 1992; Van Gelder et al., 1990), FACS-based sorting into multi-well plates

(Ramsköld et al., 2012; Shalek et al., 2013), microfluidic devices (Shalek et al., 2014;

Treutlein et al., 2014), and, most recently, droplet-based (Klein et al., 2015; Macosko et al.,

2015) and microwell-based (Fan et al., 2015; Yuan and Sims, 2016) approaches. The droplet

and microwell approaches, which are currently coupled to 3’-end counting, have the largest

throughput, allowing rapid processing of tens of thousands of cells simultaneously in a single

sample. scRNA-seq is typically applied to freshly dissociated tissue, but emerging protocols use

fixed cells (Nichterwitz et al., 2016; Thomsen et al., 2016) or nuclei isolated from frozen or

lightly fixed tissue (Habib et al., 2016b; Lake et al., 2016). Applications to fixed or frozen sam-

ples would simplify the process flow for scRNA-seq, as well as open the possibility of using archi-

val material. Power analyses provides a framework for comparing the sensitivity and accuracy of

these approaches (Svensson et al., 2017; Ziegenhain et al., 2017). Finally, there has been prog-

ress in scRNA-Seq with RNA isolated from live cells in their natural microenvironment using tran-

scriptome in vivo analysis (Lovatt et al., 2014).

Mass cytometry (CyTOF) and related methods allow multiplexed measurement of proteins

based on antibodies barcoded with heavy metals (Bendall et al., 2014; Levine et al., 2015). In

contrast to comprehensive profiles, these methods invglve pre-defined signatures and require

an appropriate antibody for each target, but they can process many millions of cells for a very

low cost per cell. They are applied to fixed cells. Recently, the approach has been extended to

the measurement of RNA signatures through multiplex hybridization of nucleic-acid probes

tagged with heavy metals (Frei et al., 2016).

Single-cell genome and epigenome sequencing characterizes the cellular genome. Genomic

methods aim either to characterize the whole genome or capture specific pre-defined regions

(Gao et al., 2016). Epigenomic methods may capture regions based on distinctive histone modi-

fications (single-cell ChIP-Seq; Rotem et al., 2015a), accessibility (single-cell ATAC-Seq;

Buenrostro et al., 2015; Cusanovich et al., 2015), or likewise characterize DNA methylation

patterns (single-cell DNAme-Seq; Farlik et al., 2015; Guo et al., 2013; Mooijman et al., 2016;

Smallwood et al., 2014) or 3D organization (single-cell Hi-C; Nagano et al., 2013;

Ramani et al., 2017). Combinatorial barcoding strategies have been used to capture measures

of accessibility and 3D organization in tens of thousands of single cells (Cusanovich et al., 2015;

Ramani et al., 2017). Single cell epigenomics methods are usually applied to nuclei, and can

thus use frozen or certain fixed samples. Some methods, such as single-cell DNA sequencing,

are currently applied to relatively few cells, due to the size of the genome and the sequencing

depth required. Other methods, such as single-cell analysis of chromatin organization (by either

single-cell ATAC-Seq; Buenrostro et al., 2015; Cusanovich et al., 2015) or single-cell ChIP-Seq

(Rotem et al., 2015a), currently yield rather sparse data, which presents analytic challenges and

benefits from large numbers of profiled cells. Computational analyses have begun to address

these issues by pooling of signal across cells and across genomic regions or loci

(Buenrostro et al., 2015; Rotem et al., 2015a) and by imputation (Angermueller et al., 2016).

Single-cell multi-omics techniques aim to collect two or more types of data (transcriptomic,

genomic, epigenomic, and proteomic) from the same single cell. Recent studies have simulta-

neously profiled the transcriptome together with either the genome (Angermueller et al., 2016;

Dey et al., 2015; Macaulay et al., 2015), the epigenome (Angermueller et al., 2016), or pro-

tein signatures (Albayrak et al., 2016; Darmanis et al., 2016; Frei et al., 2016; Genshaft et al.,
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therefore articulate the concept of a cell atlas

and explore its potential utility for biology and

medicine. We discuss how an atlas can lead to

new understanding of histology, development,

physiology, pathology, and intra- and inter-cellu-

lar regulation, and enhance our ability to predict

the impact of perturbations on cells. It will also

yield molecular tools with applications in both

research and clinical practice.

As discussed below, a Human Cell Atlas Proj-

ect would be a shared international effort involv-

ing diverse scientific communities. More details

are available in the Human Cell Atlas White

Paper (https://www.humancellatlas.org/files/

HCA_WhitePaper_18Oct2017.pdf): the first

version of this ’living document’, which will

updated on a regular basis, was released on

October 18, 2017.

What is the Human Cell Atlas, and
what could we learn from it?
At its most basic level, the Human Cell Atlas

must include a comprehensive reference catalog

of all human cells based on their stable proper-

ties and transient features, as well as their loca-

tions and abundances. Yet, an atlas is more than

just a catalog: it is a map that aims to show the

relationships among its elements. By doing so, it

can sometimes reveal fundamental processes –

2016). Efforts to combine three and more approaches are underway (Cheow et al., 2016).

Multi-omic methods could help fill in causal chains from genetic variation to regulatory mecha-

nisms and phenotypic outcome in health and in disease, especially cancer.

Multiplex in situ analysis and other spatial techniques aim to detect a limited number of

nucleic acids and/or proteins in situ in tissue samples – by hybridization (for RNA), antibody

staining (for proteins), sequencing (for nucleic acids), or other tagging strategies. These in situ

results can then be used to map massive amounts of single-cell genomic information from disso-

ciated cells onto the tissue samples providing important clues about spatial relationships and

cell-cell communication. Some strategies for RNA detection, such as MERFISH (Chen et al.,

2015b; Moffitt et al., 2016b) or Seq-FISH (Shah et al., 2016), combine multiplex hybridization

with microscopy-based quantification to assess distributions at both the cellular and subcellular

level; other early studies have performed in situ transcription (Tecott et al., 1988), followed by

direct manual harvesting of cDNA from individual cells (Crino et al., 1996; Tecott et al., 1988).

Some approaches for protein detection, such as Imaging Mass Cytometry (Giesen et al., 2014)

and Mass Ion Bean Imaging (Angelo et al., 2014), involve staining a tissue specimen with anti-

bodies, each labeled with a barcode of heavy metals, and rastering across the sample to mea-

sure the proteins in each ’pixel’. This technique permits the reconstruction of remarkably rich

images. Finally, more recent studies have performed RNA-seq in situ in cells and in preserved tis-

sue sections (Ke et al., 2013; Lee et al., 2014). Many in situ methods can benefit from tissue

clearing and/or expansion to improve detection and spatial resolution (Chen et al., 2015a;

Chen et al., 2016a; Moffitt et al., 2016a; Yang et al., 2014). The complexity and accuracy of

these methods continues to improve with advances in sample handling, chemistry and imaging.

Various methods are also used, for example, to measure transcriptomes in situ with barcoded

arrays (Ståhl et al., 2016).

Cell lineage determination Because mammals are not transparent and have many billions of

cells, it is not currently possible to directly observe the fate of cells by microscopy. Various alter-

native approaches have been developed (Kretzschmar and Watt, 2012). In mice, cells can be

genetically marked with different colors (Barker et al., 2007) or DNA barcodes (Lu et al., 2011;

Naik et al., 2013; Perié and Duffy, 2016), and their offspring traced during development.

Recent work has used iterative CRISPR-based genome editing to generate random genetic scars

in the fetal genome and use them to reconstruct lineages in the adult animal (McKenna et al.,

2016). In humans, where such methods cannot be applied, human cell lineages can be moni-

tored experimentally in vitro, or by transplantation of human cells to immunosuppressed mice

(Morton and Houghton, 2007; O’Brien et al., 2007; Richmond and Su, 2008), or can be

inferred from in vivo samples by measuring the DNA differences between individual sampled

cells, arising from random mutations during cell division, and using the genetic distances to con-

struct cellular phylogenies, or lineages (Behjati et al., 2014; Shapiro et al., 2013).
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akin to how the atlas of Earth suggested conti-

nental drift through the correspondence of

coastlines.

To be useful, an atlas must also be an

abstraction, comprehensively representing cer-

tain features, while ignoring others. The writer

Jorge Luis Borges – a master at capturing the

tension between grandeur and grandiosity – dis-

tilled this challenge in his one-paragraph story,

"On Exactitude in Science", about an empire

enamored with science of cartography (Box 2;

Borges and Hurley, 2004). Over time, the car-

tographers’ map of the realm grew more and

more elaborate, and hence bigger, until –

expandio ad absurdum – the map reached the

size of the entire empire itself and became

useless.

