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Abstract: The investigation into new sources of energy with the highest efficiency which are derived
from existing energy sources is a significant research area and is attracting a great deal of interest.
Radio frequency (RF) energy harvesting is a promising alternative for obtaining energy for wireless
devices directly from RF energy sources in the environment. An overview of the energy harvesting
concept will be discussed in detail in this paper. Energy harvesting is a very promising method
for the development of self-powered electronics. Many applications, such as the Internet of Things
(IoT), smart environments, the military or agricultural monitoring depend on the use of sensor
networks which require a large variety of small and scattered devices. The low-power operation of
such distributed devices requires wireless energy to be obtained from their surroundings in order to
achieve safe, self-sufficient and maintenance-free systems. The energy harvesting circuit is known to
be an interface between piezoelectric and electro-strictive loads. A modern view of circuitry for energy
harvesting is based on power conditioning principles that also involve AC-to-DC conversion and
voltage regulation. Throughout the field of energy conversion, energy harvesting circuits often impose
electric boundaries for devices, which are important for maximizing the energy that is harvested. The
power conversion efficiency (PCE) is described as the ratio between the rectifier’s output DC power
and the antenna-based RF-input power (before its passage through the corresponding network).

Keywords: energy harvesting; radio frequency; rectenna; antenna; rectifier monopole antenna

1. Introduction

There are no limitations to the wireless transmission of energy. Wireless energy transfer requires
wireless power transmission through a transmitter linked to a power supply; the energy is converted
back to an electric current, and later it is used to transfer the energy back to one or more receivers.
The use of affordable, green communication strategies has become crucial due to the emergence and
increasing popularity of the Internet of Things (IoT) and implementations of broad-scale wireless
networks with sensors. Most of these devices need to function without batteries, and for this reason,
an energy harvesting circuit is required so that they can capture wireless power [1,2].

Three subsystems can be grouped into an energy harvesting system. The first subsystem
collects energy by using coils that allow the inductive communication or antennas, which enables
the far-reaching transmission of power. Once the energy is collected, its harvested type will not be
usable, and a second subsystem is thus needed to convert the energy. The second subsystem alters
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the captured energy to make it usable. Here, the use of a rectifier is employed to convert the received
AC signal to DC, because the majority of devices need a DC power supply. The proper storage of the
rectified energy must be ensured so that it can be used in the future. The third subsystem is responsible
for storing the energy obtained through the wireless energy harvester, and this subsystem is of great
importance because of the availability of low-input power [1,3,4].

The efficiency of the harvested energy can be improved and maximized through the optimization
of the three subsystems. With regards to the energy propagation to the harvester, power can be
efficiently transferred when an appropriate scheme is selected. The correct scheme relies on the range
from the transmitter (Tx) to the receiver (Rx). Magnetic-induced coupling transfers power to the
reactive close-field area. When there is a greater distance, the transfer of power into the far-field is
performed using antennas [1,5]. The use of an antenna array can be employed to improve the efficiency
of the system in each of the operating regions; this is because the antenna array has the capacity to scan
and focus beams. In order to further improve the energy storage and the rectifier, which are the other
subsystems, an appropriate rectifying element and topology must be used alongside a suitable energy
storage device for the application [3]. The main reason for the use of energy harvesting technologies is
to enable the creation of a wireless sensor platform that is totally independent and self-sustainable.
These technologies can also be used for the creation of power-efficient devices for smart cities, smart
homes, and IoT applications that could significantly influence our future lives. Nevertheless, the
optimal design of a rectifying-antenna—or rectenna—remains a challenge [6].

The intelligence of factories, offices, and homes is increasing due to the emergence of IoT devices
as well as wireless sensors, all of which need to be powered by electricity. Even though a battery
is often employed in these devices, there is still a need for electricity because the batteries require
maintenance and have a limited life span [6]. In an attempt to extend the life span of the batteries,
wireless charging solutions have been developed by researchers; some of the charging solutions include
RF power harvesting, solar power harvesting, and inductive charging. In RF power harvesting, RF
energy is captured from ambient RF sources such as Wi-Fi hotspots and cellular base stations, and the
collected RF energy is then converted into DC power. The rectification device, consisting of two major
components (an antenna and a conversion circuit (RF-to-DC)), accomplishes this procedure [6]. The
sources of ambient RF energy include FM, Wi-Fi, Global System for Mobile (GSM), Digital TV, AM,
Bluetooth, WLAN, etc. There are different devices that are powered by ambient RF energy, including
wireless body area networks, radio frequency identification tags, wireless sensor nodes, etc. [7].

