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Protein Interaction Network Biology in Neuroscience

Avik Basu, Peter EA Ash, Benjamin Wolozin, and Andrew Emili*

Mapping the intricate networks of cellular proteins in the human brain has
the potential to address unsolved questions in molecular neuroscience,
including the molecular basis of cognition, synaptic plasticity, long-term
potentiation, learning, and memory. Perturbations to the protein–protein
interaction networks (PPIN) present in neurons, glia, and other cell-types have
been linked to multifactorial neurological disorders. Yet while knowledge of
brain PPINs is steadily improving, the complexity and dynamic nature of the
heterogeneous central nervous system in normal and disease contexts poses
a formidable experimental challenge. In this review, the recent applications of
functional proteomics and systems biology approaches to study PPINs central
to normal neuronal function, during neurodevelopment, and in
neurodegenerative disorders are summarized. How systematic PPIN analysis
offers a unique mechanistic framework to explore intra- and inter-cellular
functional modules governing neuronal activity and brain function is also
discussed. Finally, future technological advancements needed to address
outstanding questions facing neuroscience are outlined.

Introduction

At the molecular level, core brain functions involve physi-
cal interactions among a diverse array of cell surface and
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intracellular proteins, which form
dynamic spatiotemporal-regulated func-
tional modules underlying and linking
the different cell-types of the central
nervous system (CNS).[1,2] For instance,
synaptic transmission depends on
transient and stable protein–protein
interactions (PPI) among the hundreds
of components that form the presynap-
tic and post-synaptic compartments.
Neurotransmission depends on physical
associations among a network of scaffold
proteins, calcium sensors, and SNARE
(soluble N-ethylmaleimide–sensitive fac-
tor attachment protein receptor) proteins
at the pre-synapse; while multiprotein
complexes formed from different scaf-
fold proteins, notably Synapse Associated
Protein 90/Post Synaptic Density protein
95-associated proteins, provide a recep-
tive structural and functional framework
at the post-synaptic region.[3]

More generally, PPI mediate or regulate virtually every aspect
of neuronal cell behavior, including cell-to-cell communication,
neurogenesis, synaptogenesis, and even cell death by autophagy
or apoptosis.[4] It is also increasingly recognized that the coher-
ent cellular organization of these PPI networks (PPIN) play a
central role in terms of accurate information processing, cog-
nition, memory, and reflex behaviors that govern neural com-
munication. Conversely, PPIN dysregulation has been shown to
cause protein aggregation, neuronal stress and dysfunction, and
cell death associated with various neurodegenerative diseases
(ND)[5,6] and neurodevelopmental disorders (NDD).[7] Detailed
knowledge of this “interactome” architecture in both healthy and
diseased brain contexts therefore offers the potential to advance
mechanistic understanding of normal neuronal function as well
as the causal basis of neurological disorders.
To achieve these goals, experimental methods to study PPIN

in the CNS have been devised to advance neuroscience and per-
sonalized medicine. Mass spectrometry (MS)-based methods, in
particular, have emerged for mapping PPIN in model systems
ranging from nematodes, fruit fly and mice, to human cells or
tissue. These have led to unbiased surveys of the specialized
multi-protein architecture of synapses and sub-synaptic struc-
tures, such as the synaptic cleft[8] and both the excitatory and in-
hibitory post-synaptic density.[9] Yet the discovery of pathophysi-
ologically relevant PPINs is complicated due to the complex and
heterogeneous nature of the human brain.
In this review, we explore state-of-the-art proteomic tech-

niques and computational tools available to neuroscientists in-
terested in PPIN. These approaches complement traditional ge-
netic, genomic, and cell biology strategies, such as genome-wide
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Figure 1. Typical workflows of experimental methods used for detection of PPIN. Exemplary source material shown at the top. Each of the MS-based
functional proteomics methods is suited to different applications, depending on the scope of the research question and study design, as described in
this review. Common downstream data analysis strategies are shown at the bottom.

association studies (GWAS), imaging, and transcriptomic pro-
filing, to illuminate the molecular mechanisms underlying key
brain functions and the multifactorial basis of neurological dis-
orders. We also survey its recent applications to NDs such as
Alzheimer’s Disease (AD), to NDDs like Angelman syndrome
(AS), and other specific pathological contexts. We conclude by
defining major current challenges and promising future direc-
tions that should enable a better mechanistic understanding of
important neuronal processes and diseases that remain unclear
to this day.

Methods to Analyze Multi-Protein Complexes

Historically, molecular profiling studies of the CNS typically in-
volvemeasuring differences in the relative abundance of mRNAs
or proteins, without understanding their underlying physical
or functional connectivity. By revealing inter-relationships, the
study of PPIN aims to provide a more informative mechanistic
context for interpreting standard genetic or proteomic datasets.
For example, by overlaying gene expression or protein abun-
dance data on a PPIN as a graphical model, one can illuminate
functionally coherent parts of the network that form during
development or that are altered in a particular disease state.
A plethora of experimental and allied computational tech-

niques are available to explore the network biology relevant
to neuroscience, but we focus on approaches coupling liquid
chromatography to mass spectrometry (LC/MS) as a readout
(Figure 1). As summarized in Table 1, these methods have
respective strengths and weaknesses (e.g., ease of deployment,
scale-up, capability, sensitivity versus specificity).[10] What is

striking is how the toolkit has evolved to fit the modern research
needs of neurobiologists.