Moreover, an atlas must provide a system of

coordinates on which one can represent and har-

monize concepts at many levels (geopolitical

borders, topography, roads, climate, restau-

rants, and even dynamic traffic patterns). Fea-

tures can be viewed at any level of

magnification, and high-dimensional information

collapsed into simpler views.

So, a key question is how a Human Cell Atlas

should abstract key features, provide coordi-

nates, and show relationships. A natural solution

would be to describe each human cell by a

defined set of molecular markers. For example,

one might describe each cell by the expression

level of each of the ~20,000 human protein-cod-

ing genes: that is, each cell would be repre-

sented as a point in ~20,000-dimensional space.

Of course, the set of markers could be

expanded to include the expression levels of

non-coding genes, the levels of the alternatively

spliced forms of each transcript, the chromatin

state of every promoter and enhancer, and the

levels of each protein or each post-translation-

ally modified form of each protein. The optimal

amount and type of information to collect will

emerge based on a balance of technological fea-

sibility and the biological insight provided by

each layer (Corces et al., 2016;

Lorthongpanich et al., 2013; Paul et al., 2015).

For specific applications, it will be useful to

employ reduced representations. Solely for con-

creteness, we will largely refer below to the

20,000-dimensional space of gene expression,

which can already be assayed at high-

throughput.

The Atlas should have additional coordinates

or annotations to represent histological and ana-

tomical information (e.g., a cell’s location, mor-

phology, or tissue context), temporal

information (e.g., the age of the individual or

time since an exposure), and disease status.

Such information is essential for harmonizing

results based on molecular profiles with rich

knowledge about cell biology, histology and

function. How best to capture and represent this

information requires serious attention.

In some respects, the Human Cell Atlas Proj-

ect (whose fundamental unit is a cell) is analo-

gous to the Human Genome Project (whose

fundamental unit is a gene). Both are ambitious

efforts to create ’Periodic Tables’ for biology

Box 2: On Exactitude in Science. Jorge Luis Borges (1946)

“.. . In that Empire, the Art of Cartography attained such Perfection that the map of a single

Province occupied the entirety of a City, and the map of the Empire, the entirety of a Province.

In time, those Unconscionable Maps no longer satisfied, and the Cartographers Guilds struck a

Map of the Empire whose size was that of the Empire, and which coincided point for point with

it. The following Generations, who were not so fond of the Study of Cartography as their Fore-

bears had been, saw that that vast map was Useless, and not without some Pitilessness was it,

that they delivered it up to the Inclemencies of Sun and Winters. In the Deserts of the West, still

today, there are Tattered Ruins of that Map, inhabited by Animals and Beggars; in all the Land

there is no other Relic of the Disciplines of Geography.”

Purportedly from Suárez Miranda, Travels of Prudent Men, Book Four, Ch. XLV, Lérida, 1658.

Ó 1998 Maria Kodama; translation Ó 1998 Penguin Random House LLC. "On Exactitude in Sci-

ence" from Collected Fictions: Volume 3 by Jorge Luis Borges, translated by Andrew Hurley.

Used by permission of Viking Books, an imprint of Penguin Publishing Group, a division of Pen-

guin Random House LLC. All rights reserved.
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that comprehensively enumerate the two key

’atomic’ units that underlie human life (cells and

genes) and thereby provide a crucial foundation

for biological research and medical application.

As with the Human Genome Project, we will also

need corresponding atlases for important model

organisms, where conserved cell states can be

identified and genetic manipulations and other

approaches can be used to probe function and

lineage. Yet, the Human Cell Atlas differs in

important ways from the Human Genome Proj-

ect: the nature of cell biology means that it will

require a distinct experimental toolbox, and will

involve making choices concerning molecular

and cellular descriptors. Assessing the distance

to completion will also be a challenge.

As a Borgesian thought experiment, we could

conceive of an imaginary Ultimate Human Cell

Atlas that represents: all markers in every cell in

a person’s body; every cell’s spatial position (by

adding three dimensions for the body axes);

every cell at every moment of a person’s lifetime

(by adding another dimension for time relating

the cells by a lineage); and the superimposition

of such cell atlases from every human being,

annotated according to differences in health,

genotype, lifestyle and environmental exposure.

Of course, it is not possible to construct such

an Ultimate Atlas. However, it is increasingly fea-

sible to sample richly from the distribution of

points to understand the key features and rela-

tionships among all human cells. We return

below to the question of how the scientific com-

munity might go about creating a Human Cell

Atlas. First, we consider the central scientific

question: What could we hope to learn from

such an atlas?

A Human Cell Atlas would have a profound

impact on biology and medicine by bringing our

understanding of anatomy, development, physi-

ology, pathology, intracellular regulation, and

intercellular communication to a new level of res-

olution. It would also provide invaluable

markers, signatures and tools for basic research

(facilitating detection, purification and genetic

manipulation of every cell type) and clinical

applications (including diagnosis, prognosis and

monitoring response to therapy).

In the following sections, we outline reason-

able expectations and describe some early

examples. We recognize that these concepts will

evolve based on emerging data. It is clear that a

Human Cell Atlas Project will require and will

motivate the development of new technologies.

It will also necessitate the creation of new math-

ematical frameworks and computational

approaches that may have applications far

beyond biology – perhaps analogous to how

biological ’big data’ in agriculture in the 1920s

led to the creation, by R.A. Fisher and others, of

key statistical methods, including the analysis of

variance and experimental design

(Parolini, 2015).

Taxonomy: cell types
The most fundamental level of analysis is the

identification of cell types. In an atlas where cells

are represented as points in a high-dimensional

space, ’similar’ cells should be ’close’ in some

appropriate sense, although not identical, owing

to differences in physiological states (e.g., cell-

cycle stage), the inherent noise in molecular sys-

tems (Eldar and Elowitz, 2010;

Kharchenko et al., 2014; Kim et al., 2015;

Shalek et al., 2013), and measurement errors

(Buettner et al., 2015; Kharchenko et al.,

2014; Kim et al., 2015; Shalek et al., 2013;

Shalek et al., 2014; Wagner et al., 2016). Thus,

a cell ’type’ might be defined as a region or a

probability distribution (Kim and Eberwine,

2010; Sul et al., 2012) either in the full-dimen-

sional space or in a projection onto a lower-

dimensional space that reflects salient features.

While this notion is intuitively compelling, it is

challenging to give a precise definition of a ’cell

type’. Cell-type taxonomies are often repre-

sented as hierarchies based on morphological,

physiological, and molecular differences

(Sanes and Masland, 2015). Whereas higher

distinctions are easily agreed upon, finer ones

may be less obvious and may not obey a strict

hierarchy, either because distinct types share

features, or because some distinctions are

graded and not discrete. Critically, it remains

unclear whether distinctions based on morpho-

logical, molecular and physiological properties

agree with each other. New computational

methods will be required both to discover types

and to better classify cells and, ultimately, to

refine the concepts themselves (Grün and van

Oudenaarden, 2015; Shapiro et al., 2013;

Stegle et al., 2015; Tanay and Regev, 2017;

Wagner et al., 2016). Unsupervised clustering

algorithms for high-dimensional data provide an

initial framework (Grün et al., 2015; Grün et al.,

2016; Jaitin et al., 2014; Levine et al., 2015;

Macosko et al., 2015; Shekhar et al., 2016;

Vallejos et al., 2015), but substantial advances

will be needed in order to select the ’right’ fea-

tures, the ’right’ similarity metric, and the ’right’

level of granularity for the question at hand,
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control for distinct biological processes, handle

technical noise, and connect novel clusters with

legacy knowledge. Whereas cell types are ini-

tially defined based on regions in feature space,

it will be important eventually to distill them into

simpler molecular and morphological signatures

that can be used to index cells in the atlas,

aggregate and compare results from indepen-

dent labs and different individuals, and create

tools and reagents for validation and follow up

studies.

For all the reasons above, we have not

attempted to propose a precise definition of

’cell type’. Rather, the definition should evolve

based on empirical observation.

Despite these challenges, recent studies in

diverse organs – including immune, nervous, and

epithelial tissues – support the prospects for

comprehensive discovery of cell types, as well as

harmonization of genomic, morphological, and

functional classifications (Figure 2A–C). For

example, analysis of immune cells from mouse

spleen (Jaitin et al., 2014) and human blood

(Horowitz et al., 2013) showed that well-estab-

lished functional immune cell types and subtypes

could be readily distinguished by unsupervised

clustering of single-cell expression profiles. Simi-

larly, single-cell expression profiles of epithelial

cells from gut organoids (Grün et al., 2015) dis-

tinguished known cell subtypes, each with dis-

tinctive functional and histological

characteristics, while also revealing a new sub-

type of enteroendocrine cells, which was subse-

quently validated experimentally.