An antenna is located at the front end of an RF energy harvester, and the RF signals are captured
and delivered to the other circuit elements by this antenna. The amount of harvested energy depends
on the radiation parameters of the antenna, such as the beam width, efficiency, gain, polarization,
bandwidth, etc. Basically, an RF energy harvesting (RF-EH) antenna must be portable, compact,
integrable, etc. to enable easy embedding. Furthermore, the antenna must possess high gain in order
to enable the reception of available energy, and it must also possess high efficiency so that losses can
be minimized [8]. Several studies have reported the harvesting of RF power from a single frequency
band [8–10]. If the usable power range is low, a minimum output capacity is provided. In fact, it is
essential to obtain energy from a wide-frequency band or multiple bands, which allows more DC
power to be harvested. Nevertheless, because of the nonlinearity of the rectifier, the architecture
of multiband or wideband rectennas is rather challenging. In [11], a U-slot on a patch was used to
graft a broadband antenna. A T-shaped feeding patch and an inverted T-shape stub were used to
produce the four-band antenna in [12]. A wide-band antenna and double-band were developed in [13].
In [14], the authors present a wideband antenna produced by a dielectric Minkowski fractal resonator.
Furthermore, the antenna could be operated in multiband by inserting a T-shaped slot in the ground
plane [15]. For broadband RF energy harvesting, an improved antenna bandwidth is not adequate, as
the rectifier will run on the same frequency band as the antenna. Multiband and wireless rectennas
have been introduced with different techniques. In [16,17], the authors documented the use of several
correction devices working with a single or dual-band.
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This article provided a review of energy harvesting development procedures from recent
publications. Moreover, a comparison between energy harvesting techniques is provided based
on different energy sources and parameter characteristics. Nevertheless, several kinds of antennas that
might be used in comprehensive energy harvesting systems are reviewed prior to a comparison in
terms of their size, gain, efficiency, etc. Furthermore, rectennas systems have been studied as reported
in the state-of-the-art systems.

2. Energy Harvesting

Energy harvesting is a process by which small quantities of obtainable energy are harvested or
collected from the atmosphere and turned into power, which can be utilized instantly and later. In
this process, the use of an energy source is extended to locations in which grid power is absent [18].
The harvested energy is sufficient for most wireless applications, remote sensing, Radio Frequency
Identification (RFID), and body implants. In addition, the life span of batteries can be extended using
most sources of energy harvesting, even if the gathered energy is low. Most low-power devices, such
as medical devices, sensors, and portable devices, are largely powered by batteries, which must be
replaced every 5–10 years due to their limited lifespan [19]. The main purpose of harvesting energy
is to enable the conversion of energy from one form to another so that it can be utilized to power
electronic devices. When the implementation of energy harvesting is carried out in environmental
monitoring nodes, ambient energy can be directly extracted from the environment under surveillance,
and then the extracted power can be used to power environmental wireless sensor network (EWSN)
nodes. Thus, the performance of the EWSN nodes can be improved while extending their lifetime.
Due to the opportunities offered by outdoor environments, natural elements such as sunlight or wind
present in the environment can be exploited. In addition to these natural elements, nodes can be
powered using other kinds of energy such as RF signals emanating from human activities [20].

A wide range of energy sources has been considered for energy harvesting. One of the main
criteria that must be considered when selecting a source of energy harvesting is its capability to provide
the needed power level for the sensor node. Generally, the dissipation of power occurs when voltage
is being converted, and the increase in the voltage input–output ratio causes the power dissipation
to increase. Thus, it is crucial to ensure that the voltage and current of the generated power are
appropriate. The desired power level can be achieved by increasing the energy source or by scaling the
energy harvesting device accordingly [21]. In the work of Wang et al. [22], the researchers introduced
a lightweight double-band rectenna for power and energy storage for wireless transmission. They
integrated a new antenna which resembled a vine, featuring a dual-band network combining two
separate radial branches and a full Greinachar rectification circuit. With the rectenna, it became possible
to capture and transform RF capacity concurrently with 2.45 GHz Wi-Fi and 3.5 GHz Worldwide
Interoperability for Microwave Access (WiMAX) bands. In another study, a rectifier-less AC–DC energy
harvesting circuit was proposed by Shaikh and Zeadally [23]. With the proposed energy harvesting
circuit, energy could be harvested from different low-voltage piezoelectric transducers. Shi, Fan, Li,
Yang and Wang [24] proposed a compact broadband slotted antenna in order to increase the efficiency
of rectennae in harvesting RF power from the LTE-2300/2500 band. In the study carried out by da Silva,
Neto, and Peixeiro [25], a fast and accurate method was proposed, and they employed only the Zant in
the desired operating frequency rather than the whole touchstone model. The aim of using only the
Zant in the desired frequency was to increase the simplicity of the proposed method.

