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Preface

The field of Nanomagnetism is a young branch of the study of magnetic phenomena,
phenomena that have been a source of amazement and stimulus for speculation for
more than 3,000 years [1].

Nanomagnetism, despite being a young area, has already affected every sphere
of human activity, through its fundamental contribution to make the computer an
ubiquitous instrument for communication, control of industrial processes, medical
diagnosis, scientific investigation, or leisure. The studies of particulate and thin film
magnetic media and other related questions led to improvements that have multi-
plied, in five decades, the amount of data that can be encoded into a unitary area by
some 50 million times.

The 2007 Nobel Prize in Physics, awarded to Albert Fert and Peter Grünberg, is
an important recognition of the extraordinary achievements of the research in Nano-
magnetism. The unfolding revolution brought about by Spintronics is intimately con-
nected, and enhances the relevance of these developments.

Nanomagnetism already encompasses a very wide range of remarkable prop-
erties and phenomena, as illustrated in the case of thin films, for example, by the
volumes of the series on Ultrathin Magnetic Structures [2].

In the present book I have attempted to organize, out of the myriads of publica-
tions, those results that might be more revealing of the principles that every student,
material scientist, or physicist have to be familiar with. The fast pace of evolution
of Nanomagnetism adds to the difficulty of this project, but this fascinating subject
turns this into a very pleasant and stimulating challenge to be taken up.

I have also made an effort to facilitate the conversion of the expressions that de-
scribe the magnetic properties of nanoobjects from CGS to SI units, and viceversa,
since the question of units is a recurrent obstacle in the path of the student of
Magnetism.

I specially thank C.M. Chaves, H. Micklitz, D.H. Mosca, N.A. Oliveira and
B.R. Pujada for reading the complete text and for their comments. Suggestions
from W. Baltensperger, D.E. Ellis, D. Fiorani, E.R. Granhen, F.P. Missell, I.S.
Oliveira, E.C. Passamani, H.R. Rechenberg, M.C. Santos, R.A. Silva, X.A. da Silva,
A. Troper and I. Zutic are also acknowledged. I am grateful to L. Baltar, A.M. Souza,
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R.S. Sarthour, M. Paranhos, S. Mendes, E. Novais, M. Reis, P.H.V. Linhares and H.S.
de Mello for the figures. And last, but not least, I thank Silvia for her patience in en-
during the gestation of this book.

For comments and corrections related to this volume see www.cbpf.br/
nanomagnetism.

Rio de Janeiro, June 2009 Alberto P. Guimarães
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1

The Basis of Nanomagnetism

Summary. What is the origin of the observed differences in magnetic behavior between a
sample with nanometric dimensions and a macroscopic sample of the same material? These
differences are shown to arise from broken translation symmetry in nanometric samples, from
the higher proportion of atoms on the surface, or interface, from the fact that the sizes of
nanoscopic objects are comparable to some fundamental or characteristic lengths of the con-
stituent material, and other effects. The exchange length and the magnetic domain wall width
are some of the characteristic lengths that are more relevant to the magnetic properties. The
shape of the density of electronic states curve is also dependent on the dimensionality of the
samples.

1.1 Introduction: The Importance of Nanomagnetism

The objects of study of Nanoscience are the phenomena involving objects of dimen-
sions usually in the range from 1 (1 nm = 10−9 m) to 100 nm. This is the range of
sizes of many molecules and viruses, and is also the characteristic length scale of
many physical processes. The lateral dimensions of present-day integrated circuit
components, as well as the dimensions of grains in magnetic-recording film media,
are contained in this range.

Nanomagnetism is the area of research in physics, which deals with the magnetic
properties of objects that have at least one dimension in the nanoscopic range.
Nanomagnetism includes in its scope the study of properties and applications of the
magnetism of isolated nanoparticles, nanodots, nanowires, thin films and multilayers,
and also macroscopic samples that contain nanoscopic particles. Materials that con-
tain particles, films, and other structures in the nanometric scale are often described
as nanostructured materials.

Objects with dimensions from 100 to 1,000 nm are usually described as meso-
scopic; although our focus in the present work is on magnetic properties of ob-
jects of nanoscopic dimension, we will also consider the behavior of objects of
mesoscopic size.

Nanomagnetism has many practical applications, from geology to magnetic
recording, from ferrofluids [20] used in loudspeakers to small particles used in
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medicine, that can be directed to specific organs and tissues, either for drug delivery
[1] or for the application of the technique of magnetic hyperthermia [14].

Magnetic nanoparticles are present in many rocks and soils. The alignment of
their magnetic moments under the influence of the geomagnetic field allows the study
of the evolution of Earth’s magnetism and the determination of the their age; this
alignment can also inform on past anthropic activities [7].

Nanoparticles of magnetic materials, usually of magnetite, also occur in living
beings; perhaps the best studied example is that of magnetotatic bacteria, which,
through magnetic grains of nanometric dimension, align themselves in the Earth’s
magnetic field. These grains are synthesized by the bacteria, in a process called
biomineralization. Nanomagnets have also been found in insects, birds, and other
creatures [26]. Figure 1.1 illustrates this with the cross section of the beak of a pi-
geon, where the presence of clusters of magnetite nanoparticles with diameters of
2–4 nm was observed [8].

Finally, the most successful application of nanomagnetism has been to magnetic
recording, which has taken this technology through a swift evolution in the last 5
decades. This is measured by the evolution of the areal bit density in magnetic hard
disks, which has increased by a factor of many tens of millions since the introduction
in the market of this technology (Fig. 1.2) (e.g., [25]). The rapid increase in the
density of electronic circuits made on individual silicon chips, which has doubled
every 18 months, is a tendency known as Moore’s Law, a name arising from a 1965
paper by Moore that discussed the subject. Alongside this evolution, the density of
magnetic storage in hard disks, measured by the data areal density, has progressed
even faster, doubling every 2 months.

To reach higher and higher storage densities, a great effort was necessary in the
study of the properties of small magnetic particles, and also of the magnetic thin
films that are a constitutive part of hard disk platters and magnetic read heads.

Fig. 1.1. X-ray of a homing pigeon beak showing the six regions were there are found clus-
ters of magnetite nanoparticles, of 2–4 nm diameter. Also shown the orientation of the nerve
bundles where these clusters are located. Strings of maghemite particles are also present, and
both systems participate in the magnetoreception [8] (With kind permission from Springer
Science + Business Media [8], Fig. 3a)
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Fig. 1.2. Evolution of magnetic recording: hard disk areal density in gigabits per square inch
as a function of the year in which the products became available in the market [10]. (Reprinted
from [8] with permission from IBM Technical Journals)

The application to devices, particularly spintronic devices, has represented
another frontier in rapid expansion (e.g., [9]). This application is based on the in-
teraction of the spin degree-of-freedom of an electric current with the magnetic ma-
terials, and also uses films and other structures with nanometric dimensions.

1.2 The Origin of Nanomagnetic Behavior

The emergence of the new phenomena that are the object of nanomagnetism has its
origin in the fact that the magnetism of samples of nanoscopic or mesoscopic sizes
presents important differences compared to the magnetism of macroscopic samples.
One could describe these differences, in a simplified way, as arising from the fact
that the magnetic systems of nanoscopic or mesoscopic scales present: (1) dimen-
sions comparable to characteristic lengths, such as the limiting size of magnetic
domains; (2) broken translation symmetry, which results in sites with reduced co-
ordination number, with broken exchange bonds and frustration. Also, nanoscopic
or mesoscopic objects exhibit a higher proportion of surface (or interface) atoms.

Another factor that modifies the magnetic properties of the nanoobjects is that
they are in general in close contact with other physical systems, for example, with
a substrate or a capping layer, in the case of most thin films and multilayers. In the
case of nanoparticles, these objects may be immersed in solid matrices, or compacted
in a container: in both cases, each particle may feel a strong interaction with its
immediate neighborhood.

Also, in general, as systems such as ensembles of nanoparticles are prepared
with smaller dimensions, the presence of imperfections and defects becomes more
relevant, making the obtention of identical sets of nanoobjects more difficult. Often
the properties of the nanoscopic objects have to be derived from samples formed of
ensembles of such objects.
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The spin wave spectra of samples of nanoscopic dimensions are also modified
(e.g., [17]). The dispersion relation for spin waves for wavelengths longer than
the lattice spacing is h̄ω = Dk2, where D is the stiffness constant, and k is the
magnitude of the spin wavevector. For a spin wave energy comparable to the ther-
mal energy, one has k ≈ (kBT/D)1/2, where kB is the Boltzmann constant. For Fe,
D(4.2K) ≈ 3 meV nm2 and the corresponding length L = 1/k ≈ 3 nm at liquid he-
lium temperature, which implies that spin wave spectra of nanoscopic objects are
significantly modified, if compared to those of bulk samples.

The dynamic behavior of magnetic objects of nanometric size also differs from
the behavior of macroscopic samples of the same constituents. The main cause for
this difference is the enhanced importance of thermal fluctuations under the usual ex-
perimental conditions. The phenomenon of superparamagnetism is observed in mag-
netic nanoparticles if the thermal energy kBT is of the same order-of-magnitude of
the anisotropy energy of the particles, leading to an effectively zero measured mag-
netic moment. The superparamagnetism of nanoparticles is discussed in Sect. 3.3
(p. 68).

1.2.1 Sample Dimensions and Characteristic Lengths

The simplest example of the effect of the characteristic lengths on the magnetic
properties is the case of magnetic particles that have dimensions smaller than the
critical magnetic single-domain diameter. These particles therefore have the single
domain as their lowest energy configuration.

Some of these characteristic lengths, which include the exchange interaction
length, the domain wall width and the spin diffusion length, are given in Table 1.1,
together with their typical values. From this table, it is evident that nanoobjects have
dimensions in the range of many of these characteristic lengths. The derivation of
the expressions for some of these lengths, in terms of the magnetic parameters of the
constituent materials, will be discussed in Chap. 2.

Table 1.1. Some characteristic lengths in magnetism and their typical magnitudes

Symbol Length Typical magnitude (nm)

da Interatomic distance (Fe) 2.5×10−1

dex Range of exchange interaction ∼10−1 −∼1
dRKKY Range of RKKY interaction ∼10−1 −∼10
dc Domain size 10−104

Dspm
cr Superparamagnetic critical diameter ∼1 −∼102

Dcr Critical single-domain size ∼10 −∼103

δ0 Domain wall width ∼1−∼102

lex Exchange length ∼1−∼102

lsd Spin diffusion length ∼10−102

λmfp Electron mean free path ∼1−102

ζ Superconducting coherence length ∼1−103

λF Fermi wavelength/metal ∼10−1

λF Fermi wavelength/semiconductor ∼102
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The critical size for magnetic domains Dcr, which is the largest size that a
ferromagnetic particle may have, beyond which it will be energetically more favor-
able to divide itself into two or more domains, varies from material to material. This
size varies from about 10 nm to some thousands of nanometers (or microns); some
values of this dimension for spherical particles for different materials are shown in
Table 2.9, on p. 38. This critical diameter is given by the following expression, to be
demonstrated in Chap. 2 (p. 49):

Dcr =
72
√

AK
μ0M2

s
. (1.1)

In this expression, A is the exchange stiffness constant, or parameter, K is the uni-
axial anisotropy constant (assumed > 0) and Ms is the saturation magnetization; μ0 is
the vacuum magnetic permeability (or magnetic constant), equal to 4π×10−7 H m−1

in the SI.
The characteristic lengths that are more relevant in defining the magnetic prop-

erties of nanoobjects are the exchange length and the domain wall width parameter.
The exchange length is given by:

lex =

√
2A

μ0M2
s

. (1.2)

Table 1.2 illustrates the magnitude of the exchange length lex with some examples
from the 3d metals.

The domain wall width parameter Δ characterizes the width of the transition re-
gion between two magnetic domains, as will be discussed in Chap. 2. It is given,
as a function of the exchange stiffness constant A and the uniaxial anisotropy
constant K, by

Δ =

√
A
K

. (1.3)

And the domain wall width δ0 is given by

δ0 = π Δ . (1.4)

The domain wall energy is also related to the same parameters A and K. In the
simple case of a 180◦ wall of a cubic crystal, the energy per unit area of the wall is

γ = 4
√

AK. (1.5)

Table 1.2. Exchange lengths for 3d metals (From Table 2.8, Chap. 2)

Element lex (nm)

Fe 3.28
Co 4.70
Ni 7.64
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In Chap. 2, where the properties of magnetic domains are studied, Table 2.9
(p. 38) presents values of critical domain diameters and domain wall energies for
some materials.

1.2.2 Broken Translation Symmetry

Every finite crystal has frontiers, where the translational symmetry is lost or broken.
In solids of nanometric size a significant proportion of the atoms are on or near
these frontiers. The absence of translation symmetry brings about several important
consequences to the physical properties of these systems.

Three aspects of the problem of symmetry breaking will be discussed: (1) the re-
lation of the physical properties of the samples to their dimensionality (samples with
quasi-zero dimension (0D), unidimensional (1D), bidimensional (2D) or tridimen-
sional (3D)); (2) the change in coordination of the atoms at the interface, and (3) the
effect of the increase in the proportion of surface (or interface) atoms in nanoscopic
samples.

1.2.2.1 Dimensionality and Density of Electronic States

The electronic band structure of a solid depends on its dimensionality. This can be
exemplified in the simplest description of a conducting solid, the free electron model,
in which the electrons are treated as a gas (called a Fermi gas) only subject to the
infinite potentials at the walls of the container. An electron gas in a limited spatial
region will show an availability of electronic states (measured by its density of states
D(E)) that depends on the dimensionality of this region: if it is in one dimension or
two dimensions, D(E) will differ from the three-dimensional case. The effects of the
difference in dimensionality may be shown through the differences in D(E), and are
summarized in Fig. 1.3.

Let us examine initially a Fermi gas in three dimensions; we wish to obtain the
form of the density of states D(E). The electrons are supposed to be in a container
with three dimensions and infinitely high walls; there are no interactions between the
electrons.

Let us consider that the potential V (x,y,z) inside the box of side L is V0 =const
for 0 ≤ x ≤ L, 0 ≤ y ≤ L, and 0 ≤ z ≤ L; V = ∞ otherwise.

The time-independent Schrödinger equation will be

− h̄2

2m
∇2ψ(r)+V (r)ψ(r) = E ′ψ(r). (1.6)

Using E = E ′ −V0(r) one obtains

− h̄2

2m
∇2ψ(r) = Eψ(r). (1.7)

Since the infinite potential at the walls forbids the presence of the electrons out-
side them, the boundary conditions for ψ(r) will be: ψ = 0 for x = 0 and x = L, y = 0
and y = L and z = 0 and z = L.
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Quantum film (2D)

D (E)

E

D (E)

E

D (E)

E

Quantum wire (1D)

D (E)

E

z
y

x

Quantum dot (0D)

Fig. 1.3. Density of electronic states D(E) as a function of energy for electrons, from bottom
to top, in zero dimension, in one dimension, two dimensions, and three dimensions (Based
on [4])

The solution of Schrödinger’s equation, using these boundary conditions, will be:

ψ(r) =
(

2
L

)3/2

sinkxx sinkyysinkzz. (1.8)

The corresponding energies are obtained by substituting ψ(x) from (1.8)
into (1.7):

E =
h̄2

2m
(k2

x + k2
y + k2

z ), (1.9)

where m is the electron mass and ki are the components of its wavevector.
From the boundary conditions, one obtains

kx = ±2π
L

nx, ky = ±2π
L

ny, kz = ±2π
L

nz, (1.10)

where nx, ny, and nz take values 1, 2, 3,. . ..
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Fig. 1.4. Graph of E/E0 (dotted lines) for the lower three energy levels and wavefunctions vs.
x (continuous lines) for a free electron gas confined to a one-dimensional box

The wave functions for a free electron in a one-dimensional box, for the first
three values of n, and the corresponding energies E are illustrated in Fig. 1.4. This
figure shows the form of the first three lowest energy wave functions, as well as the
corresponding energies E/E0, where E0 is the energy for the level with n = 1.

According to the Pauli exclusion principle, two electrons (spin up and spin
down) occupy one state defined by (nx,ny,nz). But how many states are there to be
occupied? To count the number of states, one has to count the number of values of k.

At T = 0 K, all states are occupied up to kF, the Fermi wavevector, in a volume
Vk = 4

3 πk3
F. Since each triplet (kx,ky,kz) occupies a volume of v = (2π/L)3 in k-space,

the number of states N will be

2 · Vk

v
= 2 ·

4
3 πk3

F

(2π/L)3 =
V

3π2 k3
F = N, (1.11)

where V is the volume occupied by the electrons in real space.
From this equation one derives kF, and substituting into the expression of the

energy (1.9), one obtains the Fermi energy EF:

EF =
h̄2

2m

(
3π2N

V

)2/3

. (1.12)

This allows writing N as a function of EF. The derivative of the expression ob-
tained for N is the density of electron states at the Fermi level D(EF):

D(EF) ≡ dN
dEF

=
V

2π2

(
2m
h̄2

)3/2

E1/2
F . (1.13)
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This result is the density of electron states at the Fermi level for the free electron
gas contained in a three-dimensional “box.” The two-dimensional and the one-
dimensional densities of states may be derived, using in (1.11) the corresponding
expressions for the volume of the box, total volume in k-space Vk and volume per
point in k-space in two and one dimensions. In two dimensions, Vk = πk2, the vol-
ume per point is (2π/L)2 and the volume of the box is L2.

In one dimension, the total volume in k-space is Vk = 2k, the volume per point is
(2π/L) and the volume of the box is L. Consequently, the general expression for the
density of states is

D(E) =
(

2m
h̄2

)
Vk

v
p
k2 , (1.14)

where p = 1,2,3 are the corresponding dimensionalities, as can be easily ver-
ified. Substituting, one obtains the densities of states D(E), for the different
dimensionalities.

In three dimensions:

D(E) = V
1

2π2

(
2m
h̄2

)3/2

E1/2. (1.15)

In two dimensions,

D(E) = V
1

2π

(
2m
h̄2

)
. (1.16)

Note that in this case the density of states D(E) does not depend on the energy,
it is a constant.

And finally, in one dimension,

D(E) = V
1
π

(
2m
h̄2

)1/2

E−1/2. (1.17)

These expressions for the densities of states of the free electron gas for different
dimensions (1, 2, and 3) are represented in the graphs of Fig. 1.5.

0 1 2 3
0

1

2

3

Energy

D
en

si
ty

 o
f s

ta
te

s

3D

2D

1D

Fig. 1.5. Normalized densities of electronic states D(E)/Cp (where Cp is a constant factor for
each dimensionality p) as a function of energy, for different dimensionalities
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We will now discuss what happens if the object that contains the electrons is a
solid of nanometric dimensions. There will be quantum confinement in any case
where one or more dimensions of the volume that contains the electron gas are
comparable to the Fermi wavelength λF = 2π/kF of the electron. In objects with
dimensions comparable to this wavelength the wave character of the electrons will
be dominant, and their energies will be quantized.

To obtain the densities of states in the confined systems, one has to take into con-
sideration the boundary conditions. The electrons may be confined in the three di-
mensions, i.e., they may be contained in an object that is nanometric in the three
dimensions – this is the case of a quantum dot. If the electrons are confined in two
dimensions, i.e., if the third dimension is macroscopic, one has a quantum wire, or
a nanowire. If the electrons are confined in one dimension, one has a quantum well,
or a quantum film. If the electrons are not confined in any dimension, one has a
macroscopic object.

1. Object confined in three dimensions (quantum dot):

The allowed values for the energy of the electrons are given by (1.9). The energies
of the different levels depend on kx, ky, and kz. The condition of infinite potential at
the walls implies kx = nxπ/Lx, ky = nyπ/Ly and kz = nzπ/Lz, where Lx, Ly and Lz are
the dimensions of the box where the electrons are contained.

E =
h̄2π2

2m
(

n2
x

L2
x

+
n2

y

L2
y

+
n2

z

L2
z
) . (1.18)

The separation between the energy levels is given by dEk. One assumes to sim-
plify Lx = Ly = Lz = L, and also nx = ny = nz = n. For a nanoscopic solid with
L = 1 nm, the energy levels are separated by dE = 3h̄2π2/mL2 ∼ 1 eV. Therefore,
the energy spectrum is formed of discrete levels, similar to the atomic levels, with
energies given by

En =
3h̄2π2

2mL2 n2 . (1.19)

The density of states curve D(E) is formed of a series of delta functions at the
energies En.

2. Object confined in two dimensions, and free in one dimension (quantum wire
or nanowire):

One may assume that the object is macroscopic in the z direction, and the dimen-
sions Lx = Ly are nanoscopic.

From (1.18), taking Lz = L and nz = n one obtains

E =
h̄2π2

2m
(

n2
x

L2
x

+
n2

y

L2
y

+
n2

L2 ) . (1.20)
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In this case the separation between the energy levels labelled by nx and ny remains
large, of the order of eV . The separation of the levels corresponding to n is much
smaller, since L is a number typically 107 −109 times larger than the x and y dimen-
sions. One may consider these levels as occupying a practically continuous range of
values. E(k) is then given by parabolas displaced by h̄2π2/2mL2.

The density of states curve D(E) is formed of a series of peaks at the values of
En; above each peak there exists a region with a continuous dependence with E .

3. Object confined in one dimension and free in two dimensions (quantum film
or quantum well):

If the confinement is limited to the x axis, the electrons are free to move in the di-
rections of the plane (y and z axes) and the energy levels are given (for Ly=Lz=L) by

E =
h̄2π2

2m
(

n2
x

L2
x

+2
n2

L2 ) . (1.21)

In the same way as in the preceding case, the energies of the levels, labelled by
nx, exhibit a large difference. E vs. kx and ky is given by parabolic surfaces displaced
of h̄2π2/2mL2. The density of states curve D(E) is formed of a series of steps, within
a parabolic envelope.

4. Object without confinement, electrons free to move in the three directions
(macroscopic object):

Taking the frontiers defined by Lx = Ly = Lz = L as macroscopic lengths, the
energies are given by

E =
h̄2π2

2m
(3

n2

L2 ) . (1.22)

The energy levels are now distributed over a continuum of states, as shown in
Fig. 1.5. The graph of Ek is represented by a parabolic surface and the density of
states curve D(E) is the familiar parabola shown in Fig. 1.5.

The density of state curves shown in Fig. 1.3 differ from those that appear in
Fig. 1.5, since there are obvious steps or discontinuities in Fig. 1.3. These steps arise,
for example, in the case of a D2 solid (quantum film, or quantum well), from the
electron confinement in the dimension perpendicular to the plane. This confinement
induces the appearance of discrete levels in the density of states; the dependence
D(E) = constant is observed at the energies corresponding to these levels.

A simple visual examination of the density of states curves D(E) shown in
Fig. 1.3 reveals important differences in this function. The appearance of D(E) for
the 0D sample is similar to the same function for atoms: D(E) has narrow peaks, cor-
responding to well-defined values of the kinetic energy of the conduction electrons.
For this reason, quantum dots are often referred to as “artificial atoms.”

The curve D(E) for quantum wires (one-dimensional) also has narrow peaks, but
in this case there are electronic states that may be occupied for intermediate values of
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the energy E . The curve for a two-dimensional nanosystem shows some well-defined
steps, and again there exists a quasi-continuum of states that may be occupied in
the whole range of energies. The result of D(E) for a macroscopic system in the
free electron approximation is the well-known parabola, applicable in the simplest
description of the metals.

Many physical properties of a solid may be directly related to the electronic den-
sity of states D(E), such as the Pauli susceptibility, the conduction electron con-
tribution to the specific heat, and so on. The Pauli susceptibility, that measures the
response of the free electron gas to an applied magnetic field, is given by

χP = μ0μ2
BD(EF), (1.23)

where D(EF) is the density of states at the Fermi level.
The importance of the effect of low dimensionality on the properties of the con-

duction electrons can be estimated from the size of the nanoobject relative to the
Fermi wavelength. This wavelength can be computed from the expression relating N
to kF (1.11).

kF =
(

3π2N
V

)1/3

. (1.24)

Using the electronic density n = N/V , the Fermi wavelength becomes

λF = 2π
(

1
3π2n

)1/3

. (1.25)

Therefore, the Fermi wavelength is inversely proportional to n1/3, and conse-
quently this wavelength is much larger in semiconductors (∼100 nm) than in the
metals (∼0.1 nm). For example, in Fe, the Fermi wavelength is λF = 0.37 nm.

The magnetic moments of the transition element atoms also depend on the di-
mensionality of the structures where they are found. This dependence is evident in
the computed magnetic moments of Ni and Fe for different dimensionalities, given
in Table 1.3. The iron magnetic moment, for example, varies from 2.27 μB, for a
three-dimensional solid, to 4.0 μB for 0D (free atom).

The charge and spin densities near surfaces and interfaces are modified, as is
illustrated in Fig. 1.6, where there are shown the computed charge density in the
Fe(001) surface of a thin film [21] and the spin density on a Fe(110) surface [12].
It is apparent that the charge and spin densities of the surface atoms are significantly
different from the corresponding densities at the inner rows of atoms.

Table 1.3. Computed magnetic moments (in μB) and dimensionality for Ni and Fe samples
[23]

Element Zero (0D) One (1D) Two (2D) Three (3D)

Ni 2.0 1.1 0.68 0.56
Fe 4.0 3.3 2.96 2.27
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Fig. 1.6. Left: representation of the computed conduction electron charge density at the surface
of a seven-layer Fe(001) film; from each line to the next the density varies by a factor of

√
2

[21]. (Reprinted figure with permission from [21]. Copyright (1983) by the American Physical
Society); Right: total spin density for Fe(110) surface. Solid and dashed lines indicate positive
and negative spin density, respectively [12]. (Reprinted figure with permission from [12].
Copyright (1992) by the American Physical Society)

An additional circumstance that modifies the magnetic properties of nanoscopic
systems is the relevance of their immediate neighborhood, or physical systems in
close contact. This is the case of magnetic thin films that are deposited on substrates
or are covered with protective capping layers. For example, films of Co deposited on
Cu(001) have Curie temperatures that vary a few degrees, in an oscillatory way, with
the thickness of a Cu capping layer [24].

1.2.2.2 Dimensionality and Reduced Coordination Number

An effect related to the broken translation symmetry at surfaces is that, atoms in
these regions have a reduced number of neighbors, as compared to atoms in the bulk
of the sample. Let us take as an example of the interface between two regions, one
formed of atoms A and the other of atoms B. The A atoms at the interface may have
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Fig. 1.7. Atomic sites on a thin film showing the different coordination numbers. The number
NN of nearest neighbors of the atoms on the surface (adatom, NN = 4), atom near a step
(NN = 5), atom in the step (NN = 7) and finally, a substitutional atom at the surface (NN = 8).
(Reprinted with permission from [22])

the same number of nearest neighbors as in the macroscopic sample, but there, of
course, they will have a different neighborhood, formed of atoms A and B.

The atoms at the boundary of the sample, e.g., at the interface sample–vacuum
are surrounded by a smaller number of neighbors: they may have one neighbor less,
two less, and so on. These surface atoms may be at a plane surface, at the corner
of a step, or inside a step. An illustration of these different surroundings is given in
Fig. 1.7. The figure shows atoms on different locations of the same surface, atoms
with 4, 5, 6, 7, and 8 near neighbor atoms.

In general, the electronic structure of the atoms with a smaller coordination num-
ber is different from that of the atoms in the bulk. The density of states shows that the
reduction in the coordination number results in a narrowing of the electronic bands
(e.g., [5]). This effect is illustrated in Fig. 1.8, with densities of states of bulk metals
compared to those of atoms on a (100) surface. For Fe, Co, and Ni, the (100) surface
atoms exhibit narrower density of states curves, compared to those of bulk samples
of the same materials.

The increasing orbital contribution to the magnetic moment with decreasing di-
mensionality is made evident from measurements made on Co in Pt, as illustrated on
Table 1.4; the increase in anisotropy energy is also apparent.

The atoms located on the interfaces also have the point symmetry at their sites
reduced, an effect that leads to level splitting and modification of the magnitude of
the atomic magnetic moments. In Fe thin films in contact with Cu, Pd, and Ag, for
example, the Fe atoms exhibit enhanced magnetic moments (e.g., [24]).

The magnetic properties of atoms in interfaces are also affected by the presence
of defects and impurities, such as adsorbates; strain may also change these properties,
and modify the lattice parameters.
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Fig. 1.8. Density of states for Fe, Co, and Ni in bulk metals (above) and on a (100) surface
(below), showing the narrowing of the electronic bands in the latter case. The darkest areas
represent the contribution of s electrons, the lightest p, and the intermediate d electrons.
(Reprinted with permission from [19])

Table 1.4. Magnetic orbital moment and magnetic anisotropy energy of Co in Pt with different
dimensionalities [11]

Bulk Monolayer Diatomic Monoatomic Two Single
wire wire atoms atom

Orbital moment
(μB/atom) 0.14 0.31 0.37 0.68 0.78 1.13
Anisotropy energy
(meV/atom) 0.04 0.14 0.34 2.0 3.4 9.2

Also, materials in the form of small particles may present a crystal structure that
is different from that observed in bulk samples. This is the case, for example, of
metallic cobalt that changes from hcp (hexagonal close packed) to fcc (face centered
cubic) for particle diameters below approximately 30 nm.
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Table 1.5. Proportion of number of surface atoms in cubic nanoscopic clusters [15]

Number of atoms Number of Total number Ratio of surface
on each side surface atoms of atoms atoms to total number

5 98 125 78.5
10 488 1,000 48.8

100 58,800 1×106 5.9
1,000 6×106 1×109 0.6

1.2.2.3 Nanoscopic Samples and Proportion of Surface Atoms

The role of surface atoms is widely utilized in catalysis. Catalysts are usually
prepared in the form of finely divided powders, or porous matrices, since their ac-
tivity relies on the contact of the substances that participate in the chemical reaction
with atoms at their surface.

In the study of nanoscopic samples the contribution of the surface atoms to the
physical properties increases with decreasing sample sizes. This is obvious, since
the area of the surface of the samples varies typically as ∼r2, while the volume of
the samples varies as ∼r3. As a consequence, the ratio of surface to volume varies
roughly speaking as r−1, therefore increasing with decreasing sample size. This is
illustrated with the ratio of surface atoms to total number of atoms in cubic clusters,
in Table 1.5. For example, a cube with 10 atoms of side has about half of the atoms
on its surface.

The area per unit mass, or specific surface area can be very large: for typical 2 nm
spherical particles this may be in the range of hundreds of square meters per gram.

In some limiting cases, as for example, in a thin film formed of only one or two
atomic layers, every atom of the sample is a surface atom.

1.2.3 Nanoscopic Samples and Magnetization Reversal

The dynamic behavior of the magnetization of nanomagnets may also be very dif-
ferent from that of macroscopic objects. This arises because, under the usual exper-
imental conditions, thermal fluctuations play in this case a more important role. For
example, in nanoscopic magnetic particles it is observed the phenomenon of super-
paramagnetism: in such particles the magnetization inverts spontaneously, since the
thermal energy kBT is comparable to their anisotropy energy (see Sect. 3.3, p. 68). A
single-domain magnetic particle may spontaneously invert its magnetization, i.e., its
direction may change from +z to −z, if its temperature T is above a certain blocking
temperature TB. This effect has important implications, since if the magnetization
of such particle were to be used for information storage, at T = TB the information
would be lost. Therefore, in magnetic storage, with the reduction in physical size of
the recorded bit, its thermal stability becomes more and more an important issue.

This phenomenon will be discussed in Chap. 3, which is devoted to magnetic
nanoparticles.
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1.3 Dimensionality and Critical Behavior

The change in magnetic behavior of the physical systems as a function of
dimensionality is also reflected in the critical exponents that appear in the description
of the divergences in the neighborhood of their critical temperatures.

Measurements of physical quatities in ferromagnetic samples at temperatures
close to the transition temperature TC – the Curie temperature – exhibit a power
law dependence. From this dependence there may be defined critical exponents, or
critical indices. We therefore, have for the specific heat C, for the saturation magne-
tization Ms, for the magnetic susceptibility χ and for the magnetic induction B:

C ∼ |T −TC|−α

Ms ∼ |TC −T |β (T < TC)
χ ∼ |T −TC|−γ

B ∼ Mδ (T = TC)

The experimentally measured values of the critical exponents for different mag-
netic systems are α ∼ 0, β ∼ 0.3, and γ ∼ 1−2.

In the Weiss model (mean field) description of ferromagnetism, the magneti-
zation M can be written, in the case of magnetic ions with angular momentum
J = 1/2, as

M = M0B1/2(x) = M0 tanh
(

μBB+λmM
kBT

)
, (1.26)

where B1/2(x) is the Brillouin function, given by (2.6), on p. 25. This equation can
be re-written as

tanh−1
(

M
M0

)
=

μBB
kBT

+
λm

kBT
M, (1.27)

where λm is the molecular field parameter.
For temperatures close to the critical temperature TC, the magnetization will be

small and we can expand the Brillouin function. From this expansion, one can de-
termine (e.g., [2]) the critical exponents in the case of the mean field model. The
exponents in this case are given at Table 1.6, together with values calculated nu-
merically using a high temperature expansion for dimensionality D = 3. In general
the agreement between the mean field critical exponents and the calculated values
increases with increasing dimensionality.

Table 1.6. Critical exponents in the mean field model, and values calculated numerically using
a high temperature expansion for three dimensions (D = 3) [2]

Magnitude Exponent Mean field High T expansion (D = 3)

Specific heat α 0 0.110 ± 0.005
Magnetization β 1

2 0.312 ± 0.003
Susceptibility γ 1 1.238 ± 0.002
Induction B δ 3 5.0 ± 0.05
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Fig. 1.9. Critical exponent β as a function of thickness, measured in number of monolayers,
in thin films of Ni(111) on W(110), showing the transition from a bidimensional to a
tridimensional behavior [18]. (Reprinted figure with permission from [18]. Copyright (1992)
by the American Physical Society)

Magnetization measurements as a function of temperature in mesoscopic and
nanoscopic systems have been used to obtain critical exponents, and from these, ver-
ify the change in dimensionality as a function of their diameter, length, thickness and
so on. For example, in thin films the transition from bidimensional to tridimensional
behavior was observed (Fig. 1.9). For the thinnest samples of Ni films, the observed
critical exponent is near 0.325, the value predicted for bidimensional systems (in the
Ising model); as the thickness increases, the exponent changes, at about six mono-
layers, to a value close to that expected for tridimensional physical systems (0.365),
in the same model [18]. The same effect was observed in Ni on Cu(111) and Ni on
Cu(100) [16].

It is not easy to identify experimentally the effects of change in dimensionality
on the magnetic properties of low-dimensional samples. For example, the variation
of magnetic ordering temperature TC of thin films as a function of thickness may be
related to the morphology of the films. Clusters may be formed in the process of film
growth [24]; percolation of these clusters produces magnetic transitions, and at finite
temperatures, smaller islands will exhibit superparamagnetic behavior.

If one atomic magnetic moment changes its direction, it will affect the direction
of the moments of the neighbor atoms within a radius r. The correlation length ξ in
magnetism can be understood in simple terms as associated to this radius. Another
critical exponent relevant to the study of magnetic systems is the exponent ν that
enters the expression of the temperature dependence of the correlation length ξ :

ξ ∼ |T −TC|−ν . (1.28)
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This exponent is related to the shift exponent λ , that appears in the Curie
temperature shift in geometrically confined samples. In this case the relation be-
tween the Curie temperatures TC of the low-dimensional system (TC(d)) and TC of
the material in bulk form (TC(∞)) is:

(TC(∞)−TC(d))
TC(∞)

=
(

ξ
d

)λ
. (1.29)

In the above equation, d is the thickness of a thin film or the diameter of a particle,
and λ = 1/ν is the displacement, or shift exponent, a number between 1.0 and 2.0. In
mean field theory λ = 1, and an estimate in the three-dimensional Heisenberg model
obtained λ = 1.419±0.006 [6]. An experimental study of maghemite nanoparticles
resulted in a value of λ = 1.1±0.2 [13].
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2

Magnetic Domains

Summary. The existence of magnetic domains arises from the effect of several interactions
present in magnetic materials, mainly exchange, anisotropy and dipolar. This chapter deals
with some properties of magnetic domains and magnetic domain walls, including the motion
of these walls under an applied magnetic field. A short introduction to micromagnetism, an
approach to the study of magnetic materials that considers these materials as a continuum, is
also given, as well as the origin of some of the characteristic lengths in magnetism.

2.1 Introduction

Magnetic order, observed for example in the parallelism of atomic magnetic moments
in a ferromagnetic material, arises essentially from the action of the exchange inter-
action. The presence of other interactions (anisotropy, dipolar, magnetoelastic) leads
to the formation of magnetic domains, regions of the sample where one can consider
as a first approximation the moments perfectly ordered. Under an applied magnetic
field, the boundaries between these domains – the domain walls – are displaced,
changing in consequence the magnetization of the ferromagnet.

The magnetic properties of a magnetic body of nanometric dimensions, as dis-
cussed in Chap. 1, are strongly affected by the fact that these dimensions may be
comparable to some fundamental lengths, such as the exchange length lex. Many
samples of interest, for example, magnetic nanoparticles, may have dimensions such
that a magnetic configuration with one single domain is energetically more favor-
able. As the diameter of such particles increases above a certain critical value Dcr,
the lowest energy configuration shifts to an arrangement with more than one mag-
netic domain, with significant changes in magnetic behavior of the particles; this will
be discussed in Chap. 3.

It is important to note that magnetic samples are usually found with domain
structures that do not correspond to the state of minimum energy; they are often in
metastable states. Also, different domain structures of a sample may correspond to
the same value of the magnetization; this is found, for example, in the two branches
of the hysteresis curve (see below).
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These very brief remarks suggest how important is the study of magnetic
domains: their form, the interactions that shape them, their behavior under applied
magnetic fields, and so on.

The field of magnetism encompasses the study of the magnetic properties of mat-
ter in general, as well as its interaction with magnetic fields. The most interesting
materials from the magnetism point of view are those, where atomic magnetic mo-
ments μ are present. Systems where these moments exist, although are not ordered,
are known as paramagnets, and usually contain atoms of d transition elements (3d,
4d, 5d), lanthanides (4f ), and actinides (5f ).

The materials where these moments may have a regular orientation, the mag-
netically ordered materials, or shortly, magnetic materials, present a variety of mag-
netic structures; in these materials the atomic magnetic moments arrange themselves
following a certain spatial order. The main classes of magnetic materials are the
ferromagnets, antiferromagnets, and ferrimagnets, defined in terms of the relative
orientation and magnitude of the atomic or molecular magnetic moments.

The most important parameters that characterize the magnetic behavior of the
materials in an elementary way, are:

1. The magnetization M, defined as the sum of magnetic moments divided by the
volume (V ):

M = ∑ μ
V

. (2.1)

The magnetization is measured in the SI in A m−1 (amperes per meter).
2. The magnetic susceptibility χ , defined as the magnetization divided by the

intensity of the magnetic field:

χ =
|M|
|H| . (2.2)

The magnetic susceptibility is dimensionless.
3. In the case of materials that present spontaneous magnetic order, the ordering

temperatures are the highest temperatures for which this order is still found. These
are the Curie temperature TC of the ferromagnets and the Néel temperature TN for
the antiferromagnets and ferrimagnets

4. The magnetic permeability μ , defined as

μ =
|M|
|B| , (2.3)

where B is the magnetic induction or magnetic flux density or simply B field; μ is
measured in henry per meter (SI). The magnetic induction in matter depends on the
magnetic field intensity H and the magnetization M, and is given by

B = μ0(H+M), (2.4)

where μ0 = 4π×10−7 H m−1 (henry per meter) is the vacuum permeability, or mag-
netic constant. In vacuum, the expression is reduced to B = μ0H.

The unit of magnetic induction B is the tesla (T); the quantity J = μ0M, the
magnetic polarization is also measured in teslas.
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Table 2.1. Magnetic quantities and units. To obtain the values of the quantities in the SI, the
corresponding CGS values should be multiplied by the conversion factors

Quantity Symbol CGS SI Conversion
factor

Magnetic induction B G T 10−4

Magnetic field intensity H Oe A m−1 103/4π
Magnetization M erg G−1 cm−3 A m−1 103

or emu cm−3

Magnetic polarization J – T –
Magnetic moment m erg/G (≡ emu) J T−1 (≡ A m2) 10−3

Susceptibility (volume) χ – – 4π
Magnetic permeability μ G/Oe H m−1 4π×10−7

Relative permeability μr – – 1
Magnetic constant
(vacuum permeability) μ0 G/Oe H m−1 4π×10−7

Table 2.2. Micromagnetic parameters of some materials at room temperature, computed using
α = 0.472 (see Sect. 2.4.1). They are: the exchange length lex, the domain wall width δ0, the
critical single-domain diameter Dcr, and the domain wall energy density γ [13]

Material lex δ0 Dcr γ
(nm) (nm) (10−3J m−2) (103J m−2)

Nd2Fe14B 2.8 3.82 210 24
SmCo5 5.3 2.64 1,170 57
Sm2Co17 4.6 5.74 420 31
BaFe12O19 8.3 1.94 62 6.3

In the centimeter-gram-second (CGS) system of units, magnetic induction B is
given by B = H + 4πM. The unit of B is gauss (G) and H is oersted (Oe), and the
magnetization M is measured in erg G−1 cm−3 (or emu cm−3). The units of mag-
netism, with the conversion factors, are presented in Appendix A, and the magnetic
constants are presented in Appendix B; a short list of units and conversion factors
are also given in Table 2.1.

Micromagnetic parameters of some magnetic materials are given in Table 2.2.
The main classes of materials, including diamagnets, paramagnets, ferromagnets,

antiferromagnets, and ferrimagnets, can be characterized through the dependence
of the magnetization and inverse of the susceptibility as a function of temperature.
The behavior of the magnetization and susceptibility of these materials is shown
schematically in Fig. 2.1. The values of the Curie temperature and magnetization at
T = 0 K of some materials are presented in Table 2.3.

A simple description of the magnetization of a sample containing paramagnetic
ions with total atomic angular momentum J in a magnetic field is given by

|M| = M0BJ(x), (2.5)
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Fig. 2.1. Schematic behavior of the main types of magnetic materials. Temperature
dependence of (a) susceptibility of a Pauli paramagnet, (b) inverse susceptibility of a param-
agnet; temperature dependence of magnetization and inverse susceptibility of (c) ferromagnet,
(d) antiferromagnet, (e) ferrimagnet [6]. (With kind permission of Springer Science and
Business Media [6])

Table 2.3. Magnetic parameters for some elements: Curie temperature TC and magnetization
at low temperature [16]

Material TC M0
(K) (103Am−1)

Fe 1,044 1,766
Co 1,398 1,475
Ni 627 528
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where M0 is the magnetization at T = 0 K and BJ(x) is the Brillouin function, derived
by assuming the quantization of the total atomic angular momentum J and defined by

BJ(x) =
(

1+
1
2J

)[
coth

(
1+

1
2J

)
x
]
− 1

2J
coth

( x
2J

)
. (2.6)

The variable x is the ratio of magnetic to thermal energy, given by

x =
gμ0μBJH

kBT
, (2.7)

with g the g-factor, μB = eh̄/2me is the Bohr magneton, and H the magnetic field;
kB is Boltzmann constant and T is the absolute temperature.

The Brillouin function also describes, in the limit of high temperature or small x,
the behavior of the magnetic susceptibility of paramagnets. In this case, the magnetic
susceptibility is given by

χ =
μ0ng2μ2

BJ(J +1)
3kBT

=
C
T

, (2.8)

an expression known as Curie Law, that is represented in Fig. 2.1b. The constant C
is the Curie constant, given by

C =
μ0ng2μ2

BJ(J +1)
3kB

, (2.9)

where n is the number of ions per unit volume.
The atomic magnetic moment is given by

μJ = −gμBJ; (2.10)

note that the atomic magnetic moment is opposite to the angular momentum J.
In the Weiss molecular field model, ferromagnetism arises from the interaction

of each atomic magnetic moment with a molecular field that is proportional to the
magnetization: Bm = λmM, where λm is the molecular field constant. Within this
model, the ferromagnetic critical temperature, the Curie temperature TC, is given by

TC =
g2μ2

BnλmJ(J +1)
3kB

. (2.11)

Above TC, the susceptibility is given by an expression known as the Curie–
Weiss law:

χ =
C

T −Cλm/μ0
=

C
T −θP

, (2.12)

where θP is the paramagnetic Curie temperature, also given by the same equation as
TC (2.11) in the Weiss model.