The nervous system, where many cell types

have not yet been characterized by any means,

illustrates both the promise and the challenge.

Whereas each of the 302 individual neurons in

C. elegans can be distinctly defined by its line-

age, position, connectivity, molecular profile and

functions, the extent to which the ~ 1011 neurons

in the human brain are distinctly defined by mor-

phological, physiological, lineage, connectivity,

and electrical-activity criteria, and have distinct

molecular profiles, remains unknown. Cellular

neuroanatomy is deeply rooted in the concept

of cell types defined by their morphologies (a

proxy for connectivity) and electrophysiological

properties (Ascoli et al., 2008), and extensive

efforts continue to classify the types in compli-

cated structures like the retina and neocortex

(Jiang et al., 2015; Markram et al., 2015;

Sanes and Masland, 2015). Critically, it remains

unclear whether distinctions based on morpho-

logical, connectional, and physiological proper-

ties agree with their molecular properties.

The mouse retina provides an ideal testing

ground to test this correspondence because cell

types follow highly stereotyped spatial patterns

(Macosko et al., 2015; Sanes and Masland,

2015). Analysis of 31,000 retinal bipolar cells

(Shekhar et al., 2016) automatically re-discov-

ered the 13 subtypes that had been defined

over the past quarter-century based on mor-

phology and lamination, while also revealing two

new subtypes with distinct morphological and

laminar characteristics. These subtypes included

one with a ’bipolar’ expression pattern and

developmental history, but a unipolar morphol-

ogy in the adult (Shekhar et al., 2016), which

has distinct functional characteristics in the neu-

ral circuits of the retina (Della Santina et al.,

2016). In this example, known morphological

and other non-molecular classifications matched

perfectly to molecular types, and new molecu-

larly-defined cell types discovered in the single-

cell transcriptomic analysis corresponded to

unique new morphology and histology. In other

complex brain regions such as the neocortex

and hippocampus there are also a large number

of transcriptionally defined types

(Darmanis et al., 2015; Gokce et al., 2016;

Habib et al., 2016a; Lake et al., 2016;

Pollen et al., 2014; Tasic et al., 2016;

Zeisel et al., 2015), but it has been more diffi-

cult to find consensus between data modalities,

and the relationship between transcriptomic

types and anatomical or morphological types is

unclear. In this light, technologies that can

directly measure multiple cellular phenotypes

are essential. For example, electrophysiological

measurements with patch clamping followed by

scRNA-seq used in a recent study of a particular

inhibitory cortical cell type showed that the tran-

scriptome correlated strongly with the cell’s

physiological state (Cadwell et al., 2016;

Földy et al., 2016). Thus, the transcriptome

appears to provide a proxy for other neuronal

properties, but much more investigation is

needed.

Histology: cell neighborhood and
position
Histology examines the spatial position of cells

and molecules within tissues. Over the past cen-

tury, we have learnt a great deal about cell

types, markers, and tissue architecture, and this

body of knowledge will need to be further

refined and woven seamlessly into the Human

Cell Atlas. With emerging highly multiplexed

methods for in situ hybridization (Chen et al.,
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2015b; Shah et al., 2016) or protein staining

(Angelo et al., 2014; Giesen et al., 2014), it

should be possible to spatially map multiple cell

types at once based on expression signatures to

see how they relate to each other and to con-

nect them with cell types defined by morphol-

ogy or function. It should also be possible to

extend observations of continuous gradients for

individual genes (such as morphogens) to multi-

gene signatures.

Computational approaches could then allow

iterative refinement of cellular characterization

based on both a cell’s molecular profile and

information about its neighborhood; methods

perfected in the analysis of networks could pro-

vide a helpful starting point (Blondel et al.,

2008; Rosvall and Bergstrom, 2008). Con-

versely, expression data from a cell can help

map its position in absolute coordinates or rela-

tive terms, as well as in the context of pathol-

ogy, highlighting how disease tissue differs from

typical healthy tissue. Combining molecular pro-

files with tissue architecture will require new

computational methods, drawing perhaps on

Figure 2. Anatomy: cell types and tissue structure. The first three plots show single cells (dots) embedded in low-

dimensional space based on similarities between their RNA-expression profiles (A, C) or protein-expression

profiles (B), using either t-stochastic neighborhood embedding (A,B) or circular projection (C) for dimensionality

reduction and embedding. (A) Bi-polar neurons from the mouse retina. (B) Human bone marrow immune cells. (C)

Immune cells from the mouse spleen. (D) Histology. Projection of single-cell data onto tissue structures: image

shows the mapping of individual cells onto locations in the marine annelid brain, based on the correspondence

(color bar) between their single-cell expression profiles and independent FISH assays for a set of landmark

transcripts.

Ó 2016 Elsevier Inc. Figure 2A reprinted from Shekhar et al., 2016 with permission.

Ó 2015 Elsevier Inc. Figure 2B reprinted from Levine et al., 2015 with permission.

Ó 2014 AAAS. Figure 2C reprinted from Jaitin et al., 2014 with permission.

Ó 2015 Macmillan Publishers Limited. Figure 2D adapted from Achim et al., 2015 with permission.

DOI: https://doi.org/10.7554/eLife.27041.005
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advances in machine vision (Xu et al., 2015;

Zheng et al., 2015).

New methods for integrating single-cell

genomics data into a spatial context have been

developed recently. Single-cell analyses of tis-

sues from early embryos (Satija et al., 2015;

Scialdone et al., 2016) to adult (Achim et al.,

2015) demonstrate how physical locations can

be imprinted in transcriptional profiles (Durru-

thy-Durruthy et al., 2014) and can be used to

infer tissue organization (Figure 2D). In the early

zebrafish embryo, for example, a cell’s expres-

sion profile specifies its location to within a small

neighborhood of ~100 cells; the related expres-

sion patterns of individual genes in turn fall into

only nine spatial archetypes (Satija et al., 2015).

In the early mouse embryo, key spatial gradients

can be recovered by a ’pseudospace’ inferred

from reduced dimensions of single cell profiles

(Scialdone et al., 2016). In adult mouse hippo-

campus, cell profiles show clear clusters corre-

sponding to discrete functional regions as well

as gradients following dorsal/ventral and

medial/lateral axes (Habib et al., 2016a). In the

annelid brain, even finer punctate spatial pat-

terns can be resolved (Achim et al., 2015).

Development: transitions to
differentiated cell types
Cells arrive at their final differentiated cell types

through partly asynchronous branching path-

ways of development (Ferrell, 2012), which are

driven by and reflected in molecular changes,

especially gene-expression patterns (see, for

example, Chao et al., 2008; Jojic et al., 2013).

It should therefore be possible to reconstruct

development as trajectories in high-dimensional

space, mirroring Waddington’s landscape (Fer-

rell, 2012; Waddington, 1957) – just as it would

be possible to infer the ski lifts and trails on a

mountain from snapshots of the positions of

enough skiers. One can even infer sharp transi-

tions, provided enough cells are observed. The

required sampling density will depend on the

number and complexity of paths and intersec-

tions, and sorting strategies can help to itera-

tively enrich for rare, transient populations.

Notably, the relative proportions of cells

observed at different points along the develop-

mental paths can help convey critical informa-

tion, both about the duration of each phase

(Antebi et al., 2013; Kafri et al., 2013) and the

balance of how progenitor cells are allocated

among fates (Antebi et al., 2013;

Lönnberg et al., 2017; Moris et al., 2016),

especially when information about the rate of

cell proliferation and/or death can be incorpo-

rated as inferred from the profiles.

In animal models, it should be possible to cre-

ate true lineage trees by marking a common

progenitor cell type. For example, one might

use synthetic circuits that introduce a molecular

barcode only in cells expressing an RNA pattern

characteristic of the cell type in order to recog-

nize its descendants (Gagliani et al., 2015;

McKenna et al., 2016). In humans, immune cells

naturally contain lineage barcodes through VDJ

recombination in T and B cells and somatic

hypermutation in B cells (Stubbington et al.,

2016). More generally, it may be feasible to

accomplish lineage tracing in human cells by tak-

ing advantage of the steady accumulation of

DNA changes (such as somatic point mutations,

or repeat expansions at microsatellite loci) at

each cell division (Behjati et al., 2014;

Biezuner et al., 2016; Martincorena et al.,

2015; Reizel et al., 2012; Shlush et al., 2012)

or as a molecular clock (Taylor et al., 2003;

Teixeira et al., 2013).