Mapping Interactions via Affinity Pulldown

Due to their relatively straightforward application, immunopre-
cipitation and affinity pull-down techniques are widely used
in neuroscience to explore bimolecular interacting partners of
select protein targets.[11,12] By combining this concept into a
high-throughput (HTP) pipeline, systematic immunoprecipita-
tion coupled to MS (IP-MS) and affinity-tagging/purification
coupled to MS (AP-MS) workflows have emerged as the basis
of global screening platforms for surveying “interactomes” on
a large-scale and relatively unbiased manner (Figure 2A).[13,14]

These methods often succeed at identifying stably associated
interactors, such as the components of multi-subunit macro-
molecular complexes. While the power of AP-MS method has
been demonstrated for ND/NDD (see below), they can miss
potentially important transient interactions, for example at the
synapse that mediates neurotransmission. Potential artifacts can
also result from ectopic overexpression of proteoforms in a non-
physiological context, and also through interactions occurring as
a result of the harsh extraction procedure, so that resulting PPIN
data does not necessarily accurately reflect the in situ interac-
tome.

Global Biochemical Profiling of PPIN

The burgeoning integration of chemical crosslinking with MS
(CX-MS) Figure 2B offers a synergistic technique to map binary
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Table 1. Summary of strengths and limitations of experimental methods for mapping PPI.

Approach Key Features Drawbacks Method
Reference

Neuro
Study

IP-MS ¨ Relatively easy to set up
¨ Background subtraction with isotype controls

and knock out model possible

○ Miss transient/weak interactions
○ Dependent on good quality antibody for

pulldown

[14] [11]

AP-MS ¨ Moderately high throughput
¨ Protein tagging easier with commercial ORFs
¨ Choice of available epitopes, makes study

design flexible

○ Miss transient or weak interactions
○ High false discovery rate due to background
○ Overexpression of bait might lead to artifact

[13,15] [12,60]

Biotin Ligase based proximity
assays (BioIDand TurboID)

¨ Can detect transient and weak interactions
¨ In vivo application possible
¨ Study context-dependent interactions in model

systems in time window (10 min to 24 h)
¨ Amicable to CRISPR mediated knock in and/or

inducible promoter system for optimal
experiment design

○ Protein tagging required by genetic
manipulation

○ Tagging with large enzyme can alter the
function/ localization of bait

○ Relatively low throughput
○ Larger radius resulting in promiscuous

labeling
○ Overexpression and/or constitutive

expression might lead to artifacts

[29]

[30]

[9,38]

Peroxidase based proximity
ligation (HRP,APEX2)

¨ Applicable to studying transient interactions
(≈1 min)

¨ Limited labeling radius ideal for studying
direct interactors

¨ Compatible with electron microscopy

○ Protein tagging required and large enzyme
tag can alter the function/ localization of bait

○ Relatively low throughput
○ Not suitable for in vivo applications due to

toxicity of peroxide reagents

[32] [8,33]

Micro-mapping ¨ Protein tagging not required
¨ Labels limited set of very close interactors
¨ Background subtraction with isotype controls

possible
¨ Spatiotemporal manipulation possible with

light activation

○ Dependent on good quality antibody for
labeling

○ Reagents not commercially available, require
complex synthesis, short shelf life

○ Optimized for membrane proteins
○ Not yet tested for in vivo applications

[42] N/A

CF-MS ¨ Simultaneous global discovery of endogenous
assemblies

¨ Good for identifying native stable complexes
¨ Protein tagging or over-expression not

required

○ Not suitable for in vivo applications
○ Biased against transient or weak interactions
○ Requires ample protein material and LC/MS

resources

[19] [18]

CX-MS ¨ High-resolution information suitable for
structural inference

¨ Range of crosslinkers offers experimental
flexibility

○ High degree of nonspecific crosslinking
needs optimization

○ Analysis is tricky to identify true crosslinked
peptides

[17] [16]

interaction interfaces of potential interest to neurobiologists.[15]

The advent of innovative crosslinker chemistries, such as vari-
ous spacer arm lengths, expanded side-chain reactivities, andMS
cleavability (which facilitates data interpretation), provide valu-
able distance constraints for structural modeling ofmulti-protein
complexes with near-atomic resolution.[16] Yet due to limitations
in specificity, efficiency, recovery, and challenges with regards to
data analysis, CF/CX-MS are underutilized for large-scale PPI
studies in neuroscience.
One emerging approach to study PPIN in a near-native

physiological context is the use of biochemical co-fractionation
of native protein complexes combined with MS (CF-MS),
Figure 2C which allows researchers to probe the endogenous
macromolecules present in a complex mammalian tissue such
as the brain.[17] Complex protein mixtures can be fractioned by
different approaches like size exclusion chromatography, ion ex-
change chromatography (anion exchange, cation exchange, or a
combination of both), hydrophobic interaction chromatography,
or blue native PAGE. PPI are inferred based on protein profile
correlations and other criteria to define functionally relevant

associations. Other successful applications range from cultured
cells,[18] to microbes[19] and plants,[20] revealing the conserva-
tion of protein complexes across evolutionary timescales.[21]

Automated data analysis pipelines allow researchers to navigate
the CF-MS datasets to define complexes with disease links.[22]

For example, analysis of the brain interactome implicated a
multi-subunit RNA-binding assembly associated in amyotrophic
lateral sclerosis.[17] Recent innovations include stable isotope
labeling for relative quantification across different cell-types and
regions of the brain. Moreover, CF-MS pipeline can integrate
advances in imaging,[23] structural modeling,[24] cryo-electron
microscopy,[25] and whole cell tomography[26] to address fun-
damental biophysical questions, like the topology of neuronal
synapses.