The magnetism of metals is simply described in terms of the itinerant electron
model; in the simplest hypothesis, the electrons are regarded as constituting a free
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electron gas. The solution of the Schrödinger equation leads to an electronic density
of states D(E) for three-dimensional solids (1.15) given by

D(E) =
1

2π2

(
2m
h̄2

)3/2

E1/2. (2.13)

The electrons occupy states up to a level known as the Fermi level, of energy EF,
the Fermi energy.

If a magnetic field is applied to this electron gas, the electrons with spin-up and
spin-down will have different energies, the sub-bands will have different populations,
and as a consequence there will appear a spin magnetic moment per unit volume
given by

μs = μB(n↑ −n↓), (2.14)

where n↑ and n↓ are, respectively, the number of electrons with spin-up and spin-
down. This phenomenon is known as Pauli paramagnetism, and the corresponding
magnetic susceptibility is called Pauli susceptibility. This susceptibility is practically
temperature-independent, as shown schematically in Fig. 2.1a. The scheme of the
electron conduction band split by the applied magnetic field, with different spin-up
and spin-down populations, is shown in Fig. 2.2. The sub-band of lower energy has a
magnetic moment parallel to the applied field; since this sub-band has more electrons
than the other sub-band, it is called the majority spin sub-band. It should be noted that
the magnetic moment of the electron is antiparallel to its spin angular momentum:

μ s = −gμBs, (2.15)

where s is the spin angular momentum, μB is the Bohr magneton and g = 2.0023 is
the electron g-factor.

The susceptibility of the free electron gas for kBT � EF (where EF is the Fermi
energy), i.e., the Pauli magnetic susceptibility χP, is proportional to the electron den-
sity of states at the Fermi energy, and is given by

Fig. 2.2. Density of states of a gas of free electrons in three dimensions in a magnetic field B0.
The gas has a magnetization μ = μB(n↑ − n↓), where n↑ and n↓ are the number of electrons
with spin-up and spin-down per unit volume
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Fig. 2.3. Example of hysteresis curve of a ferromagnetic material, showing some of the pa-
rameters that are derived from this curve: the coercive field, or coercivity Hc, the remanent
magnetization Mr, and the saturation magnetization Ms

χP = μ0μ2
BD(EF). (2.16)

The curve of magnetization vs. magnetic field, drawn by varying the field from
Hmax, a field that saturates a ferromagnetic sample, to −Hmax and back to Hmax,
is a closed curve, known as hysteresis loop, or hysteresis curve (Fig. 2.3). As the
magnetic field is reduced from Hmax to zero, the magnetization varies from Ms, the
saturation magnetization, to a value Mr, the magnetic remanence (or retentivity).
The measurement of magnetization with H = 0, starting from magnetic saturation, is
referred to as measurement at remanence.

The hysteresis curve is used to characterize a ferromagnetic material, and a com-
mon curve shape is shown in Fig. 2.3, with the parameters that are normally obtained
from it. These parameters are the saturation magnetization Ms, the magnetic coerciv-
ity Hc (or coercive field) and the retentivity Mr. To trace the curve starting from the
maximum magnetic field Hmax > 0 and reducing it to obtain the negative magnetic
field for which M = 0 (H = −Hc), one finds that the value of this field (Hc) depends
on the intensity of the field Hmax. To distinguish between different situations, Hc is
called coercive field or coercivity when Hmax saturates magnetically the sample, and
coercive force when it does not; the same difference is made between the retentivity
(from saturation), and the remanence.

The value of the coercive field Hc is a measure of a property known as the mag-
netic hardness of a material; one can divide the materials into magnetically soft,
encompassing broadly materials that have Hc < 103 A m−1, and magnetically hard,
for Hc > 104 A m−1. This is the classification of magnetic materials that is more
relevant for their applications: soft materials are used as magnetic shields, trans-
former cores and sensors, and hard magnetic materials are used to make permanent
magnets. Examples of soft magnetic materials are permalloy (a magnetic alloy of
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typical composition Ni0.8Fe0.2), FeSi alloys and soft ferrites; hard magnetic materi-
als include NdFeB, Sm2Co17, and SmCo5.

The form of the hysteresis curve, specifically the measure of how near to
rectangular is its shape, is given by the squareness ratio (or remanence squareness)
S, defined as the ratio of the remanence to the saturation magnetization:

S =
Mr

Ms
. (2.17)

Another measure of the squareness is the coercive squareness S∗, related to the
slope of the magnetization curve at H = Hc and defined through the relation(

dM
dH

)
M=0

=
Mr

Hc(1−S∗)
. (2.18)

2.2 Interactions in Magnetic Materials

The Gibbs free energy of a ferromagnet is given by

φ =
∫

V
(U −T ·S−σ · ε −μ0M ·Hext)dV. (2.19)

where U is the internal energy, T the temperature, S the entropy, and σ and ε are the
strain and stress tensors. The last term describes the interaction of the magnetization
with an applied external magnetic field Hext. In the internal energy U are included
the energy terms related to the exchange interaction, to the anisotropy, to the dipolar
or magnetostatic interaction, and the elastic terms.

The interactions that contribute to the internal energy may be local or non-local,
in the sense that they may at a given point depend only on the values of the local
magnetization, or else depend on the magnetization at every point of the sample. The
exchange energy, the anisotropy energy, the interaction with an external magnetic
field, and the magnetoelastic contribution that arises from nonmagnetic effects are
all local terms. Nonlocal contributions are the dipolar, or stray field contribution and
the magnetostrictive term due to differences in direction of magnetization of different
regions of a sample.

2.2.1 Exchange Interaction

The exchange interaction is the interaction responsible for the establishment of mag-
netic order in magnetic materials. This interaction arises from a quantum effect
with no classical analogue, due to the indistinguishability of the electrons. The ex-
change interaction between two contiguous spins, Si and S j, can be described by the
hamiltonian

H = −2J Si·S j, (2.20)
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where J is the exchange constant, which is a measure of the intensity of the inter-
action. This is known as the Heisenberg hamiltonian, and it is widely used for the
description of many magnetic properties of materials, particularly insulators.

In the classical description the energy of a pair of spins is

Epair
ex = −2J Si ·S j. (2.21)

Or, writing the angle between the two spins i and j as θ (i, j) = Δθ ,

Epair
ex = −2J S2 cosΔθ ≈ J S2(Δθ)2, (2.22)

where we have used the approximation cos Δθ ≈ 1−(Δθ)2/2!, and neglected a term
that does not depend on the angle θ .

The interaction energy can also be written as

Epair
ex = −2J Si ·S j = −2J S2mi ·m j, (2.23)

where we have used the reduced magnetization

m =
M
Ms

, (2.24)

using Ms for the saturation magnetization.
Assuming that the vector M retains its saturation value, only changing its direc-

tion, one has that |m| = 1.
For small Δθi j, |Δθi j|=|m j−mi|. Assuming that one can introduce a continuous

function m, such that m is expanded around r j , the position vector of the lattice
site j, as:

m j −mi = (r j ·∇)m, (2.25)

where ∇ is the gradient operator, and

r j = x ji+ y jj+ z jk, (2.26)

it follows, from (2.22),

Epair
ex = J S2((r j ·∇)m)2 =

= J S2[(r j ·∇mx)2 +(r j ·∇my)2 +(r j ·∇mz)2]. (2.27)

This is the exchange energy of a pair; to get the total energy, one must sum over
j and divide by two to avoid counting twice the contribution of the pairs. In cubic
symmetry, the sums of the products of the coordinates of r (i.e., ∑ j xiy j) is zero, and
∑ j x2

j = 1
3 ∑ j r2

j .
The exchange energy per unit volume is found by dividing by V = a3, in the

simple cubic case. In this case ∑ j r2
j = 6a2, and we have:

Eex

V
=

J S2

a
[(∇mx)2 +(∇my)2 +(∇mz)2]. (2.28)
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The coefficient in Eex is the exchange stiffness constant A, proportional to the
exchange constant J and measured in J m−1 (or erg cm−1, in the CGS); it gives
the strength of the magnetic coupling, and therefore measures how difficult it is for
a given spin to deviate from the direction of the exchange field. For a cubic lattice
with one nonequivalent atom,

A =
nJ S2

a
. (2.29)

The number n is equal to 1 for the simple cubic lattice, 2 for the bcc lattice, and
4 for the fcc lattice.

In the most general case, where the material is not cubic and isotropic, A is a
tensor and the exchange energy is

Eex =
∫

∑
i,k,l

Akl
∂mi

∂xk

∂mi

∂ xl
dV. (2.30)

Another form for the exchange energy is:

Eex

V
= A(∇ m)2 = −A m ·Δm, (2.31)

where Δm = div grad m = ∇2mxi+∇2myj+∇2mzk is the Laplacian1 of m. This can
be derived by applying the gradient operator (∇) twice to the expression m2 = 1 [12].

One can see from the earlier expression (2.31) that the exchange energy is pro-
portional to the gradient of the magnetization, which means that the exchange term
measures the nonuniformity of the magnetization. If the magnetization is uniform,
the exchange energy contribution is minimum, and from (2.31) equal to zero.

2.2.2 Magnetostatic Energy

The magnetostatic energy or stray field energy or dipolar energy, is measured by the
magnetic energy of a sample in its own magnetic field. This field is the demagnetiza-
tion or demagnetizing field Hd, the magnetic field arising from the divergence of the
magnetization. It is given, using Maxwell’s equation div B = div μ0(H+M) = 0 by

div Hd = −div M. (2.32)

The magnetostatic energy Ems, given by the energy of the magnetization in the
demagnetizing field is:

Ems = −1
2

μ0

∫
V

Hd ·MdV, (2.33)

where the integral is performed over V , the volume of the sample. The factor 1
2

accounts for the fact that this energy term, also called magnetic self-energy, arises
from the interaction of the magnetization with the magnetic field that it creates.

1 (∇M)2 = ∑ik(∂ Mi/∂ xk)2
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Using
∫

B ·HddV ≡ 0, where the integral is over the whole space, an identity
valid in the absence of conduction currents, and the expression of B, one obtains:

Ems =
1
2

μ0

∫
all space

H2
ddV. (2.34)

Therefore, there are two equivalent expressions – (2.33) and (2.34) – that can be
used to compute the magnetostatic energy.

The magnetostatic energy of samples of ellipsoidal shape is simple to calculate
since the magnetic field is the same at every point of the sample. This is also approx-
imately true for sample shapes that are limiting cases of an ellipsoid, such as a thin
film or a wire. With no applied external field, this field is the demagnetizing field Hd,
given by

Hd = −NdM, (2.35)

where Nd is the demagnetizing factor that depends on the sample shape (and direction
of the magnetization). Some values of the demagnetizing factor for simple shapes
are given in Table 2.4. One should bear in mind that in samples with nonellipsoidal
shapes the demagnetizing field is not constant throughout the volume.

The magnetostatic energy of an ellipsoid is given, from (2.33), in terms of the
demagnetizing factors Ni and the components of the magnetization Mi along the axes
a, b, and c by

Ems = −1
2

μ0V (NaM2
a +NbM2

b +NcM2
c ). (2.36)

This can be simplified in the case of an ellipsoid of rotational symmetry; using the
fact that the demagnetizing tensor has trace 1 (in the SI), it follows that N‖+2N⊥ = 1,
and one has, using the saturation magnetization Ms:

Ems =
1
2

μ0M2
s V (N⊥ sin2 θ +N‖ cos2 θ ), (2.37)

with θ the angle between the direction of magnetization and the rotational symmetry
axis of the ellipsoid. This expression is equivalent to

Ems =
1
2

μ0N‖M2
s V +

1
4

μ0M2
s V (1−3N‖)sin2 θ . (2.38)

Table 2.4. Demagnetizing factors Nd (SI); to obtain the values in the CGS system, one has to
multiply by 4π

Shape Direction Nd

Plane ⊥ 1
Plane ‖ 0
Cylinder (l/d = 1) ‖ 0.27
Cylinder (l/d = 5) ‖ 0.04
Long cylinder ‖ 0
Sphere – 1/3
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The general expression of the demagnetizing factors Na, Nb, and Nc for an ellip-
soid, along the semi-axes (a,b,c), is given by integrals of the form

Na =
1
2

abc
∫ ∞

0
[(a2 +η)

√
(a2 +η)(b2 +η)(c2 +η)]−1dη, (2.39)

and analogous expressions for the other axes. The sum is Na +Nb +Nc = 1 in the SI
system of units, or 4π in the CGS.

For an ellipsoid with rotation symmetry, there are explicit expressions for the
demagnetizing factors. For prolate, or cigar-shaped, ellipsoids, with c > b = a, with
aspect ratio α = c/a > 1, one has for the demagnetizing factor for the direction
parallel to the long axis [21]:

Nc =
1

α2 −1
×

[
α

2(α2 −1)1/2 × ln

(
α +(α2 −1)1/2

α − (α2 −1)1/2

)
−1

]
. (2.40)

The other factors are Na = Nb = 1
2 (1−Nc); in every case, to obtain the values in

the CGS system, these expressions have to be multiplied by 4π.
For an oblate, or disc-shaped, ellipsoid, with c = b > a, the demagnetizing factor

along the small axis Na is given by

Na =
α2

α2 −1

[
1− 1

(α2 −1)1/2 × arcsin
(α2 −1)1/2

α

]
. (2.41)

In this case, Nb = Nc = 1
2 (1−Na).

2.2.3 Magnetic Anisotropy

The energy of a magnetically ordered sample depends on the relative direction of
the magnetization and the structural axes; in the simplest case, the solid has an axis
along which the energy is at a minimum. The magnetic anisotropy may originate
from several causes: it may be of crystalline origin, or due to the shape of the sample,
or to stress in the material, or atomic segregation, etc.

The anisotropy energy EA is written as a function of the direction cosines α1,
α2, and α3, defined in relation to the axes of the crystal. Since the energy is only a
function of the angle with the easy axis, e.g., in the case of uniaxial anisotropy (and
does not depend on the direction along this axis), it is invariant when we change the
signal of these cosines, and therefore, odd powers of the cosines cannot appear in
its expression. Also, the permutations among the cosines must leave the energy EA
invariant.

2.2.3.1 Uniaxial Anisotropy

In some samples one can make the approximation that the anisotropy depends only
on the angle θ between the magnetization and a given axis. This typically applies to
hexagonal systems, such as crystals of rare-earth metals. The anisotropy energy per
unit volume then takes the form

EA

V
= K1 sin2 θ +K2 sin4 θ , (2.42)
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where θ is the angle of the magnetization with the single axis. Depending on the
magnitude of the anisotropy constants K1 and K2 the sample has an easy axis (for
large |K1|, K1 > 0), easy plane (for large |K1|, K1 < 0), and conical in the case of
intermediate values of the constants. The anisotropy constants have dimension of
energy per volume, and are measured in the SI in J m−1 (see Table 2.6).

2.2.3.2 Cubic Crystals

For a cubic crystal, the most general form that the energy may have in terms of the
powers of the components of the reduced magnetization mi (which are equal to the
direction cosines) is

EA

V
= Kc0 +Kc1(m2

1m2
2 +m2

2m2
3 +m2

3m2
1)+Kc2(m1m2m3)2 + · · · . (2.43)

Substituting into EA the direction cosines for the directions [100], [110], and
[111], symmetry directions in the cubic system, we obtain the expression of the en-
ergy for these three cases:

E100

V
= Kc0, (2.44)

E110

V
= Kc0 +Kc1/4, (2.45)

E111

V
= Kc0 +Kc1/3+Kc2/27. (2.46)

Since the anisotropy energy for each direction is given by the area between the
magnetization curve and the M axis, the anisotropy constants Kc0, Kc1, and Kc2 may
then be derived from the areas of the curves obtained for each direction.

2.2.3.3 Other Symmetries and Contributions

The anisotropy energy in orthorhombic symmetry is written [11],

EA

V
= K1m2

1 +K2m2
2 +K3m2

3. (2.47)

In this expression, mi are the components of the magnetization along the major
axes of the anisotropy tensor K.

There is another contribution to the anisotropy observed in thin films, due to the
broken translation symmetry at a surface or an interface, referred to as the surface or
interface magnetic anisotropy [20], discussed in Chap. 4.

2.2.4 Magnetoelastic Energy and Magnetostriction

The elastic energy of a magnetic solid has a contribution arising from the interac-
tion between the magnetization and the strains εi j. The magnetoelastic energy is the
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increase in anisotropy energy of a magnetic solid submitted to a stress. Its expression
for a cubic crystal is given by [12] as

Eme

V
= B1(α2

1 εxx +α2
2 εyy +α2

3 εzz)+B2(α1α2εxy +α2α3εyz +α3α1εzx). (2.48)

The B-factors are the magnetoelastic coupling constants and the αi are the direc-
tion cosines.

Magnetostriction is the effect of change of dimensions of a solid as its magnetic
state is changed. It is measured by the relative linear deformation λ :

λ =
δ l
l0

, (2.49)

where δ l = l − l0 is the variation in linear dimension of the solid.
The saturation magnetostriction λs, corresponding to a solid magnetized to sat-

uration, is related to the magnetoelastic energy Eme in the case of a cubic crystal
submitted to a stress σ by

Eme

V
=

3
2

λsσ sin2 θ , (2.50)

where θ is the angle between the direction of magnetization and the direction along
which the magnetostriction is measured.

Different interactions in a magnetic material effectively contribute to its total
anisotropy. The total anisotropy energy density can in simple cases be written in
terms of an anisotropy constant Keff, as

EA

V
= Keff sin2 θ . (2.51)

The terms that contribute to Keff, and the different underlying physical mecha-
nisms are shown in Table 2.5. To illustrate the relative magnitudes of the main energy
contributions in magnetic materials, the range of values of these terms is given in
Table 2.6.

Table 2.5. Examples of axial anisotropy constants and anisotropy mechanisms [9]

Anisotropy Mechanism Uniaxial constant

Crystalline Crystal field Ku = K1
Shape Magnetostatic Ku = Ks = 1

2 μ0(Na −Nc)M2
s

Stress Magnetoelastic Ku = Kσ = 3
2 λsσ

Néel Surface Ku = Ks

Table 2.6. Magnitude of the main energy terms in magnetic materials, measured by the corre-
sponding parameters or expressions

Energy Expression Range Unit (SI)

Exchange energy A 10−12 −10−11 J m−1

Anisotropy energy Ku ±(102 −107) J m−3

Magnetostatic energy 1
2 μ0M2

s 0−106 J m−3
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2.3 Elements of Micromagnetism

The microscopic description of magnetic materials employs the atomic spins as the
relevant physical entities, with interactions that give rise to their measurable macro-
scopic properties. Another approach, known as Micromagnetism, describes the mag-
netic medium as a continuum and is centered on the evolution of M(r) (or the mag-
netic polarization J(r) = μ0M(r)), the magnetization of a volume element larger than
the atomic dimensions, but much smaller than the sample. It is assumed that each vol-
ume element reaches thermodynamic equilibrium in a short time, much shorter than
it takes for the whole sample to reach equilibrium.

This is the appropriate treatment to describe magnetized media in a more realistic
way, with the static magnetization departing from the idealized homogenous approx-
imation, and the dynamic behavior that deviates from the coherent limit, as described
by the Stoner–Wohlfarth model (see Sect. 3.5, p. 79). This approach was developed
by Landau and Lifshitz [15], Brown [3, 4], and Kittel [12]. It can be found in an
early review by Brown [5] and it is the basis of many computer programs that simu-
late numerically the static and dynamic properties of magnets in the mesoscopic and
nanoscopic scales.

The stationary local magnetization M(r) at every point of the sample is obtained
from the minimization of the total energy functional that contains the exchange en-
ergy, the anisotropy energy, and the dipolar energy.

To these terms one must add the Zeeman energy, or the energy of the total mag-
netic moment in the external magnetic field Eext, given by:

Eext

V
= −μ0M ·H. (2.52)

The total energy is then:

Etot = Eex +EA +Ems +Eext. (2.53)

The total energy is given, using (2.31) and writing, for an axial anisotropy energy,
EA/V = K1eA(θ), by the volume integral

E =
∫

V

{
A

[
∇

(
M
Ms

)]2

+K1eA(θ)− μ0

2
M ·Hd(M)−μ0M ·H

}
dV. (2.54)

In terms of m, the reduced magnetization, the energy is written:

E =
∫

V

{
A(∇m)2 +K1eA(θ)− μ0

2
Msm ·Hd(M)−μ0Msm ·H

}
dV. (2.55)

The minimization of the energy functional leads to the condition that M(r) has
to be parallel to the effective magnetic field acting at the point r, a field whose
interaction with M(r) is equivalent to the exchange, anisotropy and magnetostatic
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interactions, and to the effect of the external magnetic field. This amounts to the con-
dition that the torque exerted by this effective field acting on the magnetization at
each point is zero:

μ0m×Heff = 0. (2.56)

The effective field Heff acting on M(r) is obtained by derivation of the energy
with respect of the magnetization vector [1], and is given by

Heff =
2

μ0Ms
∇ · (A∇m)− 1

μ0Ms

∂ EA

∂ m
+Hms +Hext, (2.57)

with contributions from the exchange interaction, anisotropy, magnetostatic field,
and external applied field. EA is the anisotropy energy density.

Since the component of Heff parallel to the magnetization does not contribute to
the vector product in (2.56), this equation is equivalent to

H⊥
eff = 0. (2.58)

It is assumed in this approach that the saturation magnetization Ms is not affected
by the parallel component of Heff.

The energy minimization requires the boundary condition:

m× ∂ m
∂n

= 0, (2.59)

where ∂/∂ n is the derivative in the direction normal to the surface of the sample.
Since the modulus of m is fixed, the above equation is equivalent to

∂ m
∂n

= 0, (2.60)

a condition that cannot be fulfilled if there is surface anisotropy.
Equations (2.56) and (2.59) are known as Brown’s equations.
The equilibrium condition can be obtained from the variational calculation of

δE = 0, where E is given by (2.54); one then obtains:

Hc =
2K1

μ0Ms
−NeffMs with Neff = N‖ −N⊥. (2.61)

In this equation, Neff is the effective demagnetizing factor. It is assumed here that
K1 > 0; otherwise one would express these quantities in terms of |K1|.

The first term in the expression of Hc is the anisotropy field HA:

HA =
2K1

μ0Ms
. (2.62)

Some magnetic quantities of interest arise from the expression of the total mag-
netic energy density (2.55). Dividing and multiplying all the terms by 2/(μ0M2

s ) one
obtains:
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E =
μ0M2

s
2

∫
V

{
2A

μ0M2
s
(∇m)2 +

2K1

μ0M2
s

eA(θ)− 1
Ms

m ·Hd(M)− 2
Ms

m ·H
}

dV.

(2.63)
The coefficient of the first term is equated to l2

ex, and thus used to define the
exchange length lex (1.2). This is a length characteristic of the magnetic material, and
represents the spatial scale below which exchange dominates magnetostatic effects.
It is given by

lex =

√
2A

μ0M2
s
. (2.64)

From the coefficient of the second term of (2.63), one can define the parameter κ .
This is called the hardness parameter (or quality parameter (Q)), and it measures the
relative importance of anisotropy compared to magnetostatic effects. It is given by

κ =
2K1

μ0M2
s
. (2.65)

From the expression of the magnetostatic energy (2.34), and the definition of
demagnetizing field (2.35) one can see that the magnetic field responsible for the
magnetostatic contribution is proportional to Ms. The parameter κ is then the ratio of
the uniaxial anisotropy energy (K1) (2.42) to the magnetostatic energy ((1/2)μ0M2

s )
(2.37).

The quantities lex and κ are related through another length, the domain wall width
parameter Δ (1.3), given by

Δ =
√

A
K1

=
lex√

κ
. (2.66)

The domain wall width parameter is related to the domain wall width δ0, which
will be derived below, and is given by

δ0 = π
√

A
K1

= πΔ. (2.67)

Another related length is the single-domain critical diameter Dcr, the diameter
above which the multidomain configuration is energetically more favorable for a
magnetic sample:

Dcr =
72
√

AK
μ0M2

s
. (2.68)

This expression will be derived in Sect. 2.4.1. A summary of the definitions of
these characteristic lengths and their values for α-Fe and NdFeB, a soft and a hard
magnetic material, are given in Table 2.7.

Tables 2.8 and 2.9 give some values of the single-domain critical diameter Dcr
for different magnetic materials; in these tables Dcr varies from about 5 nm for a soft
magnetic material to over 1,000 nm for a hard one.

Table 2.8 gives the saturation magnetization at room temperature, the anisotropy
constant, and the exchange stiffness constant A for some 3d metals and for permal-
loy. Some micromagnetic parameters are also given: the exchange length lex (from
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Table 2.7. Definition of some characteristic lengths (SI), with values, in nanometers, for Fe
(Table 2.8) and NdFeB [13]

Length SI Material
Fe NdFeB

Exchange length lex =
√

2A
μ0M2

s
3.28 2.8

Domain wall width parameter Δ =
√

A
K1

20.3 1.22

Domain wall width δ0 = π
√

A
K1

63.7 3.82

Single-domain critical diameter Dcr = 72
√

AK
μ0M2

s
19.0 210

Table 2.8. Room temperature saturation magnetization Ms(RT ), anisotropy constant K and
exchange stiffness constant A of some 3d metals and permalloy, from [23], and some micro-
magnetic parameters. The parameters were computed using (2.64), (2.65), (2.67), (2.68), and
(2.97)

Material Ms(RT) K A lex δ0 κ Dcr γ
(103Am−1) (105Jm−3) (10−11Jm−1) (nm) (nm) (nm) (10−3Jm−2)

Fe 1,714 0.481 1.98 3.28 63.7 0.0261 19.0 3.90
Co 1,422 4.12 2.81 4.70 25.9 0.324 96.4 13.6
Ni 484.1 −0.056 0.86 7.64 123 0.038 53.6 0.878
Ni0.8Fe0.2 813 0.0027 1.07 5.08 625 0.0007 4.66 0.215

Table 2.9. Critical single-domain diameter Dcr for spherical particles, and domain wall energy
per unit area γ for different materials [13]

Material μ0M2
s Dcr Domain wall energy γ

(106Jm−3) (nm) (10−3J m−2)

Fe3O4 0.29 12.4 2.0
CrO2 0.20 180 2.0
MnBi 0.45 480 12
Nd2Fe14B 2.06 210 24
SmCo5 0.88 1,170 57
Sm2Fe17 1.33 420 31
FePt 1.44 340 32
BaFe12O19 0.183 62 6.3

(2.64)), the domain wall width δ0 (2.67), the hardness parameter κ (2.65), the crit-
ical single-domain diameter Dcr (2.68) and the Bloch domain wall energy γ (2.97).
One should note that the values of the micromagnetic parameters that appear in the
literature present a wide dispersion, reflecting the experimental uncertainty of some
magnetic quantities, for example, in the estimate of the exchange stiffness constant A.
The values of A given in Table 2.8 are obtained from inelastic neutron scattering data,
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Table 2.10. Expressions of some magnetic quantities in the SI and CGS. Note that NCGS
d =

4πNd. The domain wall energy is γ = 4
√

AK in either system

Length SI CGS

Exchange length lex =
√

2A
μ0M2

s
lex =

√
2A

4πM2
s

Single-domain critical diameter Dcr = 72
√

AK
μ0M2

s
Dcr = 72

√
AK

4πM2
s

Magnetostatic energy Ems = 1
2 μ0NdM2

s Ems = 1
2 NCGS

d M2
s

Anisotropy field HA = 2K
μ0Ms

HA = 2K
4πMs

Hardness parameter κ = 2K
μ0M2

s
κ = 2K

4πM2
s

Table 2.11. Units used for some micromagnetic quantities, and conversion factors between
the SI and CGS systems of units

Symbol Unit Equivalence

Saturation magnetization Ms Am−1 (1 Am−1 = 10−3 emu cm−3)
Anisotropy constant K Jm−3 (1 Jm−3 = 10 erg cm−3)
Exchange stiffness A Jm−1 (1 Jm−1 = 105 erg cm−1)
Domain wall energy γ Jm−2 (1 Jm−2 = 103 erg cm−2)

regarded as more reliable than those obtained from other techniques, for example,
from the measurement of the Curie temperatures.

The relative values of the characteristic lengths change as a function of the degree
of magnetic hardness of the materials. For soft magnetic materials, one has

Dcr ∼ lex � Δ, (2.69)

and for hard magnetic materials,

Dcr � lex � Δ. (2.70)

Table 2.10 gives the expressions of some micromagnetic quantities in both sys-
tems of units, SI and CGS. The units used to express these quantities, and the con-
version factors between the two systems of units, are given in Table 2.11.

For other conversion factors, see Table A, on p. 187, part of Appendix A.

2.3.1 Equation of Motion

The equation of motion of the magnetization M in an applied magnetic field is de-
termined by the fact that the electrons, responsible for the magnetism of atoms and
molecules, also have angular momentum, collinear with their magnetic moments.
Therefore, the magnetization M precesses in an applied magnetic field, and the
torque exerted by this field is −γeM× μ0H, where γe is the electron gyromagnetic
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ratio and μ0 is the magnetic constant, or vacuum permeability. Thus, the equation of
motion for the magnetization, in the absence of damping or relaxation, is given by

dM
dt

= −γeM×μ0H = −γGM×H. (2.71)

The constant γG is the Gilbert gyromagnetic ratio, a positive number, propor-
tional to the electron gyromagnetic ratio γe. The latter is given, in the SI system of
units by γe = 2μe

h̄ = 1.760859×1011 s−1 T−1 [18]. The Gilbert gyromagnetic ratio is
therefore:

γG = μ0γe = 2.2127606× 105 mA−1s−1. (2.72)
Equation 2.71 describes a motion of precession of M around the direction of H;

this field cannot vary the component of the magnetization parallel to it. This de-
scription is applicable to isolated magnetic moments, i.e., magnetic moments that
do not interact, or interchange energy with another sub-system, that would act as a
thermal reservoir. This assembly of magnetic moments will only change its magne-
tization, reaching another equilibrium configuration, if there is a mechanism for this
interchange. In this case, the corresponding mathematical description would include
damping, or magnetic relaxation. A phenomenological description that contains such
damping, is the Gilbert equation:

dM
dt

= −γGM×H+
αG

Ms
M× dM

dt
, (2.73)

where αG is the Gilbert damping constant, a dimensionless parameter, and γG is the
Gilbert gyromagnetic ratio.

Another description of the motion of the magnetization M that does not have the
inconvenience of containing dM/dt in both sides of the equation is the Landau–
Lifshitz–Gilbert equation, that is mathematically equivalent, but has a relaxation
term with a different form. This equation can be derived from the above, and is
written:

dM
dt

= −γ M×Heff +
α
Ms

M× (M×Heff) . (2.74)

The phenomenological damping constants (the α terms) and the gyromagnetic
ratios used in the two equations are related through:

γ =
γG

1+α2
G

. (2.75)

α =
αGγG

1+α2
G

. (2.76)

sometimes written as γL and αL.
The Landau–Lifshitz–Gilbert (LLG) equation allows one to describe how the

magnetization evolves with time. The time evolution of the magnetization of a sam-
ple is given by solving a set of coupled Landau–Lifshitz–Gilbert equations, each
one corresponding to an element of volume into which the sample is divided. The
solution of the LLG equations is usually done numerically.
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In the description of the magnetization dynamics in a metal, eddy currents are
important. Their effect can be approximately accounted for by adding to Heff a term
Heddy, that is proportional to ∂ m/∂ t.

2.4 Magnetic Domains

Why every sample of magnetic material is not necessarily a magnet? The explanation,
of course, is that macroscopic samples of magnetic materials are formed of magnetic
domains, regions where the atomic magnetic moments point approximately in the
same direction. The presence of domains with different directions may lead to an ap-
proximate cancellation of the total magnetic moment, or to an average magnetization
close to zero.

The division of the volume of a sample into magnetic domains arises from the
balance of the contributions of the different energy terms.

As the number of domains is increased, the magnetostatic energy is reduced. This
cannot continue indefinitely, since the presence of the transition region between the
domains, the domain walls, also brings about an increase in exchange and anisotropy
energy. The magnetostatic energy can also be reduced through the formation of clo-
sure domains, where the magnetization has a direction approximately parallel to the
surface of the sample. This result is one of the consequences of the principle known
as pole avoidance. It expresses the fact that the reduction of the number of free mag-
netic poles leads to lower magnetostatic, or stray energy.

Single domains deviate from the ideal image of a region where the magnetization
is exactly the same at every point. This arises since the demagnetizing field Hd varies
from point to point in every sample that has a nonellipsoidal shape, and as a conse-
quence the equilibrium configuration of the magnetic moments in such samples also
deviates from homogeneity. These samples are still described as single-domain sam-
ples, and this denomination is extended to every magnetic object that does not have
clearly defined domain walls. For example, single domains may exhibit some distinc-
tive spin arrangements, which include the “flower,” “leaf,” and “C” configurations,
shown schematically in Fig. 2.4.

The form of the magnetic domains can be given in an approximate way making
use of the van den Berg construction. This consists of the following set of rules

a b

c d

Fig. 2.4. Schematic representation of the types of spin arrangement in single domains:
(a) flower, (b) leaf, (c) S, and (d) C (Adapted from [7])



42 2 Magnetic Domains

Fig. 2.5. Example of van den Berg construction of magnetic domains for a bidimensional soft
magnet of rectangular shape. The straight lines represent the magnetic domain walls

applied here to a two-dimensional sample [11]: (1) draw circles that are contained
in the sample and are tangential at two or more points of the edge. The locus of the
centers of the circles forms the domain walls; (2) the magnetization in each circle
is perpendicular to the radius that touches the edge; (3) if a circle has more than
two points of contact with the edge, its center forms a junction of walls; (4) if the
tangential points are neighbors, the wall ends at the center of the circle; and (5) if the
sample has an acute edge, the wall passes through this point. The application of these
rules and the resulting structure of domains for a bidimensional magnetic sample of
rectangular shape, is shown in Fig. 2.5.

The van den Berg construction incorporates a tendency observed in magnetic
samples, of the appearance of domain structures that minimize stray fields, or pro-
duce flux closures, leading to a reduction in magnetostatic energy or magnetic dipole
energy.

The van den Berg construction does not take into account the scale or size of
the sample; also, the domain walls are simple lines. In real samples, however, the
domain wall has a finite width that becomes relatively more important the smaller
their sizes. Also, a flux closure structure known as a vortex or swirl, a static circular
arrangement of magnetic moments, results as this construction is applied to samples
of circular or near circular shapes.

Domain walls can have many different forms; there are, however, two main types
known as Bloch walls and Néel walls. They are distinguished from one another in
the way the atomic magnetic moments in the wall turn: perpendicularly to the plane
of the moments in contiguous domains, in the case of Bloch domain walls, or parallel
to this plane (Néel wall). These two arrangements are illustrated in the case of a 180◦

magnetic domain wall in Fig. 2.6.

2.4.1 Domain Wall Width

The magnetic domain wall width can be computed in an approximate way taking
into account only the exchange and anisotropy interactions. Two adjoining domains,
with the corresponding magnetizations forming 180◦, will be separated by a tran-
sition region – a 180◦ domain wall. Inside the wall the atomic moments will make
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a

b

Fig. 2.6. Two main types of magnetic domain walls, exemplified for a 180◦ wall: (a) Bloch
wall, where the magnetic moments turn in a plane perpendicular to the line connecting the two
domains, and (b) Néel wall, where the moments in the wall are confined to the same plane of
the moments in the domain

intermediate angles with the initial axis; let us assume that the first domain has its
moment pointing in the +z direction and the second, in the −z direction. The closer
to parallelism the neighbor magnetic moments in the wall are, the lower the exchange
energy; this favors a broad domain wall. On the other hand, the smaller the number
of atoms in the wall, the smaller the anisotropy energy, since each magnetic moment
pointing away from the z axis will pay a price in anisotropy energy. Consequently,
to minimize the anisotropy energy, it is preferable to have a narrow domain wall.
These conflicting demands lead to a balance of energy contributions from exchange
and anisotropy that defines the wall configuration with lowest energy.

Let us consider a 180◦ Bloch domain wall of a simple cubic material; the N + 1
magnetic moments in the wall are represented in Fig. 2.7. The average value of the
angle φ between two neighbor moments inside the wall is π/N. The exchange inter-
action energy of one pair of atoms, from (2.22) and (2.29), is Epair

ex = J S2(π/N)2 =
aA(π/N)2, in the simple cubic lattice. J is the exchange integral, A is the exchange
stiffness constant, and a is the lattice parameter, or atomic separation.
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Fig. 2.7. Magnetic moments inside a 180◦ Bloch magnetic domain wall perpendicular to a
line with N +1 atoms

A line of N + 1 neighbor atoms, perpendicular to the plane of this wall, has an
exchange energy given by

Eex = NEpair
ex =

π2aA
N

. (2.77)

From this expression, one verifies that the condition for minimum exchange
energy Eex is that N grows indefinitely; however, in this case the anisotropy energy
increases, since the number of spins not aligned with the easy direction also in-
creases. If the separation between the atoms is a, a unit length of the wall is crossed
by 1/a lines of atoms; one unit area of wall is crossed by 1/a2 lines. The exchange
energy per unit area is therefore

eex =
π2A
aN

. (2.78)

The anisotropy energy per unit volume in a uniaxial crystal is EA/V = K1 sin2 θ
(taking only the first term of the uniaxial anisotropy energy expression given by
(2.42)). Since a domain wall of unit area has a volume Na, the anisotropy energy per
unit area is

eA = K1sin2 θNa ≈ K1Na. (2.79)

The total energy per unit area is e = eex + eK1 (exchange plus anisotropy), and
the condition that minimizes e is

∂e
∂N

= −π2A
aN2 +K1a = 0, (2.80)

and the number N of atomic spacings in the domain wall that satisfies this condition is

N =
π
a

√
A/K1. (2.81)

Therefore, the domain wall thickness is

δ0 = Na = π
√

A
K1

. (2.82)
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In conclusion, the domain wall thickness is directly proportional to the square
root of the exchange stiffness constant, and inversely proportional to

√
K1.

Since |m|=1, then dm2=dθ 2 + (sinθdφ)2, and the exchange energy term
becomes:

eex = A(∇m)2 = A

[(
∂ m
∂y

)2
]

= A

[(
∂θ
∂ y

)2

+
(

sinθ
∂φ
∂y

)2
]

. (2.83)

The total energy density, containing contributions of exchange, anisotropy, mag-
netostatic energy arising from magnetic charges on the domain wall plane (plane xz)
and Zeeman interaction is e = eex + eA + ems + eext,

e = eex +(K +
μ0

2
M2 sin2 φ)sin2 θ −μ0MH cosθ . (2.84)

The condition for equilibrium is that, the combined torque from exchange and
anisotropy is zero. This is mathematically equivalent to the condition that

∫
edy

is stationary with respect to variations of θ(y) and φ(y), which is given by the
Euler–Lagrange equations, expressed through the variational or functional deriva-
tives δe/δ X [17]:

δ e
δθ

=
∂ e
∂θ

− d
dy

∂ e
∂θ ′ = 0 (2.85)

and
δe
δφ

=
∂e
∂φ

− d
dy

∂e
∂φ ′ = 0. (2.86)

This leads to the following equations, ignoring the magnetostatic and the Zeeman
terms:

2A
(

∂ 2θ
∂y2

)
−

[
K +A

(
∂φ
∂ y

)2
]

sin2θ = 0. (2.87)

(
∂ 2φ
∂y2

)
sin2 θ +

(
∂φ
∂ y

)(
∂θ
∂y

)
sin2θ = 0. (2.88)

A solution is
φ(y) = const., (2.89)

which leads to

2A
(

∂ 2θ
∂y2

)
−K sin2θ = 0. (2.90)

Multiplying by ∂θ/∂ y and using the condition that for x → ∞, θ = 0 or π, the
integration gives

θ(y) = ±2 arctan e(y/Δ). (2.91)
With

Δ =

√
A
K

, (2.92)

the domain wall width parameter.
The occurrence of a positive and a negative sign in (2.91) means that there are

Bloch walls that turn in clockwise or counterclockwise directions. When lines of



46 2 Magnetic Domains

opposite direction of rotation occur side by side in a three-dimensional sample, their
boundary is a Bloch line. The existence of such a line has as consequence a reduction
in stray field energy.

Deriving (2.91), one obtains:

Δ
∂θ
∂y

= ±sinθ . (2.93)

The square of this expressions gives

A
(

∂θ
∂ y

)2

= K sin2 θ . (2.94)

The above equation expresses the fact that at each point inside the domain wall
the exchange and anisotropy energies have the same magnitude.

Defining the domain wall width as the width of the region around x = 0, where
the magnetization would turn π if the dependence of θ(x) were linear, with the same
slope of θ(x) for x = 0 (Fig. 2.8), one finds

δ0 = π
√

A
K1

. (2.95)

Another expression sometimes used for the domain wall width is δ0 = 2
√

A/K1.
Figure 2.8 shows the dependence of θ with x around the center of the domain

wall. Substituting the result of (2.94) into the expression of the energy functional,
and using dy from the square root of this equation, one obtains the energy density
inside the domain wall:

e(y)dy = 2K1 sin2 θdy = 2
√

AK1 sinθdθ . (2.96)
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Fig. 2.8. Variation of the angle θ around the center of a Bloch domain wall, showing the linear
extrapolation that leads to the value of the domain wall width δ0
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The total domain wall energy density γ is twice the integral of e(y)dy from θ = 0
to θ = π/2; the expression for the domain wall energy density (energy per unit area)
is therefore,

γ = 4
√

AK1. (2.97)

The wall energy density therefore increases with the increase of both exchange
energy and anisotropy energy. Domain wall energy densities vary from about 0.1
×10−3 Jm−2 for magnetically soft materials to some tens of 10−3 Jm−2 for hard mag-
nets. Transition metals of the d group exhibit wall energy densities of the order of
10−3 Jm−2.

In a Bloch wall, the angle φ between the plane containing the magnetization and
the plane defined by the magnetizations of the domains M1 and M2 (the plane xz) is
constant, equal to π/2 (Fig. 2.9). In a Néel domain wall, φ = 0◦, and the magnetic
moments inside the wall are contained in the plane xz. In this type of wall, the mag-
netostatic energy contribution is more relevant, since the uncompensated magnetic
charges in the domain wall all add up along the axis of the domain, the x direction in
Fig. 2.9. This energy term can be derived from div B = 0; it then follows

dHx

dx
= −dMz

dx
= −Ms

d(cosθ)
dx

. (2.98)

The integration gives Hx =−Ms(cos θ −cos θ0), where θ0 is half the total angle
variation across the domain wall. The magnetostatic energy is therefore

ems = −1
2

μ0M2
s cosθ . (2.99)

Fig. 2.9. Angles characterizing the direction of the magnetization M inside a 180◦ domain
wall. The two adjacent magnetic domains have magnetizations in the +z and −z directions,
and the plane of the domain wall is the plane xz
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The energy minimization allows the derivation of the parameters that characterize
the Néel domain walls [14]. The Néel domain wall width is given by

δ Né
0 = π

√
A

K1 + 1
2 μ0M2

s
. (2.100)

The Néel domain wall energy density is

γNé = 4

√
A(K1 +

1
2

μ0M2
s ). (2.101)

Both expressions exhibit the importance of the magnetostatic contribution to the
properties of the Néel domain wall; these results contrast with the corresponding
expressions for the Bloch walls, given by (2.95) and (2.97), that do not depend on
the saturation magnetization Ms.

In inhomogeneous solids, where, for example, the anisotropy constant K1 may
change from point to point, the domain wall energy density will also vary. As a con-
sequence, the mobility of the domain wall will be affected, since the inhomogeneities
will become pinning centers for the walls. The domain walls will prefer to reside in
the lower anisotropy regions, where the energies will be lower, and, conversely, they
will require higher magnetic fields to move across regions of higher anisotropy.

The single-domain critical diameter Dcr, the cross-over diameter below which
a single-domain configuration is energetically more favorable, can be derived from
the analysis of the free energy of different spin configurations. This can be done,
for instance, in the case of a sample in the form of an ellipsoid. Let us consider two
magnetization configurations for an ellipsoidal sample (Fig. 2.10): (1) single domain
and (2) two domains separated by a domain wall. In both cases the magnetizations

Fig. 2.10. Single-domain and two-domain configurations of a magnetically ordered ellipsoid,
showing the magnetic moments of the domains, the lines of field, and in the second case, the
domain wall
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of the domains are aligned along the major axis of the ellipsoid. The question is to
find out for which diameter (the critical diameter) these two configurations will have
the same free energy.