Initial computational methods have already

been developed for inferring dynamic trajecto-

ries from large numbers of single-cell profiles,

although better algorithms are still needed. Crit-

ical challenges include accurately inferring

branching structures, where two or more paths

diverge from a single point; reconstructing ’fast’

transitions, where only few cells can be cap-

tured; and accounting for the fact that a cell may

be following multiple dynamic paths simulta-

neously – for example, differentiation, the cell

cycle, and pathogen response (see below) – that

may affect each other. The reconstruction algo-

rithms themselves could incorporate insights

from theoretical studies of dynamical systems,

and learned models could be analyzed in light of

such frameworks (Ferrell, 2012; May, 1976;

Thom, 1989).

Recent studies provide proofs-of-principle for

how simultaneous and orthogonal biological

processes can be inferred from single-cell RNA-

seq data (Figure 3; Angerer et al., 2016;

Bendall et al., 2014; Chen et al., 2016b;

Haghverdi et al., 2015; Haghverdi et al., 2016;

Lönnberg et al., 2017; Marco et al., 2014;

Moignard et al., 2015; Setty et al., 2016;

Trapnell et al., 2014; Treutlein et al., 2016).

Linear developmental trajectories have been

reconstructed, for example, from single-cell pro-

tein expression during B-cell differentiation

(Bendall et al., 2014), and from single-cell RNA

expression during myogenesis in vitro
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(Trapnell et al., 2014), early hematopoiesis

(Nestorowa et al., 2016), neurogenesis in vivo

(Habib et al., 2016a; Shin et al., 2015), and

reprogramming from fibroblasts to neurons

(Treutlein et al., 2016). With a large enough

number of cells, analysis of B-cell development

was able to highlight a rare (0.007%) population

corresponding to the earliest B-cell lymphocytes

and confirm the identification by reference to

rearrangements at the IgH locus. In direct

reprogramming to neurons, scRNA-seq revealed

unexpected trajectories (Treutlein et al., 2016).

Bifurcated trajectories have also been recon-

structed in the differentiation of embryonic stem

cells, T helper cells, and hematopoietic cells

(Chen et al., 2016b; Haghverdi et al., 2015;

Haghverdi et al., 2016; Lönnberg et al., 2017;

Marco et al., 2014; Moignard et al., 2015;

3–4 day

5–6 day

6–7 day

1–2 day

14 day

Maturation 
trajectory

DC 1

D
C

 2

A Cell fate tracing (GPfates)

biSNE 1Latent variable 1

L
a
te

n
t 
v
a
ri
a
b
le

 2

B Neurogenesis (single nucleus RNA-Seq)

tSNE 1

tS
N

E
 2

DC Stem cell differentiation Wishbone branch

Precursor state

Tip branch 1

Tip branch 2

Decision
state

b
iS

N
E

 2

Bifurcation

Th1

Tfh

Figure 3. Developmental trajectories. Each plot shows single cells (dots; colored by trajectory assignment,

sampled time point, or developmental stage) embedded in low-dimensional space based on their RNA (A-C) or

protein (D) profiles, using different methods for dimensionality reduction and embedding: Gaussian process

patent variable model (A); t-stochastic neighborhood embedding (B, D); diffusion maps (C). Computational

methods then identify trajectories of pseudo-temporal progression in each case. (A) Myoblast differentiation in

vitro. (B) Neurogenesis in the mouse brain dentate gyrus. (C) Embryonic stem cell differentiation in vitro. (D) Early

hematopoiesis.

Ó 2017 AAAS. Figure 3A reprinted from Lönnberg et al., 2017 with permission.

Ó 2016 AAAS. Figure 3B reprinted from Habib et al., 2016a with permission.

Ó 2016 Macmillan Publishers Limited. . Figure 3C adapted from Haghverdi et al., 2016 with permission.

Ó 2016 Macmillan Publishers Limited. Figure 3D adapted from Setty et al., 2016 with permission.
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Setty et al., 2016), and have helped address

open questions about whether myeloid progeni-

tor cells in bone marrow are already skewed

towards distinct fates (Olsson et al., 2016;

Paul et al., 2015) and when T helper cell commit

to their fate (Lönnberg et al., 2017).

Physiology and homeostasis:
cycles, transient responses and
plastic states
In addition to development and differentiation,

cells are constantly undergoing multiple dynamic

processes of physiological change and homeo-

static regulation (Yosef and Regev, 2011;

2016). These include cyclical processes, such as

the cell cycle and circadian rhythms; transient

responses to diverse factors, from nutrients and

microbes to mechanical forces and tissue dam-

age; and plastic states that can be stably main-

tained over longer time scales, but can change

in response to new environmental cues. (The

precise boundary between plastic states and cell

types, it must be noted, remains to be clarified.)

The molecular phenotype of a cell reflects a

superposition of these various processes and

their interactions (Wagner et al., 2016).

Studies of physiological processes from bulk

tissue samples are hampered by asynchrony and

heterogeneity among cells, which blur the sig-

nals of individual processes and states; investiga-

tors strive to create homogeneous cell

populations through synchronization and purifi-

cation. By contrast, single-cell analysis exploits

asynchrony and heterogeneity, leveraging varia-

tion within a cell population to reveal underlying

structures. The difference is analogous to two

approaches in structural biology: X-ray crystal-

lography, which requires molecules to be in a

crystalline order, and cryo-electron microscopy,

which depends on observing large numbers of

molecules in randomly sampled poses.

From asynchronous observations of cyclical

and transient processes, it should be possible to

’order’ cells with respect to the process (as for

development), with cell proportions reflecting

residence time (e.g., the length of a phase of

the cell cycle). As was initially shown for single-

cell measurement of a few features of the cell

cycle (Kafri et al., 2013), analysis of many sys-

tems could yield a near-continuous model of the

process, provided that a sufficient number of

cells is sampled. This can occur either because

all phases co-occur (e.g., in asynchronously

cycling cells) or because enough time points are

sampled to span the full process. If very rapid

and dramatic discontinuities exist, recovering

them would likely require direct tracing, for

example by genetic tracers or live analysis in cell

cultures, organoids, or animal models.

Once the cells are ordered, one can derive

gene-signatures that reflect each phase and use

them to further sharpen and refine the model.

With sufficient data, it should also be possible to

tease apart interactions among processes occur-

ring in parallel (such as the cell cycle, response

to a pathogen, and differentiation). For plastic

states, it may be possible to capture transient

transitions between them, especially if they can

be enriched by appropriate physiological cues.

Finally, we will likely learn about the nature of

stable states: while we often think of stable

states as discrete attractor basins (Wadding-

ton, 1957), there may also be troughs that

reflect a continuous spectrum of stable states (e.

g., the ratio of two processes may vary across

cells, but are stable in each; Antebi et al., 2013;

Gaublomme et al., 2015; Huang, 2012,

2013; Rebhahn et al., 2014; Zhou et al., 2012;

Zhou et al., 2016). Some key aspects of pro-

cesses may be difficult to uncover solely from

observations of transitions among molecular

states, and will likely require directed perturba-

tions and detailed mechanistic studies.

Recent studies have shown that cyclical pro-

cesses and transient responses – from the cell

cycle (Buettner et al., 2015; Gut et al., 2015;

Kafri et al., 2013; Kowalczyk et al., 2015;

Macosko et al., 2015; Proserpio et al., 2016;

Tirosh et al., 2016a) to the response of immune

cells to pathogen components (Avraham et al.,

2015; Shalek et al., 2013; Shalek et al., 2014)

– can be traced in single-cell profiles. It is possi-

ble to order the cells temporally, define coordi-

nately expressed genes with high precision,

identify the time scale of distinct phases, and

relate these findings to orthogonal measures

(Figure 4). For example, in the cell cycle, analy-

sis of single-cell profiles readily shows a robust,

reproducible and evolutionarily conserved pro-

gram that can be resolved in a near-continuous

way across human and mouse cell lines

(Macosko et al., 2015), primary immune cells

(Buettner et al., 2015; Kowalczyk et al., 2015),

and healthy and disease tissues (Patel et al.,

2014; Tirosh et al., 2016a; Tirosh et al.,

2016b). This approach has made it possible to

determine the relative rates of proliferation of

different cell subpopulations within a dataset

(Buettner et al., 2015; Kolodziejczyk et al.,

2015; Kowalczyk et al., 2015; Tsang et al.,

2015), a feat difficult to accomplish using bulk
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synchronized populations along the cell cycle

(Bar-Joseph et al., 2008; Lu et al., 2007). Nota-

bly, the cell cycle could also be reconstructed by

similar approaches when applied to imaging

data of very few molecular markers along with

salient spatial features (Gut et al., 2015) or with

morphology alone (Blasi et al., 2016;

Eulenberg et al., 2017). Similar principles apply

to transient responses. In the response of den-

dritic cells to pathogen components, single-cell

profiling uncovered a small subset (<1%) of ’pre-

cocious’ cells: these early-appearing cells

express a distinctive module of genes, initiate

production of interferon beta, and coordinate

the subsequent response of other cells through

paracrine signaling (Shalek et al., 2014).