Proximity Ligation to Capture Interactions In Vivo

Detecting weak or transient interactions that are induced in a
precise spatiotemporal manner is an important challenge. The
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Figure 2. Workflows of experimental methods used in A) AP/MS, B) CX-MS, and C) CF-MS for detection of global PPIN.

advent of protein proximity labeling (PL) techniques that use
enzyme fusions to covalently couple biotin to physically-adjacent
proteins (within a roughly 10 nm radius in the cellular milieu)[27]

has opened an entirely new way of looking at the dynamics of
protein associations in a living cell context. PL involves express-
ing target protein fusions to engineered enzymes such as biotin
ligases (BioID[28] and TurboID/mini TurboID[29]) or peroxi-
dases (horse radish peroxidase (HRP),[30] ascorbate peroxidase
(APEX)[31]) Figure 3. Interacting proteins, biotinylated in vivo, are
enriched either at the protein (e.g., using streptavidin-conjugated
beads) or peptide level (e.g., using anti-biotin antibody beads)[32]

and subsequently identified by MS.
HRP and APEX/APEX2 rapidly oxidize exogenous biotin-

phenol reagent, usingH2O2 as a co-substrate, into highly reactive
phenoxyl radical (<1 ms half-life) that tags immediate neighbor-
ing proteins (Figure 3A). HRP showsmuch higher catalytic activ-
ity in the oxidative environment of the secretory system and at the
cell surface and is therefore ideal for applications targeting CNS
receptors at the plasmamembrane[33] and synaptic cleft.[8] APEX
offers rapid, inducible labeling, producing a limited reactive ra-
dius better suited to studying dynamic interactions, such as dur-
ing synaptic transmission or pathogenic infections, but requires
treating cells with toxic H2O2 to initiate labeling. The low perme-
ability of biotin-phenol limits cytosolic labeling in both cases.
On the other hand, biotin ligase-based approaches utilize

highly permeable biotin and intra-cellular ATP for labeling
(Figure 3B). Earlier variants show low activity; BioID, derived
from mutant Escherichia coli biotin ligase (BirA),[34] requires
lengthy (≈24 h) labeling. TurboID-based enzymes,[29] optimized
using directed evolution, have substantially higher activity, re-
quiring ≈10 min labeling, which enables probing dynamic pro-

cesses with much higher spatiotemporal resolution. In addition,
they are active at lower temperatures, enabling PL in organisms
such as flies, worms, yeast, and plants. A smaller miniTurbo vari-
ant with a lower affinity for biotin allows for less background and
selective labeling.[29] Recent developments include split-TurboID
and split-APEX, consisting of two inactive fragments that are re-
constituted via specific PPI in vivo,[35] are especially useful to
minimize artifacts in structure-function, localization, and tomap
organelle-restricted interactions such as at the synapse.
In general, biotin ligases are best suited for investigating

the interaction partners of cytoplasmic-oriented proteins[9,36]

whereas peroxidase-based methods allow the study of dynamic
events involving membrane proteins like G-protein coupled re-
ceptor signaling.[37] To ensure success, it is critical to validate the
bait-enzyme fusion is functional and properly localized. To over-
come extreme overexpression artifacts, endogenous tagging by
CRISPR-Cas9-mediated genetic knock-in, or by adeno-associated
virus or lentivirus delivery, is preferred over transient transfec-
tion. Although virus-mediated delivery is more popular due to
ease of application, CRISPR-Cas9-based endogenous tagging sys-
tems are in gaining popularity and have been used both in cell
culture[38] as well as in animal models.[39] The user must opti-
mize the amount of starting material (tissue amount, DNA load,
cell count, replicates) and time-course to maximize labeling of
high-confidence interactors with less background.
A recently described technique, termed Photo-PL (PPL),

known colloquially as MicroMapping (Figure 3C), combines the
selectivity of antibodies with photocatalyzed reagents to enable la-
beling of the immediate molecular neighborhood of cell surface
targets.[40] In this approach, researchers tag a light-activated pho-
tocatalyst to an antibody targeting a specific protein of interest or
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Figure 3. Workflows of experimental methods used for detection of PPIN by proximity ligation methods A) APEX, B) BioID, and C) Micromapping. All
of the methods involve tagging of neighboring or interacting proteins with biotin and subsequent enrichment by streptavidin pull down.

epitope. After engaging with its target, the photocatalyst tagged
antibody captures energy from a suitable blue light source and
transfers it to nearby compounds containing a diazirine group.
This transforms the diazirine into a highly reactive carbene in-
termediate which will immediately react with any protein in close
vicinity. The very short lifespan (≈5 ns) of the reactive free rad-
icals (e.g., carbene) generated upon photoactivation allows for a
tight (≈4 nm) labeling radius, ideal for labeling immediate inter-
actors of membrane proteins of interest. By attaching a biotin to
the diazirine containingmolecule, researchers can tag and subse-
quently enrich physically adjacent proteins by streptavidin affin-
ity capture as with other PL methods.
Originally used to study protein assemblies formed at

immune-synapses,[40] PPL is well suited for studying PPI occur-
ring in plasma membrane of neurons, such as pre and post-
synaptic interfaces, as well as astrocytes and glial cells. The
technology is also potentially applicable to study interactions
occurring in intact tissue or organoids or within intra-cellular lo-
cations. Whether used alone, or in combination with pre-existing
techniques, PPL provides a promising complementary platform
to study the microenvironments of neuronal proteins of specific
interest with high spatiotemporal resolution.