This problem will be revisited in Chap. 3 (Sect. 3.1), where another spin arrange-
ment – a vortex – will be considered as another possible structure leading to an
energy minimum.

The terms contributing to the total energy of the magnetic ellipsoid will be ex-
change, anisotropy and magnetostatic. The magnetoelastic contribution will not be
taken into account in this simple derivation. As mentioned earlier, the magnetostatic
energy can be expressed in two forms, either as an integral over the whole space or as
an integral limited to the volume of the magnetized body (2.34) and (2.33). Since the
first form is an integral in the whole space, it has contributions away from the sample
that for large distances are essentially those of a magnetic dipole field. These contri-
butions can be neglected in the case of the arrangement with two domains, since the
sample has in this case zero total magnetic moment. We assume then that the total
magnetostatic energy in this case is reduced, multiplied by a factor α < 1.

The magnetostatic term of a sample with the shape of an ellipsoid with rotational
symmetry, with short semi-axis a, long semi-axis b, in the single-domain configura-
tion, will be

E(1) = Ems(1) = −1
2

μ0Hd ·MV =
1
2

μ0N‖M2
s

4
3

πa2b, (2.102)

where N‖ is the demagnetizing factor along the major axis of the ellipsoid.
In the two-domain configuration, a domain wall energy term has to be added

to the magnetostatic term. The wall term is given by the surface energy density γ
multiplied by the cross section area πab:

E(2) = Ems(2)+Ewall = α
1
2

μ0N‖M2
s

4
3

πa2b+πabγ. (2.103)

Equating the two expressions, one obtains the critical single-domain diameter
Dcr = 2a for an ellipsoid:

Dcr =
3γ

(1−α)N‖μ0M2
s
. (2.104)

Substituting the expression for the domain wall energy (γ = 4
√

AK, (2.97)), and
assuming α = 0.5, one obtains for a sphere, which has a demagnetizing factor N =
1/3, the critical diameter:

Dcr =
72
√

AK
μ0M2

s
. (2.105)

The critical single-domain diameters obtained from this equation, for example,
for Fe, Co and Ni, are in the range of tens of nanometers. See Tables 2.8 and 2.9 for
domain wall energies and critical single-domain diameters for different materials.

From the above expression, one infers that for the same saturation magnetization
Ms, the critical single-domain diameter is proportional to the domain wall energy.
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Fig. 2.11. Critical single-domain diameters versus modulus of the anisotropy constant for
several magnetic materials, showing the correlation between these two quantities. It is evident
that the critical diameters increase with increasing |K| [13]. (Reproduced from [13] with
permission from Wiley)

Therefore, as expected, if the domain wall energy increases, the critical single-
domain diameter will also increase. In other words, if the price paid for the creation
of a domain wall increases, the single-domain configuration will remain energetically
more favorable up to larger diameters.

A more accurate value for the parameter α , which gives an estimate for the re-
duction in magnetostatic energy in the case of a spherical particle is α = 0.472 [8].
Values of critical single-domain diameters computed using this value of α are given
in Table 2.9. These critical diameters depend, from (2.105), on the value (the abso-
lute value) of the anisotropy constant K1, and this dependence is shown, for several
materials, in Fig. 2.11.

2.4.2 Domain Wall Motion

A magnetic field applied to a multidomain sample will, in principle, induce a dis-
placement of the magnetic domain walls. Consider, for example, the 180◦ domain
wall between two magnetic domains shown in Fig. 2.9. A magnetic field applied in
the z direction will create a torque on the magnetic moments inside the wall; this will
generate a magnetization component perpendicular to the plane of the wall (the yz
plane). This component, in its turn, creates a demagnetizing field also perpendicular
to the wall, with a consequent torque that rotates the moments of the wall in such
a way as to increase the size of the domain with magnetization in the +z direction.
This is the mechanism that induces domain wall motion under an applied magnetic
field.
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Let us assume that there are impurities and defects that hinder the motion of the
domain wall, acting as pinning centers. For low applied magnetic fields, the domain
wall motion is thermally excited, and the position of the wall changes as the succes-
sive pinning potentials are overcome. This regime is characterized by the condition
∂φ/∂ x = 0, i.e., the angle between the plane defined by the local magnetization and
the anisotropy axis, and the plane of the magnetic domain moments is constant; see
the definition of the angles in Fig. 2.9.

The most important characteristic of this regime is that the domain wall velocity
is proportional to the applied magnetic field, as will be shown later.

Above a certain intensity of the field H, called the Walker field, or Walker break-
down field, another regime is entered, where the domain wall motion is erratic. The
average wall propagation velocity is still proportional to the intensity of the mag-
netic field, but with a different proportionality constant. The velocity of transition is
referred to as the Walker velocity, and the phenomenon as the Walker breakdown.

The quantitative derivation of the limiting velocity is obtained from the compu-
tation of the free energy in the case of a 180◦ wall. A polar coordinate system is
chosen, with the easy axis (z) as the polar axis, the magnetic field H is applied along
this axis and the domain wall moves along the x axis (Fig. 2.9). From the expression
of the free energy (2.54), one can derive how the velocity of the domain wall varies
with the applied magnetic field.

Taking into account the magnetostatic and the Zeeman contributions, one notes
that for K1 + μ0/2M2

s > μ0MH, and consequently, to first order in H, the variation
of the angle θ in the domain wall satisfies an equation of the form of θ(y) given
by (2.91), with the domain width parameter Δ replaced by ΔH , the width parameter
under an applied magnetic field, a quantity to be determined [17].

Deriving θ(y) (2.91), expressed in terms of ΔH, instead of Δ, one obtains:

ΔH
∂θ
∂ y

= sinθ . (2.106)

Using (2.106) and the expression of the total energy (2.84), one obtains the inte-
grated domain wall energy:

γ =
∫ +∞

−∞
w dy =

∫ π

0

w
(∂θ/∂ y)

dθ =

γ =
2A
ΔH

+2KtΔH. (2.107)

The total anisotropy Kt is written

Kt = K1 +
μ0

2
M2 sin2 φ . (2.108)

The energy minimum is obtained by minimizing (2.107) with respect to ΔH; it
then follows for the wall energy:

γ = 4
√

AKt, (2.109)

which is analogous to the expression for the energy of the static domain wall (2.97),
where instead of K, one has Kt.
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The expression of ΔH is therefore

ΔH =
√

A
Kt

= 4
A
γ

. (2.110)

From the expansion of γ for small applied magnetic field Hext, two relations can
be derived between the rate of change of the position of the domain wall q̇ and the
change of the angle φ , φ̇ [17]:

φ̇ = γGH − αG

ΔH
q̇ . (2.111)

q̇ = γGΔHμ0Ms sinφ cosφ +αGΔHφ̇ . (2.112)

In the condition of dynamic equilibrium, φ̇ = 0 and q̇ = const., it follows from
(2.111) that the velocity v of the wall is given by

q̇ = v =
γGΔ
αG

H . (2.113)

Therefore, in this limit, the domain wall velocity is proportional to the applied
magnetic field H.

In the expression of q̇ (2.112), the maximum in the term with φ occurs for
sin2φ = 1, i.e., φ = π/4, and one has for the maximum, or peak velocity:

q̇p = vp =
1
2

γGΔμ0Ms . (2.114)

This is the maximum velocity for the constant-angle regime. Beyond vp, this
regime is not observed anymore, and φ varies, as the moments perform a precessional
motion.

The applied magnetic field that leads to this maximum domain wall velocity vp
is the peak field Hp, or Walker breakdown field [22], whose expression is obtained
from (2.111)

Hp = 2α
K

μ0Ms
. (2.115)

The instantaneous domain wall velocity above the maximum domain wall veloc-
ity vp can be either positive or negative, only the average velocity remains positive.
Immediately beyond the peak velocity, for a range of values of H, the average ve-
locity decreases with increasing H, as shown in Fig. 2.12, for an experiment with
permalloy nanowires. The rate of change of the velocity with H, called mobility (μ),
is therefore negative in this interval.

The existence of a limit to the domain wall velocity in the constant velocity
regime has important implications, since information may be encoded by control-
ling the motion of domain walls, and the faster the domain wall motion the faster
would be the response of a device using this principle (see Chap. 7 for a discussion
of magnetic recording).
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Fig. 2.12. Average domain wall velocity vs. applied H for permalloy nanowires, exhibiting
the change in regime at the Walker breakdown. The insert shows the region of the graph
around this change, at the peak field Hp ∼ 4 Oe [2]. (Reprinted by permission from Macmillan
Publishers Ltd. [2], copyright (2005))

This behavior is exemplified in measurements made with a 600 nm-wide permal-
loy wire of rectangular cross section, or stripe, where the critical field was reached
for Hp = 4 Oe (Fig. 2.12), corresponding to a velocity of approximately 75 m s−1;
the decrease in velocity above vp and the change in slope above this region are also
apparent [2].

The dependence of domain wall velocity with applied magnetic field has been
studied, both experimentally and through numerical simulations in other nanostruc-
tures, mostly in nanowires. In many of these studies the domain wall motion is also
affected by the application of polarized electric currents (see Sect. 6.4, on nanowires,
p. 160).

It has been demonstrated by numerical simulation that the limiting velocity, or
Walker velocity, can be overcome in nanowires with rough sides [19].

2.5 Random Anisotropy

An important class of materials with nanomagnetic properties is the family of soft
nanocrystalline alloys, alloys containing precipitated grains of nanometric dimen-
sions. Their magnetic behavior is determined by the averaging out of the magne-
tocrystalline anisotropy due to a distribution of directions of the anisotropy axes in
the spatial scale of the grain size. This description of the soft magnetic properties
of these alloys is known as the random anisotropy model (see [10]). This model
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has been applied to explain the magnetic properties of the Fe-based nanocrystalline
alloys, formed of ultrafine crystalline particles of Fe or FeSi embedded in an amor-
phous matrix. Both regions, particles and matrix, are ferromagnetic.

The first member of this family to be studied was the Fe73.5Cu1Nb3Si13.5B9 al-
loy known as Finemet [24]. The nanocrystalline material is obtained by partial de-
vitrification induced by thermal treatment of an amorphous precursor alloy, usually
produced by the technique of melt-spinning.

The averaging out of the crystalline anisotropy occurs for particle sizes D that
are smaller than the exchange length, given by (1.2):

lex =
√

κ Δ =
√

κ
√

A
K1

, (2.116)

where κ , given by (2.65), is of the order of 0.1 for soft magnets, A is the exchange
stiffness constant and K1 > 0 is the local anisotropy parameter, usually taken as of
crystalline origin.

The reduction of the effective anisotropy due to the averaging of K1 occurs in Fe
systems where lex ≈ 20−−40 nm for amorphous alloys (D≈ atomic spacing), or for
nanocrystalline alloys (D ≈ 5−−20 nm). This leads to an average anisotropy 〈K〉
given by [10]:

〈K1〉 = |K1| x2
(

D
lex

)6

, (2.117)

where x is the crystalline volume fraction, i.e., the proportion of the sample volume
occupied by the nanocrystals. This effect produces a reduction of several orders-of-
magnitude in the effective anisotropy constant, as a function of the particle diameter.
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Fig. 2.13. Computed average anisotropy 〈K〉 of FeSi versus particle diameter in an amorphous
matrix, using K1 = 5 J m−3 (and K1 = 0 J m−3) and volume fraction x = 0.75 [10]. (With
permission from Elsevier Science and Technology. The contribution of the random anisotropy
δK = 〈K〉−Ku varies from a dependence on D3–D6, with increasing D)
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Fig. 2.14. Variation of the coercivity and magnetic permeability of Fe alloys versus particle
diameter, showing the dependence of the coercivity (Hc ∝ D6) and magnetic permeability
(μ ∝ 1/D6) with particle diameter [10]. (Reproduced from [10] with permission from Elsevier
Science and Technology Journals)

A graph of 〈K1〉 computed with the earlier equation (2.117), vs. diameter, is given in
Fig. 2.13 for FeSi particles.

A reduction of the effective anisotropy of the alloys implies a reduction of the
coercivity (Hc ∝ 〈K1〉) and an increase of the magnetic permeability (μ ∝ 1/〈K1〉).
This behavior is observed experimentally for Fe-based nanocrystalline alloys, as
shown in the graph of coercivity and magnetic permeability vs. particle diameter
(Fig. 2.14). The curves show the trend of Hc ∝ D6 and the magnetic permeability
μ ∝ 1/D6 for some Fe alloys.
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A. Hubert, R. Schäfer, Magnetic Domains. The Analysis of Magnetic Microstructures
(Springer, Berlin, 1999)
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3

Magnetism of Small Particles

Summary. Magnetic nanoparticles are important physical systems, relevant for many
applications, and in many cases the starting point of fundamental developments in Nanomag-
netism. The Stoner–Wohlfarth theory, discussed in this chapter, represents a milestone in the
process of understanding nanoparticle magnetism. This theory describes the magnetic prop-
erties of ellipsoidal magnetic particles, including the conditions for the homogeneous rever-
sal of their magnetization under applied magnetic field. Magnetic nanoparticles present spin
arrangements that may be single-domain, vortex state, or multidomain, with their magnetic
behavior depending on the spin configuration. The critical diameters for these configurations
can be derived in an approximate form. Nanoparticles in the smaller range of diameters do not
behave as stable magnets, exhibiting the phenomenon of Superparamagnetism.

3.1 Introduction

Many magnetic systems of interest are formed of particles with dimensions in the
nanoscopic or mesoscopic ranges. Nanoscopic and mesoscopic particles may be con-
stituents of magnetic recording media, Magnetic Resonance Imaging (MRI) contrast
reagents, drug carriers, and also may form ferrofluids when held in suspension, em-
ployed to dissipate heat in hyperthermia applications or used for biomagnetic separa-
tion. In all these examples, the magnetic properties of the particles are determinant to
the application, and are tailored or controlled to optimize it. Figure 3.1 shows a high-
resolution image of a nanoscopic particle of iron oxide obtained with a transmission
electron microscope, where the crystal lattice is clearly visible.

The magnetic behavior of nanoparticles is, in general, strongly dependent on
their dimensions. For example, the smaller magnetically ordered particles will tend
to be single-domain, and the larger ones, above a certain critical diameter Dcr, will be
multidomain, or else exhibit a vortex configuration, an arrangement where the local
magnetizations are aligned tangentially to circles. Magnetic nanoparticles also have
other properties that depend on their sizes (see Chap. 1). For example, the magnetic
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Fig. 3.1. High resolution transmission electron microscope (HRTEM) image of a ∼18 nm-
diameter Fe3O4 particle, showing its crystalline structure [40]
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Fig. 3.2. Curie temperature of spherical maghemite (γ-Fe2O3) particles obtained by Monte
Carlo simulation, vs. inverse diameter. The continuous line is given by the equation (TC(d)−
TC(∞))/(TC(∞)) =±(D/D0)−1/ν , where D0 is a characteristic length [25]. (Reprinted figure
with permission from [25]. Copyright (2001) by the American Physical Society)

ordering temperature of nanoparticles depends in a regular fashion on their diameter.
This may be seen in the gradual reduction of the Curie temperature of ferromagnetic
nanoparticles of maghemite (γ-Fe2O3) vs. inverse diameter (Fig. 3.2). These values
of TC were obtained by Monte Carlo simulation.
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In this chapter, we will discuss the magnetic properties of nanoparticles, specif-
ically the form of the curve of magnetization vs. magnetic field and the process of
inversion of the magnetization under the action of applied magnetic fields, either
static or pulsed. The case of a static field in the direction opposite to the magnetiza-
tion will be treated first.

Let us consider a small ellipsoidal single-domain magnetic particle with uniaxial
anisotropy, under the influence of a magnetic field, applied antiparallel to the initial
direction of magnetization. The magnetization originally points along the anisotropy
axis, parallel to the z axis (θ = 0) and in this case the anisotropy energy is at a min-
imum. There is another minimum in the anisotropy energy in the configuration in
which the magnetization points in the opposite direction (θ = π); these two minima
are separated by an energy barrier, that has to be surmounted to invert the magnetiza-
tion. In the absence of an applied magnetic field (H = 0), the height of the barrier is
EB = KV , where K is the effective uniaxial anisotropy constant and V is the volume
of the particle. Figure 3.3 shows the energy of a single-domain magnetic particle as a
function of the angle θ between the anisotropy axis and the magnetic field direction,
for three different intensities of the applied magnetic field H. One sees that as the
magnetic-field intensity is increased, the shape of the E(θ) curve is changed, from
symmetric with two minima to asymmetric with one single minimum for θ = π.

Fig. 3.3. Energy of a single-domain magnetic particle with uniaxial anisotropy, in the presence
of an applied magnetic field H, as a function of the angle θ of the field with the anisotropy
axis, for three different values of the magnetic field intensity. Note the change in the form of
the curve as a function of the intensity of H, from a curve with two equal minima, for H = 0,
to an asymmetric curve, with increasing H
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If single-domain magnetic particles have a volume equal to a certain critical
volume V spm

cr , the thermal energy (kBT ) will be comparable to the height of the
potential barrier EB. In this condition the particles will behave as superparamag-
nets, a name that arises from the fact that such particles have magnetic moments that
are much larger than individual atomic (paramagnetic) moments. These particles will
jump between two possible orientations, and their average magnetic moments will
be zero. Their magnetic behavior will then be described by the Langevin function,
the classical limit of the Brillouin function, as discussed in Sect. 3.3.1.

Particles with volumes larger than V spm
cr (but still single-domain) will have a sta-

ble, or stationary, direction of magnetization, and their magnetization curve will
be described by the Stoner–Wohlfarth model (Sect. 3.5). In the Stoner–Wohlfarth
regime, the individual atomic moments turn in a homogeneous or coherent fashion,
through the action of the magnetic field, whereby the magnetizations of the elements
of volume of the particle remain parallel throughout the process. This normal rota-
tion of the magnetization, or rotation in unison, is called Néel rotation. On the other
hand, in small particles that are free to rotate as a whole, for example, particles in
suspension in a fluid, one may observe bodily rotation, often referred to as Brown
rotation.

As the particle size increases, typically to sizes above the exchange length lex, the
inversion of its magnetization cannot be considered homogeneous, and the magneti-
zation evolves through processes known as curling and buckling. Each one of these
processes shows a characteristic configuration of the individual spins, or of the local
magnetization M(r) throughout the particle. Another rotation mechanism is a collec-
tive behavior involving several homogeneously magnetized particles, called fanning.
These magnetization processes will be discussed in Sect. 3.5.1.

The largest particles, on their turn, are multidomain, and change their magneti-
zation by re-arranging the magnetic domain structure, in other words, the magneti-
zation varies through the motion of magnetic domain walls, or changes in the shape
of the domains. Depending on the balance of magnetic anisotropy and exchange en-
ergy, the configuration of lowest energy for a nanoparticle of diameter above the
critical single-domain diameter is not a multidomain, but a swirl, or vortex, a circu-
lar arrangement of magnetic moments. Figure 3.4 illustrates these two spin arrange-
ments observed in 200 nm Co (001) nanodisks, with two micromagnetic simulations
(Fig. 3.4c, d); magnetic force microscopy (MFM) images of an array of four such
disks exhibiting these two configurations are also shown.

In considering these different magnetic moment configurations one should bear
in mind that magnetic systems are often in metastable states, i.e., they are found in
configurations that do not necessarily correspond to their lowest energy states. One
may therefore discuss which spin arrangement corresponds to the lowest free energy
of the system, but the actual spin configuration will depend on the magnetic history
of the sample, specifically, on the time evolution of conditions such as temperature
and applied magnetic field.
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Fig. 3.4. MFM image of four 200 nm diameter Co (001) disks, (a) as single-domains, and
(b) as vortices. The distribution of local magnetizations obtained for a single disk from three-
dimensional micromagnetic modeling shows (c) a single-domain structure and (d) a vortex
structure. (Reproduced with permission from [12])

3.2 Particle Size and Magnetic Behavior

To illustrate the significance of the particle size to its magnetic behavior one can
make use of the coercive field Hc, a relevant property of magnetic samples, and
which is dependent on the size of the particle to characterize the different magnetic
regimes. This is shown schematically in Fig. 3.5, where Hc is plotted against particle
diameter.

Four regions can be identified in the graph: (1) for very small diameters, typically
a few nanometers, the magnetic moment is not stable, and therefore Hc = 0 below
Dspm

cr , (2) for an intermediate diameter (typically 20 nm < D < 100 nm for a soft mag-
netic material), the moment is stable, the particle is single-domain and the coercivity
grows with D. Depending on the magnetic hardness, (3) there may be a region where
coercivity falls due to vortex magnetic order, and finally, (4) for larger diameters,
typically above several μm, the multidomain regime sets in, and the coercivity falls
with increasing diameter D.
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Fig. 3.6. Dependence of the magnetic coercivity with size of different magnetic small parti-
cles. (Reprinted (re-drawn) with permission from [37]. Copyright (1961), American Institute
of Physics)

An example of the dependence of the coercive field on size is given by the mag-
netic behavior of particles of Fe, Co, and CoOFe2O3, from an early study, shown in
Fig. 3.6 [37]. This figure shows, for example, that the coercive field of Fe and Co
particles is maximum for diameters of ≈20 nm at liquid nitrogen temperature.
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To study the evolution of the magnetism of a nanoparticle, one may initially apply
a magnetic field H that is sufficient to saturate it magnetically. If now one starts
to reduce the amplitude of this field, crossing zero and continuing in the opposite
direction, there will be a point at which the magnetization jumps to another value
that does not correspond to a state of magnetic saturation. The magnetic field at this
point is the nucleation field HN; the name is not very appropriate, since there is not
necessarily a nucleation process occurring for this value of field (see the comment in
[2], p. 184).

There are three characteristic values of magnetic fields that are given specific
names in the discussion of the properties of magnetic materials, and which are the
object of different definitions by different authors: they are the nucleation field HN
(defined earlier), the coercive field Hc and the switching field Hsw. The coercive field
(or coercivity) is usually defined as the magnetic field applied in the direction oppo-
site to the direction of the original magnetization for which M = 0. The switching
field is the value of magnetic field that corresponds to a sudden variation of the mag-
netization, or to a maximum in |dM/dH|. The nucleation field and the switching field
are more precisely defined for a single particle; for an ensemble of particles it is more
meaningful to determine the coercive field.

Another related field is the inversion field, the magnetic field that saturates the
magnetization in the negative direction.

A nanoparticle with a diameter larger than that corresponding to the superparam-
agnetic regime, has as its lowest energy configuration a single-domain structure, as
shown in Fig. 3.5. As the particle diameter increases, two different situations are ob-
served: for the hard magnetic materials, increasing the particle diameter produces a
transition to the multidomain regime. In the case of particles of soft magnetic materi-
als, however, a curling or vortex arrangement of magnetic moments is favored above
the diameter for the single-domain regime. Samples of larger sizes will develop a
multidomain structure.

One can employ the magnetic hardness parameter κ = HA/Ms ((2.65), p. 37) to
set the different materials into classes defined in terms of the relative importance of
the anisotropy energy term. Two main cases are apparent: magnetically soft samples,
characterized by a hardness parameter κ � 1, and magnetically hard samples, with
larger values of κ , exemplified here with the value κ = 1. This is broadly equivalent
to the classification of hard and soft magnetic materials based on the value of Hc
(Sect. 2.1, p. 27).

One can consider, a priori, that the possible lower free energy spin configurations
for a spherical magnetic particle will be a single-domain, a two-domain structure and
a vortex structure (Fig. 3.7). The energies corresponding to these arrangements can
be estimated in an approximate way, as will be shown next [8].

For the single-domain structure, since all the magnetic moments are aligned
along the anisotropy axis, the free energy contribution from exchange and anisotropy
are both zero. Therefore, it is reasonable to assume that the only relevant energy term
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a b c

Fig. 3.7. Three possible spin configurations for the lowest energy state of a spherical magnetic
particle: (a) single-domain, (b) two-domain structure and (c) vortex

is the magnetostatic energy. The magnetostatic energy for a single-domain sphere is
given, using (2.102), p. 49:

Ea = −1
2

μ0Hd ·MV =
1
6

μ0M2
s

4
3

πR3. (3.1)

A dimensionless quantity can be obtained from Ea, dividing by μ0M2
s V , where V

is the volume of the particle: the result, ga = 1/6, does not depend on the radius of
the particle.

For the configuration with two domains, on the other hand, the magnetic field
at a distance from the particle will be reduced, since it will represent a field due to
two opposing dipoles. One can therefore, to a first approximation, ignore the mag-
netostatic term. In the domain wall, the region separating the two domains, there
will be contributions from exchange and anisotropy. Inside the two domains, these
terms are again zero, since the magnetic moments are aligned along the anisotropy
axis. Assuming that the magnetic moments in the wall turn outside the plane, two
components of m (which is a vector of unitary length) vary of the order of 1 in a
distance of the order of Δ/2, where Δ is the domain wall width parameter. There-
fore, (∇m)2 ≈ (Δm/Δx)2 ∼ 2(2/Δ)2. Considering that the domain wall occupies a
fraction of the order of Δ/R of the volume of the sphere, the exchange energy, from
((2.54), p. 35), is Eex ≈ (8A/Δ2)(Δ/R). The anisotropy energy of the moments inside
the volume Vd of the domain wall, K1sin2 θ ·Vd = K1(1/2)(Δ/R)V , where we have
used the average sin2 θ = 1/2.

Therefore, the energy corresponding to the arrangement with two domains is

Eb ≈
1
R

(
8A
Δ

+
K1Δ

2

)
V. (3.2)

The variable Δ can be eliminated by minimizing the energy, i.e., solving
dE/dΔ=0. The solution is

Δs = 4

√
A
K1

= 4 Δ, (3.3)
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where Δ is the domain wall width parameter, Δ =
√

A/K1. Substituting Δs into the
expression of the energy, it follows:

Eb =

(
4K1

R

√
A
K1

)
V =

4K1

R
ΔV. (3.4)

Dividing the energy by μ0M2
s V , to obtain a dimensionless expression:

gb =
4K1

μ0M2
s R

√
A
K1

=
2
R

lex
√

κ, (3.5)

where lex =
√

2A/μ0M2
s (2.64) and κ = 2K1/μ0M2

s (2.65).
The energy corresponding to the vortex configuration can be roughly estimated

by assuming that the sample in this case is equivalent to a domain wall with Δ = 2R.
Substituting into (3.2):

Ec ≈
(

4A
R2 +K1

)
V. (3.6)

Dividing this energy by μ0M2
s V , again to express this result in a dimensionless

form:

gc ≈
2l2

ex
R2 +

κ
2

. (3.7)

If one plots the normalized energies corresponding to the three spin arrangements
of a spherical particle, ga, gb, and gc, vs. normalized radius (R/lex), the graphs ob-
tained in the cases of magnetically soft and hard samples are shown in Figs. 3.8 and
3.9 [8].
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Fig. 3.8. Computed energy vs. particle diameter (in units of the exchange length lex) for
κ = 0.1 (magnetically soft material), showing: (a) for diameter up to 8 lex the lowest energy
configuration is a single domain, (b) for an intermediate range of diameters the vortex state is
favored, and (c) for diameters above about 13 lex the lowest energy corresponds to a multido-
main configuration. (Adapted from [8])
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Fig. 3.9. Computed energy vs. particle diameter (in units of the exchange length lex) for κ = 1
(hard material). Up to about D = 4 lex, the lowest energy state is single-domain; above this
diameter, it has more than one domain. (Adapted from [8])

In the case of a magnetically soft material, with κ = 0.1, it is shown in Fig. 3.8
that for particle diameter between zero and about four times the exchange length lex,
the minimum energy configuration is a single-domain. For an intermediate diameter,
from about four times the exchange length lex to six times the exchange length, the
lowest energy configuration is a vortex state. The minimum free energy state for
particles with diameters above about 6 lex is a multidomain spin structure.

For particles of hard magnetic material (e.g., with κ = 1), as represented in
Fig. 3.9, the vortex state is not clearly favored for any range of diameters. The
states that minimize the total energy are the single-domain arrangement, up to about
D = 2 lex, and bi-domain, above about 13 lex.

Taking into account only two possible spin arrangements, single-domain and two
domains separated by a domain wall, we have obtained in Sect. 2.4.1, in a simple
way, the single-domain critical diameter for a spherical magnetic particle. The ex-
pression obtained for Dcr, in terms of the parameters A, K and Ms, was ((2.105),
p. 49):

Dcr =
72
√

AK
μ0M2

s
. (3.8)

As we have seen earlier ((3.1)–(3.7)), if no restrictions are made on the mag-
netic hardness of the sample, one has to consider, besides the single-domain and
bi-domain spin structures, another magnetization distribution for small particles, an
arrangement in which the atomic magnetic moments are not aligned, but instead form
a vortex, as in the case of the Co disk shown in Fig. 3.4.

Brown [9,10] derived analytically, within the micromagnetic approximation, ex-
pressions for the critical diameters of spherical particles of both hard and soft mag-
netic materials. He considered the three spin configurations: single-domain, vortex,
and two-domain, and assumed uniaxial anisotropy. The vortex arrangement was de-
scribed in cylindrical coordinates (z, ρ , φ ) by the relations Mz = Ms(1 − ρ2/r2),
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Mρ = 0, Mφ = (M2
s −M2

z )1/2. He considered that the crossover from soft to hard
materials occurred for a value of the hardness parameter given by κ = 2K1/μ0M2

s =
0.35360.

This analysis led to a critical diameter D0, which is the upper limit for the diam-
eter of the single-domain configuration to remain the minimum energy arrangement,
given by:

D0 = 7.211

√
2A

μ0M2
s

= 7.211 lex, (3.9)

where lex is the exchange length.
The critical diameter for a transition from vortex to multidomain configuration,

for a soft magnetic material is

D1 =
9.0584

√
2A

μ0M2
s(

1−2.8075 2K1
μ0M2

s

) =
9.0584

1−2.8075 κ
lex, (3.10)

where κ is the hardness parameter.
Substituting the parameters corresponding to α-Fe, one obtains for the critical

diameter of the sphere for vortex formation D0∼20 nm, and the diameter for the
division into domains, D1∼30 nm.

For hard magnetic materials, the critical diameter for the transition from single-
domain to multidomain is given by:

D2 =
9π

√
2A(K1 +2σ μ0M2

s )
μ0M2

s (3σ −2)
=

9π
√

κ +4σ√
2(3σ −2)

lex, (3.11)

with σ = 0.785398.
The lower limiting diameter for a nonuniform configuration to be an energy mini-

mum is the smallest of the two earlier expressions ((3.10) and (3.11)). In other words,
particles with diameters greater than the smallest of these two expressions will not
have the single-domain configuration as their lowest energy state.

The critical diameters for some soft magnetic materials computed using these
expressions are shown in Table 3.1. Micromagnetic simulations performed with
spherical samples and using the parameters for the soft materials Fe, Fe80Si20 and

Table 3.1. Critical diameters calculated for spheres of some materials using Brown’s formu-
las. D0 is the maximum diameter for a single-domain arrangement and D1 is the maximum
diameter for a vortex structure. Dsingle and Dvortex are the corresponding values obtained from
micromagnetic simulation [31]

Material D0 (nm) D1 (nm) Dsingle (nm) Dvortex (nm)

Fe 24.3 31.7 25 40
Fe80Si20 35.4 45.4 35 50
Permalloy 36.8 45.2 35 50
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permalloy, gave for the three different spin arrangements (single-domain, vortex, and
two-domain), values of the critical diameters (also shown in Table 3.1) in reasonable
agreement with Brown’s expressions [31]. The agreement is not better, according to
the authors, probably due to surface effects, including surface anisotropy, and also to
the fact that the shape used in the simulation was not perfectly spherical.

Note that the values of D0 differ significantly from those obtained from the ap-
proximate expression Dcr, derived in Chap. 2, that appears on p. 37.

3.3 Superparamagnetism

As we have seen in the introduction, a magnetic particle with anisotropy energy KV
has two energy minima, separated by a barrier of height EB = KV . The transition
from one minimum to the other can be thermally activated for T �= 0 K, the transition
probability being very large if the thermal energy kBT is comparable to or larger
than KV .

If one takes an ensemble of magnetized particles at T �= 0 K and sets H = 0 at the
instant t = 0, the magnetization will evolve with time, since there will be thermally
activated transitions between the two minima. The magnetization will vary with time
with a dependence of exponential form:

dM
dt

= − 1
τ0

Me−
KV
kBT = −M

τ
, (3.12)

where τ is the relaxation time, or inverse of the switching frequency. The prefactor
τ0, the inverse of the attempt frequency, is usually in the range 10−12–10−9 s. The
fact described by this equation, in simple terms, is that under the influence of thermal
energy, the system makes 1/τ0 attempts per second to surmount the energy barrier.

The relaxation time is therefore given by an equation of the form

τ = τ0e
EB

kBT , (3.13)

known as Néel–Arrhenius Law, describing the exponential dependence of τ on the
ratio EB/kBT of the height of the energy barrier to the thermal energy. In the present
case the energy EB is the anisotropy energy EB = KV .

Note that τ depends exponentially both on V and T . The frequency of jumps, or
inversions, is given by

ν = τ−1
0 e−

KV
kBT . (3.14)

The observed magnetic behavior of a magnetic particle depends on the time scale,
or time window, of the measurement. For macroscopic techniques such as the di-
rect measurement of the magnetization M, the measuring time is usually taken as
tm = 100 s. For a microscopic measurement, e.g., using Mössbauer spectroscopy or
nuclear magnetic resonance (NMR), the time window is much shorter, in the range
10−9−10−7 s. If the relaxation time τ is shorter than tm, the spontaneous magneti-
zation is zero, and the particle is said to be in the superparamagnetic regime. If the
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opposite occurs (i.e., τ > tm) the particle is in the blocked regime, and a nonzero
magnetization is observed.

Therefore, depending on the relation between relaxation time τ and measurement
time tm, one has: {

For τ < tm → superparamagnetic regime
For τ > tm → blocked regime (ferromagnet)

As the volume V of the magnetic particle varies, EB = KV will vary, and for a
given temperature, the particle may change from one regime to the other. Since, from
(3.13),

ln τ = ln τ0 +
KV
kBT

, (3.15)

one can obtain the critical volume of a magnetic particle for a temperature T , using
tm = 100 s and τ0 = 10−9 s:

V spm
cr ≈ 25kBT

K
. (3.16)

Or the superparamagnetic critical diameter for a spherical particle:

Dspm
cr =

(
6
π

V spm
cr

)1/3

. (3.17)

Values for this critical diameter at room temperature, computed using (3.16) and
(3.17) are given in Table 3.2; they vary from a few nanometers to some tens of
nanometers.

The critical volume Vcr is the maximum volume below which, at a given tem-
perature, an experiment detects the sample in the superparamagnetic regime. For
example, a Fe3O4 nanoparticle exhibits superparamagnetic behavior below a diame-
ter of ≈17 nm in a magnetic susceptibility measurement, or ≈9 nm in an experiment
with Mössbauer spectroscopy [14].

Conversely, for a given volume V , the temperature below which ferromagnetic
behavior is observed is the blocking temperature TB, given by

TB ≈ KV
25k

. (3.18)

In Fig. 3.10, it is shown a graph of the relaxation time τ vs. blocking temperature
TB for Fe3O4 nanoparticles, showing a linear increase of ln(τ) with inverse blocking
temperature [22].

Table 3.2. Superparamagnetic critical diameters Dspm
cr calculated for spheres of some materials

at room temperature, using (3.16) and (3.17)

Material α-Fe Co Ni Fe3O4 SmCo5

Dspm
cr (nm) 16 8 35 4 2
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Fig. 3.10. Relaxation time vs. inverse of the blocking temperature for Fe3O4 nanoparticles
of mean diameter 5 nm. (Reprinted with permission from [22]. Copyright (2003), American
Institute of Physics)

It should be pointed out that the blocking temperature is not uniquely defined,
since it depends on the time scale of the technique of measurement; for example, the
expression of TB (3.18) was derived assuming a measuring time tm = 100 s.

Using (3.15), and noting that KV = EB is the barrier height, one obtains:

EB(t,T ) = kBT ln
t
τ0

. (3.19)

From this equation, it follows that the inversions of the magnetization that oc-
cur with barriers of energy around EB(t,T ) may be effected by sweeping either the
temperature or the time. Therefore, a measurement of the relaxation at a given tem-
perature is equivalent to an experiment performed at a different temperature T , with
the time window displaced according to the earlier relation. This may be illustrated
by plotting the magnetization measured at different temperatures as a function of the
variable T ln (t/τ0), in this case with τ0 = 3.5×10−11 s (Fig. 3.11).

At very low temperatures the probability of reversion of the magnetization de-
parts from the dependence described by (3.12). This effect arises from the fact that
there is a finite probability of tunneling, or macroscopic quantum tunneling (MQT).
When this occurs, the particle jumps from one spin configuration to the opposite one
in a process that does not require thermal excitation.

The rate or frequency of inversion through tunneling is [12]

ν = A(T )e
− EB

kBTesc(T ) , (3.20)

where EB is the barrier height and Tesc(T ) is the escape temperature. At high temper-
atures Tesc(T ) = T and one reverts to the classical thermal activation described by
(3.14).
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Fig. 3.11. Scaling of the magnetization for FeC particles vs. T ln(t/τ0) [35]. (Reprinted figure
with permission from [35]. Copyright (1993) by the American Physical Society)

As the temperature of an ensemble of magnetic nanoparticles is raised from
T ≈0K, it will eventually reach a temperature T = T ′ at which the two mechanisms
of inversion, thermal activation and tunneling, are equally probable.

In polydisperse samples, i.e., samples formed of particles with a distribution of
sizes, there may exist, at a given temperature, particles that are blocked and particles
that are in the superparamagnetic regime. One distribution of particle sizes (or par-
ticle volumes V ) that occurs frequently is the log-normal distribution, a distribution
that has the logarithm of a variable normally distributed. It is defined by

f (V ) =
1

σV
√

2π
e

[−ln(V )−ln(V0)]2

2σ2 , (3.21)

where σ is the standard deviation of lnV and ln(V0) is its average. The log-normal
distribution of particle volumes is displayed in Fig. 3.12, for two values of the stan-
dard deviation σ .

If one takes an ensemble of particles magnetized to saturation and applies a mag-
netic field in the opposite direction, the fraction of particles that remain without
inverting the magnetization after a time t, or the probability P(t) that a given particle
has not inverted the magnetization, is

P(t) = e−
t
τ . (3.22)

This probability is measured experimentally by increasing the applied magnetic
field to a value near the inverting or switching field Hsw and determining the time
required for the particle to invert its magnetization. This procedure is repeated many
times, to obtain a histogram of the waiting times; the integral of this histogram gives
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Fig. 3.12. Log-normal distribution f (V ) of particle volumes vs. volume, for two values of the
average volume V0 and standard deviation σ

Fig. 3.13. Probability that a particle of Co of 20 nm diameter at 0.5 K has not inverted its
magnetization M after a time t, vs. t. The lines are best fits to the function P(t) (3.22), at
different fields, for different values of the relaxation time τ . Note the large variation in τ for
minute changes in magnetic field B. (Reprinted with permission from [56]. Copyright (1997),
American Institute of Physics)

the probability of commutation. In the example shown in Fig. 3.13, P(t) for a 20 nm
diameter Co particle was measured by observing the particle switching its magne-
tization at three very close values of magnetic induction B, around 142 mT. The
computer fits to the function of (3.22) result in three values of the relaxation time τ:
0.485, 3.5, and 25.1 s.

If the energy barriers of the ensemble of particles do not have the same height, the
relaxation of the magnetization out of equilibrium in this case can be characterized
by a dependence of the relaxation time τ with the energy:

τ = τ(E). (3.23)
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The relaxation of the total magnetization for such an inhomogeneous sample is
given by a sum of magnetization relaxation terms arising from regions of the sample
with relaxation times τ(Ei), where Ei are the energy barrier heights:

M(t) = M1(0)e
1

τ(E1) +M2(0)e
1

τ(E2) + · · ·

= ∑Mi(0)e
1

τ(Ei) = M(0)∑ f (Ei)e
1

τ(Ei) , (3.24)

where f (Ei) is the fraction of the magnetization of initial value Mi(0) that, to rotate,
has to surmount a barrier with energy Ei:

f (Ei) =
Mi(0)
M(0)

. (3.25)

In the continuous limit,

M(t) = M(0)
∫ ∞

0
f (E)e

1
τ(E) dE. (3.26)

The above integral can be approximated by

M(t) ≈ M(0)
[

1− kBT f (EB)ln
(

t
τ0

)]
, (3.27)

where EB is the average barrier energy relevant for the experimental time window.
The phenomenon of magnetic viscosity consists in the variation of the magneti-

zation with time, due to thermally excited jumps over the energy barriers. This effect
is maximum when the sample is under an applied magnetic field with intensity close
to the value of the coercive field. This effect has important practical consequences,
meaning, for example, that a permanent magnet will gradually lose some of its mag-
netization with time, and also that magnetically recorded data may be lost after some
period.

The quantity S, the magnetic viscosity, is defined as

S = − 1
M(0)

∂M
∂ (ln t)

, (3.28)

where M(0) is the magnetization at the time t = 0. It should be noted that the above
expression is not valid for t → ∞.

The magnetic viscosity is usually measured by magnetizing the system under
study, maintaining a constant magnetic field, and observing the variation of the mag-
netization as a function of time t; the decrease of the remanent magnetization is
illustrated in Fig. 3.14 for FePt nanoparticles. The figure shows that the remanent
magnetization of the FePt particles exhibit a linear dependence vs. ln t, with approx-
imately the same slope in the temperature range from 3 to 12 K.

The magnetic viscosity may be related to a volume element called activation
volume V ∗, through (e.g., [19]):

S =
kBT

μ0V ∗Ms
. (3.29)
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Fig. 3.14. Decay of the remanent magnetization of FePt nanoparticles as a function of
ln (t−t ′), for different temperatures, exhibiting a linear behavior; t ′ is a fitting parameter
[21]. (With permission from Elsevier Science and Technology)

From the definition of S and the approximate expression for M(t) (3.27), one
obtains

S = − 1
M(0)

∂ M
∂ (ln t)

= f (EB)kBT. (3.30)

One can read the above equation as a description of the fact that as the average
energy barrier height EB varies, the measurement of the viscosity maps the distribu-
tion of energy barriers. This is so because at a given temperature, the smaller barriers
are the first to be overcome; the higher barriers have a smaller probability of being
surmounted, and therefore the corresponding magnetizations contribute to the signal
mostly for longer measurement times. If the system is now observed at a higher tem-
perature, the time scale is contracted: the lower barriers will now be overcome in an
even shorter time, and the reversals associated to the higher barriers will also occur
at times shorter than those at the previous temperature.

An illustration of the magnetic viscosity measurement reflecting the distribution
of energy barrier heights is given in Fig. 3.15 for the case of FePt nanoparticles [21].
In this case, from the appearance of two peaks in the curve, there seem to be two
components in the distribution of barriers.

3.3.1 Superparamagnetism: The Langevin Function

The temperature dependence of the magnetization of an assembly of particles in
the superparamagnetic regime is described by the Langevin function. Its derivation
follows the same steps used to obtain the expression of the magnetization of an
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Fig. 3.15. Graph of S/kBT vs. kBT giving the apparent distribution of energy barriers of
FePt particles weighted by their magnetizations. The curve indicates the existence of two
components in this distribution [21]. (With permission from Elsevier Science and Technology)

ensemble of paramagnetic atoms (e.g., [23]). At variance with the case of atoms,
in which the quantization of the angular momentum has to be taken into account,
here this quantity is not quantized, since the angular momentum of a particle is a
sum of contributions from a large number of atoms; hence the name superparamag-
netic. If, differently from the quantum case, the angular momenta are allowed to vary
continuously, every value between −μJ and μJ of the projection μ z along the z axis
will be allowed. The total magnetic moments will form any angle with the direction
of the external magnetic field B, in this classical limit.

The projection of the magnetic moment μ along the z direction in the classical
case is given by

μ z = μ ·k = μ cos θ , (3.31)

where the angle θ may take any value between 0 and π.
Making the average over θ , one arrives, after some algebra, at the expression for

the z projection of the magnetic moment:

〈μ z〉T = μ L(x), (3.32)

where x is the ratio of the magnetic energy to the thermal energy (x = μB/kBT ) and
L(x) is the Langevin function, given by

L(x) = coth x− 1
x
. (3.33)

The Langevin function L(x) is therefore the classical analogue of the Brillouin
function ((2.6), p. 25), which describes paramagnetism. The Langevin function de-
scribes well the magnetization of small particles formed of clusters of atoms, which
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Fig. 3.16. Hysteresis curves of γ−Fe2O3 nanoparticles at temperatures above 50 K, showing
the superposition of the curves obtained at different temperatures, when plotted vs. H/T .
(Reprinted with permission from [53]. Copyright [1993], American Institute of Physics)

constitute superparamagnetic systems. This is shown in Fig. 3.16, where the mag-
netization of superparamagnetic γ−Fe2O3 nanoparticles is represented vs. the ratio
H/T . Since the Langevin function depends only on the quantity x, experimental re-
sults obtained for different temperatures fall on the same curve when drawn vs. H/T .