Disease: cells and cellular
ecosystems
The Human Cell Atlas will be a critical reference

for studying disease, which invariably involves

disruption of normal cellular functions, interac-

tions, proportions, or ecosystems. The power of

single-cell analysis of disease is evident from

decades of histopathological studies and FACS

analysis. It will be substantially extended by the

routine ability to characterize cells and tissues

with rich molecular signatures, rather than focus-

ing on a limited number of pre-defined markers

or cell populations. It will also support the grow-

ing interest in understanding interactions

between frankly abnormal cells and all other

cells in a tissue’s ecosystem in promoting or sup-

pressing disease processes (e.g., between malig-

nant cells and the tumor microenvironment).

Single-cell analysis of disease samples will

also likely be critical to see the full range of nor-

mal cellular physiology, because disease either

elicits key perturbs cellular circuitry in informa-

tive ways. A clear example is the immune sys-

tem, where only in the presence of a ’challenge’

is the full range of appropriate physiological

behaviors and potential responses by a cell

revealed.

Single-cell information across many patients

will allow us to learn about how cell proportions

and states vary and how this variation correlates

with genome variants, disease course and treat-

ment response. From initial studies of a limited

number of patients, it should be possible to

derive signatures of key cell types and states

and use them to deconvolute cellular propor-

tions in conventional bulk-tissue or blood sam-

ples (Levine et al., 2015; Tirosh et al., 2016a).

Future studies may expand single-cell analysis to

thousands of patients to directly investigate how

genetic variation affects gene transcription and

regulation.

The hematopoietic system will be an early

and fruitful target. A study involving signatures

of cell-signaling assays by single-cell mass

cytometry of healthy hematopoietic cells led to

Figure 4. Physiology. Each plot shows single cells (dots) embedded in low-dimensional space on the basis of their RNA profile, based on predefined

gene signatures (A) or PCA (B, C), highlighting distinct dynamic processes. (A) The cell cycle in mouse hematopoietic stem and progenitor cells;

adapted under terms of CC BY 4.0 from Scialdone et al. (2015). (B) Response to lipopolysaccharide (LPS) in mouse immune dendritic cells. (C)

Variation in the extent of pathogenicity in mouse Th17 cells.

Ó 2014 Macmillan Publishers Limited. Figure 4B adapted from Shalek et al., 2014 with permission.

Ó 2015 Elsevier Inc. Figure 4C reprinted from Gaublomme et al., 2015 with permission.

DOI: https://doi.org/10.7554/eLife.27041.007
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more accurate classification of hematopoietic

stem and progenitor cells (HSPCs) in Acute Mye-

loid Leukemia; a previous classification was

error-prone, because the ’classical’ cell-surface

markers of healthy cells do not correctly identify

the corresponding population in disease,

whereas a richer signature allows accurate iden-

tification (Levine et al., 2015). Monitoring rare

immune populations first discovered in a normal

setting can help zero in on the relevant aberra-

tions in disease. For example, the rare popula-

tion associated with VDJ recombination first

identified by trajectory analysis of B cell devel-

opment (Bendall et al., 2014) is expanded in

pediatric Acute Lymphoblastic Leukemia, and

drastically more so in recurrence (Gary Nolan,

unpublished results).

The greatest impact, at least in the short

term, is likely to be in cancer. Early studies used

single-cell qPCR to investigate the origin of

radioresistance in cancer stem cells

(Diehn et al., 2009) and to dissect the heteroge-

neity and distortions of cellular hierarchy in colon

cancer (Dalerba et al., 2011). With the advent

of high-throughput methods, single-cell genome

analysis has been used to study the clonal struc-

ture and evolution of tumors in both breast can-

cer (Wang et al., 2014) and acute lymphoblastic

leukemia (Gawad et al., 2014), and to infer the

order of earliest mutations that cause acute

myeloid leukemia (Corces-Zimmerman et al.,

2014; Jan et al., 2012).

In recent studies of melanoma (Tirosh et al.,

2016a), glioblastoma (Patel et al., 2014), low-

grade glioma (Tirosh et al., 2016b), and myelo-

proliferative neoplasms (Kiselev et al., 2017),

single-cell RNA-seq of fresh tumors resected

directly from patients readily distinguished

among malignant, immune, stromal and endo-

thelial cells. Among the malignant cells, it identi-

fied distinct cell states – such as cancer stem

cells (Patel et al., 2014; Tirosh et al., 2016b),

drug-resistant states (Tirosh et al., 2016a), pro-

liferating and quiescent cells (Patel et al., 2014;

Tirosh et al., 2016a; Tirosh et al., 2016b) – and

related them to each other, showing, for exam-

ple, that only stem-like cells proliferate in low-

grade glioma (Tirosh et al., 2016b) and that

individual sub-clones can be readily identified in

one patient (Kiselev et al., 2017). Among the

non-malignant cells, it found distinct functional

states for T-cells, and revealed that, while activa-

tion and exhaustion programs are coupled, the

exhausted state is also controlled by an indepen-

dent regulatory program in both human tumors

(Tirosh et al., 2016a) and a mouse model

(Singer et al., 2016). To associate patterns

observed in a few (5-20) patients with effects on

clinical phenotypes, single-cell based signatures

were used to deconvolute hundreds of bulk

tumor profiles that had been collected with rich

clinical information (Levine et al., 2015;

Patel et al., 2014; Tirosh et al., 2016a).

Molecular mechanisms:
intracellular and inter-cellular
circuits
A Human Cell Atlas can also shed light on the

molecular mechanisms that control cell type, dif-

ferentiation, responses and states – within cells,

between cells, as well as between cells and their

tissue matrix.

For example, over the past several decades,

biologists have sought to infer the circuitry

underlying gene regulation by observing correla-

tions between the expression of particular regu-

lators and specific cellular phenotypes, drawing

inferences about regulation, and testing their

models through targeted genetic perturbations.

Single-cell data provide a massive increase not

only in the quantity of observations, but also in

the range of perturbations. The number of cells

profiled in a single-cell RNA-seq experiment can

far exceed the number of profiles produced

even by large consortia (such as ENCODE, FAN-

TOM, TCGA, and GTEx). Moreover, each single

cell is a perturbation system in which the levels

of regulatory molecules vary naturally – some-

times subtly, sometimes dramatically – due to

both stochastic and controlled phenomena

within a single genetic background, providing

rich information from which to reconstruct cellu-

lar circuits (Krishnaswamy et al., 2014;

Sachs et al., 2005; Shalek et al., 2013; Stew-

art-Ornstein et al., 2012).

Initial studies have shown that such analyses

can uncover intracellular regulators governing

cell differentiation and response to stimuli. For

example, co-variation of RNA levels across a

modest number of cells from a relatively ’pure’

population of immune dendritic cells responding

to a pathogen component was sufficient to con-

nect antiviral transcription factors to their target

genes, because of asynchrony in the responses

(Shalek et al., 2013). Similarly, co-variation anal-

ysis of a few hundred Th17 cells spanning a con-

tinuum from less to more pathogenic states

revealed regulators that control pathogenicity,

but not other features, such as cell differentia-

tion (Gaublomme et al., 2015). Co-variation

identified a role for pregnenolone biosynthesis
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in the response of Th2 cells to helminth infection

(Mahata et al., 2014), and new regulators of

pluripotency in mouse embryonic stem cells

(Kolodziejczyk et al., 2015). Computationally

ordering cells along a time-course of develop-

ment provides another way to infer regulators –

a strategy that has been successful in, for exam-

ple, differentiating B cells (Bendall et al., 2014),

myoblasts (Trapnell et al., 2014), neurons

(Habib et al., 2016a; Shin et al., 2015), and T

helper cells (Lönnberg et al., 2017). Finally,

when circuitry is already known, variation across

single cells can be used to infer exquisite – and

functionally important – quantitative distinctions

about how signal is processed and propagated.

An elegant example is a recent analysis of signal-

ing pathways downstream from the T cell recep-

tor, where single-cell proteomics data has shown

how the same cellular circuitry processes signals

differently in naı̈ve and antigen-exposed T cells

(Krishnaswamy et al., 2014).

Beyond transcriptome analysis, single-cell

multi-omic profiles (Box 1) will improve the infer-

ence of cellular circuitry by connecting regula-

tory mechanisms and their targets (Tanay and

Regev, 2017). For example, simultaneous mea-

surement of chromatin accessibility and RNA lev-

els may help identify which regulatory regions –

and by inference which trans–acting regulators –

control the levels of which genes. Concomitant

measurement of DNA mutations and transcrip-

tional profiles in cancer cells may allow similar

causal connections to be drawn, as has been

recently shown for mutations in the CIC gene

and the expression of its regulatory targets

(Tirosh et al., 2016b).