Data Analysis and Complementarity of Existing Methods

The analysis of interactome data often requires specialized
computational tools. Software packages like SAINT[41] and

ComPASS[42] are publicly available tools to score and rank protein
complex pulldown experiments based on data reproducibility,
variance and enrichment relative to controls, to define more se-
lective or probable associations. Ratiometric criteria,[43] wherein
the signal of each putative interactor is quantified relative to con-
trol samples, can establish specificity and eliminate non-specific
associations. Receiver operating characteristic-based analyses,
which benchmark results against a curated list of known interac-
tions, are useful for establishing optimal cut-off scores that min-
imize the retention of false positives.
The lack of ideal controls for many situations, however,

prompts the need for improved methods. For example, the re-
sults obtained for a PL study involving a tagged bait are usu-
ally compared against background labeling by free PL enzyme,
which may show diffuse localization. Isotype controls can mit-
igate the loss of spatiotemporal resolution, while multivariate
analyses using linear models can accommodate more complex
study designs. Yet even with stringent analysis, the interactomes
recovered by different experimental strategies do not always over-
lap for any given bait, reflecting intrinsic biases of each approach.
The relative pros and cons of different approaches are critical

factors to consider when addressing a specific scientific question
(Table 1). While IP-MS or AP-MS experiments are easier to set
up, they canmiss crucial transient interactions. Fusion protein in
functional, peroxidase-based PL methods like APEX2 is perhaps
best suited for PPI studies in cell culture (due to fast kinetics
and labeling), while biotin ligase-based methods are preferred
for in vivo experiments, as they do not require cytotoxic reagents
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Table 2. List of commonly used databases related to neuroscience and with relevance to neuroproteomics.

Database Database URL Features

Allen Brain Map portal.brain-map.org/ Comprehensive gene expression datasets of various cells and tissue types from
mouse and human brain.

BioGRID thebiogrid.org/ Archives and disseminates genetic, PPI, and PTM data from model organisms and
humans.

BIOPLEX wren.hms.harvard.edu/bioplex/ High-throughput AP-MS based human PPI data from 293T, HCT116 cell lines.

BrainMap www.bu.edu/dbin/cnsb/mousebrain CF-MS based data on protein complexes in adult mouse brain.

CORUM mips.helmholtz-muenchen.de/corum/ Resource of manually annotated protein complexes from mammals; includes
complex function, localization, subunit composition, etc.

GeneCards www.genecards.org Integrative database that provides comprehensive, user-friendly information on all
annotated and predicted human genes.

HIPPE cbdm-01.zdv.uni-
mainz.de/∼mschaefer/hippie/

Web tool to generate human PPIN with an integrated probability-based scoring
system.

human base hb.flatironinstitute.org/ Tissue-specific interaction, data-driven predictions of gene expression, function,
regulation, and interactions in human.

Human Protein Atlas www.proteinatlas.org Useful information about protein localization and comparison about RNA
expressions in cells and tissues.

Integrated Interaction
Database

iid.ophid.utoronto.ca/ Provide networks that are specific to tissues, sub-cellular localizations, diseases,
and druggable proteins across 18 model species.

IntAct www.ebi.ac.uk/intact Open source database and analysis tools for molecular interaction data, derived
from literature curation or direct user submissions.

iRefIndex irefindex.vib.be/wiki/index.php/iRefIndex Provides an index of protein interactions available in a number of primary
interaction databases.

STRING string-db.org/ Database of known and predicted PPIs, include direct (physical) and indirect
(functional) associations from computational prediction, and from interactions
from primary databases.

SynaptosomeAtlas synaptome.genes2cognition.org Database and visualization tool for different synapse types and subtypes of whole
mouse brain.

SYNGO syngoportal.org Knowledgebase for synapse related proteins, their function, and interactions

TissueNET netbio.bgu.ac.il/tissuenet/ Provides quantitative tissue associations for human PPIs.

UniProt www.uniprot.org/ Comprehensive resource for protein sequence and annotation data; hub for the
collection of functional information on proteins.

like H2O2 to function. TurboID is advantageous over BioID by
having much faster labeling with higher yields but sometimes
exhibits background activity even without exogenous biotin
which can complicate data analysis. Due to its lower background
labeling rate, miniTurbo is better suited for capturing transient
interactions in time-course experiments. Assuming access to
suitable antibodies, PPL is a method of choice for researchers
interested in characterizing membrane protein assemblies.
CF-MS and CX-MS provide topological information but require
more technical expertise and resources. In summary, researchers
should choose the most relevant model and approach suited to
the question(s) at hand, and preferably cross-validate findings
using complementary methods in follow-up experiments.

PPIN as a Framework to Navigate the Human Brain Proteome

The human brain is an exceptionally complex structure, reflect-
ing specialized spatial, structural, and cell-type organization
across different cells and anatomical regions.[44] Knowledge
of the molecular properties of these diverse components can
provide mechanistic insights into their functional connectivity in

normal and pathogenic conditions. Documenting changing in-
teractions during embryonic, juvenile, and adult stages can reveal
systems supporting normal brain development or dysfunction.
Public curation databases such as BioGRID,[45] IntAct,[46]

STRING,[47] and BioPlex[13] act as repositories for PPI informa-
tion. Tissue- and brain-specific PPI have been reported in special-
ized databases, such as TissueNet,[48] IID,[49] and Brain Map.[17]

Commonly used PPIN databases along with important special-
ized resources are listed in Table 2. Analysis of data in these
sources reveals that, while far from complete, existing brain PPIN
display characteristic properties. Network topology and modular-
ity, that reflect the centrality of certain neuronal proteins as highly
connected nodes, form interconnected clusters that underlie
emergent systems level behaviors such as neurotransmission.[2]

PPIN maps therefore inform on sets of proteins potentially asso-
ciated with a particular process or clinical disorder.
In the systems biology domain, PPIN are studied by means

of graphical representations, with proteins referred to as nodes,
and their physical (functional) associations as edges (Figure 4A–
D). Unlike signal transduction pathways, such as protein kinase
phosphorylation cascades, PPIN are undirected and often fol-
low a scale-free (i.e., power-law) distribution, in that, only some