In another study, a multiport rectenna was proposed by Shen, Zhang, Chiu, and Murch [26]. The
multiport rectenna was proposed for the harvesting of ambient RF energy. The novelty of their work
lies in the fact that the number of ports used depends on the frequency when the same overall area is
used. Awais et al. [27] presented a miniaturized slotted planar antenna alongside a system for energy
harvesting. The proposed system has a compact size of 18 mm × 30 mm with broadband characteristics,
and it offers a better gain for different frequencies. In the work carried out by Yang et al. [28], the
authors introduced ta version of the self-sustained body area network (BAN) sensor. The model
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consisted of a compact electro-triple-band rectenna, micro controls, direct current (DC) regulation, and
the sensing module, as well as the contact module and the storage module. A new cube with dual-band
antenna arrays was proposed by Zhu, Zhang, Han, Xu, and Bai [29] for RF energy harvesting. The
bandwidth of the proposed harvesting cube ranged from 1.85 to 1.93 GHz and from 2 to 2.10 GHz,
respectively, covering GSM-1800 and Universal Mobile Telecommunications System (UMTS-2100) with
cell networking bands. Zhang et al. [30] proposed and designed an RF energy harvesting system and
RF-based wireless power transfer system for applications that are self-sustaining and battery-less. An
overview of a reported studies of energy harvesting is summarized and demonstrated in Table 1. The
following are the key aims of energy harvesting technology:

• Increase of lifespan;
• Removal of main supply wires;
• Elimination or reduction of dependence on batteries;
• Maintenance or/and performance enhancement;
• Ease of installation;
• Reduction of expense;
• Reduction of waste.

Table 1. Summary of previous studies on energy harvesting.

Ref Antenna
Type Technique Freq

(GHz) Eff. (%) Gain
(dBi)

Input
Power
(dBm)

Load
(kΩ)

Dimension
cm × cm

[22] Tree-like
antenna patch – 2.45/3.5 60 – 0 0.9-20 35 × 37

[23] –
Synchronous

electric charge
extraction (SECE)

6.5 79 – – – 50 × 100

[24] Slotted antenna – 2−31 70 2.5 5 2−20 35 × 50

[25] Horn antenna

Full wave
electromagnetic
simulator and

harmonic balance
simulator

5.0 48 15 0 0.5−1.1 20 × 20

[26] Horn antenna Polarization
diversity 0.94−1.84 42 3−4 −20 7 240 × 240

[27]

Coplanar
waveguide
(CPW)-fed
rectangular

antenna with
slots

Tuning
stub technique 2.45 68 5.6 5 5 13 × 18

[28]
Annular ring

slot and periodic
antenna array

Complementary
metal oxide

semiconductor
(CMOS)

technology

0.9
2.025
2.360

59 1
2.64–0.19 −10 2 70 × 66

[29] Microstrip
antenna

Multilayer
substrate

technology

1.85–1.93
2.0–2.1 53.6 3.8–9.3 0 10 20 × 07

[30] Helical antenna
Inductive

coupling and
resonant coupling

0.424
0.441

66.8
76 2 −3

0 4.7 41 × 5.2

3. Micro-Scale Energy Harvesting Classification

Energy scavenging is aimed at the extension of battery life or the replacement of the battery.
Nevertheless, the creation of a device which can effectively scavenge energy with an energy output
that is large enough to support a sensor network is complicated. A variety of factors could be used to
determine the suitability of the corresponding energy for a given wireless body area network (WBAN)
application. Some of the parameters that should be put into consideration include the output power,
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the system’s physical size, output impedance, and the availability of the ambient source. In particular,
the output power of an energy scavenging circuit ranges from micro-watts to milli-watts, and the
required power to run a system is comparatively low. Besides, losses are caused by complex systems
with several interface circuits, and such losses result in reduced circuit efficiency. Thus, one of the
common approaches used in increasing the efficiency of these circuit interfaces is to combine them; by
combining them, the size and cost of the circuit can be reduced [31].

Nevertheless, the integration of circuit interfaces poses a new challenge for a circuit designer in
terms of cost and size constraints. Thus, for WBANs and other potential applications, the integrating
level for an energy scavenging circuit is another significant parameter. This section presents the
classification of methods used for the scavenging of micro-scale energy based on the kind of source
shown in Figure 1.
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3.1. Photovoltaic (PV) Energy Harvesting

In photovoltaic (PV) energy scavenging, electricity is produced by devices by using sunlight or
any other artificial source of light. Usually, the light from an external source is absorbed by the PV cells,
which are made up of semiconductor materials. Due to the effect of the p-n junction, absorbed light
releases electrons from the semiconductor. The collection of the released electrons and holes occurs at
the electrodes, creating a voltage difference [31].