Studies can be extended from naturally

occurring variation among cells to engineered

perturbations, by using pooled CRISPR libraries

to manipulate genes and reading out both the

perturbation and its effects on cellular pheno-

type in single cells – for example, by single-cell

RNA-Seq (Adamson et al., 2016; Dixit et al.,

2016; Jaitin et al., 2016).

A cell atlas can also help shed light on inter-

cellular communication, based on correlated

profiles across cell types and patients. For exam-

ple, analysis of single-cell profiles from many

small clusters of a few aggregated cells allowed

the construction of a cell-cell interaction network

in the bone marrow, uncovering specific interac-

tion between megakaryocytes and neutrophils,

as well as between plasma cells and neutrophil

precursors (Alexander van Oudenaarden, unpub-

lished results). Cell-cell interactomes have also

been inferred from profiles of purified cell

populations, based on the secreted and cell sur-

face molecules that they express

(Ramilowski et al., 2015).

In tumors from melanoma patients, gene-

expression analysis (involving single-cell data

obtained from some patients and bulk tumor

data from many more patients, deconvoluted

based on signatures learned from the single

cells) found genes that are expressed in one cell

type, but whose expression levels are correlated

with the proportion of a different cell type that

does not express them; this analysis revealed

that high expression of the complement system

in cancer-associated fibroblasts in the tumor

microenvironment is correlated with increased

infiltration of T cells (Tirosh et al., 2016a). Anal-

ysis of individual subcutaneous adipose stem

cells revealed the existence of a novel cell popu-

lation that negatively controls the differentiation

of the resident stem cells into adipocytes, thus

influencing adipose tissue growth and homeo-

stasis (Bart Deplancke, unpublished results). In

breast cancer tissues, spatial analysis of multi-

plex protein expression by imaging mass cytom-

etry (Giesen et al., 2014) allowed classification

of infiltrating immune cells and malignant cells

based on the neighborhood of surrounding cells,

highlighting new functional interactions (Bernd

Bodenmiller, personal communication).

A user’s guide to the Human Cell
Atlas: applications in research and
medicine
The Human Genome Project had a major impact

on biomedicine by providing a comprehensive

reference, a DNA sequence in which answers

could be readily looked up and from which

unique ’signatures’ could be derived (e.g., to

recognize genes on microarrays or protein frag-

ments in mass spectrometry). A Human Cell

Atlas could provide similar benefits from basic

research to clinically relevant applications.

Scientists will be able, for example, to look

up precisely in which cell types a gene of interest

is expressed and at which level. Today, it is sur-

prisingly challenging to obtain definitive answers

for most human genes beyond tissue- or organ-

level resolution, although there have been pio-

neering efforts for the brain and immune system

in mouse (Bakken et al., 2016;

Hawrylycz et al., 2012; Kim and Lanier, 2013;

Miller et al., 2014) and for protein expression in

human (Thul et al., 2017; Uhlén et al., 2015).

Yet, the question is of enormous importance to

basic biologists studying development or
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comparing a model system to human biology,

medical scientists examining the effect of a dis-

ease-causing mutation, and drug developers

concerned about the potential toxicities of a

small molecule or a CAR-T cell targeting a spe-

cific protein (Brudno and Kochenderfer, 2016).

Researchers will also be able to derive

expression signatures that uniquely identify cell

types. Such signatures provide a starting point

for a vast range of experimental assays – from

molecular markers for isolating, tagging, tracing

or manipulating cells in animal models or human

samples, to characterization of the effect of

drugs on the physiological state of a tissue. Such

descriptors of cellular identity will be widely

used in clinical assays. For example, today’s

Complete Blood Count (CBC), a census of a lim-

ited number of blood components, may be sup-

plemented by a ’CBC 2.0’ that provides a high-

resolution picture of the nucleated cells, includ-

ing the number and activity states of each type

in comparison with healthy reference samples.

Analogous measures should be possible for

other tissues as well. For example, gut biopsies

from patients with ulcerative colitis or colon can-

cer could be analyzed for the type, response,

state and location of each of the diverse epithe-

lial, immune, stromal and neural cells that com-

prise them.

Toward a Human Cell Atlas
How might the biomedical community build a

Human Cell Atlas? As with the Human Genome

Project, a robust plan will best emerge from

wide-ranging scientific discussions and careful

planning involving biologists, technologists,

pathologists, physicians, surgeons, computa-

tional scientists, statisticians, and others. As

noted above, various discussions have taken

place for over two years about the idea of a

comprehensive Human Cell Atlas, as well as

about specific atlases for the brain and the

immune system. Several pilot efforts are already

underway. Moreover, over the past year discus-

sions have been underway to create an initial

plan for a Human Cell Atlas Project (which is

articulated in the White Paper mentioned

above). Among the key points for consideration

are the following:

Phasing of goals

While the overall goal is to build a comprehen-

sive atlas with diverse molecular measurements,

spatial organization, and interpretation of cell

types, histology, development, physiology and

molecular mechanisms, it will be wise to set

intermediate goals for ’draft’ atlases at increas-

ing resolution, comprehensiveness, and depth of

interpretation. The value of a phased approach

was illustrated by the Human Genome Project,

which defined milestones along the way (genetic

maps, physical maps, rough-draft sequence, fin-

ished sequence) that held the project account-

able and provided immediate utility to the

scientific community.

Sampling strategies

While an adult human has ~2 x 1013 nucleated

cells, it is neither possible nor necessary to study

them all to recover the fine distinctions among

human cells. The key will be to combine sound

statistical sampling, biological enrichment purifi-

cation, and insights from studies of model

organisms. It is likely beneficial to apply an

adaptive, iterative approach with respect to

both the number of cells and depth of profiles,

as well as anatomical coverage and spatial reso-

lution in the tissue, with initial sparse sampling

driving decisions about further sampling. This

adaptive approach, termed a ’Sky Dive’, adjusts

as resolution increases (and is further described

in the HCA White Paper).

Such approaches can be facilitated by experi-

mental techniques that allow fast and inexpen-

sive ’banking’ of partially processed samples, to

which one can return for deeper analysis as

methods mature. Advances in handling fixed or

frozen tissues would further facilitate the process

(Box 1). With respect to depth of profiling,

recent studies suggest the utility of a mixed

strategy: relatively low coverage of the transcrip-

tome can identify many cell types reliably

(Heimberg et al., 2016; Shekhar et al., 2016)

and a smaller set of deep profiles can be help

interpret the low-coverage data to further

increase detection power. As a result, the ’Sky

Dive’ begins with large-scale uniform sampling,

follows with stratified sampling, and then

employs specialized sampling at lower

throughput.

Breadth of profiles

The atlas must combine two branches – a cellular

branch, focused on the properties of individual

cells, and a spatial branch, describing the histo-

logical organization of cells in the tissue. For the

cellular branch, massively parallel transcriptome

analysis of individual single cells or nuclei will

likely be the workhorse for efforts in the first few

years. However, other robust, high-throughput
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profiling methods are rapidly emerging, includ-

ing techniques for studying chromatin, genome

folding, and somatic mutations at single-cell res-

olution (Box 1). For the spatial branch, in situ

analysis of the spatial patterns of RNA, proteins,

and potentially epigenomics will be equally

important. While some of these methods are

already rapidly maturing, others will benefit from

focused development efforts, as well as from

cross-comparison among different techniques.

Fortunately, most can be applied to preserved

tissue specimens, allowing specimens collected

now to be analyzed later, as methods mature.

Biological scope

It will be important to consider the balance

among tissue samples from healthy individuals

at various stages; small cohorts of individuals

with diseases; and samples from model organ-

isms, where key developmental stages are more

accessible and manipulations more feasible.

Well-chosen pilot projects could help refine

strategies and galvanize communities of biologi-

cal experts. Some communities and projects

would be organized around organs (e.g., liver,

heart, brain), others around systems (e.g., the

immune system) or disease (e.g., cancer), the lat-

ter distributed across many organs and tissues.

As outlined in the HCA White Paper, the first

draft of the atlas might pursue roughly a dozen

organs and systems, each from up to 100 indi-

viduals, collected across 3–4 geographical sites;

each would be analyzed to obtain both cellular

and spatial data, by means of uniform to strati-

fied sampling. Tissue from post-mortem exami-

nation will play a key role, because it is the only

way to obtain samples from a single individual

across the entire body. These efforts will be

complemented, where possible, by biopsy or

resection material from healthy research partici-

pants, and by whole organs obtained from

deceased transplant donors after transplantation

organs have been harvested. In some cases,

such as the immune system, samples from indi-

viduals with a disease will be included to probe

different functional states of a system.