Proteomics 2021, 21, 1900311 © 2020 The Authors. Proteomics published by Wiley-VCH GmbH1900311 (6 of 15)

http://www.advancedsciencenews.com
http://www.proteomics-journal.com
http://www.bu.edu/dbin/cnsb/mousebrain
http://www.genecards.org
http://www.proteinatlas.org
http://www.ebi.ac.uk/intact
http://www.uniprot.org/


www.advancedsciencenews.com www.proteomics-journal.com

Figure 4. Protein interaction networks as a framework to study the molecular basis of neurological processes and diseases. PPINs are often visualized
as 2D graphs, wherein each protein is shown as a node and the association between proteins is represented with lines or edges; highly interconnected
sets of proteins, or clusters, often represent functionally as coherent modules such as multi-protein complexes or biochemical pathways. As illustrated,
this connectivity can become perturbed in NDs, NDDs, and during viral infection (A–D), reflecting alterations in the physical organization and functional
properties of modules normally found in healthy brain (E–H), leading to phenotypic changes and impaired brain functions that become more severe
during disease progression (I–L). Protein complexes enriched for various synaptic functions are shown (adapted from[17]) and their potential links to
NDs, NDDs, and ZIKV infection are highlighted (M).
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nodes are highly connected. One outcome of analyzing PPIN as
graphs are identifying key nodes that have high connectivity of-
ten referred to as hubs,[50] which serve as major conduits whose
functional integrity is more central to cellular function. Compu-
tational analysis of primary (nearest) neighbors and secondary
(indirect) interactions can therefore reveal unexpected relation-
ships, suggest the roles of unannotated components, and reveal
subsystems modulated by pathobiological stimuli.[17]

PPIN Alterations Underlie Disease, including Neuropathological
Disorders

Knowledge of PPI can inform on the molecular basis of diseases
of the CNS (Figure 4E–M). Dysregulation of PPI in particular bio-
chemical pathways can disrupt signaling cascades, rewire protein
homeostasis pathways, and cause accumulation of misfolded
protein aggregates that ultimately leads to pathological states.
Thus, identification of disease linked PPIN can provide mech-
anistic insights plus potential therapeutic targets. For example,
NDs such as AD, Huntington’s disease (HD), and Parkinson’s
disease (PD) are characterized by aggregate formation in dif-
ferent parts of brain[51] (Figure 4G,K). By changing patterns of
translation and post-translational modification (PTM),[52] these
aggregates not only sequester diverse types of proteins, includ-
ing RNA binding proteins (RBP), they perturb cell function via
alterations in the global protein networks of afflicted cells and
tissue. Interestingly, many of these aggregation-prone proteins,
such as 𝛼-synuclein, a hallmark protein aggregate for PD, also
accumulate as aggregates in other NDs such as HD and Diffuse
Lewy Body disease.[51]

The genetic and clinical heterogeneity of human specimens
is compounded by technical difficulties in isolating intact en-
dogenous protein assemblies from post-mortem samples prior
to analysis. One solution has been to perform systematic PPIN
analysis using a combination of cell- and animal-based models
where access to material is less constrained. These include in-
duced pluripotent stem cell-derived neurons and 3D organoid
cultures. These models are increasingly being adopted to study
the pathobiology of NDs/NDDs in specific cell-type contexts, as
exemplified for developmental stage-specific protein dynamics in
cortical neurons and neural progenitors.[53]

Case study - AS

CNS development involves profound rearrangements in cell
connectivity while maintaining coordination across different
brain regions. Failure of this highly orchestrated process at
the PPIN level can lead to NDD. A notable example is AS, a
debilitating disorder that presents clinically with learning diffi-
culties, ataxia, sleeping anomalies, and seizures. AS is caused by
deletion (account for ≈75% cases), inactivation, or mutation in a
single gene product UBE3A (E6AP). Since the paternal UBE3A
allele is silenced in neurons, loss of the maternal copy leads to
AS.[7,54] UBE3A encodes an E3 ligase that conjugates ubiquitin
to substrate proteins, targeting them for degradation via the 26S
proteasome. Inactivation of UBE3A can thus lead to inappro-
priate extension of substrate protein half-life and/or abundance,
with adverse effects. It is, therefore, crucial to identify putative

interactors and substrates of UBE3A in brain, for management
of AS and development of therapeutics.
Previous studies reported UBE3A-binding partners, such as

p53,[55] HERC2[56] and Ephexin5,[57] using coimmunoprecipita-
tion, in vitro ubiquitylation, substrate stability assays, and X-ray
crystallography.[55] AP-MS analysis of wild-type and dominant-
negative UBE3A isoforms identified additional interactors such
as Hypoxia-inducible factor 1-alpha inhibitor, mitogen-activated
protein kinase 6, and Neuralized-like protein 4 (NEURL4). This
research also demonstrated that UBE3A is component of differ-
ent high molecular weight protein complexes[12] with links to
fundamental cellular processes such as centrosome regulation,
DNA replication, translation, and trafficking. UBE3A is also in-
volved in crosstalk between theHUN (HERC2-UBE3A-NEURL4)
and Ca2+/calmodulin-dependent protein kinase II interaction
networks.[58]

Although informative, cell-based models (e.g., T-REx 293,
SH-SY5Y) are far from ideal and validation is required in
primary neurons, brain organoids, or animals. In particular,
mouse AS models show abnormal synaptic transmission and
concomitant proteome differences in different brain regions
(cortex, hippocampus, cerebellum),[59] which have implicated
putative substrates of UBE3A such as HTT associated Protein
1 (HAP1), GOSR1, AHI1, HERC2, and RAD23A. HAP1 is in-
volved in vesicle transport and brain development and facilitates
autophagosome formation.[60] However, as interactions within
ubiquitylation pathways are transient, low affinity, and lead to
rapid protein degradation, in vitro/in vivo PL methods using
BioID/TurboID may be better suited to identify additional sub-
strates targeted by the cellular proteostasis machinery. CF-MS
of healthy versus disease mouse brain may also reveal global
changes in PPIN impacted by loss of UBE3A function.