3.4 Surface Effects

The breaking of translation symmetry observed at the surface of small magnetic par-
ticles or clusters modifies the anisotropy of the atoms. Usually, this effect at the
surface amounts to the appearance of an extra term in the anisotropy acting on the
spins in this region, of the form

H = KsS2
⊥, (3.34)

where S⊥ is the perpendicular component of the spin and Ks is the surface anisotropy,
given in units of energy per unit area. The surface anisotropy constant Ks can be
positive or negative: if this term is locally dominant, as it often happens, the surface
in the first case becomes an easy plane, in the second, its normal becomes an easy
direction; these two situations are represented in Fig. 3.17.

The corresponding anisotropy energy term has the form

es = Ks[1− (m ·n)2], (3.35)

where m is the magnetization and n is the normal to the surface. For example, the
surface anisotropy constant for Co films on different substrates have values in the
range 0.1–0.9 J m−2.
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Fig. 3.17. The effective anisotropy at the surface of a particle of the form S2
z in two cases: (a)

K < 0 (radial) and (b) K > 0 (tangential). (Reproduced with permission from [4])

Due to the importance of the surface contribution for small particles, the effec-
tive anisotropy for spherical particles usually exhibits the following empirical depen-
dence with the diameter d (e.g., [6]):

Keff = Kvol +6
Ks

d
, (3.36)

where Kvol is the anisotropy constant of a macroscopic sample, and Ks, the surface
anisotropy constant.

The effective anisotropy of a small particle is enhanced as its diameter is reduced,
as described by the 1/d dependence of the surface anisotropy term. An example of
this behavior of increasing Keff with decreasing diameter is shown in Fig. 3.18 for
nanometric Co grains in a copper matrix, derived from FMR measurements [41].
This increase in anisotropy is also evident from measurement of the relaxation times
of individual Fe3O4 nanoparticles using Lorentz microscopy, a variant of transmis-
sion electron microscopy (TEM) [38].

The surface contribution to the anisotropy may lead to a complex distribution of
directions of the individual spins near the surface. The picture of the surface of the
particles that emerges from many studies is that of a region with spin disorder, similar
to a spin glass, with the surface spins magnetically coupled to the ordered core of
the particle. The disorder at the surface is related to the occurrence of irreversible
behavior, as well as time dependent phenomena, and an increased magnetic hardness.
These effects have been observed, for example, with NiFe2O4 particles [32]. The
disordered spin configuration of a 4 nm diameter NiFe2O4 particle, computed using
a Monte Carlo simulation, illustrates this point (Fig. 3.19).

Many types of nanoparticles have their magnetism described in terms of a core-
shell spin structure (Fig. 3.20). In the core-shell description, the particle is divided
into two regions that are magnetically coupled, one usually with ferromagnetic spin
ordering (the core), surrounded by a shell, either of antiferromagnetic (AFM), or
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Fig. 3.18. Effective anisotropy parameter vs. diameter of Co grains in CoCu alloys measured
with ferromagnetic resonance (FMR). (Reprinted figure with permission from [41]. Copyright
(2003) by the American Physical Society [41])

Fig. 3.19. Computed spin configuration of a nanoparticle of 4 nm of NiFe2O4, showing the
spin disorder at the surface of the particles [32]. (Reprinted figure with permission from [32].
Copyright (1999) by the American Physical Society)

of disordered spin-glass-like spin structure. These two regions may have the same
chemical composition, or may be formed of different materials, e.g., Co and CoO.

Nanoparticles prepared from 3d metals are chemically reactive, and tend to de-
velop a layer of metal oxide. For example, Fe nanoparticles with diameters in the
range 5–20 nm, with an outer layer of iron oxides, exhibit a core-shell structure, as in-
ferred from magnetic measurements and TEM images [17]. The shell is magnetically
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Fig. 3.20. (a) Core-shell structure (b) and TEM image of a magnetic nanoparticle of oxidized
Co [39]. (With permission from Elsevier Science and Technology)

coupled to the core, and exhibits superparamagnetic behavior. The experimental re-
sults also show for the smaller particles a higher coercivity, that depends strongly on
temperature.

Particles with core-shell structure, with FM cores surrounded by AFM shells
are also known to present the exchange bias phenomenon [26] (see Sect. 4.4, on
exchange bias, p. 117).

3.5 The Stoner–Wohlfarth Model

The first model that was proposed to describe the magnetism of small particles was
developed by Stoner and Wohlfarth in 1948 [46] and is still used today. This treat-
ment considers the magnetic particles homogeneous single-domains with the shape
of elongated ellipsoids.

In the equation used in Chap. 2 to describe the free energy of the magnetic ma-
terial ((2.54), p. 35), the first term is the contribution arising from the exchange
interaction. If the magnetization is homogeneous, ∇M = 0 and the exchange contri-
bution is zero. The Stoner–Wohlfarth treatment therefore corresponds to the simplest
micromagnetic approach, one that neglects the exchange term in the total free energy
function. This treatment, that assumes coherent reversal of the ensemble of individ-
ual atomic magnetic moments, behaving as a single moment, is sometimes referred
to as the macrospin model.

Let us consider a single-domain particle in the shape of an elongated rotationally
symmetric ellipsoid, with homogeneous magnetization and easy axis of magnetiza-
tion along the z direction, the direction of its long axis. The magnetostatic energy
terms along the major axis (E‖

ms) and perpendicular to this axis (E⊥
ms) will be (from

(2.34), p. 31):

E‖
ms = −1

2
N‖μ0M2

s V cos2 θ , (3.37)

and
E⊥

ms = −1
2

N⊥μ0M2
s V sin2 θ . (3.38)
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Fig. 3.21. Single-domain ellipsoidal particle in a magnetic field H, showing the relevant angles
between this field, the anisotropy axis z and the magnetization M

The angle θ is the angle between the magnetization and the anisotropy axis
(Fig. 3.21), and N⊥ and N‖ are the demagnetization or demagnetizing factors in
the perpendicular and parallel directions. Figure 3.21 represents this ellipsoid, with
the long axis pointing along the z axis, the same direction of the effective uniaxial
anisotropy.

The total energy of the ellipsoid in the presence of an external magnetic field H
that forms an angle ψ with its direction of easy magnetization, and whose magneti-
zation forms an angle θ with this direction (with H on the xz plane and M not in the
same plane, Fig. 3.21) is given by

E
V

= K1 sin2 θ +K2 sin4 θ − 1
2

μ0N⊥M2
s sin2 θ − 1

2
μ0N‖M2

s cos2 θ −μ0MsH

×(cosθ cosψ + sinθ sinψ cos ϕ), (3.39)
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where K1 and K2 are the first and second uniaxial anisotropy constants, V is the vol-
ume of the particle, and Ms is the saturation magnetization. The anisotropy axis here
coincides with the long axis of the ellipsoid. The physical origin of this anisotropy
can be the shape anisotropy or a sum of crystal and shape effects, both along the
same axis. ϕ is the angle that the projection of M makes with the x axis.

With H = 0, the magnetization points along the anisotropy axis; with a nonzero
magnetic field, the magnetization rotates and the problem is reduced to a planar
configuration (ϕ = 0). Ignoring the second order anisotropy term, one has:

E
V

= K1 sin2 θ − 1
2

μ0M2
s (N⊥ sin2 θ +N‖ cos2 θ)

−μ0MsH(cos θ cos ψ + sin θ sin ψ)

= K1 sin2 θ − 1
2

μ0M2
s (N⊥ sin2 θN‖ cos2 θ)−μ0MsH(cos (ψ −θ )). (3.40)

In the simplest case, the magnetic field H is applied along the anisotropy axis,
and therefore ψ = 0. To obtain the angle θ between the anisotropy axis and the
magnetization, one needs to minimize the energy, computing ∂E(θ)/∂θ = 0:

2K1 sin θ cos θ −μ0M2
s sin θ cos θ (N⊥−N‖)−μ0MsH sin (ψ −θ) = 0. (3.41)

Computing the second derivative to define a minimum, one obtains the expres-
sion for the nucleation field HN:

HN =
2K1

μ0Ms
−Ms(N⊥−N‖). (3.42)

A magnetic field that has precisely this magnitude is sufficient to rotate the mag-
netization, and is therefore equal to the coercive field. It should be pointed out that
this result does not depend on the size of the particle, only on its shape. In the limiting
cases of a sphere and a bidimensional sample, or plate, one has

Hsph
N =

2K1

μ0Ms
. (3.43)

and
Hpla

N =
2K1

μ0Ms
+Ms. (3.44)

The term N⊥ −N‖ = Neff is the effective demagnetizing factor of the particle in
the direction of M. Since N‖ +2N⊥ = 1, Neff is also given, using N = N‖, by

Neff =
1
2
(1−3N). (3.45)

The value of the nucleation field given by (3.42) is not observed experimentally.
In real systems, the nucleation field or the coercive field are always smaller than
2K1/(μ0Ms)−Ms(N⊥ −N‖). This disagreement is usually referred to as Brown’s
paradox, and arises from the fact that there are always imperfections that favor the
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nucleation of magnetic domains with opposite magnetization, reducing in conse-
quence the nucleation or coercive fields.

The height of the barrier separating the two anisotropy energy minima can be
computed by solving ∂E(θ)/∂θ = 0. For ψ = 0, there are three solutions, given by
the following values of the angle: θ = 0, θ = arccos(−μ0MsH/(2K1)) and θ = π.
The second solution corresponds to the position of the maximum of the barrier, with
energy Emax. Since cos (μ0MsH/(2K1)) ≤ 1, this expression gives the minimum
field that allows (at T = 0 K) the inversion of the magnetization, which is HA, the
anisotropy field in the absence of the demagnetizing field:

HA =
2K1

μ0Ms
. (3.46)

From the position of the minima, one can derive the height of the barrier, corre-
sponding to ΔE = Emax −E(θ = 0). Doing some algebra, one arrives at:

ΔE = K1V
(

1− H
HA

)2

. (3.47)

Therefore, the barrier height is proportional to K1V and disappears for H = HA.
The inclusion of the second term in the uniaxial anisotropy energy (K2 sin4 θ )

leads to a more complicated result, with a change in magnetic behavior under the
external field, with the appearance of two nucleation fields, if K1 < 4K2 (with K1 >0).

This description is applicable to ferromagnetic particles at T = 0 K. At T �= 0 K,
when the applied magnetic field reaches a value that makes the barrier height compa-
rable to 25kBT , thermal activation induces the transition into the superparamagnetic
regime. Equating ΔE = 25kBT , one can obtain the value of the magnetic field that
reverses the magnetization, the nucleation field at finite temperature [27]:

HN =
2K1

μ0Ms

[
1−5

(
kBT
K1V

)1/2
]

. (3.48)

This formula, for T = 0 K, gives the Stoner–Wohlfarth expression (3.46); it is
valid from T = 0 K to T = K1V/25kB, at which temperature the expression of the
nucleation field is zero. Above this temperature, the sample behaves as a superpara-
magnet, and the coercive field Hc is zero.

Expressing the volume of the particle as V = αD3, where α is a geometrical
factor that takes into account the shape of the particle, the critical superparamagnetic
diameter is written Dspm

cr = (25kBT/αK1)3; the expression for Dspm
cr given previously

in (3.17), for a sphere, had α = π/6. Using Dspm
cr , one obtains an alternative expres-

sion for the nucleation field HN, where the factor α cancels out:

HN =
2K1

μ0Ms

[
1−

(
Dspm

cr

D

)3/2
]

. (3.49)
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Fig. 3.22. Dependence of the energy with the angle between the magnetization and the
anisotropy axis E(θ ) in the Stoner–Wohlfarth model, for different values of H, for H parallel
to the anisotropy axis (i.e., ψ = 0)
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Fig. 3.23. Dependence of the energy with the angle between the magnetization and the
anisotropy axis E(θ ) in the Stoner–Wohlfarth model, for different values of H, for H per-
pendicular to the anisotropy axis (i.e., ψ = π/2)

The nucleation field given by this equation is the magnetic field that starts the
inversion in the direction of magnetization of the particle. When a field of intensity
given by (3.46) is applied in the direction opposite to the magnetization (still along
the anisotropy axis) M turns, and in this case the nucleation field HN is equal to the
anisotropy field HA.

The curves of the energy E(θ ) for different values of applied magnetic field H,
applied parallel or perpendicular to the ellipsoid long axis are plotted, respectively,
in Figs. 3.22 and 3.23.
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The anisotropy of the particle can be characterized through its curve of switching
field (the magnetic field for maximum |dM/dH|) vs. the angle ψ between H and the
anisotropy axis.

From (3.41), neglecting the magnetostatic term, it follows:

sin 2θ = −μ0MsH
K1

sin (θ −ψ). (3.50)

The angle θ for stable equilibrium condition is obtained by computing
∂ 2(E/V )/∂θ 2 (where E/V is given by (3.40)) and equating to zero:

2K1 cos 2θ + μ0MsH(cos (ψ −θ)) = 0, (3.51)

and
cos 2θ = −μ0MsH

2K1
cos (θ −ψ). (3.52)

Dividing (3.50) by (3.52) one obtains:

tan 2θ = 2 tan (θ −ψ), (3.53)

which leads to
tan θ = − tan1/3 ψ . (3.54)

Summing the squares of (3.50) and (3.52), one obtains, after doing some algebra,
the magnetic field Hsw, the field that satisfies the condition of switching the magne-
tization. It is described by the function

Hsw

HA
=

1

(sin2/3 ψ + cos2/3 ψ)3/2
, (3.55)

where
HA =

2K1

μ0Ms
(3.56)

is the anisotropy field.
From the angles defined in Fig. 3.21, one can express the components of the

switching field Hsw parallel and perpendicular to the anisotropy axis as:

Hpara = Hsw cos ψ (3.57)

and
Hperp = Hsw sin ψ. (3.58)

Dividing Hpara and Hperp by the anisotropy field HA one obtains the reduced fields
hpara and hperp. Substituting sin ψ and cos ψ into (3.55), it follows

1 =
1

(hperp
2/3 +hpara

2/3)3/2
. (3.59)
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Fig. 3.24. Astroid curve, obtained by drawing the component of the switching field (divided
by HA) parallel to the anisotropy axis hpara vs. the perpendicular component hperp, with the
dependence given by (3.59)

The curve given by (3.55) or (3.59), is known as an astroid; it is the curve drawn
by a point on the perimeter of a circle of radius 1/4 rolling inside a circle of radius
1. The astroid curve is shown in Fig. 3.24.

The angular dependence of the switching field given by the equation of the astroid
(3.55) differs from that predicted in an early work of Kondorsky (1937) [33], H(θ) =
H0/cosθ .

If one includes the second-order contribution to the magnetic anisotropy, the term
containing K2, (3.55) is modified, becoming [34]:

Hsw =
2(K1 +Kd)

μ0Ms

1

(sin2/3 ψ + cos2/3 ψ)3/2

×
[

1+
2K2

K1 +Kd

sin2/3 ψ
(sin2/3 ψ + cos2/3 ψ)

]
. (3.60)

In the above equation, we have included the shape anisotropy energy Kd; this
anisotropy term and the crystal anisotropy are assumed to be minimum along the
same axis:

Kd =
1
2

μ0M2
s (N⊥−N‖). (3.61)

The curve of Hsw/HA, drawn as ψ varies from 0 to 2π is obtained by measur-
ing the switching field as a function of angle, for a single particle. Measurements
of switching fields performed on individual single-domain magnetic particles using
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micro-SQUIDs give the form of dependence predicted by the Stoner–Wohlfarth
model (3.55), as shown in Fig. 3.25.

In Fig. 3.26 it is displayed the dependence of the switching field with the angle
in the Stoner–Wohlfarth model. Also the angular dependence of the coercive field Hc
is shown. This graph shows how, in the Stoner–Wohlfarth model, for angles beyond

Fig. 3.25. Switching field vs. angle curves (astroid curves), for a Co nanoparticle at different
temperatures [52]. (With permission from Elsevier Science and Technology)
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Fig. 3.26. Angular dependence of the switching field Hsw (continuous line) in the Stoner–
Wohlfarth model. The graph shows that Hsw/HA is maximum for θ = 0 and θ = π/2, and
minimum for θ = π/4. The graph also shows Hc/HA, that has the same dependence, except
around θ = π/2 (dotted lines)
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Fig. 3.27. Hysteresis loops of reduced magnetization m of homogeneously magnetized ellip-
soids, vs. reduced magnetic field h = H/HA, for different angles θ , in the Stoner–Wohlfarth
model

45o, the magnetic fields for which M = 0 (usual definition of coercive fields) differ
from the fields of maximum |dM/dH| (switching fields), as can be noted in the graph
of the hysteresis curves (Fig. 3.27).

A magnetic field smaller than the switching field predicted by the Stoner–
Wohlfarth model may produce a magnetization reversal under some special circum-
stances, e.g., when the applied magnetic field direction is made to vary in a specified
way with time during the switching process [47].

From the minimization of the energy of the magnetic particle as a function of θ ,
one obtains the magnetization as a function of H, for each value of the angle θ . This
is obtained by solving the equation (derived from (3.41) and (3.42)):

HN sin(2θ )−Hsin(ψ −θ) = 0. (3.62)

The solution, in terms of m = (M/Ms)cos(θ −ψ), the reduced magnetization in
the direction of the applied magnetic field, is represented in Fig. 3.27, as a function
of H, showing the corresponding hysteresis loops, for some values of θ .

Stoner and Wohlfarth also considered the hysteresis curve of an assembly of mag-
netic particles, with every value of the angle θ ; summing the magnetization curves
of these particles, one obtains a hysteresis curve that has (at T = 0 K) a magnetic
remanence of 1

2 Ms and a reduced coercivity Hc/H = 0.48 h, where h is the reduced
magnetic field h = H/HA = μ0HMs/2K1 (Fig. 3.28).

The Stoner–Wohlfarth model describes the magnetization of magnetic particles
at T = 0 K. At T = 0 K the particles invert their magnetizations when, under the
action of the field H, the energy barriers that separate the two configurations (up or
down along the anisotropy axis) tend to zero.

The Stoner–Wohlfarth model does not take into account the possibility of thermal
excitation to surmount the energy barrier between the two magnetization directions,
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Fig. 3.28. Stoner–Wohlfarth hysteresis curve for an assembly of particles with every possible
value of θ (points, only the upper branch of the graph). The continuous line was calculated
from a three-dimensional simulation [48]

in other words, the model is valid only for T = 0 K, but the theory may be generalized
for any temperature. In order to do this it is only necessary to include the thermal
excitations for T �= 0 K. In this case there will occur jumps over the barrier, and
the particles will invert their magnetization before the variation of magnetic field H
makes the barrier height reach zero.

For the same value of the magnetic field H, the height of the barrier for switching
the magnetization shows a dependence with angle θ that is different for different
values of the angle ψ between H and the direction of the axis of each particle. This
is shown in Fig. 3.29.

The coercivity is a property that can be derived from the hysteresis curve of a
sample. The fastest the rate of change of the magnetic field sweep used to obtain the
hysteresis loop, the higher the measured coercivity. This sweep rate dependence of
the coercivity is related to the magnetic viscosity phenomenon and results from the
fact that the coercivity is a dynamic property.

The rate dependence of the coercivity can be shown in a simple way by inserting
the expression of the energy barrier height as a function of the anisotropy field (3.47),

ΔE = K1V
(

1− H
HA

)2

, (3.63)

into the Néel–Arrhenius Law (3.13), that describes the relaxation time, or inverse of
the switching frequency: τ = τ0 exp(EB/kBT ).
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Fig. 3.29. Energy as a function of the angle θ , for different values of the angle ψ between H
and the direction of the axis of the particle, for the same value of H, showing the variation in
barrier height for inversion of the magnetization in the Stoner–Wohlfarth model

Identifying the magnetic field H as the coercive field of the sample, one obtains
for Hc:

Hc = HA

[
1−

(
kBT
KV

ln
τ
τ0

)1/2
]

. (3.64)

Writing this expression in terms of the magnetic field sweep rate η = dH/dt ∼
1/τ and generalizing for an exponent 1/m, using generalized parameters K0 and V0,
which make the result applicable to other magnetization reversal processes besides
that of the aligned Stoner–Wohlfarth particle, it follows [44]:

Hc = HA

[
1−

(
kBT
K0V0

ln
η
η0

)1/m
]

. (3.65)

This equation shows an explicit dependence of the coercive field with the sweep
rate η .

The magnetization of a polydisperse ensemble of particles (i.e., with a distribu-
tion of volumes f (V )), is given by the sum of the contributions of their magnetiza-
tions. In this case there may be a coexistence of different magnetic regimes: at T �= 0,
there will be three contributions to the magnetization: (1) the contribution of the par-
ticles with volume below the critical blocking volume V spm

cr , that therefore exhibit
superparamagnetic behavior, (2) the contribution of the particles with the axes in a
direction such that the thermal excitation inverts the magnetization (Vcr > V > V spm

cr ,
where Vcr = Vcr(H,ψ) is the critical volume for this effect) and finally, (3) the ferro-
magnetic contribution of the particles with V > Vcr.
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Consequently the magnetization of the ensemble of particles is described as a
sum of the three volume integrals:

M =
∫ Vb

0
L(V,H) f (V )dV +

∫ Vcr

Vb

M(V,H,ψ) f (V )dV +
∫ ∞

Vcr
M(V,H,ψ) f (V )dV,

(3.66)
where L(V,H) is the Langevin function.

Introducing θ1 and θ2, the angles between the anisotropy axis and the equilibrium
magnetization before and after the inversion due to the magnetic field, the above
equation becomes [11]:

M =
∫ Vb

0
L(V,H) f (V )dV

+
∫ π/2

0

(∫ ∞

Vcr
cos(θ1)sinψ f (V )dV −

∫ Vcr

Vb

cos(θ2)sinψ f (V )dV
)

dψ . (3.67)

In this equation, the first integral represents the contribution to the magnetization
due to the superparamagnetic particles; the second and the third integrals account for,
respectively, the contribution of the particles that have inverted the magnetization and
that due to those particles whose magnetizations have not been inverted.

The Stoner–Wohlfarth model is strictly applicable to the case of particles with
uniaxial anisotropy; in the case of cubic anisotropy, for example, the problem of
magnetization switching is more complex, and requires for its description a three-
dimensional model [51].

3.5.1 Inhomogeneous Magnetization Reversal

The magnetization reversal of small particles, as described by the Stoner–Wohlfarth
model, is a coherent process, in the sense that the magnetic moments remain strictly
in parallel throughout the reversal process. This ideal situation is approximately re-
alized in homogenous nanoparticles.

In the inhomogeneous or incoherent reversal of the magnetization, the local mag-
netization vectors do not remain parallel to one another as the applied magnetic field
forces the reversal of the magnetization. The main form of incoherent reversal of
the magnetization is the curling process; another form, the buckling process, is less
common. They are both illustrated in the case of a cylinder, in Fig. 3.30. In the curl-
ing mode the magnetization is tangential to cylindrical surfaces that have as axes the
common longitudinal axis. The buckling mode describes an arrangement where the
deviation of the local magnetization is a periodic function of the position along a
longitudinal axis.

Also shown in Fig. 3.30 is the process known as fanning, where the reversal arises
from the interaction between particles in a chain.

The appearance of uncompensated magnetic charges during the process of mag-
netization reversal increases the magnetostatic energy. In a cylinder that reverses
the magnetization through the curling mode, these charges appear only on the flat
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a b c d

Fig. 3.30. Magnetization reversal modes for a cylinder, or cylinder-like sample: (a) coherent,
(b) curling, (c) buckling and (d) fanning, a mechanism of reversal for a chain of magnetic
spheres

surfaces (top or bottom), and therefore the magnetostatic energy remains small. The
exchange term in the free energy increases, since in this case, differently from the
homogeneous case, ∇m �= 0.

The inhomogeneous reversal of the magnetization is a phenomenon intrinsically
more complex than the homogeneous process. As a consequence, its theoretical de-
scription has been by and large limited to systems with simple shapes, in restricted
physical circumstances.

The nucleation field for an ellipsoidal sample reversing the magnetization through
a curling process is given by [43]:

HN =
2K1

μ0Ms
−NdMs +

cA
μ0Ms

1
R2 , (3.68)

where R is either the smaller dimension of the ellipsoid or the radius of a sphere. For
a sphere, c = 8.666 (and the demagnetizing factor Nd = 1/3), c = 8.946 for a plane
(Nd = 1), c = 6.780 for an infinite cylinder or a needle-like sample (Nd = 0).

This equation expresses the fact that, since HN varies as ∼1/R2, for small radii,
homogeneous nucleation is dominant, since the nucleation field for homogenous re-
versal is smaller (3.42). For larger radii the magnetization reverses through inhomo-
geneous nucleation.

The critical diameter Dinh
cr for the transition from homogeneous to inhomoge-

neous nucleation can be found by equating the above expression to the nucleation
field for homogeneous reversal (3.42). The result is:

Dinh
cr = 2

√
2A

μ0M2
s

√
c

2N⊥
= 2

√
c

2N⊥
lex. (3.69)
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Note that as the two expressions are equated ((3.42 and (3.68)), the anisotropy
terms cancel out; this arises from the fact that the critical diameter for inhomoge-
neous reversal does not depend on the anisotropy, only on the exchange stiffness
constant A and the saturation magnetization.

For an infinite cylinder, c = 6.780, N⊥ = 1/2, and one obtains:

Dinh
cr = 5.20 lex. (3.70)

This result predicts for long cylinders of α-Fe, Co and Ni, critical diameters for
inhomogeneous nucleation of ∼15, ∼25 and ∼40 nm, respectively (see the table with
values of lex on page ??).

The form of the dependence of the nucleation field on the diameter of an infinite
cylinder can be derived neglecting anisotropy (i.e., with K = 0) from (3.42) in the
case of the coherent reversal and (3.68) for curling, using c = 6.780.

For a reversal by buckling, the condition is given, in the limit of large diameter
D = 2R, by [16]:

HN

Hc
=

278
ρ2/3 =

3.78
(D/lex)2/3 , (3.71)

where ρ = R/R0 = R/lex

√
(2/μ0), R is the radius and D is the diameter.

This dependence of the nucleation field with diameter is illustrated in Fig. 3.31,
where this effect is represented by HN divided by the coercive field for coherent ro-
tation Hc = Ms/2; the graph shows how the cylinders with smaller diameters tend to
reverse the magnetization via coherent rotation, and above a certain critical diameter,
the incoherent mechanisms, curling and buckling, are dominant. The coercive field
in each case corresponds to the lowest switching field.

1 10 1002 3 4 5 5025
0.01

0.1

1

2

D/lex

H
N

/H
C

Curling

Buckling

Uniform Rotation

Fig. 3.31. Normalized nucleation fields vs. effective diameter of an infinite cylinder, for dif-
ferent processes of magnetization reversal: coherent, curling and buckling, based on [16]. The
effective diameter is D/lex, where lex =

√
2A/μ0M2

s is the exchange length. The graph shows
that up to a certain sample diameter, coherent rotation is preferred, and above this value, one
of the incoherent mechanisms is favored
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If the experimental conditions are such that there is no demagnetizing field, for
example, if the sample has a toroidal shape, the coercivity measured is the intrinsic
coercivity Hi

c. Its expression can be obtained if one subtracts the demagnetizing field
−NdMs from the expression of (3.68). The result is:

Hi
c =

2K1

μ0Ms
+

cA
μ0MsR2 . (3.72)

The dependence of the coercivity on the shape of the sample is still present in the
second term of the intrinsic coercivity Hi

c, through the quantity c.
The angular dependence of the curling process differs from that derived for ho-

mogeneous rotation, in the Stoner–Wohlfarth model, given by (3.55). Neglecting the
anisotropy contribution, the nucleation field for the curling process in a sample with
the shape of a prolate (cigar-like) spheroid is given, as a function of the angle ψ ,
by [1]:

HN = μ0Ms

(
2Nc − c

2πρ2

)(
2Na − c

2πρ2

)
[(

2Nc − c
2πρ2

)2
sin2 ψ +

(
2Na − c

2πρ2

)2
cos2 ψ

]1/2 . (3.73)

In this equation Na and Nc are the demagnetizing factors along the short and
long axes, respectively, c is the same numerical factor that depends on the sample
shape, used in (3.68), and ρ = R/R0, where R is the shortest semi-axis and R0 =√

(μ0/2)lex. This expression is also valid for a sphere, in which case Na = Nc, and it
results that HN does not depend on the angle ψ . For ρ ∼ 2 this expression also gives
the coercive field, since in this case Hc = HN.

3.5.2 Precessional Magnetization Reversal

The problem of magnetization reversal of a magnetic sample is very relevant for
magnetic recording technology, since recording data involves changing the magne-
tization of a small portion of a magnetic medium, and achieving high writing speed
on a magnetic disk, for example, requires the adequate understanding of this phe-
nomenon. A single bit of information is recorded in a time much shorter than a
nanosecond, and further advances in high-density magnetic recording demand forms
of reducing this time even further (see Chap. 7, on magnetic recording). The increase
in storage capacity of magnetic hard disks, to be of practical use, has to be accompa-
nied by the development of faster forms of handling the recorded information.

In the Stoner–Wohlfarth model the conditions for the reversal of the magnetiza-
tion are discussed from energy balance considerations: the particle switches when
the applied magnetic field reduces the energy barrier to zero. The time scale of the
application of the field is supposed to be much longer than the time τ0, the inverse of
the attempt frequency. For shorter time scales, the dynamics of the reversal has to be
taken into account, with a description of the temporal evolution of the magnetization,
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as given in approximate form by the Landau–Lifshitz–Gilbert equation (Sect. 2.3.1,
beginning on page 39). This equation is:

dM
dt

= −γ M×Heff +
α
Ms

M× (M×Heff) , (3.74)

where γ is the gyromagnetic factor, Heff is the effective magnetic field and α is a
damping factor.

The magnetization of a magnetic particle can also be reversed through the ap-
plication of a pulsed magnetic field. In this case, the particle magnetization may be
made to precess before switching to the opposite direction. The conditions for this
precessional reversal present a great interest, due to the obvious application of this
process to magnetic recording, since the inversion of the state of a recorded bit can
be made this way. The parameters that allow attaining the shortest switching times
are of particular relevance.

The time interval Δt required to reverse, under an applied magnetic field, the
magnetization of a uniformly magnetized sphere, was computed in the early work of
Kikuchi [30,59], using the Landau–Lifshitz–Gilbert equation. The expression of Δt,
for a magnetic field H applied in a direction approximately opposite to that of the
magnetization, is

Δt =
1

α(H −Hsw)
ln

(
tan(θf/2)
tan(θi/2)

)
, (3.75)

where α is the Landau damping constant ((2.76), p. 40), θi and θf are the initial
and the final angles between the magnetization and the applied field H, and Hsw is
the switching field. Note that if the initial angle is θi = 0 the magnetization never
reverses; a nonzero value of θi is therefore required for the reversal. In practice,
this initial deviation of the magnetization from equilibrium may be provided by the
thermal energy.

A damping factor equal to zero also implies no reversal: in this case the mag-
netization simply precesses around the direction of the field H, with constant angle
θ . This is understandable, since in the process of magnetization reversal, magnetic
energy has to be passed on to some thermal reservoir, e.g., the lattice, which means
that there must be some form of damping, or magnetic relaxation. The magnetization
precession for a spherical magnetic particle is illustrated in Fig. 3.32 for two values
of the damping constant, α = 0 and α = 0.1.

A smaller damping factor α leads to a faster angular velocity, but also to a larger
number of turns of the tip of the magnetic moment vector in the magnetization rever-
sal process. A larger value of α , on the contrary, corresponds to slower precession
and shorter paths. The minimum time interval for the reversal of the magnetization
of a sphere is obtained for a damping factor α = γ/2 or αG = 1 [30, 59].

Simulations of reversal of the magnetization of ellipsoidal particles made for
different magnetic field pulse lengths and shapes, and different directions of ap-
plied field, have revealed that ultrafast switching can be achieved by tailoring the
pulse parameters [5]. The results are exhibited in an angular diagram in Fig. 3.33,
where the radius of the diagram is proportional to the field intensity, and the angle
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Fig. 3.32. The lines connecting the points show the magnetization trajectory for a spherical
particle during homogenous reversal, with damping (α = 0.1), computed using the Landau–
Lifshitz–Gilbert equation. The circle drawn with the continuous line shows the precession
with no reversal, in the case of zero damping

a b

Fig. 3.33. Precessional magnetization inversion, with pulse lengths of (a) 2.75 ns showing in
the middle, part of the Stoner–Wohlfarth astroid and (b) 0.25 ns. The diagram shows mag-
netization inversion (light gray areas) as a function of the angle of the field H and intensity
(represented by the radius of the diagram) [5]. (Reprinted figure with permission from [5].
Copyright (2000) by the American Physical Society)

represents the field direction. The light gray areas correspond to the configurations
(intensity and angle) that lead to magnetization reversal, and the darker ones to
those that do not produce reversal. For long pulses, the same curve of magnetiza-
tion reversal reproduces the Stoner–Wohlfarth astroid curve, as seen in the center of
Fig. 3.33a. For short pulses a complex pattern appears in the polar graph (Fig. 3.33b).
An analogous effect was also demonstrated in elliptical submicron permalloy thin
film islands [58].
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A related process of magnetization reversal consists in the simultaneous appli-
cation of a static magnetic field and a microwave field [60]. This results in reversal
of the magnetization with reduced switching fields or, in applications to magnetic
recording, allows the use of higher coercivity magnetic media, see Chap. 7. In this
microwave-assisted magnetic recording (MAMR) technique, the rf field is applied
perpendicularly to the easy axis of the magnetic particle, and its effect for the same
magnetic material coercivity is the reduction of the necessary switching field to about
1/3 of the intensity of the field in the Stoner–Wohlfarth case [60].

3.5.3 Current-Induced Magnetization Reversal

Another form of reversal, or switching of the magnetization, uses the fact that a
polarized electron current, i.e., a current of unbalanced spin-up and spin-down elec-
trons, can interact with the magnetic moment of a nanomagnet, applying a torque on
it (see Chap. 6, for a discussion on nanodots, nanorings and nanowires). This is a
quantum-mechanical effect that can be described in a simple way [7,45].

A simple way of accounting for the torque exerted by a current of polarized
electrons is to include a spin-transfer torque (STT) term in the LLG equations. This
term is a function of the volume of the nanostructure V , and is proportional to the
current i [54]:

Γ =
(

d(MV )
dt

)
STT

=
γ h̄i
μ0e

g m× (m · ŝ), (3.76)

with the unit vector m of M, and the polarization direction of the current ŝ; e is the
electron charge.

The factor g depends on the current polarization; an expression of g that provides
agreement with many experimental results is [45]:

g(P,m · ŝ) =
4P3/2

(1+P)3(3+m · ŝ)−16P3/2 , (3.77)

where P is the degree of polarization of the current.
The LLG equation with the extra term therefore describes the temporal evolution

of the magnetization of the magnetic sample, with the current-induced torque.
The effect of the torque is observed in multilayers containing a layer with fixed

magnetization and another whose magnetization is free to turn. The Landau–Gilbert
equation in this case describes the time evolution of the magnetization of the soft
layer. The micromagnetic simulations using this modified Landau–Gilbert equation
show that above a critical value of the current, the magnetization will be inverted. Us-
ing current pulses with values of i above the critical current, the torque may produce
the inversion of the magnetization, depending on the duration of the pulses. This
is shown in the plot of the magnetization component Mx in the case of a magnetic
multilayer with a spin valve structure (see Chap. 5, on magnetotransport) submitted
to a square current pulse of varying width (Fig. 3.34). The figure shows that above
a certain pulse width, the magnetization component Mx of the soft layer reverses;
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Fig. 3.34. Micromagnetic simulation of current-induced magnetization reversal. In the figure,
the evolution of the x component of the magnetization as a function of time is shown for
different current pulse durations. In the first figures (a and b) the pulses do not reverse the
magnetization, but in (c), a longer pulse reverses it [36]. (Reprinted figure with permission
from [36]. Copyright (2003) by the American Physical Society)

oscillations in Mx are also apparent. The simulations also show that the time interval
for magnetization reversal, or switching speed, is dependent on the spin current.

An analogous effect was observed with a spin-polarized low energy electron
beam that crosses a thin film of Fe, Co or Ni, turning the magnetization of the film.
For a Co film, the beam turns the magnetization M by 19◦ per nanometer of film
thickness [55].

3.6 Interaction Between Particles

An assembly of magnetic nanoparticles may interact, depending on the distance be-
tween them, through different physical mechanisms, such as the dipolar interaction,
exchange interaction, superexchange, in some insulators, or through the Ruderman–
Kittel–Kasuya–Yosida (RKKY) interaction, in the case of particles in a conducting
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medium. These interactions modify the magnetism of the system, and, as a con-
sequence, the description of the parameters that characterize the hysteresis curves
cannot be made with models as simple as the Stoner–Wohlfarth model.

A system of magnetic particles may be demagnetized through a process that leads
to a configuration in which the probability that a particle has magnetization along any
direction is equal to the probability of magnetization along the opposite direction.
An ensemble of non-interacting particles demagnetized in such way would have, in
consequence, a curve of virgin magnetization mvir drawn halfway between the upper
branch of the hysteresis curve msup and the lower branch minf [49, 50],

Δm = mvir −
1
2
(msup −minf) = 0. (3.78)

When there are interactions between the particles, on the other hand, the proba-
bility of alignment of the magnetization of the particles with direction is altered and
an experimental displacement Δmexp of the virgin magnetization curve is observed,
and this displacement can be used as a measure of the intensity of these interactions:

Δmexp = (mvir)exp −
1
2
(msup −minf)exp. (3.79)

Measurements of the remanent magnetization can also be used to evaluate the in-
teraction between magnetic particles. The remanent magnetization is normally mea-
sured by reducing to zero the magnetic field applied to a saturated sample; the re-
manent magnetization is the magnetization for H = 0. There are two main remanent
magnetization curves that can be used to study the magnetic properties of an ensem-
ble of particles: the DC remanent magnetization curve Md(H) and the isothermal
remanent magnetization, Mr(H). The curve Md(H) is traced by taking initially the
system to saturation; after that, the field is taken to a negative value −H and the
DC remanent magnetization for this field is Md(H). The full curve is traced by re-
peating this procedure with negative fields of increasing amplitude up to the field of
same modulus as the initial saturation field (Fig. 3.35a). The curve of Mr(H), on the
other hand, is obtained by starting from a demagnetized sample and measuring the
remanence for increasing fields up to Hsat (Fig. 3.35b). There are several alternative
experimental procedures that can be used to take the sample to a demagnetized state;
for a discussion, see [50].

Curves of DC and isothermal magnetic remanence for hexaferrite nanoparticles
are shown in Fig. 3.35; note that, differently from Md(H), the values of Mr(H) are
all positive.

The curves of Md(H) and Mr(H) are related in a simple way to the Stoner–
Wohlfarth model. This relation expresses the fact that the DC remanence measure-
ment starts with the remanence having the value Mr(∞). Applying a field H < 0 the
moments corresponding to Mr(H) will be reversed, and therefore, the positive rema-
nent magnetization decreases by Mr(H), and the negative increases by Mr(H). Thus,
the total variation of Md(H) is −2Mr(H), or Md(H) = Mr(∞)−2Mr(H).
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Fig. 3.35. Curves of (a) DC remanent magnetization md(H) and (b) isothermal remanent
magnetization mr(H) for hexaferrite nanoparticles [20]

This result, divided by Mr(∞), giving md(H) = Md(H)/Mr(∞), is known as the
Wohlfarth relation [57]:

md(H) = 1−2mr(H). (3.80)

When every condition for the applicability of the Stoner–Wohlfarth model is sat-
isfied, except for the presence of interactions between the magnetic particles, one
can use this relation to evaluate the importance, or the magnitude, of this interaction:
when the above relation is verified, the interaction can be neglected.

This result is frequently used in the form of a graph known as the Henkel plot
[24], built by plotting md(H) vs. mr(H). Any deviation from linearity given by (3.80)
is indicative of the importance of the interaction between the particles. A Henkel plot
drawn for uniaxial nanoparticles, in the non-interacting limit, and for two different
interaction strengths, based on a Monte Carlo simulation, is exhibited in Fig. 3.36.

A modified form of this plot [29], also used for the same purpose, is the graph of
Δm(H) vs. H, where Δm(H) is given by

Δm(H) = md(H)− [1−2mr(H)]. (3.81)

In this case the quantitative measure of the effect of the interaction is evident in
the graph of Δm as a function of the field H.

Another important aspect of the magnetism of a system of particles is the form
of the dependence of its magnetization with the applied magnetic field M(H). As we
have seen in Sect. 3.3, a system formed of identical superparamagnetic particles has
its magnetization vs. H curve well-described by a Langevin function L(x) (3.33):

M = Nμ L
(

μB
kBT

)
. (3.82)

Numerical simulations show that the effect of dipolar interactions on the mag-
netization may be estimated maintaining the formulation of the magnetization in the
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Fig. 3.36. Henkel plots computed for uniaxial magnetic particles using the Monte Carlo
method. The graph with full triangles describes the case of non-interacting particles; the other
two graphs refer to cases of particles with interactions, showing deviations from linearity.
(Reprinted with permission from [18]. Copyright (2000), American Institute of Physics)

above form, but introducing an apparent temperature Ta > T , that substitutes T in the
denominator of the argument of the Langevin function L(x) [3]. This may be justi-
fied if one assumes that a random dipolar field due to the other particles, fluctuating
with a high frequency (≈109 Hz), has the effect of reducing the order arising from
the external magnetic field. The temperature Ta is related to T through the equa-
tion Ta = T + T ∗, where kBT ∗ is the dipolar energy εd arising from the interaction
between the magnetic moments μ :

kBT ∗ = εd =
αdμ2

d3 , (3.83)

with d the average distance between the particles and αd a proportionality constant
that arises from the dipolar sum. Some experimental results for the quantity T ∗, that
measures the intensity of the interaction between the magnetic particles, are given in
Table 3.3, for Co90Cu10 particles of different radii.

The relaxation processes of small magnetic particles are also affected by the in-
teraction between them. In the presence of interactions, the picture of a single energy
barrier between two configurations (θ = 0, θ = π) that we have discussed in Sect.
3.3.1 loses its validity, and the process of inversion of the magnetization now in-
volves a complex landscape with many local minima, analogously to the case of a
spin glass. The inversion of the magnetization of a single particle modifies this land-
scape, affecting the magnetic relaxation time.

In the simplest model that describes this phenomenon, the blocking temperature
TB and the relaxation time τ are related through a Vogel–Fulcher-type of equation
[42]:

τ = τ0 e
(

EB
kB(TB−T0)

)
. (3.84)

In the above equation, T0 is a quantity that measures the intensity of the interac-
tion between the particles, with dimension of temperature.
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Table 3.3. Temperature T ∗ = Ta −T that characterizes the intensity of the interaction between
particles in the Co90Cu10 system, for particles of different equivalent radius 〈R〉, at T = 300 K.
Ta is the apparent temperature [3]

〈R〉 (nm) T ∗ (300 K)

4.2 3,310
5.3 5,960
2.6 1,170
1.4 210a

1.5 55b

2.2 215
2.4 270
2.4 325
aT = 251K; bT = 244K

Fig. 3.37. Graph of log10τ vs. inverse blocking temperature for 4.7 nm γ–Fe2O3 particles. The
different curves, derived from the model of [14], correspond to samples with different strength
of the interaction between the particles, obtained by varying the separation between them. The
plots from left to right correspond to the separations: �4.7 nm, 6.8 nm, 7.3 nm and 21 nm [13].
(With permission from Elsevier Science and Technology)

A model for particles interacting through the dipolar field, with the magnetiza-
tion described by the Langevin function, leads to a dependence of the relaxation time
τ with the inverse blocking temperature 1/TB that is in good agreement with the ex-
perimental results obtained with different magnetic nanoparticles [13,14]. This may
be seen in the graph of Fig. 3.37, where τ for γ−Fe2O3 particles was measured for
different intensities of the interaction between the particles. The interaction intensity
was modified by varying the average inter-particle distance; the differences in the
strength of the interaction (T0) appears in the graph as a difference in slope.