The full atlas, will ultimately describe at least

10 billion cells, covering all tissues, organs, and

systems. Specimens will come from both healthy

research participants and small cohorts of

patients with relevant diseases. The cells and tis-

sues will be studied using a broad range of tech-

niques, to obtain cellular and spatial

information, from samples designed to repre-

sent the world’s diversity. As with previous

genomic projects, the Human Cell Atlas will be

bounded in its resolution (with respect to the

rarity of cell types/states and the spatial resolu-

tion), its coverage of disease and diversity

(broadly representative but not obviating the

need for direct genetic and clinical studies), and

its functional assessment (to validate the exis-

tence of identified cells and facilitate – but not

perform – detailed functional characterization).

Model organisms

The Human Genome Project and the broader

scientific community benefitted from insights

learned from genome projects conducted in par-

allel in model organisms. These projects empow-

ered functional studies in model organisms,

ushered a new era of comparative genomics,

and provided important technical lessons. By

analogy, we envision that key ’sister’ atlases in

model organisms will be developed in parallel

and in coordination with the Human Cell Atlas.

These projects should not delay progress on the

human atlas (or vice versa), because current

techniques are already directly applicable to bio-

medical research on human samples.

In some cases, model organism atlases can

use techniques that are not possible in humans,

such as engineering animals to facilitate lineage

tracing. In many cases, the extensive validation

and functional follow-up studies that can be per-

formed in model organisms will help validate ’by

proxy’ conclusions drawn in the human atlas.

Finally, comparing the atlases across organisms

will provide invaluable lessons in evolution and

function.

Quality

In creating a reference map to be used by thou-

sands of investigators, it is critical to ensure that

the results are of high quality and technically

reproducible. This is especially important in view

of the inherent biological variation and expected

measurement noise. Substantial investment will

be needed in the development, comparison,

and dissemination of rigorous protocols, stand-

ards, and benchmarks. Both individual groups

and larger centers will likely have important roles

in defining and ensuring high quality. It will also

be important that the collected samples be

accompanied by excellent clinical annotations,

captured in consistent meta-data across the

atlas.

Tissue processing poses special challenges,

including the need for robust methods for disso-

ciating samples into single cells so as to preserve

all cell types, fixation for in situ methods, and

Regev et al. eLife 2017;6:e27041. DOI: https://doi.org/10.7554/eLife.27041 17 of 30

Feature article Science Forum The Human Cell Atlas

https://doi.org/10.7554/eLife.27041


freezing for transport. A related challenge is the

difference in the amenability of specific cell

types for different assays (T cells are very small

and yield lower quality scRNA-seq; the fat con-

tent in adipocyte is challenging for many spatial

methods; many neurons cannot currently be iso-

lated with their axons and dendrites from adult

tissue). Careful attention will also be needed to

data generation and computational analysis,

including validated standard operating proce-

dures for experimental methods, best practices,

computational pipelines, and benchmarking

samples and data sets to ensure comparability.

Global equity

Geographical atlases of the Earth were largely

developed to serve global power centers. The

Human Cell Atlas should be designed to serve

all people: it should span genders, ethnicities,

environments, and the global burden of diseases

– all of which are likely to affect the molecular

profiles of cells and must be characterized to

maximize the atlas’s benefits. The project itself

should encourage and support the participation

of scientists, research centers and countries from

around the globe, while recognizing the value of

respecting and learning from diverse popula-

tions, cultures, mores, beliefs, and traditions.

Open data

The Human Genome Project made clear the

power of open data that can be used by all and

freely combined with other datasets. A Human

Cell Atlas should similarly be an open endeavor,

to the full extent permitted by participants’

wishes and legal regulation. While the underly-

ing sequence data contains many polymor-

phisms that make it ’identifiable’, it should be

possible to map the data onto ’standard models’

of each gene to substantially mitigate this issue.

To make the atlas useful, it will be critical to

develop data platforms that can provide efficient

aggregation and storage, quality control, analyt-

ical software, and user-friendly portals.

Flexibility

A Human Cell Atlas Project should be intellectu-

ally and technologically flexible. The project

should embrace the fact that its biological goals,

experimental methods, computational

approaches, overall scale, and criteria for ’com-

pletion’ will evolve rapidly as insights and tools

develop. For historical context, it is useful to

remember that discussions about a Human

Genome Project began before the development

of automated DNA sequencing machines, the

polymerase chain reaction, or large-insert DNA

cloning, and the project drove technological

progress on many fronts. Moreover, the criteria

for a ’finished’ genome sequence were only

agreed upon during the last third of the project.

Impact on the scientific community

Large-scale efforts, such as a Human Cell Atlas,

must be careful to appropriately weigh the ben-

efits to science and individual scientists with the

potential costs. We consider the key benefits to

the broad scientific community to include: the

core scientific knowledge and discoveries that

will result from having a reference map; the

empowerment of scientists working across any

tissue or cell type to pursue their research more

precisely and effectively; the development, hard-

ening and dissemination of experimental techni-

ques and computational methods in the context

of big-data settings, all of which will be openly

shared; the inclusive and maximally open Human

Cell Atlas community, inviting participation by

all individual labs and research centers; and the

coordination of efforts that would otherwise be

unconnected, less extensive, and more

expensive.

At the same time, we must be aware of

potential pitfalls, including: premature restriction

to specific technologies or approaches, which

might limit innovation in a fast-moving field;

implicit restriction of participation, based on

available resources; and diversion of funding

from other research directions. The unique orga-

nization and community of the Human Cell Atlas

Project will tackle these potential challenges by

committing to open membership, to the open

and immediate data release with no restrictions,

and to open-source code for all computational

approaches. We hope that the new information

and technology generated will more than repay

the costs of the project by increasing the speed

and efficiency of biomedical research through-

out the scientific community.

Engagement with the non-scientific
community

The general public is a key stakeholder commu-

nity for the Human Cell Atlas. Proper public

engagement should involve many communities,

including interested members of the public, citi-

zen-scientists, schoolchildren, teachers and,

where appropriate, research participants.

Engagement will take diverse forms, including

traditional media, social media, video and,
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importantly, direct sharing of the project’s data.

Across all channels, it will be important to articu-

late the goals, principles and motivations of the

project. While explaining the intended benefits

to the public with respect to advancing disease

biology, drug discovery and diagnostics, it will

be equally important to avoid ’hype’: that is, we

need to avoid making promises and raising

expectations that are unrealistic in content or

timing.

Forward looking

Any data produced today will be easier, faster,

more accurate and cheaper to produce tomor-

row. Any intermediate milestones achieved dur-

ing the project will be supplanted by deeper,

broader, more accurate, and more comprehen-

sive successors within a few short years. How-

ever, as we define the goal of a Human Cell

Atlas Project, we should view it not as a final

product, but as a critical stepping-stone to a

future when the study of human biology and

medicine is increasing tractable.

Conclusion
The past quarter-century has shown again and

again the value of the scientific community join-

ing together in collaborative efforts to generate

and make freely available systematic information

resources to accelerate scientific and medical

progress in tens of thousands of laboratories

around the world. The Human Cell Atlas builds

on this rich tradition, extending it to the funda-

mental unit of biological organization: the cell.