Case study - AD

Identifying PPIN impacted by AD can reveal mechanistic basis
of this most common form of dementia, which affects ≈1 in
10 people over 65 and predicted to have nearly 50 million cases
worldwide.[61] While AD is ultimately fatal, manifestation of
clinical symptoms occurs years, even decades, after initial de-
velopment of brain pathology,[62] motivating the search for early
molecular markers, diagnostics enabling precision medicine,
and targets for novel therapeutics. The accumulation of extra-
cellular neuritic plaques of insoluble amyloid-𝛽 (A𝛽), as well
as vascular dysfunction, frequently precede symptom onset by
20 years or more; this pathology is followed by activation and
hypertrophy of microglia, neuro-inflammation, and the accu-
mulation of tau pathology, all of which occur 5–10 years ahead
of the clinical phase of AD.[63] These resulting changes correlate
with decreases in synaptic fields and loss of network integrity.[63]

Pathways regulating A𝛽 (formation, aggregation, clearance),
tau (PTM, aggregation, and catabolism), and inflammation
impact AD progression.[64] The pathological diagnosis of AD
requires the presence of neuritic plaques and neurofibrillary tan-
gles (NFT).[63] Pathological, genetic, imaging, and biochemical
studies all provide strong support for an essential role of A𝛽 ac-
cumulation in pathogenesis of AD.[63–65] However, the accumula-
tion of microtubule-associated protein tau into NFT and neuropil
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threads within neocortical neurons (≈5 years before symptoms)
correlates best with cognitive loss, reflecting the inherent corre-
lation between neuronal function and cognitive abilities.[63,65]

To better understand the complexity of AD, large-scale ini-
tiatives such as Accelerating Medicines Partnership-AD and
synapse.org have compiled high dimensional multi-omics
datasets across >2,000 individuals, providing a landscape of pro-
teomic, transcriptomic, epigenomic, andmetabolomic profiles of
afflicted cell-types and tissues. Functional networks consistently
altered during AD pathogenesis in prodromal versus late-stage
AD have been described.[6,66,67] For example, using qualitative
LC-MS to compare dorsolateral prefrontal cortex and precuneus
samples from AD and control individuals, Seyfried’s group iden-
tified AD-affected PPIs,[67] including several linked to loss of
synaptic plasticity and neurons before onset of disease symp-
toms. Similarly, glial cell protein networks were perturbed in
symptomatic cases, highlighting that synaptic dysfunction may
result from dysfunctional glia-mediated homeostatic control.
Other studies provide complementary sets of functional modules
(correlational networks) that also track with pathology.[9,10]

RBPs that function in RNA metabolism, the translational
stress response, and spliceosome machineries co-aggregate with
insoluble tau in AD-affected brains.[68,69] As tau undergoes patho-
logical changes, its PPIN dramatically shifts; dissociating from
microtubules and recruiting ribosomes, RBPs, and heat shock
chaperones,[69,70] with critical consequences. Tau associationwith
the ribosome impairs its function leading to repression of trans-
lation, including of key synaptic proteins such as PSD-95.[70] The
interaction with TIA1 (an RBP that nucleates stress granules in
neurons) facilitates conversion and propagation of tau into toxic
oligomers, which correlate with neuropathology and cognitive
performance in transgenic mice.[52,71]

To evaluate proteome modules modulated by AD, Xu et al.,
generated PPIN for six distinct regions of AD versus control
regions of post-mortem brain (e.g., hippocampus),[72] and iden-
tified changes in components linked to activation of immune
signaling, metabolism, and cell cycle control leading to neu-
roinflammation and apoptosis in AD. Intriguingly, certain PPI
were altered in the prodromal phase, but the modest sample
size (n = 9) limited study power. This constraint is common to
proteomic studies, due to throughput limitations, and is relevant
to other studies examining PPIN in other neurodegenerative
conditions.[70]

Innovative strategies for extrapolating experimental data with
clinical metrics, in combination with CF-MS, PL,Micromapping,
and powerful genetic tools, such as CRISPR-Cas9 andOptogenet-
ics, to study synaptic dysfunction at molecular level are needed
to better understand the complex etiology of AD.

Integration of Genomic, Transcriptomic, and Proteomic Data
using PPIN to Understand Multifactorial Neuronal Diseases

Researchers have traditionally tried to solve the causal basis of
complex neurological disorders using genomics approaches, like
GWAS. Genomic resources related to adult brain are available,[73]

but knowledge about genetic variants associated with specific dis-
orders is not sufficient to elucidate the underlying mechanisms.
In most instances, the function of genetic polymorphisms or

mutated gene products and their causal association with disease
is poorly understood. This caveat is particularly relevant to
late onset disease, where the effects of particularly polymor-
phisms are pleiotropic (such as ApoE) or weak (such as BIN1 or
PICALM).[74]

Transcriptomics (e.g., bulk and single-cell RNA sequencing)
can provide insights, but its extrapolation to make protein level
inferences is problematic[52] due to low overall correlations be-
tween mRNA and protein levels,[75] reflecting differences in rel-
ative synthesis dynamics, PTM, aggregation, and turnover.[76]

This is particularly salient in studies of the human brain be-
cause the exquisite spatiotemporal regulation of mRNA process-
ing, transport, and localized translation in neurons is essential to
synaptic plasticity, cognitive learning, memory, and behavior.[77]

Measuring transcripts is not sufficient to identify the functional
state of multiprotein assemblies that support core neuronal func-
tions, particularly those that depend on proper localization at
the axon growth cone, dendritic spines, and pre-/post-synaptic
compartments.[78] Comparative analyses of affected hippocam-
pus of AD patients showed that biochemical modules linked to
impaired microtubule dysfunction, inflammation, and impaired
nucleic-acid binding are preferentially detected by proteomics
rather than transcriptomic profiling.[67] Thus, a multi-pronged
integrative strategy is essential to reveal the basis ofmultifactorial
disorders. For instance, integration of PPIN with transcriptomic
datasets can provide a more holistic predictive model of pheno-
typic responses in NDs.[79]