A study performed in a system composed of magnetic particles of different diam-
eters (polydisperse) has showed that the interactions between them lead, at low tem-
peratures, to a reduction of the coercivity and remanence [15]. In this study, made
with simulations using the Monte Carlo technique, there were considered dipolar
interactions and exchange interactions. Depending on their diameters, the particles
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were found in the blocked or in the superparamagnetic state. The total magnetic field
Ht acting on each particle of moment μi is given by:

Ht = Hẑ+ ∑
i�= j

(
3(μ j · ri j)ri j

r5
i j

−
μ j

r3
i j

)
+C∗ ∑

i �= j
μ j . (3.85)

In this expression, H is the applied field; the second term is the magnetic dipolar
field and the third term is the exchange field. The dipolar field is taken as resulting
from the interaction of particles found at a distance of up to three times the mean
particle diameter, and the exchange field is due only to particles that are closer. C∗ is
a parameter that measures the intensity of the exchange field.

The total energy of a particle is a sum of the anisotropy energy with the energy
of interaction with the magnetic field Ht:

ET = KV sin2 θ −μ0μHt cosβ . (3.86)

In this expression, KV has the usual meaning, θ is the angle between μ and the
anisotropy axis, and β is the angle of μ with H.

A study assuming only dipolar interactions between the particles, also performed
using the Monte Carlo simulation, found a maximum in the coercivity as a function
of the particle concentration, or as a function of the inverse of the distance between
them [28]. This maximum is clearly observed in the case of zero magnetic anisotropy,
and disappears for increased anisotropy.
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4

Magnetism of Thin Films and Multilayers

Summary. Magnetic thin films are the most extensively studied magnetic system with
nanoscopic dimensions. The study of the properties of magnetic thin films has made the de-
velopment of film media possible, which is used in magnetic hard disks, and the progress in
reading heads. In this chapter, these properties are discussed including the anisotropy of thin
films. Multilayers prepared from thin films give rise to a wealth of properties, arising in par-
ticular, from the interaction between the magnetic layers, the interlayer exchange coupling.
The phenomenon of exchange bias, discovered in granular materials, has been systematically
studied in thin films, and finds important applications.

4.1 Introduction

Magnetic films and multilayers are the most intensely studied systems that present
nanomagnetic properties. The main application of nanomagnetism, namely magnetic
recording, involves reading and writing with heads that are made with multilayers of
nanometric dimensions, information stored in hard disks, and flexible media that
may be coated with thin magnetic films. This is illustrated in Fig. 4.1, where the
cross section of a perpendicular recording magnetic hard disk platter is shown, with
the many layers required to perform its function. These include a layer of the record-
ing medium, some 10–20 nm thick, and a layer of soft magnetic material of some
100–200 nm.

The field of Spintronics, or electronics of spin (see Chap. 5), is based on the ma-
nipulation of spin-polarized electron currents, i.e., electrical currents where the num-
ber of electrons with spin up is different from the number with spin down. Since this
polarization is modified or lost beyond electron path lengths above some tens of
nanometers, the spintronic devices also use components of nanometric dimensions,
notably thin films.

One may distinguish two types of thin films or multilayers relevant to nanomag-
netism: those that are planar, with nanometric thicknesses (Sect. 4.1.1), and those
that, besides having this characteristic, also have structures that have lateral dimen-
sions in this range (Sect. 4.1.2). These laterally structured systems may be prepared
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Overcoat / Lubricant ~ 4 nm

Magnetic medium ~ 15 nm

Intermediate layer ~ 20 nm

Adhesion layer ~ 10 nm

Substrate layer ~ few mm

Soft magnetic underlayer (SUL) ~ 80 nm

Fig. 4.1. Cross section of a typical perpendicular recording magnetic hard disk showing the
different layers. Note the presence of the soft magnetic underlayer (SUL), required to close the
magnetic circuit between the two poles of the write head (see Chap. 7). (Adapted from [30])

either by depositing thin films on a structured substrate or by other means, such as
creating a pattern on a film with lithography. Depending on the form of the lateral
structures, their magnetic properties are discussed together with the properties of
nanoparticles in Chap. 3, or nanodisks, nanorings, and nanowires in Chap. 6.

Many different techniques are employed to prepare thin films, among them va-
por deposition, magnetron sputtering, molecular beam epitaxy (MBE), electrodepo-
sition, chemical deposition (see e.g., [4], and the third volume of the series [19]).
Some of these techniques, such as magnetron sputtering and MBE, have been devel-
oped for the fabrication of integrated circuits, where the electronic components are
made of several layers of films.

4.1.1 Thin Films: Planar Systems

The morphology of the deposit of an atom A on a substrate of element B depends
on the surface free energies of A and B, as well as on the AB interface energy (see
[13]). The higher the surface energy of the substrate, the stronger the tendency of the
element deposited to wet the surface, in other words, to spread or form a homoge-
neous film.

Consequently, the favorable condition for the formation of a uniform film of a
material on a substrate is given by the following relation between the surface energies
per unit area γ:

γsubs > γoverlayer + γinterface. (4.1)

The d transition elements that are magnetic tend to have higher surface ener-
gies γ; for example, the 3d elements have surface energies from ∼1.5 to ∼3 J m−2,
whereas semiconductors may vary from ∼1 to ∼2 J m−2. The free energies of some
materials are shown in Table 4.1, where one sees that the d metals have surface
energies that are larger than those of noble metals, semiconductors and insulators.
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Table 4.1. Free energy γ of some materials, in J m−2 [13]

Magnetic metal Cr Mn Fe Co Ni Gd
2.1 1.4 2.9 2.7 2.5 0.9

Transition metal Ti V Nb Mo Ru Rh Pd Ta W Pt
2.6 2.9 3.0 2.9 3.4 2.8 2.0 3.0 3.5 2.7

Simple or noble metal Al Cu Ag Au
1.1 1.9 1.3 1.6

Semiconductor Diamond Si Ge GaP GaAs
1.7 1.2 1.1 1.9 0.9

Insulator LiF NaCl CaF2 MgO Al2O3
0.34 0.3 0.45 1.2 1.4

In the process of deposition of a thin film, once a first layer of atoms A is formed,
the morphology of the second layer is defined under different energy conditions,
because the new interface is now formed between two layers of A atoms. Since in
general the lattice spacings of the elements A and B are different, as the thickness
of the deposited element increases, the misfit strain energy also increases, an effect
that works against a layer-by-layer deposition. Typically, a lattice parameter mis-
fit of some 1–2% leads to breakdown of layer-by-layer growth beyond some ten
atomic layers.

Highly miscible elements show a strong attractive force, and therefore an in-
creased interface energy. This is the case, for example, of Fe films deposited on a
Cr surface.

If the energy relationship is opposite to that of (4.1), the overlayer tends to de-
velop three-dimensional islands from the beginning of the deposition process.

One can in general consider that there exists two regimes of film growth: the
equilibrium regime, and non-equilibrium regime. In the first case, the temperature
and rate of growth are such that the atoms relax to the positions corresponding to
potential energy minima. The types of growth in these two regimes, depending on
the relative free energies, are illustrated in Fig. 4.2. These types are: (1) growth in
islands or Volmer–Weber, (2) layer by layer or Frank–van der Merwe growth, and
(3) an intermediate or Stranski–Krastonov growth.

When one wishes to deposit a homogeneous film of an element that, from surface
energy considerations, tends to form tridimensional islands, it is usual to appeal to
deposition in the non-equilibrium regime, using low temperatures and/or high depo-
sition rates to avoid the formation of these islands.

The structural properties of the atoms in a thin film of nanometric dimensions
change, as compared to the behavior of bulk samples, and this is reflected, for
example, in the lattice parameter of the surface layers. This is exemplified in Fig. 4.3,
where the atomic spacing of thin films is shown to vary in comparison to the separa-
tion in thick samples. The graph shows the variation of interplanar spacing between
the first two atomic layers Δd(12), vs. the equilibrium spacing de in bulk samples of
the same elements.

When deposited on substrates that present different coefficients of thermal
expansion, thin films develop tensile or compressive stresses. The tensions also arise
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a

b

c

Fig. 4.2. Forms of film growth for different relative free energies, from top to bottom:
(a) growth in islands or Volmer–Weber; (b) layer by layer or Frank–van der Merwe growth
and (c) intermediate or Stranski–Krastonov growth. (Based on [4])

Fig. 4.3. Variation of interplanar spacing between the first two layers Δd(12) divided by the
number of nearest neighbors NN in films, vs. normalized equilibrium spacing de/NN in bulk
samples [8]. (Reprinted figure with permission from [8]. Copyright (1992) by the American
Physical Society)
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due to lattice parameters misfit. A thinner film may accommodate this last type of
tension, but as its thickness increases, it is energetically more favorable the appear-
ance of dislocations.

The magnetic moment of surface atoms is also different from the moments of
the atoms of the bulk. This is illustrated with the computed magnetic moments of
Ni atoms in each one of the eight atomic layers of a thin film of Ni deposited on
a Cu substrate (Fig. 4.4). One notes that the computed Ni magnetic moments near
the interface with the Cu are lower than the moments in bulk samples of Ni; in the
middle layers the moments are comparable to those of the bulk, and near the surface
of the film they are larger than in the bulk.

The magnetic ordering temperature also differs in thin films from the values
found in bulk samples. This is illustrated in Fig. 4.5, where it is evident the fall in
Curie temperature for ferromagnetic thin films, as the thickness is reduced to a few
atomic layers.

Fig. 4.4. Computed magnetic moment of Ni atoms in eight multilayers of metal deposited on
Cu. The Ni moment is reduced relative to its value in bulk metal at the Cu interface (left) and
increased at the free surface (right) ( [29], adapted from [37]). (Reproduced from [37] with
permission from Wiley)
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4.1.2 Thin Films: Laterally Structured Systems

Thin films with lateral structures of nanometric dimensions can be prepared in
different ways, for example, by depositing the films on a structured substrate, or
by film patterning using lithography techniques.
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Fig. 4.6. (a) NOT logic gate consisting of magnetic tracks operated with the motion of mag-
netic domain walls, (b) route of the domain walls under the action of a counterclockwise
rotating magnetic field, (c) MOKE signal obtained at the point marked with an asterisk in (a).
From [1]. (Reprinted with permission from AAAS [1])
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Magnetic nanowires, nanorods or nanostripes, for example, may be prepared by
depositing magnetic elements or alloys on a stepped surface of single crystals. This
has been done, for example, with Fe deposited onto a (110) surface of a tungsten
single crystal.

Other techniques such as irradiation with an ion beam can be used to create, on
a thin film, regions of locally modified coercivity or magnetic ordering temperature.
The techniques that use this idea are the focused ion beam (FIB) technique, ionic
implantation, etc. They allow the induction of changes in the magnetism of the films
without affecting its topography (e.g., [10]).

Arrays of nanoscopic or sub-micron structures, can be created by lithography or
by FIB, in the shape of elliptic permalloy dots [7] or checkerboard patterns [14].
Or still as magnetic trails employed to build logical devices that operate through the
motion of magnetic domain walls (e.g., the NOT gate circuit made from a track of
permalloy shown in Fig. 4.6 [1]).

Other logical devices were designed with single-domain nanoscopic elliptic
structures of permalloy that interact through dipolar fields. A device may be built
with a “majority” gate that simulates any logical gate, as shown in Fig. 4.7 [5, 15].
In these structures, through the application of external magnetic fields, logical op-
erations can be performed with a frequency of 100 MHz and low-energy dissipation
(1010 gates would dissipate only 0.1 W). This approach is promising, since the same
technology of producing nanoscopic structures could be used to store information
and to process it through the logical gates.

Fig. 4.7. Majority logic gate created with single-domain permalloy elliptical dots. The dot at
the center aligns its moment through the effect of the dipolar fields, following the majority
of the three inputs. The output magnetic moment orders antiparallel to this dot. From [5].
(Reprinted with permission from AAAS [5], quoting [15])
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4.2 Anisotropy in Thin Films

The magnetic anisotropy energy in thin films can be expressed in general form,
using the effective anisotropy constant Keff

E = Keff sin2 θ , (4.2)

where θ is the angle between the magnetization and the normal to the surface.
The anisotropy mechanisms that give rise to the effective anisotropy may be the

crystalline anisotropy, the magnetostatic contribution, the magnetoelastic term and
the surface anisotropy term. The magnetostatic contribution is the shape anisotropy
term. The surface term is a contribution to the anisotropy that arises from the broken
translation symmetry at an interface, known as the surface, or interface, magnetic
anisotropy [27]. The other terms, i.e., crystalline, magnetostatic and magnetoelastic,
may be considered volume-related terms. The surface anisotropy is represented in
the expression of anisotropy energy per unit area, by a term

σ = Ks sin2 θ . (4.3)

This corresponds to an energy per volume
Es

V
=

1
d

Ks sin2 θ . (4.4)

In this expression Ks is the out of plane surface anisotropy constant, and d is the
film thickness [11]; |Ks| is in the range 0.1–1.0×10−3 J m−2. Values of Ks for some
materials are given in Table 4.2. For lower symmetry surfaces, e.g., Fe (110), an in-
plane anisotropy term has to be added to (4.3), of the form Ksp sin2 θ cos2 φ [11].

Several terms that contribute to the energy in magnetic materials may also lead to
an effective anisotropy. The terms that contribute to the effective anisotropy constant
are listed in Table 2.5 (p. 34). They include volume and surface terms, such as the
uniaxial anisotropy energy, the shape anisotropy term (involving the magnetostatic
energy), the magnetoelastic term and the surface anisotropy term Ks:

Table 4.2. Values of the interface anisotropy constant Ks for different interfaces (/UHV stands
for the free surface) [12]

Interface Ks (mJ m−2)

Co/Pd −0.92
Co/Pt −1.15
Co/Ni −0.42
Co/Au −1.28
Ni/UHV 0.48
Ni/Cu 0.22
Fe/Ag −0.79
Fe/Au −0.54
Fe/UHV −0.89
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Fig. 4.8. Effective anisotropy of Co films on Si vs. thickness tCo for different epitaxial films
and for a polycrystalline film [9]. (Reprinted with permission from [9]. Copyright (1991) by
the American Physical Society)

Keff = Ku −
1
2

μ0M2
s +Kme +

Ks

d
. (4.5)

When there are two surfaces contributing to the surface anisotropy term, as in a
thin film, this term should include a factor 2, becoming (2Ks/d). Note that the surface
anisotropy term for a nanoparticle has a factor of 6 multiplying Ks ((3.36) on p. 77,
Chap. 3).

The magnetostatic term for a thin film is written in the CGS as −(1/2)NCGS
d M2

s =
−2πM2

s , instead of −(1/2)μ0M2
s (see Table 2.10, on p. 39, where the expressions

of some magnetic quantities are given both in SI and CGS units). Figure 4.8 is an
example of the thickness dependence of the anisotropy, showing this effect for Co
films on Si.

The magnetoelastic anisotropy term is given by

Kme =
3
2

λsσ , (4.6)

where λs is the saturation magnetostriction and σ is the stress acting on the film.
This term can also be written in terms of the strain ε , as Kme = Bmeε , where Bme is
the magnetoelastic coupling coefficient.

For Keff > 0 the lowest energy configuration corresponds to perpendicular mag-
netization, an effect that has applications in magnetic recording. This is observed,
for example, in thin films of Ni/Cu(001), for thickness below about 10 nm; in this
system, this effect appears to be due to strain.

In general, as the thickness d of the film increases, the effects of the demagnetiz-
ing fields tend to dominate, since the corresponding anisotropy contribution of a film
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Fig. 4.9. Phase diagram of a Cu/Ni/Cu/Si film in the graph of surface anisotropy vs. Ni film
thickness tNi (in units of exchange length). For small values of d/2ξ and large values of κ ,
the magnetization is perpendicular; for large d/2ξ and small κ , the magnetization is parallel.
In the middle region, the magnetization points along an intermediate direction. The points
correspond to measurements on Ni films of up to 200 nm thick [29]

in the demagnetizing field is 1
2 μ0M2

s d, and therefore the magnetization tends to be-
come parallel to the plane of the film. The thin film critical thickness dcr for which the
magnetic anisotropy changes from favoring in-plane magnetization to perpendicular
magnetization is obtained from (4.5); ignoring the magnetoelastic term, it follows:

dcr = − Ks

Ku − 1
2 μ0M2

s
. (4.7)

In Fig. 4.9 the normalized surface anisotropy of Cu\Ni\Si(001) is plotted vs.
normalized thickness of the Ni film; one sees how, with increasing film thickness, its
magnetization gradually turns to parallel to the plane of the film.

In the case of a thin film of Fe on Au, a monoatomic layer has perpendicular
anisotropy, and the anisotropy also changes to in-plane for larger thicknesses. One
form of increasing the perpendicular anisotropy in this case is through the creation
of several Fe\Au interfaces, which is obtained by depositing a multilayer of the form
(Fe\Au)n.

4.3 Domain Walls and Magnetization Reversal in Thin Films

The magnetic domain walls formed in thin films may be more complex than the walls
formed in the same material in bulk form. Among the variety of types of magnetic
domain walls found in thin films, three types are more common: (1) Bloch walls,
(2) Néel walls, and (3) cross-tie walls. The cross-tie domain wall is intermediate
between the other two forms, and is formed of a line of vortices and antivortices (see
Sect. 6.2). These three domain wall types are shown schematically in Fig. 4.10.

As we have seen in Sect. 2.4, Néel domain walls are energetically more favor-
able in magnetic films below a certain thickness, as illustrated in Fig. 4.11, using
expressions given by [25]; for thicker films, Bloch walls are favored.
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Fig. 4.10. Types of magnetic domain walls: (a) Bloch wall, (b) Néel wall, and (c) cross-tie
wall
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Fig. 4.11. Domain wall energy for Bloch walls, Néel walls and cross-tie walls, as a function
of film thickness, computed using expressions given by [25]. The graph shows that for thinner
films cross-tie walls and Néel walls correspond to the lowest energy configurations

The phenomenon of magnetization reversal in thin films, analogously to the case
of magnetic nanoparticles, has attracted much interest, and is relevant both for the
understanding of the magnetism of these systems, as for their applications, particu-
larly to magnetic recording on thin film media.

The coercivity measured through the hysteresis curve is dependent on the mag-
netic field sweep rate η = dH/dt, and in the context where this aspect is emphasized,
this coercivity (H∗

c ) is called dynamic coercivity. In the case of thin films it is related
to the field sweep rate as H∗

c ∼ ηα where α is an exponent that for low η , varies with
the film thickness.

This expression is obtained in a model that assumes that the domain wall velocity
is proportional to the rate of change of the magnetic field, and that the magnetization
reversal is effected through nucleation and propagation of circular domain walls [32].
The domain wall velocity v(H) is zero for a magnetic field intensity |H| < Hdp,
where Hdp is the depinning field, a magnetic field sufficiently intense to overcome the
pinning forces. The velocity shows a linear variation with field: v(H) = μ(|H|−Hdp)
for |H| ≥ Hdp, with μ the domain wall mobility, a phenomenological parameter.
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For a straight domain wall, the change in normalized magnetization (m) with
time results to be

dm
dt

(t) = ±√
ρμ[H(t)−Hdp], (4.8)

where ρ is the density of reversed domains at the depinning field Hdp. The “+” and
“−” signs refer to positive or negative magnetic fields. A slightly more complicated
expression follows if one assumes circular domain walls, a description which seems
to be applicable to ultrathin Fe films [6].

The hysteresis loops computed with this model show dynamic coercivities H∗
c

that depend on the magnetic field sweep rate in the same way as the experimental re-
sults. At low sweep rates a quasilinear response is observed for H∗

c , and this quantity
increases more rapidly for increasing rates, with periods comparable to the magne-
tization reversal times. These predictions of the model agree with the experimental
results of H∗

c for Fe/GaAs(001) films (Fig. 4.12).
The reversal of the magnetization of a thin film under an applied magnetic field

parallel to the plane of the film was the object of an early study by Kikuchi [16] using
the Landau–Lifshitz–Gilbert equation. The time Δt required to reverse the magneti-
zation was computed. The fastest switching in the case of a film is obtained using
in the description a small damping factor α , dependent on the magnetization. The
motion of the magnetization is very different from that in the case of a spherical par-
ticle (Sect. 3.5.2, p. 93). For example, in the case of the film, for zero damping factor,
the magnetization oscillates in a pendular-like motion. For a nonzero damping, as the
magnetization begins to turn, the component of the magnetization perpendicular to
the plane generates a demagnetizing field that drives the precession of the magneti-
zation; these two behaviors, for zero and nonzero damping, are shown in Fig. 4.13.

An alternative form of reversing the magnetization of thin films uses ultra-short
magnetic field pulses. They have been used to induce the reversal of the magnetiza-
tion of Co films [2]. Pulses of under 200 kA m−1 were applied in the plane of the
films, perpendicular to the Co magnetization. The demagnetizing field is important
for the magnetization reversal, acting even after these pulses are over. The magneti-
zation reversal time found in this experiment was very short, of the order of 10−12 s.
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Fig. 4.12. Dynamic coercivity of thin films vs. log of magnetic sweep field rate. The dots are
experimental points obtained with Fe/GaAs(001) films, the continuous line results from the
model of straight domain walls [32]. (Reprinted with permission from [32]. Copyright (2002)
by the American Physical Society)
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Fig. 4.13. The points show the magnetization trajectory for the homogenous reversal of a thin
plate under an in-plane applied magnetic field, for damping factor α = 0, computed using the
Landau–Lifshitz–Gilbert equation; the continuous line describes the trajectory with α = 0.4.
Compare with Fig. 3.32, p. 95, the magnetization trajectory for a spherical particle

4.4 Exchange Bias

The exchange bias phenomenon arises from the interaction through the interface
between a ferromagnet (FM) and an antiferromagnet (AFM) or ferrimagnet (FI);
also between an AFM and a FI. In simple terms, this interaction acts as an effective
field that changes the behavior of the ferromagnet under an applied magnetic field.
The signature of the exchange bias phenomenon is the shift of the hysteresis loop
either to lower or higher magnetic fields, shown, for example, for FeF2 at 10 K in
Fig. 4.14.

This effect was first observed in studies of field-cooled (FC) oxidized Co parti-
cles [24]. In this case the relevant interface is that between the Co grains (ferromag-
netic) surrounded by a CoO layer (antiferromagnetic). The exchange bias can also
be observed even when there is a nonmagnetic thin film between the antiferromag-
netic and ferromagnetic layers, as shown, for example, in the hysteresis loop of the
Co/Au/CoO multilayer system (Fig. 4.15) [31].

The antiferromagnetic side of the interface where this phenomenon is observed
may be either compensated or uncompensated. In the compensated case, the first
AFM layer contains moments pointing in both directions, in such a way that the
total magnetization of this layer is zero, as shown in Fig. 4.16b. The AFM layer
is uncompensated when the opposing moments are in the next layer, and the total
moment of the first layer is nonzero (Fig. 4.16a).

In a magnetization measurement where the sample is cooled under an applied
magnetic field, done at a temperature above the Néel temperature TN of the antiferro-
magnet (but below TC of the ferromagnet), the magnetic moments of the AFM atoms
are at this point disordered. As TN is reached, the AFM atoms at the interface align
ferromagnetically to the FM moments.
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Fig. 4.14. Hysteresis curve for field-cooled FeF2 at 10 K showing exchange bias. The exchange
bias field HE and the coercivity Hc are indicated in the figure. The curve also exhibits the lack
of symmetry commonly found in these samples [28]. (With permission from Elsevier Science
and Technology)

Fig. 4.15. Hysteresis curve showing exchange bias in the system Co/Au/CoO, obtained with
a SQUID magnetometer. Note that in this case the exchange bias effect is still observed, even
with a nonmagnetic film between the FM layer and the AFM layer. (Reproduced with permis-
sion from [31])

The hysteresis curve obtained for such sample is shown schematically
in Fig. 4.17; beginning from magnetic saturation (a), as one reverses the field, the
FM moments start to turn (b), but the AFM atoms exert locally a restoring force,
arising from a magnetic field across the interface.
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a b

Fig. 4.16. Types of FM/AFM interfaces: (a) uncompensated and (b) compensated. In the sec-
ond type of interface, the total magnetic moment of the AFM layer nearest to the interface is
zero

FM
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Fig. 4.17. Simplified scheme of the magnetic moments near the interface in the exchange bias
phenomenon, showing (a) the moments at the interface with the applied field H, at saturation;
(b) with H in the opposite direction, before inverting the magnetization; (c) the FM layer has
reversed; (d) with H increasing immediately before the FM layer turns to the original direction

Since the AFM atoms exert a torque pulling the FM moments to their original
direction, this effect is described as a unidirectional anisotropy, with anisotropy en-
ergy ∝ sinθ , which amounts to an angular dependence different from that of the
usual (uniaxial) anisotropy, which is proportional to sin2 θ .

The graph of the anisotropy energy measured by torque magnetometry exhibits
the sinθ component combined with the usual sin2 θ term, and therefore the curve
has an absolute minimum, instead of two identical minima observed in the uniaxial
case, as in Fig. 3.22 (p. 83). This unidirectional behavior is shown in Fig. 4.18, where
the anisotropy energy curves are plotted against θ , the angle between the magnetic
field applied during the measurement and the direction of the magnetic field applied
in the cooling process.
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Fig. 4.18. (a) Torque magnetization curves showing an absolute minimum in the anisotropy
energy Γ and (b) rotational hysteresis, or the area between the two curves, for a CoO sample
at 77 K, as a function of the applied magnetic field ( [28], based on [36]). (With permission
from Elsevier Science and Technology)

H
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Fig. 4.19. Angles between the magnetic moments and the anisotropy axes (θ ), and between
the axes and the magnetic field H at the FM/AFM interface (α for the AFM axis and β for the
FM axis), used in the definition of the bilayer energy (4.9)

The unidirectional anisotropy is at the basis of the phenomenon of exchange bias.
In this simple description, the energy per unit area for a bilayer consisting of one FM
layer and one AFM layer of thicknesses, respectively tFM and tAFM, is [23]:

E = −μ0HMFMtFM cos(θ −β )+KAFMtAFM sin2 α − Jint cos(β −α). (4.9)

In this expression, Jint is the effective interface coupling constant, α , β , and θ
are, respectively, the angles between the AFM magnetization (MAF) and the AFM
anisotropy axis, the FM magnetization and the FM anisotropy axis, and the angle
between the applied field and the FM anisotropy axis (see Fig. 4.19). It is assumed
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here that the AFM and FM anisotropy axes are collinear, and that the rotation of the
moments is coherent.

Minimizing the energy with respect to the angles α and β , the shift of the hys-
teresis loop is obtained [23]:

HE =
Jint

MFMtFM
. (4.10)

The displacement of the hysteresis loop is therefore proportional to the intensity
of the effective coupling between the two layers. This result has been generalized to
include the Zeeman interaction of the magnetization of the antiferromagnetic layer;
this generalization leads to a qualitative agreement for the observed dependence of
HE with the thickness of this layer [3].

A requirement for the effect to occur is a condition about the relative importance
of the antiferromagnetic anisotropy compared to the interface coupling: the relation
should be KAFMtAFM ≥ Jint. If this condition is not satisfied, with the application of
the magnetic field H, the AFM magnetization follows the turning motion of the FM
spins and the effect disappears.

Another important characteristic of the phenomenon of exchange bias is the ac-
companying increase in the coercive field observed in the samples. This effect can be
understood in a simple way in the case of a FM/AFM interface. The coercivity of the
FM layer is increased, since, as its magnetization turns, it has to overcome the AFM
anisotropy. If the latter anisotropy is very large, the coupling to the FM moments is
less effective, and the FM magnetization turns more easily, therefore not increasing
the coercivity. A correlation between the coercivity and the exchange field has been
experimentally observed; this is illustrated in Fig. 4.20 with the graph of Hc vs. HE
for MnF2/Fe bilayers .

Another phenomenon observed in systems that present exchange bias is the train-
ing effect, the fact that HE depends on the number of measurements performed, de-
creasing as this number increases. This seems to be produced by changes in the
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Fig. 4.20. Percentage variation of the coercivity vs. exchange bias field HE for MnF2/Fe bilay-
ers, showing the correlation between Hc and HE. HE was changed by varying the roughness of
the interface [20]. (Reprinted from [20]. Copyright (2000) by the American Physical Society)
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AFM domains each time the FM magnetization is turned under the influence of the
magnetic field.

A memory effect is also observed, consisting in the fact that the sample retains
the information of the temperatures of the field cooling cycle.

There is a maximum temperature, above which the exchange bias does not occur;
it is usually called blocking temperature, and may be different from TN.

Reviews of the theoretical models used to describe the exchange bias
phenomenon are given in [17] and [33] (see also [34]); these include the model
of coherent rotation, sketched here [23], the model of canted spins [18], the rugosity
model [21], and the AFM domain wall model [22].

The exchange bias phenomenon has been studied in a wide variety of physical
systems (particles, thin films) in different experimental conditions, varying the rugos-
ity of the interface, crystallinity and size of the grains at the interface, the thickness
of the ferromagnetic layer, the existence of compensated and uncompensated AFM
interfaces, and so on.

The main practical applications of exchange bias stem from the possibility of ob-
servation of giant magnetoresistance (GMR) or tunnel magnetoresistance (TMR) at
lower magnetic fields than those required with ordinary multilayer systems. GMR
and TMR arise from the difference in electron transport through two FM layers
as they are changed from parallel to antiparallel by an applied field, in a device
called spin valve (see Chap. 5). In this case the exchange bias is used to pin one
of the FM layers; the other layer can be made to invert its magnetization with a
smaller magnetic field. Another multilayer arrangement is known as a pseudo spin
valve, in the case where one of the ferromagnetic layers is not pinned, but prevented
from turning its magnetization simply by its geometry, for example, because it is
thicker.

Exchange bias can also be used to stabilize the magnetization in recording heads
based on the anisotropic magnetoresistance (AMR). The effect can also be used to fix
the chirality (or handedness) in arrays of magnetic nanorings, in view of applications
in magnetic data storage (Sect. 6.3, on p. 156).

4.5 Interlayer Exchange Coupling

Two ferromagnetic layers that are part of the same physical system show in general
an effective magnetic coupling. Néel predicted that a rough interface between two
magnetic layers would lead to uncompensated magnetic poles (“orange peel effect”)
that would couple these layers through dipolar fields (e.g., [12]).

For two ferromagnetic layers (of magnetic moments μ1 and μ2) separated by
a nonmagnetic (paramagnetic) thin metallic layer, the energy arising from this
coupling is:

E = −J1 μ1 ·μ2 cosθ . (4.11)
where θ is the angle between the two magnetizations.

This coupling is called bilinear coupling and the interlayer coupling constant J1
is given by the difference between the energy per unit area of the antiparallel and
parallel arrangements of the magnetic moments of the layers of area A:
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J1 =
1

2A
(E↑↓ −E↑↑). (4.12)

Another term of the form −J2 μ1 ·μ2 cos2 θ can also be important, describing an
interaction known as biquadratic coupling. This term is usually attributed to extrinsic
effects, such as interface roughness [35].

The intensity of the magnetic coupling is given by the coupling constants J1 and
J2. The constant J1 generally varies in an oscillatory fashion with the thickness of
the spacer layer, as shown in the CoCu multilayers in Fig. 4.21. This effect is remi-
niscent of the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction observed in the
coupling between two magnetic impurities in a metallic matrix. The interlayer cou-
pling parameter J1 is usually of the order of 10−3 J m−2, and the oscillation period of
the order of a few atomic monolayers; some values of these quantities for multilayers
of different materials are given in Table 4.3.

The oscillatory coupling arises since in the case of magnetic layers, the
interference between incoming electrons and electrons scattered at the interfaces
gives rise to oscillations in the probability densities for each electron [35]. All the
oscillations cancel out, except those of the electrons at the Fermi level, since there is
at this energy a cut-off between filled and unfilled states. The second layer samples
these spin oscillations, and the intensity of the coupling to its moment also oscillates.

The cohesive energy per unit area is the integral of the energies of
one-dimensional quantum wells, taken on the Brillouin Zone (BZ) of the interface is
given by

lim
t→∞

ΔE
A

≈ h̄vF

2πD

∫
BZ

d2K
(2π)2 Re

[
ei2πkFz(K)tRR(K)RL(K)

]
(4.13)

Fig. 4.21. Oscillations in the coupling of CoCu multilayers, measured by the variation of the
magnetoresistance as a function of the thickness of the Cu layers. The diamonds and circles
represent measurements at 4.2 and 300 K, respectively. The dashed line joins the points cor-
responding to sample with antiferromagnetic coupling [26]. (With permission from Elsevier
Science and Technology)
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Table 4.3. Values of interlayer exchange coupling strengths and oscillation periods (in atomic
layers and nanometers) for different multilayers [12]

Sample Maximum strength in mJ m−2 Period in ML and (nm)
at (thickness) in nm

Co/Cu/Co (100) 0.4 (1.2) 2.6 (0.47), 8 (1.45)
Co/Cu/Co (110) 0.7 (0.85) 9.8 (1.25)
Co/Cu/Co (111) 1.1 (0.85) 5.5 (1.15)
Fe/Au/Fe (100) 0.85 (0.82) 2.5 (0.51), 8.6 (1.75)
Fe/Cr/Fe (100) >1.5 (1.3) 2.1 (0.3), 12 (1.73)
Fe/Mn/Fe (100) 0.14 (1.32) 2 (0.33)
Co/Ru (0001) 6 (0.6) 5.1 (1.1)
Co/Rh/Co (111) 34 (0.48) 2.7 (0.6)
Co/Os (111-text’d) 0.55 (0.9) 7 (1.5)
Co/Ir (111) 2.05 (0.5) 4.5 (1.0)

The coupling between the two FM layers depends on the electronic structure of
the material of the nonmagnetic spacer. The coupling constant J1 also depends on
the thickness t of the spacer in an inverse quadratic form: J1 ∝ 1/t2.

The oscillation periods are related to the critical spanning vectors, vectors in
reciprocal space that connect two parallel sheets of the Fermi surface. Normally, the
vectors considered are those of the Fermi surface of the bulk material.

The simplest descriptions of the oscillatory coupling are given by the RKKY
model, adequate in the impurity case to rare-earth systems, and the free-electron
model, used in simple descriptions of transition metals. Other descriptions are em-
bodied in the quantum confinement model and the interface model. A comparison of
the predictions of these different theoretical approaches is given by [35]. In the dif-
ferent theories, for large spacer thickness t, the coupling is given by a sum of terms
of the form

J1(t) = ∑
α

Jα

t2 sin
(

2π
Lα t +φ α

)
. (4.14)

The variable α labels each critical point, with period Lα = 2π/qα
⊥, where qα

⊥ are
the spanning vectors, Jα are the coupling strengths and φ α are the phases.

The oscillatory coupling between two ferromagnets is illustrated in an elegant
way in an experiment, where they are separated by a nonmagnetic wedge (Fig. 4.22).
The direction of magnetization of the top film – up or down – appears as black
or white stripes in the image obtained by scanning electron microscopy with spin
polarization (SEMPA), a technique in which the polarization of secondary electrons
is measured, allowing the determination of the direction of magnetization. In the
figure, a Cr wedge is placed between a Fe whisker and a thin Fe film, and the images
were obtained at 30◦C and 350◦C [38].
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Fig. 4.22. Experiment to illustrate the oscillatory coupling of two FM layers through a non-
magnetic wedge. A Cr wedge is placed between a thin Fe film and a Fe whisker with a
two-domain structure. The result is that the Fe film is magnetized in segments of opposite
magnetization [38]. (Reprinted from [38]. Copyright (1991) from the American Physical
Society)
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5

Introduction to Magnetotransport

Summary. In this chapter, a brief account of some phenomena resulting from the interplay of
the magnetization of a sample and the spin-polarized currents will be given, including the giant
magnetoresistance and tunnel magnetoresistance effects. Simple models for the description of
these effects are presented. These effects depend on the relation between the flow of electrons
with a given spin through a sample, and the sample magnetization M, the physical basis of spin
electronics, or Spintronics. Other consequence of the interaction with spin-polarized electron
currents is the spin-induced, or spin-transfer torque.

5.1 Introduction

Magnetoresistance is the phenomenon of change in the resistance of a sample
submitted to a magnetic field. Its quantitative measure MR is given as a function
of RH and R0, the resistances of the sample with and without applied magnetic field:

MR =
RH −R0

RH
. (5.1)

A sample through which an electric current flows, submitted to an applied
magnetic field, may change its electrical resistance through magnetoresistance effects
that originate from different physical phenomena:

1. Anisotropic magnetoresistance: Arises from the interaction of the electron spin
with the orbital moment of the matrix atom (it depends on the angle between the
magnetization and the direction of the electric current)

2. Lorentz magnetoresistance arises from the curvature of the electron orbits in
the applied field and consequent increase in the length of the trajectories

3. Giant magnetoresistance results from the difference in spin scattering in the
regions with different directions of magnetization and in the interfaces (in multilayers
and granular systems)

4. Tunnel magnetoresistance results from the difference in tunneling probability
of electrons with spin up and spin down
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5. Colossal magnetoresistance arises from conductor–insulator transition in-
duced by applied magnetic field (e.g., in perovskites)

6. Domain wall magnetoresistance arises due to the magnetic field dependence
of the conduction electron spin scattering at the domain walls

7. Ballistic magnetoresistance is an effect observed in nanocontacts, due to spin-
dependent scattering at a domain wall in a nanocontact

8. Tunneling anisotropic magnetoresistance arises due to spin-orbit induced
anisotropy in the density of states

These mechanisms and the magnitudes of the different types of magnetoresis-
tance are given in Table 5.1.

An electron that propagates through a medium in the diffusive transport regime
undergoes a process of random walk. This regime is characterized by the condition
that the distances travelled by the electron are much smaller than the dimensions of
the conductor; the regime where the relation between these dimensions is reversed
corresponds to the ballistic regime.

The electron in the diffusive regime, after travelling on the average a distance
λmfp, the mean free path, suffers a collision. Let us consider that the electron under-
goes N collisions until it inverts its spin from spin up to down, or vice-versa. At this
point, the electron is found at a distance lsd from the starting point, given by

lsd =
√

N λmfp. (5.2)

This is the electron spin diffusion length, the length scale of the exponential de-
cay of the electron current magnetization. The total length of the path of the electron
is then

Nλmfp = vFτ, (5.3)

where vF is the Fermi velocity of the electrons, or velocity of the electrons that are at
the Fermi level, and τ is the spin relaxation time.

Combining the earlier two equations, the expression of the spin diffusion length
is obtained as:

lsd =
√

λmfpvFτ. (5.4)

Table 5.1. Types of magnetoresistance, mechanisms and magnitudes (Based on [7])

Type of magnetoresistance Origin ΔR (%)
at RT

Anisotropic MRa (AMR) Spin–orbit interaction 5
Lorentz MRb (LMR) Curved paths in the Lorentz curve ∝ B2

Giant MR (GMR) Spin-dependent transport 50
Colossal MR (CMR) Band-splitting due to ordering onset 5
Ballistic MR (BMR) Spin-dependent scattering at DW ∼103

Tunnel MR (TMR) Spin-dependent transport across
tunnel barrier

∼102

Tunnel anisotropic MR (TAMR) Anisotropic density of states ∼10
Domain-wall MR (DWMR) Spin-dependent scattering at DW ∼1
aSometimes called extraordinary magnetoresistance (EMR)
bSometimes called ordinary magnetoresistance (OMR), or MR
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Table 5.2. Spin diffusion lengths lsd for some materials, at different temperatures [4]

Temperature (K) lsd (nm)

Fe 4.2 8.5 ± 1.5
Co 4.2 ≥ 40
Ni 4.2 21± 2
Py 4.2 5.5± 1
Py 293 3
Co91Fe9 4.2 12± 1
Cu 293 500–700

If one injects a spin polarized current from a magnetic metal into a normal metal,
for example, there will be injected a net magnetization. The spin diffusion length is
the characteristic length for the exponential decay of the imbalance in the number of
conduction electrons with spin up and spin down, and consequently, of the conduc-
tion electron magnetization.

The length of the electron trajectory while this magnetization decays is a mea-
sure of the spin diffusion length lsd. Table 5.2 contains some values of the length lsd,
for different materials. These values vary from a few nanometers to some tens of
nanometers in magnetic metals; in nonmagnetic metals they reach several hundred
nanometers. The spin diffusion lengths exhibit also a temperature dependence, de-
creasing with increasing temperature.

“Spin up,” is defined as the spin orientation of the majority spins; note that the
spin magnetic moment and the spin angular momentum of a free electron point in
opposite directions ((2.10), p. 25). Thus a magnetic field pointing down will produce
a magnetization in the down direction; the majority spins will have spin up (and
moment pointing down).

A magnetic field H0 applied to an electron gas modifies the population of elec-
trons with spin up and spin down, as the original band splits into two sub-bands, one
with spin up, the other spin down, as introduced in Chap. 2. The two sub-bands are
displaced by

μ0μBH0, (5.5)

and there appears a magnetization due to the electrons, proportional to the difference
of electron population in the two sub-bands, and it is given by μs = μB(n↑ −n↓). In
a transition metal ferromagnet, the conduction electron band is spontaneously split
through the action of the Coulomb interaction between the electrons.

The computed densities of states for Fe, Co, and Ni illustrate the splitting of the
bands and the difference in population of the two sub-bands (Fig. 5.1); the density of
states curve of Cu is also given, for comparison. The curves show for Fe, Co, and Ni,
besides the difference in energy between the majority spin sub-band (↑) and minority
spin sub-band (↓), the difference in the densities of states at the Fermi level D(EF)↑
and D(EF)↓ for the two sub-bands.
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Fig. 5.1. Electron densities of states for Fe, Co, Ni, and Cu. Note that for Fe, Co, and Ni, at
the Fermi level (E = 0) the numbers of electrons of majority and minority spins, D(EF)↑ and
D(EF)↓, are different [32]. (Reproduced with permission [32])

This difference in population of spin up and spin down electrons is referred to as
an equilibrium polarization. A novel effect is the generation of non-equilibrium po-
larization, or pumping, arising from an external agent that may be an electric current,
electromagnetic radiation, or some resonance phenomenon.

Electrical spin injection is the effect produced by an electric current that cre-
ates such non-equilibrium polarization in a material. In its simplest form, an elec-
tric field pushes polarized electrons from a magnetic material into a nonmagnetic
material, where in consequence there appears a non-equilibrium spin polarization,
and a non-equilibrium magnetization δM . Another process that creates polarization
is the action of a spin filter, a tunnel barrier (see Sect. 5.3) whose height is dependent
on the electron spin [15]. The spin polarization will extend into the nonmagnetic
volume for a distance comparable to the spin diffusion length lsd, a parameter usu-
ally larger in the nonmagnetic material than in the magnetic material.
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Fig. 5.2. Spin injection of a ferromagnetic metal (FM) into a nonmagnetic metal (NM) and a
second ferromagnet. (a) density of states of the ferromagnet with the applied voltage V ; (b)
density of states of the paramagnet of thickness smaller than lsd, showing a non-equilibrium
magnetization δM; (c) density of states of the second ferromagnet. (Reprinted figure from
[12]. Copyright (1988) by the American Physical Society)

An illustration of spin polarization is given in Fig. 5.2, for a ferromagnet that
has only electrons with one spin direction at the Fermi level; this is known as a
strong ferromagnet. This ferromagnet (FM) (a) is in contact with a paramagnet, or
nonmagnetic material (NM) (b) of thickness smaller than the spin diffusion length
lsd, which is in contact with a second ferromagnet (c). As a voltage is applied to
the FM/NM system, the electrons of the ferromagnet gain an energy eV and these
excess electrons are transferred to the paramagnet. This produces an imbalance in
the two sub-bands of the paramagnet, leading to the appearance in it of an excess
magnetization δ M.

In two classic works, published in 1936, Nevil Mott [16, 17] argued that at low
temperatures, the electrons with spins ↑ and ↓ in a ferromagnet do not mix, since
there is no electron scattering with magnons. One may thus consider that an electron
current in the material flows through two independent conduction channels, one with
spin up, one with spin down.