Many challenges will arise along the way, but

we are confident that they can be met through

scientific creativity and collaboration. It is time

to begin.
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Südhof TC. 2016. Single-cell RNAseq reveals cell
adhesion molecule profiles in electrophysiologically
defined neurons. PNAS 113:E5222–E5231.
DOI: https://doi.org/10.1073/pnas.1610155113,
PMID: 27531958
Gagliani N, Amezcua Vesely MC, Iseppon A,
Brockmann L, Xu H, Palm NW, de Zoete MR, Licona-
Limón P, Paiva RS, Ching T, Weaver C, Zi X, Pan X, Fan
R, Garmire LX, Cotton MJ, Drier Y, Bernstein B,
Geginat J, Stockinger B, et al. 2015. Th17 cells
transdifferentiate into regulatory T cells during
resolution of inflammation. Nature 523:221–225.
DOI: https://doi.org/10.1038/nature14452, PMID: 25
924064
Gao R, Davis A, McDonald TO, Sei E, Shi X, Wang Y,
Tsai PC, Casasent A, Waters J, Zhang H, Meric-
Bernstam F, Michor F, Navin NE. 2016. Punctuated
copy number evolution and clonal stasis in triple-
negative breast cancer. Nature Genetics 48:1119–
1130. DOI: https://doi.org/10.1038/ng.3641,
PMID: 27526321
Gaublomme JT, Yosef N, Lee Y, Gertner RS, Yang LV,
Wu C, Pandolfi PP, Mak T, Satija R, Shalek AK,
Kuchroo VK, Park H, Regev A. 2015. Single-cell
genomics Unveils critical regulators of Th17 cell
pathogenicity. Cell 163:1400–1412. DOI: https://doi.
org/10.1016/j.cell.2015.11.009, PMID: 26607794
Gawad C, Koh W, Quake SR. 2014. Dissecting the
clonal origins of childhood acute lymphoblastic
leukemia by single-cell genomics. PNAS 111:17947–
17952. DOI: https://doi.org/10.1073/pnas.
1420822111, PMID: 25425670
Genshaft AS, Li S, Gallant CJ, Darmanis S, Prakadan
SM, Ziegler CG, Lundberg M, Fredriksson S, Hong J,
Regev A, Livak KJ, Landegren U, Shalek AK. 2016.
Multiplexed, targeted profiling of single-cell
proteomes and transcriptomes in a single reaction.
Genome Biology 17:188. DOI: https://doi.org/10.
1186/s13059-016-1045-6, PMID: 27640647
Giesen C, Wang HA, Schapiro D, Zivanovic N, Jacobs
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FA, Moignard V, Göttgens B, Arlt W, McKenzie AN,
Teichmann SA. 2014. Single-cell RNA sequencing
reveals T helper cells synthesizing steroids de novo to
contribute to immune homeostasis. Cell Reports 7:
1130–1142. DOI: https://doi.org/10.1016/j.celrep.
2014.04.011, PMID: 24813893
Marco E, Karp RL, Guo G, Robson P, Hart AH, Trippa
L, Yuan GC. 2014. Bifurcation analysis of single-cell
gene expression data reveals epigenetic landscape.
PNAS 111:E5643–5650. DOI: https://doi.org/10.1073/
pnas.1408993111, PMID: 25512504
Marcus JS, Anderson WF, Quake SR. 2006.
Microfluidic single-cell mRNA isolation and analysis.
Analytical Chemistry 78:3084–3089. DOI: https://doi.
org/10.1021/ac0519460, PMID: 16642997
Markram H, Muller E, Ramaswamy S, Reimann MW,
Abdellah M, Sanchez CA, Ailamaki A, Alonso-
Nanclares L, Antille N, Arsever S, Kahou GA, Berger
TK, Bilgili A, Buncic N, Chalimourda A, Chindemi G,
Courcol JD, Delalondre F, Delattre V, Druckmann S,
et al. 2015. Reconstruction and simulation of
neocortical microcircuitry. Cell 163:456–492.
DOI: https://doi.org/10.1016/j.cell.2015.09.029,
PMID: 26451489
Martincorena I, Roshan A, Gerstung M, Ellis P, Van
Loo P, McLaren S, Wedge DC, Fullam A, Alexandrov
LB, Tubio JM, Stebbings L, Menzies A, Widaa S,
Stratton MR, Jones PH, Campbell PJ. 2015. Tumor
evolution. High burden and pervasive positive
selection of somatic mutations in normal human skin.
Science 348:880–886. DOI: https://doi.org/10.1126/
science.aaa6806, PMID: 25999502
May RM. 1976. Simple mathematical models with very
complicated dynamics. Nature 261:459–467. PMID:
934280
Mazzarello P. 1999. A unifying concept: the history of
cell theory. Nature Cell Biology 1:E13–E15.
DOI: https://doi.org/10.1038/8964, PMID: 10559875
McKenna A, Findlay GM, Gagnon JA, Horwitz MS,
Schier AF, Shendure J. 2016. Whole-organism lineage
tracing by combinatorial and cumulative genome
editing. Science 353:aaf7907. DOI: https://doi.org/10.
1126/science.aaf7907, PMID: 27229144
Miller JA, Ding SL, Sunkin SM, Smith KA, Ng L, Szafer
A, Ebbert A, Riley ZL, Royall JJ, Aiona K, Arnold JM,
Bennet C, Bertagnolli D, Brouner K, Butler S, Caldejon
S, Carey A, Cuhaciyan C, Dalley RA, Dee N, et al.
2014. Transcriptional landscape of the prenatal human
brain. Nature 508:199–206. DOI: https://doi.org/10.
1038/nature13185, PMID: 24695229
Miyashiro K, Dichter M, Eberwine J. 1994. On the
nature and differential distribution of mRNAs in
hippocampal neurites: implications for neuronal
functioning. PNAS 91:10800–10804. PMID: 7971965

Regev et al. eLife 2017;6:e27041. DOI: https://doi.org/10.7554/eLife.27041 26 of 30

Feature article Science Forum The Human Cell Atlas

https://doi.org/10.1126/science.aaf1204
https://doi.org/10.1126/science.aaf1204
http://www.ncbi.nlm.nih.gov/pubmed/27339989
https://doi.org/10.1126/science.274.5287.536
https://doi.org/10.1126/science.274.5287.536
http://www.ncbi.nlm.nih.gov/pubmed/8928008
https://doi.org/10.1073/pnas.79.14.4381
http://www.ncbi.nlm.nih.gov/pubmed/6812046
https://doi.org/10.1126/science.1250212
https://doi.org/10.1126/science.1250212
http://www.ncbi.nlm.nih.gov/pubmed/24578530
https://doi.org/10.1016/j.cell.2015.05.047
http://www.ncbi.nlm.nih.gov/pubmed/26095251
https://doi.org/10.1126/science.1240617
https://doi.org/10.1126/science.1240617
http://www.ncbi.nlm.nih.gov/pubmed/24009393
https://doi.org/10.1038/nmeth.2804
http://www.ncbi.nlm.nih.gov/pubmed/24412976
https://doi.org/10.1038/nbt.1977
http://www.ncbi.nlm.nih.gov/pubmed/21964413
http://www.ncbi.nlm.nih.gov/pubmed/21964413
https://doi.org/10.1186/gb-2007-8-7-r146
http://www.ncbi.nlm.nih.gov/pubmed/17650318
https://doi.org/10.1038/nmeth.2892
http://www.ncbi.nlm.nih.gov/pubmed/24681720
http://www.ncbi.nlm.nih.gov/pubmed/24681720
https://doi.org/10.1038/nmeth.3370
https://doi.org/10.1038/nmeth.3370
http://www.ncbi.nlm.nih.gov/pubmed/25915121
https://doi.org/10.1016/j.cell.2015.05.002
http://www.ncbi.nlm.nih.gov/pubmed/26000488
https://doi.org/10.1016/j.celrep.2014.04.011
https://doi.org/10.1016/j.celrep.2014.04.011
http://www.ncbi.nlm.nih.gov/pubmed/24813893
https://doi.org/10.1073/pnas.1408993111
https://doi.org/10.1073/pnas.1408993111
http://www.ncbi.nlm.nih.gov/pubmed/25512504
https://doi.org/10.1021/ac0519460
https://doi.org/10.1021/ac0519460
http://www.ncbi.nlm.nih.gov/pubmed/16642997
https://doi.org/10.1016/j.cell.2015.09.029
http://www.ncbi.nlm.nih.gov/pubmed/26451489
https://doi.org/10.1126/science.aaa6806
https://doi.org/10.1126/science.aaa6806
http://www.ncbi.nlm.nih.gov/pubmed/25999502
http://www.ncbi.nlm.nih.gov/pubmed/934280
https://doi.org/10.1038/8964
http://www.ncbi.nlm.nih.gov/pubmed/10559875
https://doi.org/10.1126/science.aaf7907
https://doi.org/10.1126/science.aaf7907
http://www.ncbi.nlm.nih.gov/pubmed/27229144
https://doi.org/10.1038/nature13185
https://doi.org/10.1038/nature13185
http://www.ncbi.nlm.nih.gov/pubmed/24695229
http://www.ncbi.nlm.nih.gov/pubmed/7971965
https://doi.org/10.7554/eLife.27041


Moffitt JR, Hao J, Bambah-Mukku D, Lu T, Dulac C,
Zhuang X. 2016a. High-performance multiplexed
fluorescence in situ hybridization in culture and tissue
with matrix imprinting and clearing. PNAS 113:14456–
14461. DOI: https://doi.org/10.1073/pnas.
1617699113, PMID: 27911841
Moffitt JR, Hao J, Wang G, Chen KH, Babcock HP,
Zhuang X. 2016b. High-throughput single-cell gene-
expression profiling with multiplexed error-robust
fluorescence in situ hybridization. PNAS 113:11046–
11051. DOI: https://doi.org/10.1073/pnas.
1612826113, PMID: 27625426
Moignard V, Woodhouse S, Haghverdi L, Lilly AJ,
Tanaka Y, Wilkinson AC, Buettner F, Macaulay IC,
Jawaid W, Diamanti E, Nishikawa SI, Piterman N,
Kouskoff V, Theis FJ, Fisher J, Göttgens B. 2015.
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