In contrast to genomics and transcriptomics, PPI studies have
not been commoditized, and single-cell analyses have not been
reported on a large-scale. In their tool, SCINET, Mohammadi et
al propose a statistical method to infer the presence of global
protein interactions within sequencing-derived cell populations
based on the transcriptional activation of the genes participat-
ing in the protein interactions.[80] Their method is reliant on the
presence of a reference global protein interaction network along
with relevant single-cell RNA-Seq data. Meanwhile, Klimm et
al proposed an approach to find functionally-active modules in
sequencing-derived cell populations by using a reference protein
interactome.[81] They use the differential transcriptional gene
profiles to infer the most likely protein modules present in cell
types that are inferred from single-cell RNA-Seq data. These ap-
proaches show the promise of integrating single-cell sequencing
data with protein networks to gain insight into single-cell biology.
Knowledge of the landscape of brain-related proteome alter-

ations, in particular PTMs such as phosphorylation, methylation,
acetylation, glycosylation, and ubiquitination, that impinge on
neuronal pathways can also highlight processes disrupted by
pathology.[82] Phosphorylation of synaptic proteins, such as vesi-
cle trafficking factors, as well as epigenetic marks on chromatin,
such as acetylation, methylation, and ubiquitination of histone
proteins, have been shown to modulate core brain functions
such as memory, learning, and other cognitive and behavioral
processes.[83] These marks are mediated by multi-protein com-
plexes, such as writers and erasers of chromatin-associated
PTMs, whose function is normally tightly regulated.
In summary, whereas mutation mapping and gene expression

studies alone cannot ascertain the functional circuits altered dur-
ing pathogenesis, PPIN information can provide a valuable van-
tage to interpret genomic analyses.
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PPIN Alterations During Host-Pathogen Interactions

Proteins and peptides from pathogens are known to alter, dis-
rupt, and hijack host cell PPIN across kingdoms.Herewe present
an illustrative case of viral-host protein dynamic interactions fo-
cusing on emerging Zika virus (ZIKV) infection that primarily
affects the brain. ZIKV replicates in adult human brain tissue
and impairs synapses and memory in mice.[84] ZIKV seems to
have neurotropism as it is vertically transmitted from pregnant
women to the developing fetus causing microcephaly and pos-
sibly Guillain-Barré syndrome, a neuro-inflammatory disease of
the peripheral nervous system that causes cholinergic dysfunc-
tion and muscular weakness.[85]

Like other Flaviviridae, such as Dengue virus (DENV), ZIKV is
mosquito-borne.[86] ZIKV binds with host cells via receptors AXL
and Tyro3 and inserts its single-stranded genomic RNA. This
RNA encodes a single polyprotein that is processed into three
structural proteins (envelope, membrane, capsid) and seven non-
structural effector proteins, which perform key replicative func-
tions. ZIKV infection causes neuronal cell death that ultimately
leads to brain malformation and spinal cord dysfunction. ZIKV
hijacks the biochemical networks of the cellular secretory path-
way and organelles for virion assembly, maturation, and release.
Understanding how host machinery is commandeered by ZIKV
requires a mechanistic understanding of global PPIN rewiring of
host cells during infection.
Recently a detailed proteomics study[87] revealed how ZIKV in-

fection of human neural stem cells perturbs fetal brain develop-
ment. Cultured neurons were converted into neurospheres prior
to LC/MS analysis, revealing altered expression of ≈500 proteins
during infection. Pathways affected by ZIKV centered on RBP
networks related to RNA processing and splicing, microRNA bio-
genesis, and DNA damage, repair, and chromosomal instability.
An AP-MS study[88] identified 386 putative ZIKV-protein

interacting human host factors, several linked to neuronal
development, retinal defects, and infertility. Subsequent phos-
phoproteomic analysis of ZIKV-infected human neuroblastoma
cells showed dysregulation of 1216 sites on proteins associated
with brain development, cell cycle, and cell organization. These
include p38 MAPK, MARCKS, and DPYSL2, which regulate
neurite outgrowth and brain development, as well as the DNA
damage checkpoint regulators and their substrates.
Using BioID, Coyaud et al.[89] reported 1224 cellular neighbors

of 10 ZIKV polypeptides that localize to diverse host compart-
ments, including the centrosome, lysosome, and peroxisome,
consistent with viral-mediated disruption of the centriolar
satellites, lysosome-endosome fusion, and reduction of lipid
homeostasis, respectively. A recent study from the Krogan
group[90] used AP-MS to demonstrate ZIKV and DENV exploit
human and mosquito cell machineries to complete replication.
Using AP-MS, comparative analysis identified 28 proteins signif-
icantly overlapping between the PPIN of DENV and ZIKV. These
include a conserved interaction of viral NS5 with the PAF1C
transcriptional elongation complex, inhibiting expression of
interferon-stimulated genes. The study reported ZIKV NS4A
promotes microcephaly by engaging human ANKLE2, which is
linked to autosomal recessive microcephaly.
While these studies demonstrate viral perturbations of host

PPIN, important details are lacking. Research conducted in

immortalized cell lines cannot recapitulate viral invasion of
brain. Viral impact during the prodromal phase is unclear, as
is the mechanism of host immunity evasion during vertical
transmission. Comparative time-course PPIN studies of suitable
animal models could address these questions.