In the model proposed by Mott [18], the conductivity is due to the s electrons, and
the resistivity arises from the s−d transitions. The rate of these transitions depends
on the density of states of the electrons at the Fermi level, on the number of electrons
per unit volume and on their effective mass. For each spin direction σ (σ =↑ or ↓)
the resistivity is given by

ρσ =
mσ

nσ e2τσ
, (5.6)

where the relaxation time τσ is related to the density of states of the σ electrons at
the Fermi level:

τσ ∝
1

Dσ (EF)
. (5.7)
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From the difference in resistivity of spin up and spin down electrons, one may
define spin asymmetry parameters, or coefficients, for a ferromagnet (F), with the
relations:

αF =
ρ↓

F

ρ↑
F

, (5.8)

and

βF =
ρ↓

F −ρ↑
F

ρ↓
F +ρ↑

F

. (5.9)

Therefore,
αF =

1+βF

1−βF
. (5.10)

If the resistivities for the two spin directions are the same, αF = 1 and βF = 0.
There are both intrinsic and extrinsic causes for the difference between the resis-

tivities ρ↓
F and ρ↑

F. The intrinsic factors are the difference in density of states of up
and down electrons and difference in effective mass, for example; extrinsic factors
relate to the number of impurities present in the material and the strength of their
scattering potential.

The values of αF vary for different magnetic systems; for example, in a Ni matrix,
impurities of Fe, Co, Mn, Au, and Cu have αF � 1 and impurities of Cr and V have
αF < 1 [6].

The total current density j is the sum of the current densities of the two channels,
with spin up and spin down:

j = j↑ + j↓. (5.11)

The spin current density js is

js = j↑ − j↓. (5.12)

One may define the electron current polarization Pj as the ratio of the spin current
density to the total current density

Pj =
j↑ − j↓
j↑ + j↓

. (5.13)

The out of equilibrium spin density δs is

δs = δn↑ −δ n↓, (5.14)

where n is the electron density.
The chemical or electrochemical potential μ is the variation in thermodynamic

potential of the system when an additional particle is introduced, for constant volume
and entropy. For particles that obey Fermi statistics, as the electrons, μ is given by

μ = EF

[
1− π2

12

(
kBT
EF

)2
]

. (5.15)
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At T = 0 K, the chemical potential μ is identical to the Fermi energy EF. In a
conductor the chemical potential is constant; if a voltage is applied, μ varies along
the conductor, according to Ohm’s Law. For a current along the x axis, one has:

∂ μ
∂x

= − e
σ

j, (5.16)

where e is the modulus of the charge of the electron, σ is the conductivity, and j is
the current density.

At an interface between two materials, for example, two different metals, the
chemical potentials adjust one to the other, in such a way that there is no discontinu-
ity. This situation is changed when a potential difference is applied.

One may treat the electrons with different spin directions as different particles,
each one with its value of the chemical potential. At low temperatures, the proba-
bility of spin flip, the change of electron spin direction, is small, and therefore the
number of electrons with a given spin direction may be considered constant. When
the electrons with different spin have different chemical potentials, there is a nonzero
out of equilibrium chemical potential μs given by:

μs = μ↑ −μ↓. (5.17)

This potential is a measure of an important effect that arises when electric
currents flow through magnetically ordered materials, referred to as spin accumu-
lation. Spin accumulation is the change in the density of electrons of majority spin
in both sides of an interface, for example, between a ferromagnetic metal and a non-
magnetic metal. This change is observed in a region of width of the order of the spin
diffusion length lsd in each material. At the interface, the chemical potential averaged
for the two spin directions μ0 undergoes a discontinuity given by Δ μ = μF

0 −μN
0 , in

the case of an F/N interface. This effect is illustrated for a ferromagnet/nonmagnet
interface in Fig. 5.3.

Δμ

μ

N

X

F

lsd
F

EF:p

lsd
N

Fig. 5.3. Spin accumulation effect in a ferrromagnetic/nonmagnetic interface. The graph
shows the chemical potentials of spin up and spin down electrons flowing from a ferromagnet
(F , left) to a non-magnet (N, right). The continuous line is the average chemical potential,
exhibiting a discontinuity Δ μ at the interface, that quantifies the spin accumulation



134 5 Introduction to Magnetotransport

This figure shows spin accumulation on either side of an F/N interface, that is,
the chemical potentials μ↑ and μ↓ are different (dotted lines), in a region of width
comparable to the spin diffusion length lsd of each material. Also shown is the dis-
continuity Δ μ , the spin averaged chemical potential.

The spin accumulation is proportional, for example, to the magnetization that
appears in a nonmagnetic material, when a polarized electron current crosses the
interface, coming from a magnetic material. The spin accumulation is related to the
densities of states of electrons of spin up and spin down at the Fermi level D↑ and D↓
of the ordered material through the relation

μs =
1
2e

D↑ +D↓
D↑D↓

δs. (5.18)

Therefore, the spin accumulation depends on the densities of states of the elec-
trons with spin up and spin down at the Fermi level, and is proportional to the out of
equilibrium spin density δs.

5.2 Spin Dependent Scattering and Giant Magnetoresistance

The giant magnetoresistance (GMR) is possibly the most important of the magne-
toresistances, in view of the interest in its physical basis and on its potential for
applications. In an experiment with multilayers, the resistance of the ferromagnetic
layers depends on the relative directions of the magnetization and electron spin [2].
This discovery is regarded as an important breakthrough that opened way to the de-
velopment of spin electronics, or Spintronics. It is illustrated in Fig. 5.4, where the
difference in scattering of electrons with up and down spins in the ferromagnetic
layers with magnetization up and down is schematically represented.

The simplest quantitative description of the GMR effect is afforded by the model
of resistance; the electrical resistance of a multilayer structure traversed by a current
of electrons with spin up and spin down is equivalent to a resistance of a circuit with
two parallel branches of resistors. When the magnetizations of the ferromagnetic lay-
ers are parallel, the equivalent circuit has resistors with small resistance in series in
one branch, and large resistors in the other. When the magnetizations of the layers
alternate their directions, the parallel circuits contain both large and small resistors.
The resistor schemes corresponding to magnetic layers in antiferromagnetic and fer-
romagnetic arrangements are represented in the lower part of Fig. 5.4; the resistances
for the two arrangements of the multilayer are RP (parallel magnetic layers) and RAP
(antiparallel layers).

The GMR effect can be studied in two geometries: (1) with a current applied
in the plane of the multilayer – current in plane (CIP) or (2) with a current applied
perpendicularly to the plane (CPP). In the CIP geometry, the average path of the
electrons is parallel to the interfaces, but the actual trajectories in fact sample the
whole multilayer, crossing the boundaries between magnetic and nonmagnetic lay-
ers. As the experiments are typically performed with thin films, the CIP arrangement
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Fig. 5.4. Top: The spin dependent electron scattering in a multilayer formed of magnetic and
nonmagnetic layers, arranged (a) antiferromagnetically and (b) ferromagnetically, essence of
the effect. Bottom: corresponding resistor schemes
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Fig. 5.5. Different geometries of magnetotransport experiments, exemplified with a multilayer
with a ferromagnet (FM), a nonmagnetic material (N) and a ferromagnet (FM): (a) current in
plane (CIP) and (b) current perpendicular to the plane (CPP)

is often preferred, since the CPP geometry leads to an electrical resistance that is too
low. These two experimental arrangements are illustrated in Fig. 5.5.

An example of measurements of the magnetoresistance and magnetization is
given in Fig. 5.6; the figure shows the magnetoresistance of 60X[Co(6nm)Ag(6nm)]
multilayers vs. applied magnetic field in the CPP and CIP geometries. The graphs
show MR vs. H in both cases; the magnetic hysteresis curve is also shown.
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Fig. 5.6. Magnetoresistance and magnetization as function of H for 60X[Co(6nm)Ag(6nm)]
multilayer (a) in the CPP and (b) in CIP geometries; (c) shows the hysteresis curve. The field
for maximum MR in the as-prepared sample is denoted H0, the saturation field is Hs, and Hpk
is the local maximum after attaining saturation [3]. (With permission from Elsevier Science
and Technology)

Table 5.3, taken from reference [8], gives some values of GMR measured with
multilayers of different materials; the values range from about 1−200%.

One can illustrate an application of the resistance network model to a multilayer
formed of two ferromagnetic layers separated by a nonmagnetic spacer. Its conduc-
tance, or inverse of the resistance, can be written in terms of the contributions to the
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Table 5.3. Values of GMR measured in different multilayers [8]

Material Temperature GMR Reference

Co(1.2 nm)/Ir(1.6 nm) RT 0.33% [34]
Fe(2.5 nm)/Mo(1.2 nm) 4.2 K ∼1.8% [5]
Fe(0.96 nm)/Au(3.3 nm) RT 2% [27]
Co(1.5 nm)/Cr(0.4 nm) RT 2.5% [23]
Co(3.0 nm)/Al(2.3 nm) RT 2.8% [11]
Ni/Cu 4.2 K 9.3% [25]
Ni80Fe20(1.25 nm)/Au(1.1 nm) RT 12% [22]
Ni80Fe20(1.25 nm)/Ag(1.1 nm) RT 17% [24]
Ni80Fe20(1 nm)/Cu(1 nm) RT 18% [19]
Co(0.6 nm)/Ag(2.5 nm) RT 22% [1]
Ni(0.8 nm)/Ag(1.1 nm) 4.2 K 36% [24]
Co(0.75 nm)/Cu(0.93 nm) 4.5 K 80% [21]
Fe(0.45 nm)/Cr(1.2 nm) 4.2 K 220% [26]

electrical resistance for a current of electrons with spin up and a current with spin
down. For example, one contribution is R↑↓, the resistance to electrons of spin up (the
first subscript) crossing a layer with magnetic moment down (the second subscript).
The contributions of the nonmagnetic layer R↑ and R↓ contain only the spin direction
of the conduction electrons.

The giant magnetoresistance is given quantitatively as:

GMR =
ΔR
RP

=
RAP −RP

RP
. (5.19)

This equation is consistent with the definition of giant magnetoresistance given
in (5.1); the two ferromagnetic layers in the above example have their moments
arranged one opposite to the other, in an antiferromagnetic coupling (antiparallel,
subscript AP), for H = 0. With applied magnetic field (H �= 0) the arrangement is
ferromagnetic, or parallel (subscript P).

Considering the current perpendicular to the plane, or CPP geometry, the resis-
tances RP and RAP are sums of resistances in parallel of electrons with spin up and
spin down. Therefore:

1
RP

=
(

1
R↑↑ +R↑ +R↑↑

+
1

R↑↓ +R↓ +R↑↓

)
, (5.20)

and 1
RAP

=
(

1
R↑↑ +R↑ +R↑↓

+
1

R↑↓ +R↓ +R↓↓

)
. (5.21)

Assuming that for the nonmagnetic layers the resistivity is independent of the
electron spin (up or down):

R↑ = R↓. (5.22)
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Equations (5.20) and (5.21) can be simplified if one writes the resistance of the
multilayers in the case where electron moment and layer magnetization are parallel
or antiparallel as R↑ and R↓, respectively:

R↑ = R↑↑ +R↑ +R↑↑, (5.23)

and
R↓ = R↑↓ +R↓ +R↑↓. (5.24)

With these definitions, (5.20) and (5.21) become:

1
RP

=
(

1
R↑ +

1
R↓

)
, (5.25)

and
1

RAP
=

(
4

R↑ +R↓

)
. (5.26)

The giant magnetoresistance is therefore:

GMR =
RAP −RP

RP
=

(R↑ −R↓)2

4R↑R↓ . (5.27)

From this expression one sees that the giant magnetoresistance does not change
if (R↑ −R↓) is either positive or negative.

The proper calculation of the resistivity of a multilayer formed of nonmagnetic
and ferromagnetic layers requires the inclusion of contributions both from the inte-
rior of the layers and from the interfaces. The simplest description of the total re-
sistivity is the two-current series resistor model (2CSR), valid for layer thicknesses
smaller than the corresponding spin diffusion lengths. In this approximation, layer
and interface contributions to the magnetoresistance add up in series.

The resistivities of a ferromagnetic layer for parallel and antiparallel alignment
of electron and layer magnetization are written in terms of the bulk resistivity ρF. The
notation is ρ↑

F and ρ↓
F for electron moment and layer moment parallel and antiparallel,

respectively:

ρ↑
F =

2ρF

1+βF
; ρ↓

F =
2ρF

1−βF
. (5.28)

The contribution to the resistivity of the interfaces RF/N between F (ferromagnet)
and N (nonmagnetic) layers, using an analogous notation, is:

R↑
F/N =

2RF/N

1+ γ
; R↓

F/N =
2RF/N

1− γ
. (5.29)

where a new asymmetry parameter γ , related to the interface, has been introduced.
The spin asymmetry parameters, or coefficients, dependent on the alignment of

conduction electron moment at the layers and at the interface are:

αF =
ρ↓

F

ρ↑
F

=
1+βF

1−βF
. (5.30)



5.2 Spin Dependent Scattering and Giant Magnetoresistance 139

and

αF/N =
R↓

F/N

R↑
F/N

=
1+ γ
1− γ

. (5.31)

The specific resistance AR is the product area × resistance = resistivity × thick-
ness (or length):

AR = ρ × t. (5.32)

The length of the electron path that crosses perpendicularly a multilayer (CPP
geometry) is its total thickness; for a system of N equal bilayers of thicknesses tN and
tF, for the nonmagnetic and the ferromagnetic layers, respectively, it is t = N(tN +tF).
The quantity AR, the product of the area times the resistance of a multilayer is a sum
of the resistance terms at the interfaces and at the different layers. For a magnetic
field H0 that does not saturate the magnetizations, i.e., that produces a configuration
of antiparallel (AP) magnetizations, one has:

ARAP(T ) = N(ρNtN +ρ∗
FtF +2AR∗

F/N). (5.33)

As an approximation, one uses N instead of N −1 or N +1.
The terms with asterisks are the renormalized resistances:

ρ∗
F =

ρF

1−β 2
F

; R∗
F/N =

RF/N

1− γ2 . (5.34)

The spin asymmetry parameters that characterize the interfaces, such as γ ,
depend on their physical rugosity and their “chemical rugosity” (a measure of the
degree of alloying at the interface). See Table 5.4 for some values of the parameters
for CoCu multilayers.

For a field that saturates the magnetization H = Hsat, the magnetizations of the
ferromagnetic layers are parallel, the specific resistance is ARP(T ) (P for parallel):

ARP(T ) = ARAP(T )−N2
(βFρ∗

FtF +2γAR∗
F/N)2

ARAP(T )
. (5.35)

Re-writing this result, one has

A
√

RAP(T )[RAP(T )−RP(T )] = N(βFρ∗
FtF +2γAR∗

F/N). (5.36)

Table 5.4. Parameters for Co/Cu multilayers [3]

Parameter Unit Value

ρCu nΩ m 6 ± 1
ρ∗

Co nΩ m 75 ± 5
βF – 0.46 ± 0.05
γ – 0.77 ± 0.04
AR∗

Co/Cu fΩ m2 0.51 ± 0.02
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RAP(T )ΔR vs. number of bilayers of Co and Cu-based alloys. The pure
Co/Cu system and the Co/Cu (4%Ge) systems are fitted to a straight line through the origin,
given by the 2-resistor model (2CRS) (5.36). The multilayers with Pt and Mn have to be fitted
with the Valet–Fert theory. The numbers on the right are the spin diffusion lengths lsd derived
from the computer fits. (Reproduced with permission from [4])

Making a plot of the expression on the left-hand side of (5.36) as a function of
N (number of bilayers), one can distinguish the different contributions to the mag-
netoresistance, i.e., the contributions from the volume and from the interfaces. For
example, by varying the thickness tF the volume term varies, and by varying N, the
interface contribution varies [9]. This type of plot is shown in Fig. 5.7, where one
can see the dependence of ARP(T ) with N in the 2CRS model and in the Valet–Fert
model (see below).

An application of the above result (5.36) to an exchange-biased spin valve,
consisting of a multilayer of structure [AF/F/N/F], gives for AΔR, where AΔR =
RAP −RP:

AΔR =
4(βF ρ∗

FtF + γAR∗
F/N)2

2ρ∗
FtF +ρNtN +2AR∗

F/N +ARAF/F +ρAFtA/F
. (5.37)

The denominator of AΔR corresponds to the specific resistance of the antiparallel
configuration ARAP.

In multilayers formed with two different ferromagnetic materials, one can com-
bine one layer with αF < 1 to another with αF > 1, and obtain a system that exhibits
an “inverse” GMR, a condition characterized by RP > RAP. Figure 5.8 shows the
difference between the “normal” GMR and the inverse GMR.

An example of a system that presents the inverse GMR is the NiCr/Cu/Co/Cu
multilayer structure.

Therefore, the normal and inverse giant magnetoresistances are characterized by:
(1) Normal GMR: 1 FM metal, βF > 0; (2) Inverse GMR: 2 FM metals, β1 > 0,
β2 < 0.
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Fig. 5.8. (a) “Normal” and (b) “inverse” GMR. In the latter there are two ferromagnetic metals
with different ratios of α parameters and different βF parameters [3]. (With permission from
Elsevier Science and Technology)

5.2.1 Valet–Fert Model for GMR

The simple two-current series-resistor (2CSR) model is effective in describing the
behavior of the magnetoresistance in many simple multilayers, but it breaks down
for systems formed of layers that have thicknesses comparable to the spin diffusion
lengths. In this case the α and β parameters defined above are dependent on the
thicknesses tF, tN, and on the number of repetitions N. The deviations from the 2CSR
model are consequently notable in the multilayers formed of thicker films, as shown
in the plots of magnetoresistance vs. N of Fig. 5.7.

The Valet–Fert model [31] attempts to describe the magnetoresistance of multi-
layers that have components with thicknesses that are not much smaller than the spin
diffusion length lsd. The results in this description are in general more complicated,
and in most cases a numerical solution is required.

One simple application of the Valet–Fert model is that to an exchange-biased
spin valve, with composition [AF/F/N/F], where the result depends not only on the
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thickness of the nonmagnetic layers, but also on the spin diffusion length of the
ferromagnet [3]:

AΔR =
4(βFρ∗

F lF
sd + γAR∗

F/N)2

2ρ∗
F lF

sd +2AR∗
F/N +ρNtN

. (5.38)

Comparing the above result to the description of the same multilayer within the
2CSR model (5.37) one notes that the denominator of AΔR given in the Valet–Fert
model is the same as in the previous case, but now the quantity tF has been substituted
by the thickness of the “active” region of the F-layer, that is, the spin diffusion length
lF
sd in the ferromagnet.

5.3 Tunnel Magnetoresistance (TMR)

The tunnel effect is a quantum-mechanical effect that consists in the transmission of a
particle through a potential barrier. In a tunnel junction, two electrical conductors are
connected through an insulating thin film, and electrons cross the barrier represented
by the film; this thin film, for example, made of Al2O3, usually has a thickness in the
range of nanometers.

Tunnel junctions, under an applied magnetic field, exhibit a magnetoresistance
effect, known as tunnel magnetoresistance (TMR). This is observed in magnetic tun-
nel junctions (MTJ), junctions formed of two ferromagnetic layers separated by a
thin insulating film. The effect arises from the dependence of the probability of
tunneling on the relation between the direction of the spin of the conduction elec-
trons and the direction of magnetization of the ferromagnetic contacts. An exter-
nal magnetic field affects the MTJ resistance through its action on the direction of
magnetization of the ferromagnets; the resistance for an antiparallel arrangement
of magnetizations is different from that measured with a parallel alignment. See,
for example, the curve of resistance versus intensity of the magnetic field for a
CoFe/Al2O3/Co junction (Fig. 5.9).

The TMR, differently from the giant magnetoresistance effect (GMR), does not
depend on the difference in resistivity for the electrons with up and down spins inside
the ferromagnetic conductors. To a first approximation, the effect correlates only
with the differences in electronic structure (densities of states) on either side of the
insulating barrier. Therefore, the conductance of a tunnel junction does not depend
on the electron spin diffusion length of the constitutive materials.

The magnitude of the tunnel magnetoresistance TMR of a system consisting of a
ferromagnet, an insulator, and again a ferromagnet (F/I/F) may be defined as:

T MR =
GP −GAP

GAP
=

ΔR
R

=
RAP −RP

RP
, (5.39)

where RP and RAP are the resistances, and GP and GAP are the conductances, in the
parallel and antiparallel configurations. This magnetoresistance effect may amount
to a large effect at room temperature, a fact that has stimulated the study of the
applications of MTJ’s as field sensors, read heads and other electronic components.



5.3 Tunnel Magnetoresistance (TMR) 143

10.0

7.5

5.0

2.5

–600 –400 –200 0 200 400 600
0

Δ
R R

(%
)

H (Oe)

CoFe/Al O /Co2 3

Fig. 5.9. Tunnel magnetoresistance (TMR) vs. magnetic field for a CoFe/Al2O3/Co junction.
The arrows show the arrangement of the magnetizations of the two ferromagnetic layers.
(Adapted from [14])

Values of TMR for some magnetic tunnel junctions, obtained at different temper-
atures, are given in Table 5.5; they range from a few percent to hundreds of percent.
The general trend of increasing TMR with decreasing temperature can be noted in
this table.

A model has been proposed by Jullière to describe TMR [13], based on two
assumptions: the projections of the spin of the electrons are conserved across the
barrier, and second, the conductance is proportional to the effective tunneling den-
sity of states (DOS) for the FM electrodes. The latter condition corresponds to the
hypothesis that the majority spin electrons tunnel to the majority states of the sec-
ond electrode if the alignment of the magnetic moments of the layers is parallel, and
to the minority states if the alignment is antiparallel; this is shown schematically in
Fig. 5.10.

The conductance can then be written as a function of D(EF)i (i = 1,2), the den-
sities of states of the two ferromagnetic electrodes.

The total conductance is the sum of the conductances for spin up and spin down
electrons. For the configuration of parallel magnetizations, the conductance for each
electron spin projection is proportional to the product of the corresponding densities
of states; the total conductance is the sum of the conductances for spin up and spin
down. In the parallel arrangement, this conduction can be written:

GP ∝ D(EF)↑1D(EF)↑2 +D(EF)↓1D(EF)↓2. (5.40)

For antiparallel arrangement, the conductance is, analogously,

GAP ∝ D(EF)↑1D(EF)↓2 +D(EF)↓1D(EF)↑2. (5.41)
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Table 5.5. Magnetoresistance of some tunnel junctions. Note the difference in the values for
different temperatures [10]

Structure of the junction TMR (%) Temperature

Co–Ge (10 nm)–Co 16 4.2 K
Fe–Al2O3–Fe 18 300 K

30 4.2 K
CoFe–Al2O3–Co or NiFe 11.8 295 K

24 4.2 K
CoFe–ZnS2-CoFe 5 270 K

10 6 K
CoFeB–Al2O3–CoFeB 70 300 K
CoFeB–MgO-CoFeB 472 300 K

804 5 K
CoFe–MgO–CoFe 220 300 K

300 4.2 K
Fe–MgO–Fe 180 300 K
Co2Cr0.6Fe0.4Al–MgO–CoFe 37 300 K
Co2Cr0.6Fe0.4Al–Al2O3–CoFe 16 300 K
Co2Cr0.6Fe0.4Al–MgO–CoFe 90 300 K

240 4.2 K
Co2MnSi–Al2O3–Co2MnSi 67 300 K

Fig. 5.10. Electron tunneling across a ferromagnet/insulator/ferromagnet junction. In (a) the
orientation of the magnetizations is parallel and (b) antiparallel, showing in both cases the
electron density of the split d states. Dashed lines show spin conserved tunneling. (Reprinted
from [35]. Copyright (2004) by the American Physical Society)
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It has been shown that the densities of states relevant to the tunneling current
are the densities of parabolic bands, or free-electron-like bands [29]. One generally
refers to these densities of states as tunneling densities of states.

The polarization in a ferromagnet i is defined as the relative imbalance in the
majority and minority spin electron densities of states at the Fermi level:

P =
D(EF)↑ −D(EF)↓

D(EF)↑ +D(EF)↓
. (5.42)

Using the expressions for TMR (5.40) and (5.41), and the definition of the po-
larization (5.42), the Jullière’s formula is obtained for the tunnel magnetoresistance,
relating it to the polarizations P1 and P2 of the two ferromagnets:

T MR =
2P1P2

1−P1P2
. (5.43)

Jullière’s model predicts for Ni/Al2O3/Ni and Co/Al2O3/Co values of TMR of
25% and 42%, in reasonable agreement with the experiments [30].

A tunnel junction of structure ferromagnet–insulator–ferromagnet is analogous
to a trilayer presenting GMR in the perpendicular current geometry (CPP).

In materials known as half-metals, such as the compounds CrO2 and NiMnSb, the
minority spin sub-band is empty, and therefore, the electrons at the Fermi level are
exclusively of majority spin. Consequently, there is in this case 100% polarization,
i.e., in the first ferromagnet one has

P1 =
D(EF)↑

D(EF)↑
= 1. (5.44)

The density of states of the CrO2 half-metal is shown in Fig. 5.11, where the
minority sub-band (on the right) is seen empty.

From (5.40) and (5.41) there will be current across the junction only in the case
of parallel magnetizations, otherwise the conductance G will be zero.

Although Jullière had assumed, as a first approximation, that tunnel magnetore-
sistance did not depend on the shape of the density of states curves of its ferro-
magnetic and insulating components, relating only to the densities of states at the
Fermi level of the ferromagnets, many aspects of the effect could not be described
within this model. A more complete treatment is required taking into account the
dependence of the effect on the electronic structure of the ferromagnets and of the
insulating barrier. The Slonczewski model for the tunnel magnetoresistance uses two
identical ferromagnetic layers with exchange-split parabolic bands, separated by a
rectangular potential barrier [28]. This leads, for a thick barrier, to a conductance
that is a linear function of the cosine of the angle between the magnetizations:

G(θ) = G0(1+P2 cosθ ), (5.45)

where P is the effective spin polarization of the tunneling electrons.
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Fig. 5.11. Electronic structure of the half-metal CrO2, exhibiting an empty minority (spin
down) sub-band. (From [33]. Reprinted with permission from AAAS [33])

In this model, the electron wavefunction extends into the insulating barrier, where
it is attenuated, with an imaginary wave vector κ as the damping factor, given by:

h̄κ =
√

2m(Vb −EF), (5.46)

where Vb is the barrier height, m is the electron mass and EF is the Fermi energy.
The polarization is given by:

P =
[

k↑ − k↓
k↑ + k↓

][
κ2 − k↑k↓
κ2 + k↑k↓

]
. (5.47)

If Vb, the height of the barrier, tends to infinity, so does the factor κ , then the
second fraction tends to 1, and the result, since D(EF) ∝ kF, is identical to Jullière’s
expression (5.43).

Finally, one could add that ballistic magnetoresistance (BMR) is similar to TMR
in its dependence on the polarization of the conduction electrons:

BMR =
RAP −RP

RAP
=

2P2

1+P2 F(δ0,λF), (5.48)

where P = P1 = P2 is the same polarization defined in (5.42), δ0 is the domain wall
width and λF is the Fermi wavelength. F(δ0,λF) is a function that describes the
domain wall scattering.

The similarities between TMR and BMR may make it difficult to distinguish
true TMR from conductance through pinholes in the insulating layer. A proof of
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true TMR is given by the temperature dependence of the conductance G(T ): TMR
decreases with increasing temperature, an effect that arises from the reduction of
the electron polarization; the polarization is found to follow a Bloch T 3/2 law. The
tunneling magnetoresistance phenomenon shows a magnetic field dependence, and
is also modified by variations in voltage (bias).

The practical realization of a MTJ usually employs a hard magnetic layer and a
soft magnetic layer. As the magnetic field is applied, it turns the magnetization of the
soft layer. When the magnetization of the soft ferromagnet turns, the conductance G
varies through its dependence on the angle θ (5.45).

In most cases the magnitude of the TMR is reduced with increasing bias volt-
age; this effect appears to be related to the creation of magnons at the ferromag-
net/insulator interface.

Another type of tunneling magnetoresistance is associated to the anisotropy in
the electron density of states, arising from spin–orbit interactions. This anisotropic
tunneling magnetoresistance (TAMR) has been observed in structures containing one
ferromagnetic semiconductor, a barrier and a nonmagnetic metal, or using instead of
a semiconductor, a Co/Pt multilayer (e.g., [20]).

An important effect that arises from the interaction of spin-polarized electrons
and the magnetization of nanoobjects is the spin-transfer torque, that allows switch-
ing the magnetization through the action of the polarized electric current. This was
discussed in Chap. 3, on p. 96.
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6

Magnetism of Nanodisks, Nanorings, and Nanowires

Summary. This chapter contains a brief survey of the remarkable magnetic properties of
low-dimensional magnetic objects such as nanodisks, nanorings, and nanowires. These
nanoscopic systems have been intensely studied in the last years, not only because of these
properties, but also for their enormous potential for high-density information storage. Nan-
odisks and nanorings are promising as elements of bit-patterned magnetic recording sys-
tems, and nanowires, among other applications, can store and process information through
the motion of magnetic domain walls.

6.1 Introduction

Besides the nanoscopic and mesoscopic systems that may be classed as almost
bidimensional, such as thin films, or quasi-zero-dimensional, as nanoparticles other
structures built on the same scale had their magnetic properties investigated. We deal
here with some of these low-dimensional systems: nanodisks or nanodots, nanorings,
and nanowires. Some of these systems can be prepared with the same techniques
used to make thin films: the samples of nanodisks and nanorings are usually thin,
shaped from a thin film of magnetic material deposited on a nonmagnetic substrate.
Nanowires can be made in the same way, but most of the nanowires are prepared
from templates with narrow channels or pores. One common characteristic of these
samples is that in many cases they are prepared as regular arrays, a form that favors
the handling of the samples and measurement of the magnetic properties, such as
magnetization, etc.

In some aspects the magnetism of these objects is comparable to the magnetism
of nanoparticles, and therefore, much of what is applicable to nanoparticles is also
valid for nanodisks, nanorings, and nanowires. On the other hand, the fact that the
nanoscopic disks and rings of interest are approximately bidimensional, justifies why
some results valid for extended thin films are also relevant for their study.
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6.2 Nanodisks

Arrays of near circular magnetic islands of nanoscopic or mesoscopic dimension
deposited on nonmagnetic substrates present interesting physical properties and have
been extensively studied. These systems are also relevant as models for the devel-
opment of patterned (or bit-patterned) magnetic recording media, magnetic media
where each individual bit has the pre-determined position as an element of the array.
Media with this structure are candidates for higher density magnetic recording (see
Chap. 7).

The magnetic elements in such arrays can be nanodots or nanopillars with
circular, elliptical, or other cross-sections (e.g., [8]). These magnetic arrays have also
been made of nanorings, or sub-micron rings, that will be considered in Sect. 6.3.

We remarked in Sect. 3.1 that in the lowest energy state, spherical particles of soft
magnetic material (e.g., permalloy), have for some range of diameters a vortex spin
structure; this is shown in Fig. 3.5, p. 62 and Fig. 3.8, p. 65. The same has been found
experimentally to be true of magnetic circular nanodots, or nanodisks (Fig. 6.1). For
example, for permalloy disks 15 nm thick, these vortices are observed above a critical
diameter of about 100 nm [8]. Micromagnetic simulations lead to a critical diameter
of 10 lex for permalloy disks of thickness 5 lex, where lex is the exchange length [31].
A theoretical derivation arrives, for thin disks, at the following expression for the
minimum disk diameter for the observation of a vortex structure as the lowest energy
state [23]:

Dvo
cr = 7.4 lex. (6.1)

For permalloy, for example, lex ∼ 5 nm; thus, for a disk made of permalloy, this
critical diameter Dvo

cr is about 40 nm.
In thin magnetic disks, or circular dots of thickness of the order of the exchange

length lex that exhibit a vortex spin structure, the magnetization is mostly confined to
the plane of the disk. Near the center of the disk, where the vortex center is located,

Fig. 6.1. Vortex arrangement of magnetic moments in a circular nanodot of soft magnetic
material; the height at each point represents the z component of the magnetization. Note how
the tips of the moments point out of the plane near the center – this is the vortex core, a region
that has a net magnetization perpendicular to the plane of the disk
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however, the equilibrium arrangement for the magnetic moments is such that the tips
of the magnetic moment vectors move out of the plane, and consequently there is a
perpendicular component of the magnetization, that reaches its maximum amplitude
at the center of the disk. This is illustrated in Fig. 6.1.

The existence of this z component is due to the fact that the cost, in terms of
exchange energy, of keeping the magnetic moments turning in a small circle in the
plane near the center of the disk is locally very high, and the only form of lowering
this energy is to tend towards parallelism of the atomic moments, pointing them out
of the disk plane in the vortex core.

This perpendicular magnetization of the vortex core is verified experimentally
through images of nanodisk arrays obtained using magnetic force microscopy
(MFM), that shows dark or light dots at the center of the disks, arising from the
uncompensated magnetic poles, indicating up or down vortex core magnetization.
First principles calculations performed for Fe nanodisks also show that the electronic
structure of the atoms at the center of the vortex core is modified, and an orbital mo-
ment perpendicular to the plane appears [28].

Vortices observed in soft magnetic nanodisks correspond to the limiting
arrangement of the domain structures found in square nanodots when four Landau
states, i.e., four triangular domains separated by 90◦ domain walls, are formed. A per-
fect vortex is the spin structure obtained as the number of such domains increases
indefinitely, the angles between the magnetization of neighbor domains tend to zero.

The vortex core has in general a radius Rc of the order of the exchange length;
the computed radius is close to lex in the limit of a negligibly thin disk (see [17]).
Its shape, or vortex profile, i.e., the form of the radial distribution of perpendicular
magnetization Mz(r), is axially symmetric, with a dependence with r given, in the
case of positive core magnetization, by [16]:

Mz(r) = M0(ce−r2/lex +(1− c)e−r2/4l2
ex) . (6.2)

Here c depends on the thickness of the nanodot, with the value c = 0.52 in the
limit of very thin dot. In this limit, the core radius is given by Rc = πlex/(

√
2+6c)

[16].
Micromagnetic simulations derive a radial dependence of the z component of the

magnetization Mz very close to the above function; Mz(r) is positive in the core,
with a small negative component just outside the core. Other forms for the vortex
magnetization profile were given by other authors [1, 16].

The z component of the magnetization of the vortex core can point up or
down; from this characteristic, one defines the vortex polarity p, a parameter with,
respectively, values +1 or −1:

Polarity p = +1 Mz > 0 (up)
Polarity p = −1 Mz < 0 (down)

The sense of rotation of the vortices can be either clockwise (CW) or
counterclockwise (CCW). This defines the circulation c, or vorticity of the vortex,
quantitatively measured by the integral of the angle along the magnetization, divided
by 2π. Thus, c = −1 for a clockwise rotating vortex, and c = +1 for a counterclock-
wise vortex.
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When one takes into account the fact that nanodisks in the vortex state also have
a core with perpendicular magnetic moment which can point up or down (polarities
+1 and −1), the nanodisks behave as chiral objects. We use the word in the sense
as used more than a century ago by Lord Kelvin, i.e., “if its image in a plane mirror,
ideally realized, cannot be brought to coincide with itself” [2], like the human hand,
kheir, in Greek.1

There are, consequently, four possible combinations of vortex sense of rotation
or circulation c (CW and CCW), and the vortex core polarity p (up or down):

p = +1 (up) c = −1 (CW) cp = −1
p = +1 (up) c = +1 (CCW) cp = +1
p = −1 (down) c = −1 (CW) cp = +1
p = −1 (down) c = +1 (CCW) cp = −1

In the four combinations given above, the product cp may take two values, ±1,
that define the handedness, or chirality of the vortex.

The experimental determination of polarity can be made with the MFM
technique; the tip of the microscope samples the stray field and from it determines
the sign of Mz at the core. The chirality can be determined with the Photoemission
Electron Microscopy technique (PEEM). In this technique, X-rays illuminate the
sample, and the emitted photoelectrons are focused to obtain an image of the ob-
ject; it allows the determination of the distribution of magnetization directions. The
chirality can also be determined from the motion of the vortex core induced by an
in-plane pulse of magnetic field, as will be described below.

Fig. 6.2. Vortex (a) and antivortex (b) spin structures in magnetic nanodisks; the color code
represents the angles of the local magnetic moments

1 There is no agreement between different authors on this nomenclature: some use chirality
for the circulation defined here, and use vorticity as a synonym of winding number.
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A nanodisk can also magnetize itself in the form of an antivortex (Fig. 6.2b).
This spin structure is equivalent to the superposition of two perpendicular 180◦

domain walls. The antivortex does not correspond to an energy minimum for a
nanodisk. An antivortex also has perpendicular magnetization components at its cen-
ter, according to MFM measurements in permalloy astroid-shaped thin films and mi-
cromagnetic simulations [34].

A vortex has a winding number n = +1, that does not depend on its chirality C; an
antivortex has winding number n =−1. The winding number of a vector field V(P) is
calculated by counting, along a counterclockwise rotation, the number of revolutions
of V(P); if the revolutions are clockwise this number is negative, if counterclock-
wise, positive (e.g., [26]).

A static magnetic field H applied in the plane of a nanodisk will displace the
core from its center, along a radial trajectory perpendicular to H. As the intensity of
the magnetic field is increased, the core will eventually be forced out of the disk, or,
in other words, the vortex will be destroyed. Increasing the intensity of the field, a
single-domain configuration will be reached.

The observed behavior of the vortex core is different if a short in-plane magnetic
field pulse is applied. Immediately after the application of a field pulse, the core
begins to move in the direction of the field, in the case of right-handed chirality (cp =
+1), or in the opposite sense, for left-hand chirality (cp =−1), as measured by time-
resolved X-ray imaging [9]; this effect can be understood from the torque produced
on the magnetic moments in the vortex. After cessation of the magnetic field pulse,
the vortex core precesses around its equilibrium position, in a near spiral trajectory.
The core in this gyrotropic motion is under the influence of the magnetostatic field
that appears with its displacement. The rotating direction of the vortex core is also
defined by the chirality of the vortex.

Micromagnetic simulations show that the anti-vortices also perform spiral-like
trajectories after being submitted to in-plane magnetic field pulses [46].

A static magnetic field applied perpendicularly to the plane of the nanodisk can
invert the polarity of a vortex core. This field must have an intensity above a certain
critical value Hvo

cr , and direction opposed to the vortex core magnetization. This mag-
netization reversal can also be produced through the application of an in-plane rotat-
ing magnetic field of much smaller intensity than this critical field Hvo

cr . The process
of inversion of the polarity of the vortex core goes through an intermediate phase, in
which an antivortex is created and, in its turn, annihilates the initial vortex [45].

Another form of reverting the vortex polarity is achieved through the application
of a spin-polarized ac electric current [47], through a mechanism called spin-
switching [4,36], discussed in Sect. 3.5.3, p. 96. The ac current induces a precession
of the vortex core, or gyrotropic motion, and a magnetic field results, proportional to
the velocity of the motion of the core. This current has to have a frequency close to
the resonance frequency of the magnetic core, usually of a few hundred megahertz.

When the vortex core velocity reaches a critical value, of a few hundred me-
ters per second in the experiment with 500 nm permalloy disks, this out-of-plane
magnetic field has an intensity of about 0.2 T, which is sufficient to invert the core
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Fig. 6.3. Sequence of computed magnetization of a soft magnetic disk at different times show-
ing the current-induced inversion of polarity of a vortex core in a permalloy 500 nm disk. The
vertical axis represents the z magnetization: in (a) the vortex core is at rest, in the following
images (b–f) the core moves under the influence of an ac current, and eventually changes polar-
ity completely [47]. Reprinted by permission from Macmillan Publishers Ltd. [47], copyright
(2007)

magnetization [47]. The several stages of this inversion of polarity are shown in
Fig. 6.3.

This critical velocity vc is similar to the critical velocity of one-dimensional
domain wall motion (Walker velocity, Sect. 2.4.2, p. 50) that corresponds to the
Walker breakdown [32]. This velocity is approximately given (expressing in SI
units) by

vc ≈ (
γG

4π
)MsRc ≈ (

γG√
4π

)Ms lex (6.3)

where Rc is the vortex core radius and lex is the exchange length, γG is the gyromag-
netic factor; it is estimated as vc = 350 m s−1 for a permalloy nanodot [14].

Let us a consider a soft magnetic disk that has a diameter sufficiently large that
its zero-field spin configuration is a vortex state. Its hysteresis curve, drawn under
a magnetic field applied parallel to the plane of the disk, has zero magnetization
for H = 0, increases the magnetization as the vortex core is displaced and finally
expelled from the disk, reaching saturation corresponding to a single-domain spin
configuration. As the magnetic field intensity H is reduced from saturation, a sharp
drop in magnetization is observed at the point in the hysteresis curve that corresponds
to the reappearance of the vortex, and in continuation, depending on the dimensions
of the disk, the curve may go through the point (H = 0, M = 0), therefore exhibiting
no coercivity, as shown in Fig. 6.4.
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a b

Fig. 6.4. Hysteresis curves for permalloy nanodisks, under an in-plane applied magnetic field,
obtained by micromagnetic simulation. Left: nanodisk of 120 nm diameter, with single-domain
spin configuration, and right, nanodisk of 500 nm diameter, with vortex ground state

The symmetry properties of vortices and antivortices can be expressed through
(1) the polarity p, that can take values of +1 or −1, (2) winding number, n = +1 for
vortices and n = −1 for antivortices, and (3) the skyrmion number, q given by

q =
np
2

. (6.4)

When a pair vortex–antivortex meets, they are annihilated. Since n = +1 for
a vortex and n = −1 for an antivortex, it follows that qv = +pv for a vortex and
qav =−pav for an antivortex. Therefore, a pair vortex–antivortex with parallel polar-
ities has zero total skyrmion number q. In this case the annihilation leads to a gradual
decrease of the total energy of the spin arrangement. On the other hand, if the polar-
ities are opposite, the total skyrmion number is |q| = 1, and the annihilation of the
pair produces a burst of spin waves [41].

Elliptic nanodots have a shape anisotropy contribution to the anisotropy, and con-
sequently, for smaller dimensions, tend to form single domains with magnetization
parallel to their longer axis. This lower symmetry leads to a magnetic behavior that
is more complex than that observed with the nanodisks. Some of the possible spin
configurations observed in micromagnetic simulations for soft elliptic nanodots are
shown in Figs. 6.5 and 6.6: these figures show a single-domain in-plane magnetiza-
tion, a single-domain with magnetization perpendicular to the dot plane, and config-
urations with one and two vortices.

Larger elliptical nanodots tend to form more than one vortex, with two senses
of rotation (CW and CCW); the polarities of these vortices may be the same, or
opposite. For example, with two vortices, the product of the polarities p1 p2 takes
value of ±1.

A static in-plane magnetic field leads to a new equilibrium position of the vortex
that is different from the position for H = 0. A field parallel to the long axis of
the ellipse produces a displacement of the vortices to the opposite sides of this
axis; a perpendicular field displaces them along the same axis. This behavior does
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Fig. 6.5. Single-domain spin configurations of soft elliptic nanodots obtained by micromag-
netic simulation: (a) single-domain with in-plane magnetization, (b) single-domain with mag-
netization perpendicular to the plane of the nanodot

Fig. 6.6. Two vortex spin configurations of soft elliptic nanodots obtained by micromagnetic
simulation: (a) single vortex and (b) double vortex

not depend on their polarities; however, the dynamic behavior observed during the
excitation with oscillating magnetic fields, on the other hand, is dependent on the
vortex polarities [5].

6.3 Nanorings

Macroscopic magnetic rings known as magnetic core memories were developed in
the 1950s, and were used in computers for some 20 years. The rings were typically
of 1 mm diameter, the size gradually decreasing with the development of this tech-
nology. Each ring was used to store a single bit, and the switching between the two
magnetic states was induced by the field produced by wires that run through a matrix
of cores.

In recent years, magnetic rings of micrometric or sub-micrometric size, with
thicknesses much smaller than their diameters have attracted much attention of work-
ers in magnetism. They are other types of bidimensional structure that have interest-
ing magnetic properties; they are usually deposited as an array on a nonmagnetic
substrate. For a review on magnetic nanorings, see [43].

Their study also has relevance to the development of technologies of high-density
magnetic recording (see Chap. 7, on magnetic recording). Nanorings present some
advantages in comparison with the nanodisks for application to magnetic recording,
allowing higher density storage, arising from their flux closure structure and more
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stability in the switching conditions [50]. Rings may also be used as microsensors,
to detect magnetic nanoparticles [27].

Both disks and rings, in the vortex state, if used to store magnetic recording bits,
have the advantage that in this state the interactions between neighbor elements are
minimized, due to the smaller stray magnetic fields.

Nanorings have many properties in common with the disks due to their similar
morphology; for example, for thicknesses comparable to the exchange length, the
magnetic moments are contained in the plane, they also present magnetic vortices
in their minimum energy configuration for a range of diameters. A significant dif-
ference, though, in this geometry the exchange energy term associated to the vortex
core structure is absent.

One can schematically classify the magnetic moment configurations observed in
narrow nanorings, i.e., nanorings that have the inner diameter much smaller than
their outer dimensions into three types. These are shown in Fig. 6.7: in the first
case the directions of local magnetization may turn around the central opening, in
which case the magnetization is tangential and in the same sense around the perime-
ter of the nanoring, forming a vortex. A second common magnetic configuration is
an arrangement of spins in which the ring is divided into two magnetic domains,
with magnetizations oriented tangentially in two different directions, clockwise and
counterclockwise, a structure that is usually referred to as an onion state; these two
configurations are inferred from the shape of the hysteresis curve for a Co ring in
Fig. 6.8. A third common structure is an asymmetric onion state, containing two re-
gions of opposite direction of rotation and different lengths, and is referred to as a
twisted state. This is a metastable magnetic structure, with two close 180◦ domain
walls, or 360◦ wall, and was observed in nanorings with smaller radii [6].

Nanorings with vortex or circular magnetization ground state can be prepared
with smaller diameters than nanodisks with the same spin structure, typically with a
minimum diameter of 10 nm for a NiFeCo ring [50]. This nanoring critical diameter
for the vortex configuration Dring

cr has a value given, in general, by the relation [23]:

Dring
cr = 2

√
3 lex, (6.5)

where lex is the exchange length.
For a permalloy ring, this corresponds to a critical diameter ∼17 nm, much

smaller than the equivalent critical diameter for a permalloy nanodisk, of the order
of 100 nm.

Fig. 6.7. Narrow magnetic ring exhibiting (a) vortex state, (b) onion state, and (c) twisted state
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Fig. 6.8. Hysteresis curve of narrow Co nanoring exhibiting (a) vortex and (b) “onion” states.
(Reprinted with permission from [49]. Copyright (2003), American Institute of Physics)

The walls separating the domains in the onion state or in the vortex state may be
much more complex than the transverse domain walls shown in Fig. 6.7. Vortex wall
is a type of wall that has radial magnetization which may be formed, giving rise to
substantial magnetic charges at the edge of the rings.

In the broader rings, that is, in those that have an internal diameter much smaller
than the external diameter, minor or inner vortices are observed. The coexistence
of minor vortices with vortices that occupy the whole perimeter of these rings may
occur. In the narrower rings this usually does not happen.

The magnetization state of a nanoring is modified with the application of an
external magnetic field. For example, a magnetic field applied to a thin magnetic
nanoring in the vortex state will magnetize the ring, with the appearance of two do-
mains, in the form of the onion state. For some rings, as the applied field is removed,
the domain walls are depinned, and the ring reverts to the vortex state. The hystere-
sis curve measured for magnetic rings show, in thin rings, two possible routes from
the saturated configuration to zero magnetization at the coercive field [8]. In both
cases the saturated nanoring is in the onion state. A magnetic field applied opposite
to the onion magnetization, leads in the first case to (1) a rotation of the onion struc-
ture, with a nonzero coercivity. The other possible evolution under applied field is
(2) the annihilation of one of the branches of the onion, turning the structure into a
vortex state; in this case the coercivity is zero. If the negative applied magnetic field
continues to increase its intensity, the onion state is re-established at a higher (neg-
ative) value of H. These two possible evolutions of the magnetization under applied
field may occur simultaneously in an array of nanorings, due to differences among
individual elements, a more complex resultant hysteresis curve rises.
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A magnetic field applied to a nanoring opposite to its magnetization in the onion
state may displace the domain walls in such a way that they almost coalesce on the
opposite side of the ring, which remains in this configuration at remanence, in a spin
structure called the twisted state [6], shown in Fig. 6.7. The hysteresis curve obtained
through the application of a spin-polarized current to this type of ring is essentially
a bi-state system, and therefore, promising for applications in magnetic storage [8].

Stacks of nanorings in the twisted state may constitute cells, in applications as
magnetic memory elements [50]. These elements may be switched through the pas-
sage of spin-polarized current (for a discussion on magnetic recording, see Chap. 7).
A stack of nanorings can have its magnetization state changed from onion to vortex
through the application of either external magnetic fields or electric currents in the
CPP geometry [48].

In the broader rings, when there may be a superposition of the different magnetic
states, the hysteresis curves are more complex. Figure 6.9 shows the hysteresis curves
of cobalt rings, for different temperatures. The more complex structure found in the
curve measured at 300 K is explained (see schemes a, b, c, and d, shown at the top
left of the figure) by the fact that the rings evolve from an onion magnetization to

Fig. 6.9. Magnetization curves of sub-micron Co rings, showing, in the curve at 300 K, three
states (a) “onion” state, (b) vortex state, (c) an intermediate state, combination of vortex and
“onion”, and (d) “onion” state in the opposite direction. (Reprinted with permission from [22].
Copyright (2004), American Institute of Physics)
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another, through intermediate configurations that include a single vortex, and onion
associated to a minor or internal vortex [22].

Magnetic rings of Co/IrMn of elliptical shape can be obtained with controlled
circulation (or direction of rotation) through the use of the exchange bias
phenomenon [18]. The ability of changing the circulation of the nanorings is neces-
sary for the use of this parameter in data storage.

Constrictions or notches in the nanorings may pin the magnetic domain walls.
Constrictions appear to a transverse domain wall as an attractive potential, and as
a repulsive potential to vortex walls (e.g., [20]). The narrower the constriction, the
higher the magnetic field (the depinning field Hdp) that is necessary to move the
domain wall. A depinning field of about 300 Oe was obtained for a constriction of
some tens of nanometers in 200 nm wide permalloy ring [21].

The interactions between the elements of an array of magnetic rings were stud-
ied in the case of permalloy and Co rings [24]. The results show that this interaction
changes the nucleation of domain walls in the neighbor nanorings. For small sepa-
ration, the transverse domain walls are favored, whereas, for large separation vortex
walls predominate.

6.4 Nanowires

Magnetic nanoscopic quasi-unidimensional systems have been the object of many
studies. Those that have a high aspect ratio (ratio of length to diameter) are known
as nanowires, in other cases, nanopillars. They may be prepared either by deposition
of magnetic materials on stepped crystal surfaces, or by lithography of a magnetic
film, or by electrochemical deposition. In the electrochemical deposition method the
magnetic material is deposited inside the pores of a template or matrix, usually of
alumina (Fig. 6.10). The alumina template is formed by anodization of an aluminium
surface, and the pore length and diameter can be controlled in the electrodeposition
process. Typical dimensions for the pores are 10–200 nm in diameter and lengths of
some microns (see a review on nanowires in [44]).

Due to shape anisotropy, the form of the nanowires favors the alignment of the
magnetization along their lengths. However, depending on the intensity of the crys-
talline anisotropy of the constitutive material, the resulting anisotropy may point
towards another direction, for example, perpendicularly to the axis. It was shown
that in the case of cobalt nanowires the preparation conditions through the elec-
trochemical technique could favor either final anisotropy direction [10]. Appar-
ently, the microcrystals that coalesce to form the nanowire can keep the hexagonal
symmetry axes perpendicular to the longitudinal direction, in such a way that the
crystalline anisotropy ends up favoring perpendicular alignment, prevailing over the
shape anisotropy. Cobalt nanowires, or stripes, of rectangular cross section and width
of several nanometers, prepared through the deposition of the metal via molecular
beam onto MgO also present in general anisotropy perpendicular to the axis [11].

In Fig. 6.11, one sees two images of a nanowire with the direction of the crys-
talline anisotropy along the axis, obtained after exposure to a saturation magnetic
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Fig. 6.10. Alumina (Al2O3) porous matrix employed for the electrodeposition of nanowires
[29]. (With permission from Elsevier Science and Technology)

Hsat

Hsat

Fig. 6.11. MFM images of a 35 nm diameter Co wire for H = 0, after saturation in (a) magnetic
field parallel to the wire and (b) magnetic field perpendicular to the wire [12]. The cartoons
below the images show the structure of magnetic domains, Reprinted figure from [12]. (Copy-
right (2000) by the American Physical Society)

field pointing (1) along the axis and (2) perpendicular to the axis. In the images, ob-
tained with MFM the regions in black and white correspond to “magnetic charges”
of the poles of the domains. In the first case, after removal of the external field, the
nanowire takes up a single-domain structure. In the second case, several domains
are formed, being noticeable neighbor domains with opposite magnetizations. The
magnetic domain walls are situated in planes perpendicular to the axes of the wires.

Analogously to what is observed in magnetic particles, nanowires exhibit a mag-
netic behavior that is dependent on their dimensions. This is exemplified by the de-
pendence of the magnetic ordering temperature (TC) of nickel nanowires with their
diameter (Fig. 6.12 [37]). The dependence of the Curie temperature with diameter of
the nanowires obeys a relation of the form of (1.29) [37]:

(TC(∞)−TC(d))
TC(∞)

= ±
(

ξ
d

)λ
. (6.6)
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Fig. 6.12. Dependence of the Curie temperature (TC) of nickel nanowires with the diame-
ter. TC(d) is the TC of a wire of length d and TC(∞) is the TC of a macroscopic sample of
Ni. (a) TC(d) vs. d and (b) (TC(d)− TC(∞))/TC(∞) vs. d [37]. (Reprinted from [37] with
permission from IBM Technical Journals)

where TC(∞) is the Curie temperature of the nanowire material in bulk form, and
TC(d) is the same quantity, for the nanowire of diameter d. In this equation, ξ is
the correlation length and λ is the shift exponent. The data for the Ni nanowires of
Fig. 6.12 are fitted with ξ = 2.2 nm and λ = 0.94.

Nanowires that have a volume below a certain critical value present superparam-
agnetic behavior (see Superparamagnetism, Sect. 3.3). In nanoobjects, depending on
the ratio of the height of the energy barrier for reversal of the magnetization EB, to
the thermal energy kBT , this behavior is observed. For values of EB/kBT > 40, the
magnetization of the wires is stable, with relaxation times above 10 years.

The barrier height is related to the anisotropy and the applied field H and was
given by (3.47) (p. 82), valid for homogeneous magnetization reversal. For reversal
by curling, this expression is written in terms of the effective anisotropy Keff, and the
switching field Hsw; the exponent is in this case 3/2 [19]:

EB = KeffV
(

1− H
Hsw

)3/2

. (6.7)
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For nanowires of a given length, there is a critical diameter for superparamagnetic
behavior. In Fig. 6.13 are shown the values of the ratio EB/kBT , for wires of Ni as
a function of the radius, for some nanowire lengths, using (6.7), without applied
field (H = 0) [37]. The curves of the figure were computed assuming that the only
contribution to the anisotropy of the wires is the shape anisotropy.

The curves of Fig. 6.13 show, for example, that for a nanowire of Ni 100 nm long,
the ratio EB/kBT varies from ∼10, for a radius of 1 nm, to 500, for r ≈ 7 nm. The
nanowires of smaller radius are superparamagnetic and those with r above a few
nanometers are ferromagnetic.

The hysteresis loops obtained with magnetic nanowires indicate that the easy
magnetization axis may or may not coincide with the longitudinal axis of the wires.
Fe nanowires, typically with diameters from 10 to 100 nm and lengths from 0.1 to
1 μm, have the easy axis of magnetization along the wire length [33]. The observed
coercivity is of about 2,300 Oe for measurements along the nanowire axis. The Ni
nanowires also present easy magnetization along the longitudinal axis, with coer-
civity varying from 500 to 1,000 Oe [33]. Some magnetic properties of 3d metal
nanowires are shown in Table 6.1.

Fig. 6.13. Graph of the ratio EB/kBT for Ni nanowires as a function of the radius, for dif-
ferent lengths. The two horizontal lines correspond to relaxation times of 1 s and 1 year [37].
(Reprinted from [37] with permission from IBM Technical Journals)

Table 6.1. Magnetic properties of 3d metal nanowires [33]

Material Fe Co Ni Unit

Ms 1,707 1,400 485 103 A m−1

δ0 13 4 26 nm
HA 795 597 239 103 A m−1

Hc(RT) 239 207 75.6 103 A m−1

Hc/HA 0.30 0.35 0.32 –
Mr/Ms 0.93 0.91 0.90 –
V ∗(Hc,RT ) 1.5 2.1 6.0 10−24 m3

The given values of Hc are the maximum values obtained
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Fig. 6.14. Coercive field HC and activation volume V ∗ of cobalt nanowires as a function of
the length and diameter. (Reproduced with permission from [33])

The coercivity of the nanowires also varies with their dimensions, as it is shown
in Fig. 6.14 for Co nanowires: Hc decreases from about 2.2 kOe for d = 10 nm to
about 1.6 kOe for d = 21 nm (length = 0.5− 1 μm). For a diameter of 10 nm, Hc
increases with length, from 1 kOe, reaching a plateau of about 2.3 kOe for 1 μm.

In Fig. 6.14 one also sees the dependence of the activation volume (or nucleation
volume) V ∗ with the diameter of the nanowire. This volume appears in the expression
of the magnetic viscosity ((3.29), p. 73). V ∗ is given by [35]:

V ∗ =
m
2

(
25kBT

KV

)1−1/m

V. (6.8)

where V can be taken as the geometric volume and m is an exponent that depends on
the energy landscape.

Heterogeneous nanowires have also been studied, particularly those with a mul-
tilayer structure, for example, with layers of Co and Cu. One example of such wires
is shown in Fig. 6.15. In this type of layered structure containing a magnetic and
a nonmagnetic material, by varying the thickness of the magnetic sector, shape
anisotropies perpendicular to the axis of the wire can be obtained, and also block-
ing temperatures TB smaller than that of a homogeneous magnetic wire. In Fig. 6.16
one can see the changes in the shape of the hysteresis curves of multilayer NiCu
nanowires, as the aspect ratio (length/diameter) of the Ni segments is varied from
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Fig. 6.15. Hysteresis curves of NiCu multilayer nanowires with Ni segments of different as-
pect ratios (length/diameter): (a) rod-shaped Ni segments with d = 50 nm and aspect ratio 2.5;
(b) disk-shaped Ni with d = 50 nm and aspect ratio 0.1, and (c) Ni segments with intermedi-
ate shape, d = 100 nm and aspect ratio 1.0. (Reprinted with permission from [7]. Copyright
(2003), American Institute of Physics)
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Fig. 6.16. Transmission electron microscopy (TEM) image of cobalt/copper multilayer
nanowires prepared by electrochemistry [25]

disk-shaped to rods of aspect ratio 2.5. The hysteresis curves for thin Ni segments
reveal a shape anisotropy perpendicular to the axis of the nanowire.

The giant magnetoresistance (GMR) effect was also studied in heterogenous
nanowires (see Chap. 5). Nanowires with a multilayer structure, of (Co10 nm/Cu10
nm)×500 electrodeposited from a single bath, were measured in the CPP geometry
and found to present a magnetoresistance of 15% [30].

The reversal of the magnetization of magnetic nanowires has also been the sub-
ject of many studies. This reversal in thin nanowires usually does not occur through
homogenous rotation, but by curling. The nucleation field for an ellipsoidal sample
was given by the expression of (3.68) (p. 91):

HN =
2K1

μ0Ms
−NMs +

cA
μ0Ms

1
R2 , (6.9)

where R is the smaller dimension of the spheroid and c is a numerical factor that
depends on the aspect ratio. For a cylinder of infinite length we have obtained in
Chap. 3 the critical diameter above which the magnetization reversal is made via the
curling mode ((3.70), p. 92):

D = 5.20 lex, (6.10)

where lex is the exchange length.
The dependence of the nucleation field with the angle ψ between the anisotropy

axis and the applied magnetic field, observed experimentally in nanowires also
agrees more with the inhomogeneous magnetization reversal process (curling). This
can be established by comparing the experimental dependence of the coercivity Hc
with the angle ψ with the expression for homogeneous reversal ((3.55), p. 84) and
that for the curling mode ((3.73), p. 93).
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In nanowires two main types of magnetic domain walls have been found,
depending on the dimensions of the sample: a transverse wall and a vortex wall.
For wires with rectangular cross-section, of thickness t and width w, the transverse
domain walls constitute the lowest energy configuration below the boundary given
by (e.g., [40]):

t ·w = C l2
ex, (6.11)

where C is a constant that depends on the material, being equal to 128 for permalloy,
and lex is the exchange length.

With an applied magnetic field, the result from micromagnetic simulations for
Co nanowires indicates that these two types of walls move with different velocities,
as shown in Fig. 6.17; also, for nanowires with diameter above 40 nm, only vortex
walls appear [13]. The simulations show that, under an applied magnetic field, vortex
domain walls move faster than transverse walls. For example, with an applied field H
of 500 kA m−1, transverse domain walls travel in a 20 nm wire at a velocity of about
500 m s−1; the velocity of a vortex wall in the same wire is some 150 m s−1 higher.

The domain wall velocity increases with larger wire diameter and smaller damp-
ing constant. The domain wall motion is dependent on the intensity of the applied
magnetic field H. This velocity depends initially in a linear fashion on the intensity of
H, up to a critical field Hp, called the Walker field (see the discussion of domain wall
motion in Sect. 2.4.2, p. 50). Beyond this value of H, there is a change in regime, and
at higher values of the field, there are oscillations in the motion of the domain wall,
and from then onwards it is the average velocity that is linearly dependent on H.

Fig. 6.17. Velocity of two types of domain walls in Co nanowires, transverse (white symbols)
and vortex walls (black symbols), as a function of applied magnetic field, obtained from mi-
cromagnetic simulation (adapted from [13]). Note that, for the same intensity of external field,
vortex walls move faster than transverse walls
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A polarized spin current can also give rise to the displacement of walls, in the
phenomenon known as current-induced domain wall motion (CIDM) (for a review of
CIDM in magnetic nanostructures, see [40]). When a spin-polarized electric current
flows through a nanowire, the velocity of the domain wall can either be increased or
decreased, depending on the direction of the current [15]. The effect of the current
also varies, depending on the intensity of the field H. Transverse and vortex domain
walls move with the same velocity, when current driven [40].

If a nanowire has several 180◦ domain walls, the application of a magnetic field
will move tail-to-tail walls and head-to-head walls in the opposite directions, since
the field will always tend to increase the domain parallel to it. An important differ-
ence of the current-induced motion is that in this case all the domain walls will move
in the same direction.

There are two mechanisms of interaction of the conduction electrons with the
domain wall [38]. The first one, producing an effect proportional to the charge cur-
rent, and important only in narrow domain walls, is the linear momentum transfer
arising from the reflection at the wall. The other mechanism arises from the torque
exerted by the conduction electron spins on the spins of the atoms in the domain
wall. In thick walls it is reached the adiabatic limit, since the conduction electron
spins may follow adiabatically the domain wall magnetic moments, i.e., the electron
spins become aligned with the magnetization direction.

One may account for the effect of the electric current simply by introducing
in the expressions of the rate of change of the coordinate of the domain wall (q̇)
and rate of change of the angle φ (φ̇ ) in the linear case ((2.111) and (2.112) from
Sect. 2.4.2, p. 52), respectively, the terms u and (β/δ )u [39]. This results in the
following equations:

φ̇ = γGH − αG

ΔH
q̇+

β
Δ

u, (6.12)

and
q̇ =

1
2

γGΔHμ0Ms sin2φ +αGΔHφ̇ +u . (6.13)

The quantity u, present in the two terms that describe the effect of the current,
has dimension of velocity, depends on the conduction electron polarization p and the
current density j:

u = −gμB p
2eMs

j. (6.14)

The quantities that appear in u are: g is the electron g-factor and e is the electronic
charge. The parameter β measures how non-adiabatic the effect of the current on the
domain wall moments is. In the expression of q̇, u may be multiplied by a factor
η ∼ 1 which depends on the material. The analysis of magnetic field and current-
induced motion of domain walls in 20 nm × 600 nm Ni20Fe80 nanowires lead to the
relation [3]:

α/β ≈ 1. (6.15)
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In the limit of φ̇ = 0, which is valid below the Walker breakdown, one obtains
for the domain wall velocity:

v = q̇ =
γGΔ
αG

H +
β

αG
u. (6.16)

Above the Walker limit, the domain wall velocity becomes [15]:

v =
γGΔ
αG

(
H −

√
4[H +u(β −α)/γGΔ ]2 − (αGH)2

2αG(1+α2
G)

)
+

β
αG

u. (6.17)

Equation (6.16) is the same equation presented on Sect. 2.4.2 ((2.113), p. 52) de-
scribing the velocity of a domain wall in the motion induced by an applied magnetic
field, now modified by the presence of the extra term due to the electronic current
(β/α)u.

In the limit φ̇ � 1, neglecting some smaller terms, one obtains for the domain
wall velocity

v = q̇ = αGγGΔH +u. (6.18)

It should be noted that in this case the domain wall velocity is still proportional
to the domain width parameter Δ , as in the previous case, but it is also directly
proportional to the damping constant αG.

Figure 6.18 shows the dependence of the transverse domain wall velocity in a
120 × 5 nm2 nanowire computed using the LLG equation with the electronic current
contribution vs. u, that is proportional to the polarized current density, for different
values of the parameter β [39]. One can see that for β = 0 there is a critical value of
u, and therefore a critical current density Jc below which, there is no steady domain
wall motion (there is some transient motion after the application of the current). For
non-zero β , and a perfect nanowire, as in this case, there is domain wall motion for
any value of the current density.
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Fig. 6.18. Micromagnetic computation of transverse domain wall velocity vs. spin-polarized
current contribution, for different values of the non-adiabaticity parameter β [39]
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7

Magnetic Recording

Summary. Magnetic storage is the most important technology for data recording, and has
evolved very rapidly in the last half century. Although it has reached a high level of refinement,
it is based on relatively simple principles. The limitations eventually imposed on its continued
evolution have stimulated the development of other solutions, magnetic or not, for the storage
of data, in the face of the information explosion. Some of the magnetic solutions include
the encoding of information onto a string of magnetic domains in magnetic nanowires, or in
the magnetization states of magnetic nanodisks and nanorings.

7.1 Introduction

Magnetic storage technology is incorporated into hard disk drives (HDD’s), magnetic
tapes and magnetic stripes, as in credit cards, badges, and tags. Many applications
use analog recording, a technique whereby the intensity of a signal is encoded in
the magnitude of the magnetization of the magnetic medium. We will deal mostly
with digital recording, the encoding system in which the information is recorded as
a succession of binary digits (bits), which is the form used to store data in hard disks
and computer random magnetic memories.

Magnetic recording technology, embodied in the ubiquitous hard disk drive, has,
together with the integrated circuit, revolutionized data handling and storage, thus
opening the Information Age. Magnetic recording has covered a long route since its
invention at the end of the nineteenth century. The rate of evolution of this technol-
ogy has accelerated in the last decades, as can best be measured by the vertiginous
increase in areal density of stored information in the magnetic disks in this period,
of the order of 107 times in the last 50 years. In parallel with this increase in density,
the cost per bit of recorded data also fell dramatically in the period, by about the
same factor (this evolution is shown in Fig. 1.2, on p. 3). For a recent review of the
evolution and present reality of magnetic data storage, see [14].

The basis of magnetic data storage is that, on an essentially two-dimensional ge-
ometry, small volumes of magnetic material are magnetized, and a sequence of these
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magnetically ordered regions corresponds to binary digits, represented by “0” or “1.”
The variation of the state of magnetization of these volumes can be identified by a
transducer, and therefore the recorded bits can be read. The technical realization of
this relatively simple idea went through continuous improvement and optimization,
leading to the solution of complex problems, that ultimately made possible the great
advances in magnetic recording. This has meant development in the magnetic record-
ing material itself, its intrinsic and extrinsic properties, the better understanding or
the magnetization process, the refinement of the servo control of the recording and
reading device, the study of tribology of the head-medium system, and so on.

7.2 Principles of Magnetic Recording

The magnetic material now used in hard disk magnetic recording is in the form of
a polycrystalline thin film, usually made of a CoCr alloy. The magnetization can ei-
ther be contained in the plane of the film or be perpendicular to it; this defines two
different recording technologies, longitudinal and perpendicular recording, shown
schematically in Fig. 7.1. The film is composed of grains that have a diameter of un-
der 10 nm, and their anisotropy axes are randomly oriented in the longitudinal record-
ing media, or oriented within a few degrees of the normal to the plane, in magnetic
media for perpendicular recording. The dominant technology from the discovery of
the technique to the present days has been longitudinal recording, although, the trend
is towards the growth of perpendicular recording HDD’s [13].

In a hard disk, the information is recorded on the magnetic medium through a
recording head, essentially a coil wound on a soft magnetic core that produces at
its gap a magnetic field, inducing a magnetization on the medium. The medium is
magnetized into two opposite directions, according to the direction of the current in
the write head. Two segments magnetized in sequence constitute a bit cell; the cells

Fig. 7.1. Longitudinal (a) and perpendicular (b) write heads showing the two types of magnetic
recording technologies. Note that the magnetic circuit in the case of perpendicular magneti-
zation is closed through a layer below the magnetic medium, the soft magnetic underlayer
(SUL)
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that have a change in the direction of magnetization encode a “1,” those that do not,
correspond to a “0.”

The recorded data are read from the medium by a read head that usually detects
the magnetization of the medium through a change in the resistivity of a sensor.
In the longitudinal magnetic recording system, the sensor detects the stray field at
the transition between two magnetized regions of the medium. In the perpendicular
recording, since these regions are magnetized in the vertical direction, the sensor is
sensitive to their individual magnetizations.

An important difference between the two magnetic recording technologies is the
fact that in longitudinal recording, the magnetic circuit of the head-medium system
is closed with some flux through the magnetic medium, whereas in the case of per-
pendicular recording, the geometry is such that there is the need of an extra layer of
magnetic material to allow closing this circuit, the soft magnetic underlayer (SUL),
as shown in Fig. 7.1b. The magnetic underlayer is usually made of a high perme-
ability material such as FeCoB, CoTaZr, or, less often, CoZrNb; simple or laminated
SUL’s may be employed [13].

The read and write heads are mobile, and the platter with the magnetic medium
rotates rapidly beneath them. This allows the use of most of the surface of the disk for
recording and reading the recorded information. The area used for recording consists
of concentric tracks divided into sectors. The relative motion also implies that once
the head is positioned on the right sector, each bit is read in a very short time, of the
order of a fraction of a nanosecond, for a disk rotating at 10,000 rpm. The temporal
pattern of currents at the write head is translated into a spatial magnetization pattern
on the magnetic medium.

The data areal density on the disk is defined by the width of the recorded track
(W ), the distance between recorded transitions (B) and the separation between neigh-
bor tracks (H). The linear density is the reciprocal of B and the track density is the
reciprocal of (W +H); their product is the areal density. Present-day areal densities
are approaching 1 Tbit in−2 (1 terabit=1012 bits); in metric units, this corresponds to
≈0.155 Tbit cm−2.

The write head consists essentially of a soft magnetic core wound with a coil
through which a current flows, producing a time-varying magnetic field at the gap.
This field is proportional to the current and also to an efficiency factor, to be defined
below. The line integral of the magnetic field H in a magnetic circuit is equal to the
current that flows around this circuit; if there is a coil with N turns through which a
current I circulates, then

NI =
∫

H ·dl, (7.1)

where dl is the element of length of the magnetic circuit, shown in Fig. 7.1.
If this magnetic circuit is a core with a gap, as in the write head, the drop in

potential across this gap is given by

Va −Vb = NI−
∫

core
H ·dl. (7.2)
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The efficiency η measures the ratio of this potential drop to the magnetomotive
force provided by the current, given by V = NI. This ratio, from the integral that
appears in (7.1), is equal to

η =
gHg

�c Hc +gHg
, (7.3)

where g is the gap width, Hg and Hc are the magnetic fields in the gap and inside the
core, and �c is the length of the core.

The magnetic field inside the gap of the write head, of width g is known as the
deep gap field, is therefore given by [1]:

H0 =
NI
g

η . (7.4)

The magnetic field produced by the write head varies spatially as a function of
the distance from the gap. The expression for this dependence, in the case of a gap of
width g and infinite length, was derived by Karlqvist [7] and is written, as a function
of the deep gap field H0:

Hx =
1
π

H0

[
arctan

(
(g/2)+ x

y

)
+ arctan

(
(g/2)− x

y

)]
. (7.5)

This is the component of the magnetic field H along the direction of the normal
to the face of the pole pieces, the direction of the displacement of the write head (the
x direction). The y axis is the axis perpendicular to the magnetic medium.

In Fig 7.2 are shown the surfaces of equal magnetic field, of decreasing intensity
as their radius increases. As can be seen in the figure, the intensity of the magnetic
field is not constant inside the magnetic medium. For example, on the surface of the
circle that satisfies H = Hc, the magnetization is zero (from the definition of Hc),

Gap

Hc

Medium

Coreg

Fig. 7.2. Gap of write head, of width g, and lines of equal intensity of transverse magnetic
field Hx, in longitudinal magnetic recording. The line of field for H = Hc (the coercive field)
is shown
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g
t + d

Fig. 7.3. Perpendicular head showing its mirror image formed below the soft underlayer
(SUL). Since this underlayer is at a distance t + d from the real head, the gap has an effective
width g = 2(t +d)

and half the magnetic moments have inverted. For smaller radii, the proportion of
inverted moments is higher, and the opposite applies for larger radii.

The magnetic field on a perpendicular medium can be computed using the same
Karlqvist head, but turning it sideways, as shown in Fig. 7.3. Since in this case the
magnetic medium has underneath a high permeability layer (SUL) of thickness t, at
a distance d from the head, a mirror image of the head is formed at the same distance
(d + t) below the upper surface of this layer. The gap in this case is the distance
between the head and this image, and therefore g = 2(d + t). The magnetic field in
the gap is approximately the deep gap field H0, and the dependence with distance of
the y component is given, from (7.5):

Hy =
1
π

H0

[
arctan

(
d +(t/2)

x

)
+ arctan

(
d +(3t/2)

x

)]
. (7.6)

Originally, the write head and the read heads both operated based on the same
principle. But long time ago the read head started to follow a different design.
Nowadays, it makes use of a magnetoresistance effect to convert the information
obtained from the stray field of the recorded medium into electrical signals. The
effect that is used to provide a large signal is the giant magnetoresistance (GMR)
effect, which converts the magnetic information into variations of the resistivity ρ
(see Chap. 5, where magnetic transport properties are discussed). Another effect that
is used for the same purpose is the tunnel magnetoresistance (TMR) effect, also dis-
cussed in Chap. 5.

The GMR read heads use spin valves as sensing elements. These are compact
thin film structures formed essentially of two magnetic layers, one of which rotates
its magnetization through the influence of the magnetization of the recorded medium,
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the other remaining fixed, or pinned. The usual geometry is current in plane (CIP),
and the magnetic layers may be prepared from CoFe or NiFe (see e.g., [5]). The
magnetic layer that is pinned derives this condition from the interface with an an-
tiferromagnetic layer, through the phenomenon of exchange bias, as discussed in
Sect. 4.4, beginning on p. 117. The sensing element of the read head should have low
coercivity and high permeability to respond to small stray magnetic fields from the
medium.

In order to guarantee long term stability of the magnetic recorded information,
the grains that constitute the polycrystalline magnetic medium must have such di-
mensions that thermal fluctuations do not affect the magnetization, in other words,
the magnetization relaxation time at room temperature must be long, situating them
far away from the superparamagnetic regime (see Chap. 3, for the properties of mag-
netic nanoparticles).

Since the inverse of the relaxation time depends exponentially on the height of
the anisotropy energy barrier for magnetization reversal (KV ), the barrier must be
much higher than the thermal energy at room temperature; this usually implies KV ≥
40kBT . This condition is equivalent, for values of the anisotropy in current use, to
a requirement of grain size larger than about 5 nm. A stability or integrity of the
recorded information for a period of 10 years is normally assumed.

The necessity of stable ferromagnetic behavior and the continued quest for in-
creasing recording densities have led to the use of magnetic media with higher and
higher anisotropies, a trend that is limited by the corresponding need of increased
field produced by the write head. The set of three conflicting goals of magnetic
recording technology, i.e., (1) improving signal to noise ratio (can be achieved with
smaller grains), (2) guaranteeing thermal stability (requires larger grains and higher
anisotropy), and (3) preserving write-ability (given by smaller anisotropy) is known
as the magnetic recording trilemma.

The HDD remains a vital component in the digital computer. Notwithstanding
its remarkable success, it has limitations inherent to a technology that relies on the
mechanical motion of platter and arm for its operation. This implies that further
increases in performance may be limited by some mechanical obstacles; e.g., the
linear velocity at the rim of a 3.5 inch disk turning at some 60,000 rotations per
minute approaches the velocity of sound [14].

Three main pathways are being investigated to allow increases in the density of
magnetic storage using most of the advances accumulated in the development of
magnetic hard disks. These are the use of patterned media, heat-assisted magnetic
recording (HAMR), and microwave-assisted magnetic recording (MAMR). The first
development involves a change in the magnetic structure of the magnetic hard disk,
with the magnetic bits recorded in pre-determined, and magnetically non-interacting,
dots on the surface of the disk. Heat-assisted recording, on the other hand, makes use
of laser to raise the temperature of the magnetic medium, therefore lowering the ef-
fective anisotropy field. This implies that with magnetic fields in use with the present
write heads, magnetic media of higher coercivity could be used, allowing higher
magnetic recording densities. The last of these proposed new recording techniques
uses the fact that a magnetic particle subject to a microwave field will switch its
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magnetization at a smaller applied magnetic field (e.g., [17]). This is another form of
recording that makes viable media with higher coercivity. These new technologies,
however, involve several technical problems, still not completely solved.

HDD’s are relatively slow, with access times orders of magnitude slower than
random access memories (RAM’s). Which technologies will supersede the hard
magnetic disk and the semiconductor random access memory is still an open ques-
tion. Many physical processes have been explored for their potential as candidates
to base future magnetic recording technologies. We will briefly consider some of
them in Sect. 7.3, discussing recent suggestions of non-conventional systems to store
magnetic data.

7.3 Novel Magnetic Recording Systems

Many new approaches to data storage have been attempted and practically real-
ized at the demonstration level. These include nonmagnetic storage, for example,
using probe-based techniques, that rely on cantilevers developed for atomic force
microscopy (e.g., [10]), three-dimensional optical storage using photochromic crys-
tals (e.g., [8]), phase-change random access memory (PCRAM) [12] and so on.
An overview of new solid-state storage technologies is presented in [3]. In the field
of magnetic storage, an important effort is directed to devices that have no moving
parts, as it is the case of magnetic hard disks, and at the same time are economi-
cal and non-volatile. This may eventually provide the market with magnetic record-
ing technologies that will substitute both the random access memories (RAM’s) and
the HDD’s.

7.3.1 Nanodisk and Nanoring Memories

Magnetic rings and disks, or dots, of nanoscopic or mesoscopic dimensions, have
physical properties that can be used to encode digital information. For example, nan-
odots of magnetically soft material with diameters around 100 nm typically show
a vortex spin configuration at their ground states, that have potential for data stor-
age. Nanodisks and nanorings have the advantage that, since they are structures that
present flux closure, they have intrinsically low stray fields. This is important for
practical applications, since nanostructures formed with these elements can be ar-
ranged into more compact arrays, in view of the reduced near-neighbor interactions.

The vortex structures that are spontaneously formed in magnetic disks of nano-
scopic or sub-micron dimensions can be used for magnetic storage, specifically
as vortex-based magnetic random access memories (VRAM’s). This application is
based on the possibility of using the direction of rotation of the vortices, or circula-
tion (clockwise or anti-clockwise), or the direction of the magnetization of the vortex
core, up or down, that is, with polarity p equal to +1 or −1, respectively (Sect. 6.2,
p. 150). Vortices therefore may present themselves in four different states, and in
principle could store two bits of information. Vortices are fairly stable, and can re-
main indefinitely in the same configuration without the need of application of current
or external magnetic field.
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Some proposals for writing and reading data from arrays of nanodisks have been
presented, but the practical use of these arrays will require further investigation. We
will consider two proposed forms of realizing VRAM devices.

One suggestion uses the polarity p of the vortex, i.e., the direction of the
magnetization of the core, to store magnetic information. The data is written by forc-
ing the polarity through the application of either an in-plane rotating magnetic field
or an in-plane spin-polarized current [9]. This scheme uses the fact that the amplitude
of the rotation of the vortex core, induced by a rotating magnetic field H(t) or current
i(t), is dependent on the direction of rotation of this field and is independent of the di-
rection of circulation of the vortex (clockwise or counterclockwise). For example, in
the case of vortex with a polarity p = +1 (Mz > 0), a counterclockwise rotating field
induces a gyrotropic motion of the vortex with larger amplitude than a rotating CW
field. One may therefore choose an amplitude of H that switches the vortex polarity
for one rotating direction, but not for the other. This selectivity may then be used
to write the desired data unit, and from the response of the vortex, the rotating field
reads its configuration. Since this is a resonant effect, the magnetic fields or spin-
polarized ac currents must have a frequency close to the vortex eigenfrequency, of
a few hundred megahertz. This idea has been demonstrated in computer simulations
with permalloy disks of 600 nm diameter and 20 nm thickness [9].

Another possible use of vortices in nanodisks for data storage is based on em-
ploying the combined polarity (p) and sense of rotation, or circulation, of the vortex
(c), i.e., the pair that constitutes its chirality, determined univocally by the product
cp, (see Sect. 6.2, p. 152), to store magnetic data. This can be achieved in a scheme
where permalloy thin film elements are actuated by spin-polarized current pulses
and applied fields [2]. Depending on the relative directions of field and current, the
amplitude of the gyrotropic vortex motion is either enhanced or attenuated.

To read the chirality, the signal induced in a pick-up coil by the precession of the
vortex is measured, or alternatively, the resistivity of the element is determined. The
chirality is detected through the amplitude of the rotation of the vortex when excited
by a small spin-polarized current and a magnetic field.

Magnetic nanorings also offer many promises as components of magnetic mem-
ory devices. As we have seen in Chap. 6, they have several possible spin configura-
tions, with properties that can be made to correspond to different data states; these
properties are the sense of rotation of the vortex, i.e., their circulation, and the di-
rection of magnetization in the onion state, or in the asymmetric, or twisted state
(Sect. 6.3, p. 156).

A simple arrangement of nanorings that may be used for data storage is a three-
layered structure formed of two superposed magnetic nanorings separated by a non-
magnetic layer, constituting a spin valve, as illustrated schematically in Fig. 7.4; ac-
tual cells used in applications may have a much more complex structure.

This structure of nanorings can have its magnetic state probed by an electric
current flowing along the length of the stack, in the perpendicular (CPP) geometry.
Using the GMR effect, the variation of the resistance allows the identification of par-
allel or antiparallel magnetic moments in the ferromagnetic rings, therefore reading
the recorded information. If, instead of a nonmagnetic conducting layer, the interme-
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Fig. 7.4. Magnetic nanoring magnetoresistance memory cells using (a) pseudo spin valve with
FM/Cu/soft FM structure, based on the GMR phenomenon, and (b) spin valve structure with
AFM/FM/insulator/soft FM rings, based on TMR

diate layer is an insulating thin film, this arrangement constitutes a magnetic tunnel
junction (MTJ) and may use the tunnel magnetoresistance effect (TMR) for readout
(for TMR, see Sect. 5.3, p. 142). Simulations have shown that memory cells based
on this idea, with stacks of FM/Cu/soft FM nanorings forming short pillars produced
by lithography, are viable as the basis of a high-density magnetic recording system,
with an estimated maximum recording areal density of 400 Gb in−2 [16].

Writing on these ring structures is effected through switching between the dif-
ferent vortex states. This was experimentally demonstrated using the spin-transfer
torque and the Oersted field, the latter being the dominant contribution, with a stack
of Co nanorings with dimensions in the range of hundreds of nanometers [15]. In
other studies using tunnel magnetoresistance of rings of diameters between 80 nm
and 4 μm, structured as a stack of AFM/FM/insulator/FM and FM/insulator/soft FM
layers, the magnetization reversal was dominated by spin polarized switching, but
the Oersted magnetic field also played a role [6].

Another example of annular memory elements, this time switching magnetic
rings between two twisted states through the action of the Oersted field, was demon-
strated by micromagnetic simulation using a stack of rings forming a magnetic tunnel
junction (MTJ) [18].

These developments are immediately relevant to applications in magnetic (or
magnetoresistive) random access memories (MRAM’s), devices that present many
advantages relative to other types of memories, since they are non-volatile, radiation
resistant, and present no fatigue. Stacks of magnetic rings are evolving in terms of
storing density, although are not yet comparable to other MRAM designs, as seen
in Fig. 7.5, where the evolution of the storage capacity per chip of magnetic random
memories is exhibited [6].

7.3.2 Domain Wall Memories

The studies of the interaction of spin-polarized currents with magnetic domain
walls and with the magnetization of nanoobjects opened many possibilities of using
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Fig. 7.5. Evolution of the storage capacity of magnetic random access memories (MRAM).
The graph shows the capacity per chip for different MRAM designs, as a function of the year
of development. (Reprinted with permission from [6]. Copyright (2008), American Institute
of Physics)

these effects for magnetic storage of digital information. On the one hand, spin-
polarized currents can switch the magnetization of magnetic elements, an idea that
has been applied to the development of magnetic random access memories. Also,
these currents are able to interact with and displace the domain walls in the same
direction, independently of the orientation of the domains, (see Sect. 6.4, p. 160, on
the properties of nanowires). This, of course, is unlike the effect of the application
of a magnetic field, that has as consequence the expansion of the domains that are
magnetized in the same direction of H(t).

The interaction of the current with the domain walls is used to create a shift
register, moving bits recorded as a sequence of DW’s in nanowires. These nanowires
can form arrays arranged on a plane or on a three-dimensional structure, and can be
connected in series; Figure 7.6 shows the device in planar geometry. These domain
wall memories or racetrack memories are described in [11].

Writing the data is accomplished by the magnetic field produced by the motion
of domains in a perpendicular wire. The encoded pattern in the racetracks is read by
a read head formed of a magnetic tunnel junction (MTJ) in contact with it.

The nanowires are prepared in such a way as to guarantee that all the domains
have the same length and are formed in pre-defined places, for example, by the in-
clusion of pinning centers. The domains are shifted through the application of po-
larized current in the form of short pulses. The amplitude of the pulsed voltage can
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Fig. 7.6. Domain wall memory with read and write heads. On a magnetic stripe, an electric
current displaces the domains, which are then given the desired orientation (i.e., the data is
recorded) as they move past the write head [4]. (Reprinted by permission from Macmillan
Publishers Ltd. [4], copyright (2007))

be optimized if the signal is in resonance, with a period equal to half the period of
oscillation of the domain walls.

In the design investigated at IBM, each track stores up to 100 domains, and the
experiments with permalloy nanowires show that a velocity of the order of 100 m s−1

is attained by the domain walls, making the operating speed of the device comparable
to that of other memories. The access time is of the order of tens of nanoseconds,
which compares very favorably with the HDD access time of some 5 ms.

The possibility of assembling three-dimensionally the nanowire memories is
very appealing, since this may allow a much higher storage density than in two-
dimensional devices, as the magnetic hard disk or semiconductor memories.
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A

Units in Magnetism

The International System of Units (Système International d’Unités) (SI) contains two
types of units: base units and derived units. The seven base units are: meter, kilogram,
second, ampere, kelvin, mole, and candela.

Some units relevant to magnetism have special names in the SI. They are the
following, together with their expression in terms of other SI units:

Table A.1. Table of magnetic units in the SI

Unit Symbol Equivalence Quantity

weber Wb V s Unit of magnetic flux
henry H Wb A−1 Unit of inductance
tesla T Wb m−2 Unit of magnetic flux density

The unit of magnetic field strength H has no special name; H is measured in
amperes per meter (A m−1).

The magnetic induction or magnetic flux density B (or simply B-field) has
the tesla (T) as the unit and is related to the magnetic field intensity H through
the magnetic constant or vacuum magnetic permeability μ0, that has a value of
4π × 10−7 H m−1 in the SI.

The relations between B and H in the two systems of units are:

B = μ0(H+M) (SI)

B = H+4πM (CGS)
(A.1)

In the last equation (in the centimeter-gram-second system (CGS)) B is measured
in gauss (G) and the unit of H is the oersted (Oe). In the CGS system the constant 4π
appears explicitly in the expression of B.
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The magnetization M of a sample, defined as the total magnetic moment divided
by the volume, is measured in A m−1. A close concept is that of polarization
J = μ0M, measured in teslas (T).