Current Challenges in Network Neuroscience and Future
Directions

Despite remarkable progress in technical and analytical tools for
systematic PPIN mapping, considerable challenges need to be
addressed to complete interactome mapping of the CNS espe-
cially with respect to neurodevelopment and neurodegeneration.
Some obstacles are inherent to any PPIN study, while some are
unique to neuroscience.
Experimental approaches identify a wealth of information but

produce significant false positives and negatives results. CF-MS
based approaches rely on stringent computational techniques
such as machine learning to produce reliable interactions with
sensitivity and precision.[22] Alternate methods are needed to
confirm putative interactions.[41,42,91] Several criteria such as
screen completeness, assay sensitivity, sample consistency, and
confirmation with other methods can estimate and reduce error
rates. Putative interactions that can be confirmed by multiple
techniques or algorithms are more likely to be valid. Ideally, a
combination of experimental and statistical criteria followed by
benchmarking and ideally independent testing can be adopted
and scaled up to verify novel associations.
Developing effective methods that minimize bias (false nega-

tives) is another challenge.[92] Although the “darkmatter” missed
by existing methods is unknown, integration of complementary
techniques and optimizing experimental design can markedly
improve coverage.[93] We encourage the use of global (e.g., CF-
MS) and targeted (e.g., PL) to address particular neurobiology re-
search questions.
Most assays provide qualitative, rather than quantitative, de-

scriptions of PPIs. Determining the extent or affinity of interac-
tions is a slow, tedious process. The biophysics of PPI are largely
studied one partner at a time. For example, surface plasmon res-
onance and isothermal calorimetry can only be performed using
small numbers of purified proteins. Hence, there is a burgeon-
ing need for HTP techniques to study native PPI in a quantitative
manner. Ideally, quantitative interactome methods could be con-
sistently applied to diverse cell-types, tissues, and models, while
preserving native subcellular contexts.
Integration of genomic and transcriptomic data with PPIN

represents an early opportunity, but the heterogeneous nature
of biological systems confounds amalgamation. Many studies
assume co-expressed genes predict protein interactions, but
the poor correlation between transcripts and proteins levels
mitigates such predictions. The brain PPI network is likely far
more complex than simple in vitro model systems due to cellular
heterogeneity and the complexity of neural networks. The CNS
is formed from different types of astrocytes, glial cells, and neu-
rons linked by specialized synaptic interfaces that are impacted
differentially in NDD and ND in different brain regions. Current
studies provide a static snapshot of this ensemble, yet even
within a single neuron, PPIN can vary significantly between
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compartments due to protein trafficking and turnover.[94] An-
other drawback is insufficient coverage of key transitions during
disease progression, such as PTM. Functionally significant PPIN
may exist only transiently in specific pathological stages and so
missed in post-mortem samples. Collecting longitudinal PPI
causally related to clinical outcomes is of the utmost value.
Single-cell sequencing technologies have enabled researchers

to study the transcriptional state of biological systems at the
single-cell level, leading to applications across a number of
diverse applications such as studying development and tissue
heterogeneity. While single-cell transcriptomics is gaining
tremendous popularity now, single-cell proteomics is still in its
nascent stage.[95] Systematic study of proteome and PPIN in a
cell type specific/selective manner would certainly help us un-
derstand basic brain function. Integrating single-cell sequencing
data with protein interaction networks is an active research
challenge that presents an opportunity to gain insight into the
hierarchical workings of the protein interactome.
Similarly, spatial proteomics should be integrated with PPIN

at increasing resolution. Spatial information on PPIN can be
gained by reducing the complexity of the sample using innova-
tive subcellular omics as described.[96] Alternatively, organelle-
specific PL coupled with imaging can provide valuable clues in
this regard.[29,30] Local application of diverse PPI detection meth-
ods can provide details about PPIN in various brain regions.
Improvements in metabolomics and lipidomics techniques

have evolved rapidly to enable researchers to gain important bi-
ological insights on the disease relevance of these important,
chemically diverse molecules in neurons.[97] Additionally, there
is growing excitement around the feasibility of routine combined
protein–metabolite profiling, in recognition of the orthogonal in-
sights gained from profiling diverse biomolecular types.[98] How-
ever, while interactions between lipids and proteins have long
been recognized as functionally important, they are difficult to
map globally due to the chemical properties of lipids and existing
labor-intensive techniques. The development of high-throughput
lipid–protein interactionmapping techniques is beginning to en-
able researchers to interrogate these molecular interactions in an
increasingly global capacity,[99] though routine profiling in paral-
lel with other high-resolution techniques is not yet routine. In ad-
dition to the technical data acquisition side, advances are needed
to better interpret lipidomic data in conjunction with other data
types, where interactions can occur with varying degrees of speci-
ficity and multiple, related lipid species may have overlapping
functional roles. Due to the critical, functional role lipids play
in neurons, in particular, it is likely advancements in profiling
and interpreting lipid–protein interactionsmay play an especially
important role in understanding the molecular basis of neurobi-
ological processes.

Conclusion

As understanding of the connectivity of healthy and diseased
brain circuits evolves, it is apparent that aberrant accumula-
tion, trafficking, misfolding, and aggregation impacts cellular
PPI which ultimately impairs neuronal function. The usual tra-
jectory for PPIN analysis is obtaining high-confidence data, an-
alyzing the results using systems biology approaches, validating
prioritized interaction via alternate approaches, and potentially

discovering new therapeutics targets. For greater impact in neu-
roscience, it is crucial to identify key functional modules altered
during development or disease progression, understand their un-
derlying molecular relationships, and ascertain markers that in-
form on pathogenesis. As the field of neuroproteomics expands,
it is important to remember that rigorous study design and sta-
tistical criteria are equally important as well-defined questions.
With steady technical advancements, PPIN studies are poised to
provide transformative insights into neuronal development and
neuropathology, ushering in a golden era of neurobiology.
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