The literature of magnetism contains results both in SI and CGS units. Some
useful relations for conversion of CGS into the SI are:

1 G = 10−4 T

1 Oe = 103

4π A m−1 ≈80 A m−1

1 emu g−1 = 1 J T−1kg−1

(A.2)

Note that “emu” is not the name of a unit, it designates 1 erg gauss−1.
The relative magnetic permeability μr of a material is dimensionless, and is

defined as the ratio of the permeability of the material μ to the magnetic constant
(or free-space permeability) μ0:

μr =
μ
μ0

. (A.3)

The relative permeability of a material μr is measured by the same number in the
SI and in the CGS. Its relation to the susceptibility χ = M/H, however, is different
in the two systems:

μr = 1+ χ (SI)

μr = 1+4πχ (CGS)
(A.4)

The expressions differ because the values of the susceptibilities are different in
the two systems:

χSI = 4π χCGS. (A.5)

Further Reading

R.A. Carman, Numbers and Units for Physics (Wiley, New York, 1969)
J. de Boer, Metrologia 31, 405 (1995)
P.J. Mohr, B.N. Taylor, D.B. Newell, Rev. Mod. Phys. 80, 633–730 (2008)
NIST Special Publication 811, 2008 edition, Guide for the Use of the International System

of Units (SI), ed. by Ambler Thompson Technology Services, B.N. Taylor, http://physics/
nist/gov
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B

Physical Constants

Quantity Symbol Value CGS SI

Speed of light in
vacuum

c 2.997925 1010 cm s−1 108 m s−1

Elementary charge e 1.60218 4.80654×10−10 statC 10−19C
Planck constant h 6.62607 10−27 erg s 10−34 J s

h̄ = h/2π 1.054572 10−27 erg s 10−34 J s
Avogadro’s constant NA 6.02214

×1023 mol−1

Atomic mass constant mu 1.66054 10−24 g 10−27 kg
Electron mass me 9.10939 10−28 g 10−31 kg
Proton mass mp 1.67262 10−24 g 10−27 kg
Ratio of proton and
electron masses mp/me 1836.153
Electron gyromagnetic
ratio

γe 1.760859770 107 s−1 G−1 1011 s−1 T−1

Gilbert gyromagnetic
ratio

μ0γe 2.2127606 105 m A−1s−1

Electron Compton λc 2.42631 10−10 cm 10−12 m
wavelength
Bohr radius a0 0.529177 10−8 cm 10−10 m
Bohr magneton μB 9.2740154 10−21 erg G−1 10−24 JT−1

Nuclear magneton μN 5.0507866 10−24 erg G−1 10−27 JT−1

Electronvolt eV 1.60218 10−12 erg 10−19 J
Boltzmann constant k 1.380658 10−16 erg K−1 10−23 JK−1

Reciprocal of fine 1/α 137.036
structure constant
Rydberg constant R∞hc 2.179874 10−11 erg 10−18 J
Molar gas constant R 8.31451 107 erg mol−1 K−1 J mol−1 K−1

Vacuum permittivity ε0 – 1 107/4πc2

Magnetic constant
(vacuum permeability) μ0 1 4π×10−7 Hm−1
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Materials

[Co(6nm)Ag(6nm)]60 multilayer, GMR, 135
3d elements paramagnetism, 22
3d metals, exchange lengths, 5
4d elements paramagnetism, 22
5d elements paramagnetism, 22

actinides paramagnetism, 22
α-Fe D0 vortex critical diameter, 67
α-Fe D1 vortex critical diameter, 67
α-Fe Dcr for inhomogeneous nucleation, 92
alumina (Al2O3) porous matrix, 161
alumina template, 160

BaFe12O19 μmag. parameters, 23

Co Dcr for inhomogeneous nucleation, 92
Co lex, 5
Co μmag. parameters, 38
Co critical single-domain diameter, 49
Co density of states, 129
Co film crossed by e-beam, 97
Co film magnetization reversal, 116
Co film, anisotropy vs. thickness, 113
Co films, surface anisotropy, 76
Co grains in Cu anisotropy, 78
Co grains in Cu, anisotropy, 77
Co mag. parameters, 24
Co nanodisk spin structure, 60, 61, 66
Co nanoparticle inverting probability, 72
Co nanoring as memory element, 181
Co nanoring hysteresis, 159
Co nanowire, 160, 164, 167
Co nanowire, rectangular, 160
Co nanowire, wall velocity, 167
Co particle Hc vs. diameter, 62
Co particle maximum Hc, 62
Co SPM critical diameter, 69
Co90Cu10 nanoparticles, interactions, 101
Co, radius and crystal structure, 15
Co/Al2O3/Co TMR, 145
Co/Au/CoO, exchange bias, 117, 118
Co/CoO, exchange bias, 117
Co/Cu multilayer, resistivity, 139
Co/Cu multilayers parameters, 139
(Co10 nm)/Cu10 nm)×500 multilayer,

GMR, 166
CoAg multilayer, magnetoresistance, 136

CoCoO core shell particle, 78
CoCr alloy for magnetic hard disk, 174
CoCu layered nanowire, 164
CoCu multilayer nanowire, 166
CoCu multilayer, magnetotransport

parameters, 139
CoCu multilayer, oscillatory coupling, 123
CoCu(001), effect of capping layer, 13
CoFe used in spin valves, 178
CoIrMn nanoring circulation, 160
CoO magnetization and hysteresis, 120
CoOFe2O3 particle Hc vs. diameter, 62
CoPt μorb and Keff, vs. dimension, 14
CoPt moment, 15
CoPt multilayer, for TAMR, 147
CoTaZr soft magnetic underlayer, 175
CoZrNb soft magnetic underlayer, 175
CrO2 half-metal behavior, 145
CrO2, band structure, 146

Fe lex, 5
Fe μmag. parameters, 38
Fe critical single-domain diameter, 49
Fe density of states, 129
Fe film, interlayer coupling, 124
Fe films, enhanced moment, 14
Fe mag. parameters, 24
Fe nanocrystalline alloys, 55
Fe nanodisk μl in vortex core, 151
Fe particle Hc vs. diameter, 62
Fe particle maximum Hc, 62
Fe particles, core-shell structure, 78
Fe single-domain critical diameter, 67
Fe SPM critical diameter, 69
Fe whisker magnetization, 124
Fe3O4 τ vs. TB, 69
Fe3O4 nanoparticle relaxation, 77
Fe80Si20 single-domain critical diameter, 67
Fe, moment vs. dimensionality, 12
Fe, spin wave in, 4
Fe-based nanocrystalline alloys, 54
Fe3O4 SPM critical diameter, 69
FeC particles, scaling, 71
FeCoB soft magnetic underlayer, 175
FeCr miscibility in films, 107
FeF2 exchange bias, 117
FeF2, hysteresis, 118
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Fe/GaAs film, dynamic coercivity, 116
FePt nanoparticle viscosity, 73, 74
FePt nanoparticles, energy barriers, 74, 75
FeSi in nanocrystalline alloy, 54
FeSi particles, average anisotropy, 55
Finemet Fe alloys, 54

γ−Fe2O3 hysteresis, 76
γ−Fe2O3 particles, interacting, 101

hexaferrite remanent magnetization, 98, 99

lanthanides paramagnetism, 22

maghemite nanoparticle TC simulation, 58
maghemite nanoparticle dimensionality, 19
magnetite in bacteria, 2
magnetite in pigeon beak, 2
MnF2/Fe bilayer Hc, 121
MnF2/Fe EB in bilayers, 121

Nd2Fe14B μmag. parameters, 23
Ni Dcr for inhomogeneous nucleation, 92
Ni lex, 5
Ni μmag. parameters, 38
Ni critical single-domain diameter, 49
Ni density of states, 129
Ni mag. parameters, 24
Ni magnetic moment in films, 109
Ni moment in multilayers, 109
Ni nanowire TC(d), 161
Ni nanowire coercivity, 163
Ni nanowire exponent shift, 162
Ni nanowire ratio EB/kBT , 163
Ni SPM critical diameter, 69
Ni0.8Fe0.2 μmag. parameters, 38
Ni, moment vs. dimensionality, 12
Ni/Al2O3/Ni TMR, 145

Ni20Fe80, DW velocity, 168
NiCr/Cu/Co/Cu inverse GMR, 140
NiCu layered nanowire, 164, 165
Ni/Cu(001) perpendicular magnetization,

113
NiFe used in spin valves, 178
NiFe2O4 particle, spin disorder, 77, 78
NiFeCo nanoring, 157
NiMnSb half-metal behavior, 145

permalloy μmag. parameters, 38
permalloy disk as memory element, 180
permalloy disk critical diameter, 150
permalloy disk, critical velocity, 153, 154
permalloy disk, polarity inversion, 154
permalloy dot, 111
permalloy elliptical dot, 111
permalloy film, antivortex, 153
permalloy for DW memory, 183
permalloy islands, 95
permalloy nanodisk hysteresis, 155
permalloy nanoparticles, vortex structure,

150
permalloy nanowire, domain wall velocity,

53
permalloy ring, depinning, 160
permalloy single-domain critical diameter,

68
permalloy VRAM element, 180
permalloy, critical nanodisk diameter, 157
permalloy, critical nanoring diameter, 157
permalloy, exchange length, 150
perovskite, CMR in, 128

Sm2Co17 μmag. parameters, 23
SmCo5 μmag. parameters, 23
SmCo5 SPM critical diameter, 69
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Symbols

A exchange stiffness constant, 5
a lattice parameter, 43
α angle of the AFM magnetization, 120
α aspect ratio, 32
α damping constant, 40
α two-domain Ems reduction factor, 49
α volume geometric factor, 82
αd co-factor of dipolar sum, 100
αF spin asymmetry parameter, 132
αF/N spin asymmetry parameter, 139
αG Gilbert damping constant, 40
αi direction cosines, 34

B distance between recorded transitions, 175
B magnetoelastic coupling constant, 34
B magnetic induction, 22
β angle between μ and H, 102
β angle of the FM magnetization, 120
β non-adiabaticity parameter, 168
βF spin asymmetry parameter, 138
BJ(x) Brillouin function, 25
Bm molecular field, 25
Bme magnetoelastic coupling coefficient,

113

C Curie constant, 25
c vortex circulation, 151
C∗ exchange field intensity parameter, 102
χ magnetic susceptibility, 22
χP Pauli susceptibility, 12

D particle size, 54
D stiffness constant, 4
d interparticle distance, 100
D0 characteristic length, 58
D0 single-domain critical diameter, 62
D1 critical diameter for vortex state, 67
D2 critical single-domain diameter for hard

magnet, 67
Dcr critical single-domain diameter, 5
dcr critical thickness, 114
Dinh

cr Dcr for inhomogeneous nucleation, 91
Dring

cr ring critical diameter for vortex, 157
Dvo

cr vortex critical diameter, 150
D(E) density of states, 6
de equilibrium interplanar spacing, 107
Δ domain wall width parameter, 5

δ0 domain wall width, 5
Δd(12) variation of interplanar spacing, 107
δs out of equilibrium spin density, 132
Δt magnetization reversal time, 94

e electron charge, 96
E0 energy of the n = 1 level, 8
EA anisotropy energy, 32
EB energy barrier height, 59
EB average barrier energy, 73
Eex exchange energy, 29
Eext energy in external field, 35
EF Fermi energy, 8
Eme magnetoelastic energy, 34
Ems magnetostatic energy, 30
ε strain, 33
εd dipolar energy, 100
η efficiency of write head, 176
η field sweep rate, 115

g g-factor, 25
g spin transfer function, 96
g write head gap width, 176
γ domain wall energy, 6
γ gyromagnetic ratio (Landau), 40
γ spin asymmetry parameter, 138
γ surface energy, 106
γe electron gyromagnetic ratio, 40
γG Gilbert gyromagnetic ratio, 40

H separation between tracks, 175
H magnetic field intensity, 22
h reduced magnetic field, 87
H∗

c dynamic coercivity, 115
H0 deep gap field, 176
HA anisotropy field, 36
Hc coercive field, 27
Hc magnetic field at the head core, 176
Hi

c intrinsic coercivity, 93
Hvo

cr critical vortex field, 153
Hd demagnetizing field, 41
Hd demagnetizing field, 30
Hdp depinning field, 115
Heff effective field, 36
Hg magnetic field at the gap, 176
Hmax maximum field, 27
HN nucleation field, 63
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Hp peak field, 52
Hsat saturation field, 98
Hsw switching field, 63
Ht total magnetic field, 102

i current, 96

J total angular momentum, 23
J exchange integral, 29
J magnetic polarization, 22
j current density, 132
J1 interlayer exchange coupling constant,

122
Jc critical current density, 169
j↓ spin down current density, 132
Jint interface coupling constant, 120
js spin current density, 132
j↑ spin up current density, 132

K anisotropy constant, 5, 33
k wavevector, 4
K1 first anisotropy constant, 33
K2 second anisotropy constant, 33
〈K〉 average anisotropy, 54
κ hardness parameter, 37
κ imaginary wave vector, 146
kB Boltzmann constant, 4
Kd shape anisotropy energy, 85
Keff effective anisotropy constant, 34
kF Fermi wavevector, 8
Ks surface anisotropy constant, 76
Kvol macroscopic anisotropy constant, 77

� core length, 176
λ magnetostriction, 34
λ shift exponent, 19, 162
λF Fermi wavelength, 10
λm molecular field constant, 25
λm molecular field parameter, 17
λmfp electron mean free path, 128
λs saturation magnetostriction, 34
lex exchange length, 5
lsd spin diffusion length, 128
L(x) Langevin function, 75

M magnetization, 22
m electron mass, 7
m reduced magnetization, 29
M0 magnetization at T = 0 K, 25

Md(H) DC remanence, 98
MR magnetoresistance, 127
Mr retentivity, remanence, 27
Mr(H) isothermal remanence, 98
Ms saturation magnetization, 5
minf lower branch of magnetization, 98
msup upper branch of magnetization, 98
μ chemical potential, 132
μ domain wall mobility, 52
μ magnetic permeability, 22
μ particle magnetic moment, 100
μ0 magnetic constant or vacuum permeabil-

ity, 5
μ0 spin averaged chemical potential, 133
μB Bohr magneton, 25
μJ atomic magnetic moment, 25
μr relative permeability, 23
μs out of equilibrium chemical potential, 133
μs spin accumulation, 133
μs spin magnetic moment, 26
μz z component of the magnetic moment, 75
mvir virgin magnetization, 98

N number of electron collisions, 128
N number of occupied electron states, 8
n electron density, 12
n number of ions per unit volume, 25
n quantum number, 8
n winding number, 155
Na demagnetizing factor, a axis, 93
Nc demagnetizing factor, c axis, 93
Nd demagnetizing factor, 31
Neff effective demagnetizing factor, 36
NN number of nearest neighbors, 108
N‖ parallel demagneting factor, 36
N⊥ perpendicular demagnetizing factor, 36
ν frequency of jumps, 68

p dimensionality, 9
p vortex polarity, 151
Pj electron current polarization, 132
P(t) probability of particle not inverting

after t, 71

Q quality parameter, 37
q skyrmion number, 155

R0 resistance without applied field, 127
RAP resistance, antiparallel, 134
Rc vortex core radius, 151
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RH resistance with applied field, 127
ρ density of reversed domains, 116
ρ reduced radius, 93
ρF bulk resistivity, 138
ρ↓

F resistivity, antiparallel, 138
ρ↑

F resistivity, parallel, 139
ρ↑

F resistivity, parallel, 138
RP resistance, parallel, 134

S entropy, 28
S magnetic viscosity, 73
S squareness ratio, or remanence squareness,

28
S total spin angular momentum, 29
ŝ current polarization unit vector, 96
S∗ coercive squareness, 28
σ standard deviation of size distribution, 71
σ stress, 34
S⊥ spin perpendicular component, 76

T absolute temperature, 16
T ∗ dipolar energy/k, 100
T0 interaction temperature, 100
Ta apparent temperature, 100
τ relaxation time, 68
τ spin relaxation time, 128
τ0 attempt period, 68

TB blocking temperature, 16
TC Curie temperature, 17
Tesc escape temperature, 70
θ angle between H and FM anisotropy axis,

120
θ angle between particle anisotropy axis and

H, 59
θP paramagnetic Curie temperature, 25
TN Néel temperature, 22

U internal energy, 28

v volume in k-space of a triplet (kx,ky,kz), 8
V ∗ activation volume, 73
V0 average particle volume, 71
vc vortex core critical velocity, 154
V spm

cr superparamagnetic critical volume, 60
vF Fermi velocity, 128
Vk volume of electrons in k-space, 9
vp DW peak velocity, 52
V (r) potential, 6

W width of recorded track, 175
w nanowire width, 167

x crystalline volume fraction, 54
x ratio of magnetic to thermal energy, 25
ξ correlation length, 18, 162
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Néel (1954), 112
Néel (1954), 33
Nogués and Schuller (1999), 118, 120
Nogués et al. (2005), 125
Nogués et al. (2005), 79

O’Handley (2000), 56, 109, 114, 125
Odenbach (2006), 1
Ohnishi et al. (1983), 12, 13
Ono et al. (2005), 161
Osborn (1945), 32

Park et al. (2008), 147
Parkin et al. (1990), 137
Parkin et al. (1991), 137
Parkin et al. (1994), 137
Parkin et al. (2008), 182
Pinna et al. (2005), 58
Piramanayagam (2007), 106
Piraux et al. (1994), 166
Poole and Owens (2003), 19
Prandolini (2006), 14, 117, 118
Pujada et al. (2003), 77
Pujada et al. (2003b), 78

Raoux et al. (2008), 179
Richter (2007), 174, 175, 183

Rodmacq et al. (1993), 137
Ross et al. (2006), 170
Ruiz-Feal et al. (2002), 115, 116

Sato et al. (1994), 137
Schad et al. (1995), 137
Scholz et al. (2003), 150
Schryer and Walker (1974), 56, 154
Sellmyer et al. (2001), 163, 164, 170
Shi (2004), 183
Shigeto et al. (2002), 153
Shintaku et al. (1993), 137
Shtrikman and Wohlfarth (1981), 100
Skomski (2003), 19
Skomski and Coey (1999), 56, 91
Skomski and Zhou (2006), 56, 89, 164
Slonczewski (1989), 145
Slonczewski (1996), 96, 153
Slonczewski (2007), 125, 147
Song and Ketterson (1991), 12
Stamps (2000), 122
Stamps (2001), 122
Stearns (1977), 145
Stiles (1999), 123, 124
Stiles (2004), 125
Stoner and Wohlfarth (1948), 79
Stöhr and Siegmann (2006), 102
Sun and Wang (2006), 87
Sun et al. (2005), 161–163, 170

Takahashi et al. (1980), 120
Tannous and Gieraltowski (2008), 88, 102
Tatara and Kohno (2004), 168
Tersoff and Falicov (1982), 109
Thamm and Hesse (1996), 98
Thamm and Hesse (1998), 98
Thiaville (2000), 90
Thiaville et al. (2005), 168, 169
Thirion et al. (2002), 86
Thomas and Parkin (2007), 167, 168, 170
Thomson et al. (2008), 173, 178, 183
Tretiakov and Tchernyshyov (2007), 155
Tsymbal et al. (2003), 145, 147

Unguris et al. (1991), 124, 125
Usov and Peschany (1994), 151

Valet and Fert (1993), 141
Vassiliou et al. (1993), 76
Vaz et al. (2007), 156, 170, 171



210 Author Index

Vaz et al. (2008), 13, 14, 18, 19, 38, 125
Vazquez (2007), 160, 170

Wade and Wegrowe (2005), 170
Waeyenberge et al. (2006), 153
Wang and Campbell (2007), 153
Wang and Sun (2007), 96
Weber et al. (2001), 97
Weller and McDaniel (2005), 2
Wernsdorfer (2005), 103
Wernsdorfer et al. (1997), 72
Wiltschko and Wiltschko (1995), 2
Wohlfarth (1958), 99
Wohlfarth (1986), 103
Wolf (2006), 130
Wolf et al. (2001), 146

Wolf et al. (2006), 147
Wu and Freeman (1992), 12, 13
Wuttig and Liu (2004), 125

Yamada et al. (2007), 153, 154
Yanagihara et al. (1997), 137
Yang et al. (2007), 159
Yang et al. (2007b), 181
Yoo et al. (2003), 158
Yoshizawa et al. (1988), 54

Zhu (2005), 94
Zhu and Zhu (2003), 181
Zhu et al. (2000), 157, 159, 181
Zhu et al. (2008), 96, 179
Zutic et al. (2004), 144, 147



Index

2CSR, see two-current series-resistor model

activation volume, see volume, activation
adiabatic limit, 168
alumina porous template, 160, 161
anisotropy, 32

AFM layer, 121
average, 54
axis, 51, 59, 80, 81, 83, 84, 120, 121
constant, 5, 33, 59, 77, 81
constant, effective, 54, 112
constant, out of plane, 112
crystalline, 54, 160
crystalline, in nanowires, 160
direction, nanowire, 160
effective, 54, 55, 77
effective, in thin film (figure), 113
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correlation length, see length, correlation
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Law, 25
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temperature, nanowire, 161, 162
temperature, paramagnetic, 25
temperature, thin film, 109
temperature, thin film (figure), 109
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critical, 96
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values, 31

demagnetizing field, 30, 31, 37, 82, 113, 116
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electron, 12

density of states, 6, 7, 9–12, 14, 26, 143, 145
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density of states at EF , 8, 12
density of states, in TMR, 144
density of states, tunneling, 143, 145
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density, track, 175
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critical, vortex state, 67

diffusion length, 142
diffusive regime, 128
dipolar
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disk access time, 179, 183
disk, hard, 2, 3, 93, 105, 106, 173, 174, 178,
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displacement exponent, see exponent, shift
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closure, 41
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domain wall, 41, 64
180◦, 153
360◦, in nanoring, 157
cross-tie, 114, 115
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electron torque, 168
energy, 5, 6, 46–50
film, 114
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motion, 50, 51, 60, 111, 149, 154, 167
motion mechanism, 50
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peak velocity, 52
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thickness, 44, 45
transverse, 53, 167
transverse, critical dimensions, 167
transverse, in nanoring, 158
transverse, velocity, 169
velocity, 51–53, 167–169
velocity, current-driven, 169
velocity, in nanowire, 167
vortex, see vortex wall
width, 4, 5, 37, 42, 46
width parameter, 5, 37, 65

domain wall, Bloch, see Bloch domain wall
domain wall, Néel, see Néel domain wall
dot, see nanodisk
drug delivery, 2, 57

Earth field, 2
eddy current, 41
efficiency, write head, 175, 176
electrochemistry, 160, 166
electronic structure, 14
ellipsoid
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emu, 23, 186, 187
energy

magnetostatic, 37
energy barrier, see barrier, energy, 178

energy functional, 35
escape temperature, 70
exchange

bias, 79, 105, 117–121, 160
bond, 3
constant, 29, 30
energy, 28, 29, 34, 35
energy, expression, 30, 44
energy, in DW, 44–47
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energy, in uniform case, 30, 43
energy, in vortex center, 151
energy, vortex core, 157
integral, 43
interaction, 28
stiffness constant, 5, 30, 37, 38, 43, 45,

54, 92
exchange bias, 122, 178
exchange bias field (figure), 118
exchange bias, application, 122
exchange bias, models, 122
exchange field and coercivity, 121
exchange length, see length, exchange
exponent

critical, 17, 17, 18
shift, 19, 19
shift, in nanowires, 162

fanning, 60, 90, 91
Fermi

energy, 8, 26, 133, 146
gas, 6
level, 8, 9, 12, 26, 123, 128, 131, 134, 145
statistics, 132
surface, 124
velocity, 128
wavelength, 4, 10, 12, 12, 146
wavevector, 8

ferrimagnet
magnetization (figure), 24

ferrofluid, 1, 57
ferromagnet

magnetization (figure), 24
strong, 131

FIB, see focused ion beam
field cooled (FC) hysteresis, 118
field, deep gap, 176, 177
field, depinning, see depinning field
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field, nucleation, see nucleation field
Finemet, 54
flux closure, 42, 156, 179
focused ion beam (FIB), 111
Frank-van der Merwe growth, 107, 108
free electron

gas, 9, 12, 26
model, 6

free electron gas
density of states, 26
wavefunctions (figure), 8

free energy, 107
free magnetic pole, 41
free-electron

model, 124
free-electron-like band, 145
frequency, attempt, 68, 93
frequency, switching, 68
frustration, 3

g-factor, 25
electron, 26, 168

gap magnetic field, 176
gap, write head, 174–177
gauss, 23, 185
Gibbs free energy, 28
Gilbert

equation, 40
gyromagnetic ratio, 40

GMR, see magnetoresistance, giant
gyromagnetic ratio, 40
gyromagnetic ratio, electron, 40
gyrotropic motion, 153, 180

half-metal, 145
half-metal (figure), 146
HAMR, see magnetic recording, heat

assisted
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hard magnetic material, 27, 28, 37, 39, 63,

66, 67
hardness parameter, 37, 63, 67
HDD, see disk, hard
head, read, 175, 177, 178, 182
head, recording, 174
head, write, 175–178
heat-assisted recording, 178

Heisenberg
3D model, 19
hamiltonian, 29

Henkel plot, 99
hyperthermia, 57

magnetic, 2
hysteresis

rotational, 120
sweep rate dependence, 116

hysteresis curve, 21, 27, 98
film, 118
in S-W model, 87, 88
nanodisk, 154
nanoring, 158, 159

hysteresis curve (figure), 27, 118
hysteresis loop, 27, 27, 116

in S-W model, 87
shift, 117, 121

inhomogeneous nucleation, 91
interaction between particles, 97–102
interactions in magnetic materials, 28
interface

compensated, 117
uncompensated, 117

interface conductance parameters, 139
interface roughness, 123
interlayer exchange coupling, 105, 122, 124

constant, 122
inversion field, 63
Ising model, 18

Jullière
formula, 145
model, 143, 145, 146

Karlqvist head, 177
Kondorsky reversal, 85

Landau
state, 151

Landau–Gilbert equation, 96
Landau–Lifshitz–Gilbert equation, 94, 96
Landau-Lifshitz-Gilbert equation, 40
Langevin

function, 60, 74, 75, 75, 90, 99–101
lattice parameter, 43, 107
length

characteristic, 1, 3–5, 37–39
characteristic (Table 1.1), 4
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correlation, 18, 18
correlation, in nanowires, 162
exchange, 4, 5, 21, 23, 37, 37, 38, 39, 54,

60, 65–67, 92, 150, 151, 154, 157,
166, 167

exchange (Eq. 1.2), 5
exchange, 3d metals, 5

LLG equation, see Landau-Lifshitz-Gilbert
equation

log-normal distribution, 71, 71
log-normal distribution (figure), 72
logic gate, 110, 111

majority, 111
Lorentz

magnetoresistance, 127, 128
microscopy, 77

macrospin model, 79
magnetic circuit, 106, 174, 175
magnetic constant, 22, 40
magnetic constant or vacuum permeability,

5, 22, 185, 186, 193
magnetic field

reduced, 87
rotating, 153

magnetic field pulse, 153
magnetic flux density, 22
magnetic force microscopy (MFM), 60, 61,

151, 152, 161
magnetic history, 60
magnetic induction, 22, 22
magnetic material, 22
magnetic moments vs. dimensionality, 12
magnetic polarization, 22
magnetic random access memory, 181, 182
magnetic recording, 1–3, 73, 93, 94, 105,

113, 115, 150, 156, 173, 174
longitudinal, 174–176
perpendicular, 174, 175
technology, 93, 173

magnetic resonance imaging (MRI), 57
magnetic storage, 2, 16, 122, 159
magnetic viscosity, see viscosity, magnetic
magnetization, 22, 186

saturation, 5
magnetoelastic coupling constants, 34
magnetoelastic energy, 33, 34
magnetomotive force, 176
magnetoresistance, 127

anisotropic (AMR), 122, 127, 128
ballistic (BMR), 128, 146
colossal (CMR), 128
domain wall (DWMR), 128
extraordinary (EMR), 128
giant, 177, 180, 181
giant (GMR), 122, 127, 128, 134, 137,

138, 140, 142, 145
giant (GMR) model, 141
giant (GMR), inverse, 140, 141
giant (GMR), normal, 140
giant (GMR), origin of, 127
giant GMR (figure), 135
giant, in nanowire, 166
ordinary (OMR), 128
tunnel, 177, 181
tunnel (TMR), 122, 127, 128, 142, 143,

145–147
tunneling anisotropic (TAMR), 128, 147
types of, 127, 128

magnetoresistance, Lorentz, see Lorentz
magnetoresistance

magnetoresistive random access memory,
see magnetic random access memory

magnetostatic energy, 30, 30, 31, 34, 37, 39,
41, 49, 112

and flux closure, 42
and pole avoidance, 41
ellipsoid, 31
for sphere, 64
in domain wall, 45
in ellipsoid, 49, 79
in magnetization reversal, 90, 91
in multidomain case, 49
in multidomain sample, 41
in Néel DW, 47
in single-domain structure, 64
reduction factor, 50

magnetostriction, 34
saturation, 34, 113

magnetron sputtering, 106
magnon, 131, 147
majority spin, 26
majority spin tunneling, 143
MAMR, see magnetic recording, microwave

assisted
mass, effective, 132
Maxwell’s equation, 30
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MBE, see molecular beam epitaxy
mean free path, 128
melt-spinning, 54
memory

magnetic, 159
memory effect, 122
metastable state, 60
MFM, see magnetic force microscopy
micromagnetism, 21, 35
microwave-assisted recording, 96, 178
minority spin, 146
misfit

lattice parameter, 107, 109
strain energy, 107

mobility, 52
domain wall, 115

molecular beam epitaxy (MBE), 106
molecular field parameter, 17
Monte Carlo simulation, 58, 77, 100–102
Moore’s Law, 2
Mott model, 131
MQT, see quantum tunneling, macroscopic
MRAM, see magnetic random access

memory
MRI, see magnetic resonance imaging
Mössbauer spectroscopy, 68, 69

nanocontact, 128
nanocrystalline

alloys, 53–55
material, 54

nanodisk, 149–153, 156, 157, 173
micromagnetic simulation (figure), 61

nanodot, see nanodisk
shape anisotropy, 155

nanodot, elliptic, 155
nanomagnetism, 1
nanopillar, 160
nanoring, 149, 150, 156–160, 173
nanoring circulation, 160
nanoring memory, 179
nanoring stack, 159
nanoring, broad, 158
nanowire, 10, 149, 160–164, 166–168, 173

3d metal, 163
DW velocity, 168
size effects, 161–163
anisotropy axis, 163
coercivity, 163

domain wall motion, 169
domain walls, 167
exponent shift, 162
hysteresis, 164, 166
hysteresis loop, 163, 165
MMF image, 161
multilayer, 164, 166
shape anisotropy, 160, 163, 164, 166
single domain, 161

nanowire ratio EB/kBT , 163
nanowire, cobalt, 160
nanowire, magnetism, 164
Néel

domain wall, 42, 43, 47, 48, 114, 115
domain wall energy, 48
domain wall width, 48
rotation, 60
temperature, 22, 117

Néel–Arrhenius Law, 68
non-equilibrium

deposition regime, 107
non-local energy term, 28
nucleation field, 63, 63, 82, 83

curling, 91
nucleation field expression, 81
nucleation field in Brown’s paradox, 81
nucleation field with K2 �= 0, 82
nucleation field, curling, 166
nucleation field, equivalence to HA, 83
nucleation field, in homogeneous reversal,

91
nucleation field, inhomogeneous nucleation,

93

oersted, 23, 185
Oersted field, 181
Ohm’s Law, 133
onion state, 157

nanoring, 157–160, 180
onion structure

in nanoring, 158
optical storage, 179
orange peel effect, 122
orbital moment, 15
orbital moment, and dimension, 14
orthorhombic symmetry, 33
oscillatory coupling, 123, 124
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paramagnet, 22
susceptibility (figure), 24

parameters, micromagnetic, 23
patterned media, 178
Pauli

paramagnet (figure), 24
paramagnetism, 26
principle, 8
susceptibility, 12, 26

PCRAM, see phase-change random access
memory

PEEM, see Photoemission Electron
Microscopy

permalloy, 28
nanowire, 52, 53

permanent magnet, 73
permeability

magnetic, 22
nanocrystalline alloys, 55

permeability, vacuum, see magnetic constant
perpendicular current geometry (CPP), 145
perpendicular magnetization, 113, 114
perpendicular recording, 105
perpendicular recording disk, 106
phase-change random access memory, 179
photochromic crystal, 179
Photoemission Electron Microscopy

(PEEM), 152
pinhole, 146
pinning, 48
pinning center, 51
pinning potential, 51
polarization, 35, 145, 146, 147
polarization, electron current, 132
polarized current, 105
pole avoidance, 41
precessional switching, see reversal,

precessional
probe-based storage, 179
pseudo spin valve, 181
ψ wavefunction, 6

quality parameter (Q), see hardness
parameter

quantum dot, 10, 11
quantum well, 10, 11

racetrack magnetic memory, 182
RAM, see random access memory

random access memory, 179
random anisotropy

model, 53
random walk, 128
rare-earth, 32, 124
recording, digital, 173
recording, magnetic, see magnetic recording
relative magnetic permeability, 186
relaxation time, 88, 178
relaxation, magnetic, 40, 94
remanence curve

DC, 98
isothermal, 98

remanence, magnetic, 27
remanence, measurement at, 27
remanent magnetization, 98

DC, 99
isothermal, 99

resistance network model (GMR), 134–136
resistance, renormalized, 139
resistivity, interface, 138
retentivity, 27
reversal

current-induced, 96, 97
magnetization, 16, 87, 93
magnetization trajectory (figure), 95
magnetization, and barrier height, 74
magnetization, as function of ψ , 88
magnetization, by buckling, 92
magnetization, by curling, 92
magnetization, by pulsed field, 94
magnetization, coherent, 79, 90, 92
magnetization, current-induced, 96
magnetization, cylinder, 90–92
magnetization, described with LLG

equations, 93
magnetization, film (figure), 117
magnetization, for α = 0, 94
magnetization, for α �= 0, 94
magnetization, for θ �= 0, 94
magnetization, generalized, 89
magnetization, homogenous, 57, 91
magnetization, in film, 115, 116
magnetization, in nanoparticle, 59, 82
magnetization, in nanowires, 162, 166
magnetization, in S-W model, 93
magnetization, in superparamagnet, 16
magnetization, in thin film, 114
magnetization, inhomogeneous, 90, 91
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magnetization, interacting particles, 100
magnetization, microwave field, 96
magnetization, minimum time, 94
magnetization, nanowire, 166
magnetization, precessional (figure), 95
magnetization, process, 90
magnetization, pulsed field, 94, 95
magnetization, thin film, 116
magnetization, time, 116
magnetization, time interval, 94
precessional, 94, 95
vortex core magnetization, 153, 154
vortex core magnetization, current-

induced, 154
RKKY, see Ruderman-Kittel-Kasuya-Yosida

interaction
Ruderman–Kittel–Kasuya–Yosida (RKKY)

interaction, 97
Ruderman-Kittel-Kasuya-Yosida (RKKY)

interaction, 123
model, 124

rugosity, chemical, 139

saturation magnetization, 5, 36
Schrödinger equation, 6, 7, 26
SI system, 5, 22, 23, 32, 39, 40, 113, 154,

185–187
signal to noise ratio, 178
single-domain sample, 41
skyrmion number, 155
Slonczewski model, 145
soft magnetic material, 27, 37, 39, 61, 63,

66, 67, 105, 150
soft magnetic underlayer, 106, 174, 175, 177
spanning vector, 124
specific resistance, multilayer, 139
specific surface area, 16
spin accumulation, 133, 134
spin asymmetry parameter, 132, 138, 139
spin current density, 132
spin density

out of equilibrium, 132
spin diffusion length, 4, 128, 128, 129–131,

133, 141, 142
spin disorder, 77, 78
spin filter, 130
spin glass, 77, 78
spin injection, 130, 131
spin polarization

equilibrium, 130
non-equilibrium, 130

spin relaxation time, 128
spin valve, 96, 177, 180, 181

exchange-biased, 140, 141
spin valve, application of exchange bias, 122
spin valve, pseudo, 122
spin wave, 4
spin wave spectrum, 4
spin-dependent scattering, 128
spin-polarized current, 127, 129, 153, 159,

168, 180–182
spin-switching, 153
spin-transfer torque, 96, 127, 147, 181
spintronic

devices, 3
spintronics, VII, 105, 127, 134
squareness ratio, 28
squareness, coercive, 28
squareness, remanence, 28
stiffness constant, 4
stiffness, exchange constant, see exchange,

stiffness constant
Stoner–Wohlfarth

expression, 82
hysteresis curve, 88
model, 60, 79, 86, 87, 90, 93, 98, 99
model, E(θ), 83, 86
model, EB(ψ), 89
model, Hsw(θ , 86
regime, 60
theory, 57
treatment, 79

Stoner-Wohlfarth
model, 35

strain, film, 113
Stranski-Krastonov growth, 107, 108
stray field, 157
stray field energy, 30
stray field, medium, 177, 178
stress, 34, 107
stress, film, 113
stripe, magnetic, 173
STT, see spin-transfer torque
SUL, see soft magnetic underlayer
superparamagnet, 60
superparamagnetic

behavior, in nanoparticles, 79, 89
behavior, in nanowires, 162
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particle, 99
particle, contribution to M, 90
regime, 63, 68, 69, 178
regime, M(T ), 74
regime, critical volume, 69
regime, in distribution of V , 71
regime, transition to, 82
state, 102
system, 76

superparamagnetism, 4, 16, 57, 68, 74
surface

effects, 76
energy, 106, 107
free energy, 106

surface anisotropy, see anisotropy, surface
surface to volume ratio, 16
susceptibility

magnetic, 17, 22, 22, 23, 25, 26, 69, 186
susceptibility, Pauli, see Pauli susceptibility
sweep rate

magnetic field, 115
sweep rate dependence, see coercivity or

hysteresis, sweep rate dependence
swirl, see vortex
switching, see also reversal, magnetization

field, 63, 63, 71, 85–87, 94
precessional, 93
process, 87

switching frequency, 88
switching speed, 97
symmetry breaking, 76

TAMR, see magnetoresistance, tunneling
anisotropic

tesla, 22
thermal fluctuations, 4
thermal reservoir, 94
thin films and multilayers, 105
time

measurement, 68–70
relaxation, 68, 69, 72, 100
relaxation, in nanowires, 163
waiting, 71

time dependent phenomena, 77
time scale, 68, 70
TMR, see magnetoresistance, tunnel
torque, 96

current-induced, 96
torque magnetization, 119

training effect, 121
transition

thermally activated, 68
translation symmetry, 112

breaking, 1, 3, 6, 13
transmission electron microscope, 57
transmission electron microscopy, 77
transmission electron microscopy (TEM),

166
trilemma, magnetic recording, 178
tunnel

effect, 142
junction, 142–145, 181, 182

tunnel junction, conductance, 142
tunnel magnetoresistance, see magnetoresis-

tance, tunnel
tunneling

macroscopic quantum, 70
tunneling current, 145
tunneling scheme, 144
twisted state

nanoring, 157, 159, 180, 181
two-current series-resistor model, 138,

140–142
two-domain structure, 63

units in magnetism, 185
units, conversion factors, 23
units, magnetic, 23

vacuum magnetic permeability, see magnetic
constant

Valet-Fert model, 140–142
van den Berg construction, 41, 42
vapor deposition, 106
virgin curve, 98
viscosity for H = Hc, 73
viscosity, magnetic, 73, 73, 74, 88, 164
Vogel–Fulcher equation, 100
Volmer-Weber growth, 107, 108
volume

activation, 73
activation, in nanowires, 164
critical, 69, 89
critical, superparamagnetic, 60
nucleation, in nanowires, 164

vortex, 42, 60, 66, 154, 155
annihilation, 153
arrangement, 150
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as energy minimum state, 49, 63, 66
as energy minimum state (figure), 64, 65
as limit in Landau structure, 151
as nanodot ground state, 179
chirality, 152, 180
chirality, data encoding, 180
circulation, 151, 152, 180
circulation, data encoding, 179
configuration, 57, 65
critical field, 153
dynamic behavior, 156
evolution from onion state, 158
in cross-tie wall, 114
in cylindrical coordinates, 66
in hard magnet, 66
in nanodisks, 151
in nanoring, 157–160
minor, 158, 160
polarity, 151, 152, 155
polarity, data encoding, 179, 180
profile, 151
sense of rotation, 151, 152
shape, 151
structure, 63, 150, 152
winding number, 155

vortex center
disk, 150

vortex core, 151, 153, 157
(figure), 150
frequency, 153
in applied field, 153
inversion, 153

magnetization, 151, 153
motion, 153
polarity inversion, 153
precession, 153
radius, 151, 154
trajectory, 153
velocity, 153
critical velocity, 153, 154
magnetization, 151

vortex state in nanoring, 158, 159
vortex wall, 167
vortex wall, in nanoring, 158, 160
vortex wall, in nanowire, 167
vortex-antivortex pair, 155
vortex-based random access memory

(VRAM), 179, 180
VRAM, see vortex-based random access

memory

Walker
breakdown, 51, 53, 154, 169
breakdown field, 51, 52
breakdown suppression, 53
field, 51, 167
limit, 169
velocity, 51, 154

Weiss model, 17, 25
winding number, 152, 153, 153, 155
winding number, of antivortex, 153
Wohlfarth relation, 99

Zeeman energy, 35


	Cover
	NanoScience and Technology
	Principles of Nanomagnetism
	ISBN 9783642014819
	Preface
	Contents

	1 The Basis of Nanomagnetism
	1.1 Introduction: The Importance of Nanomagnetism
	1.2 The Origin of Nanomagnetic Behavior
	1.2.1 Sample Dimensions and Characteristic Lengths
	1.2.2 Broken Translation Symmetry
	1.2.2.1 Dimensionality and Density of Electronic States
	1.2.2.2 Dimensionality and Reduced Coordination Number
	1.2.2.3 Nanoscopic Samples and Proportion of Surface Atoms

	1.2.3 Nanoscopic Samples and Magnetization Reversal

	1.3 Dimensionality and Critical Behavior
	Further Reading
	References

	2 Magnetic Domains
	2.1 Introduction
	2.2 Interactions in Magnetic Materials
	2.2.1 Exchange Interaction
	2.2.2 Magnetostatic Energy
	2.2.3 Magnetic Anisotropy
	2.2.3.1 Uniaxial Anisotropy
	2.2.3.2 Cubic Crystals
	2.2.3.3 Other Symmetries and Contributions

	2.2.4 Magnetoelastic Energy and Magnetostriction

	2.3 Elements of Micromagnetism
	2.3.1 Equation of Motion

	2.4 Magnetic Domains
	2.4.1 Domain Wall Width
	2.4.2 Domain Wall Motion

	2.5 Random Anisotropy
	References

	3 Magnetism of Small Particles
	3.1 Introduction
	3.2 Particle Size and Magnetic Behavior
	3.3 Superparamagnetism
	3.3.1 Superparamagnetism: The Langevin Function

	3.4 Surface Effects
	3.5 The Stoner–Wohlfarth Model
	3.5.1 Inhomogeneous Magnetization Reversal
	3.5.2 Precessional Magnetization Reversal
	3.5.3 Current-Induced Magnetization Reversal

	3.6 Interaction Between Particles
	Further Reading
	References

	4 Magnetism of Thin Films and Multilayers
	4.1 Introduction
	4.1.1 Thin Films: Planar Systems
	4.1.2 Thin Films: Laterally Structured Systems

	4.2 Anisotropy in Thin Films
	4.3 Domain Walls and Magnetization Reversal in Thin Films
	4.4 Exchange Bias
	4.5 Interlayer Exchange Coupling
	References

	5 Introduction to Magnetotransport
	5.1 Introduction
	5.2 Spin Dependent Scattering and Giant Magnetoresistance
	5.2.1 Valet–Fert Model for GMR

	5.3 Tunnel Magnetoresistance (TMR)
	Further Reading
	References

	6 Magnetism of Nanodisks, Nanorings, and Nanowires
	6.1 Introduction
	6.2 Nanodisks
	6.3 Nanorings
	6.4 Nanowires
	Further Reading
	References

	7 Magnetic Recording
	7.1 Introduction
	7.2 Principles of Magnetic Recording
	7.3 Novel Magnetic Recording Systems
	7.3.1 Nanodisk and Nanoring Memories
	7.3.2 Domain Wall Memories

	Further Reading
	References

	A  Units in Magnetism
	Further Reading

	B  Physical Constants
	Materials
	Symbols

	References
	Author Index
	Index