However, the major disadvantage of this technology is that it is not functional without a light
source, and as such, the number of applications is limited [32]. The use of photovoltaic technology has
been successfully employed for commercial use in both small-scale energy harvesting and large-scale
renewable energy industrial applications. In small-scale industry, it is used in the form of leisure trickle
chargers and portable power banks. In contrast, in large-scale industry, it is applied in auxiliary power
generation and solar farms. In recent years, researchers have focused on developing organic thin-film
solar cells (OTFSCs), which are comparatively cheap and require less energy to produce [32].

The energy conversion of the photovoltaic cell is described as a percentage of the maximum Pp

power received from the incident Pi light energy; this is given by Equation (1). The filling factor (ff) is
the calculation of the quality of a solar cell and is based on the short circuit current Isc on the open-circuit
voltage Voc. To attain the ff, the Voc and Isc are separated by the maximum power point [33].

η =
Pp

Pi
=

VPIP

Pi
=

ffIscVoc

Pi
(1)
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Photovoltaic cells that are specifically tailored for the purpose of energy harvesting can be used in
both indoor and outdoor environments. The light intensity in indoor environments is usually lower
than that of the outdoor environment.

The power intensity produced by the Sun is far higher than that of an artificial source of light
such as a halogen lamp, incandescent light bulb, or fluorescent tube. Therefore, to achieve the
maximum feasible power, the spectral properties of solar light must be considered, because these
spectral characteristics determine the operating range of each kind of light. The efficient performance
of a photovoltaic cell, which depends on the material of which the cell is made, is higher for that
reason in a particular wavelength range. Figure 2 illustrates a general model proposed in [28] for a
photovoltaic harvesting system.
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3.2. Thermoelectric Energy Harvesting

Thermoelectric harvesters are more suitable for environments with temperature gradients.
The conversion of energy can be done efficiently using the temperature gradient between the material
terminals, while the power is supplied by the heat flow. Due to the Carnot theorem and the low
efficiencies of the material for thermoelectric devices, these decives do not provide enough energy, even
when the heat flow is significant. Thus, the best thermoelectric materials are found in semiconductors
that are heavily doped [33]. There are three effects through which thermoelectric devices operate:the
Peltier effect, the Seebeck effect, and the Thomson effect. The Seeback effect is the essential thermoelectric
power generation effect, which explains the situation in which a circuit consisting of two different
materials can produce an electromotive force (EMF) or potential difference. Here, different temperatures
are used for the maintenance of the junctions between the two materials. Thermoelectric devices have
many advantages: they have no moving parts because they are in solid-state, they are highly reliable,
they are acoustically silent, they are electrically safe, they are able to be orientated in any direction, they
do not produce dust or other particles, and they emit no electric sound or flashing. In addition, they
are small and light. The main drawback of this often-touted technology is the generally low conversion
rate, which is from 5% to 10% at a normal power density of 60 µW/cm2. Such a drawback does
not have a significant impact on the application, however, when other energy-harvesting techniques
are considered [22]. Figure 3 displays the basic operation of the thermoelectric generator (TEG). In
evaluating the overall output of TEG, as seen below, the Carnot efficiency is used [31].

η =
(TH − TC)

TH
(2)

where TH and TC represent the hot and cold temperatures, respectively, in Kelvin.
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3.3. Vibration Energy Harvesting

Another way through which energy can be harvested is vibration or mechanical movement.
Figure 1 shows that there are three mechanisms (electromagnetic, and electrostatic, piezoelectric) that
can be used for the conversion of vibrations into electrical energy [31].

3.3.1. Electromagnetic Conversion of Vibration

Electromagnetic harvesters produce energy by means of the electromotive force that a varying
magnetic flux induces through a conductive coil according to Faraday’s law [33]. A permanent magnet
is used to generate the source of magnetic flux (B). The shift in the magnetic flux needed to cause a
current in the coil is created by the motion of a seismic mass connected to either a magnet or a coil.
The induction of the electromotive force (EMF) is induced between the ends of the conductor, while
the conductor passes through a magnetic field. The proportion of induced voltage produced in the
conductor (V) as shown in Equation (3) is proportional to the frequency of the circuit’s magnetic flux
linkage (∅). The generator is a multi-turn (N) coil; thus, permanent magnets generate the magnet field.

V = −N
d∅
dt

(3)

There are two possible cases:

• Linear vibration;
• Time-varying magnetic field, B.

With linear vibration, there is a movement between the coil and the magnet in the x-direction,
meaning that the induced voltage of the coil and the movement velocity as shown in Equation (4) are
expressed as a result of a gradient flux connection,. In the situation of the magnetic field varying in time
(B), the flux density is constant across the area, A, and the coil, meaning that the induced voltage relies
on the angle (α) between the coil area along with the axis of flux density, as outlined in Equation (5).

V = −N
d∅dx

dxdt
(4)

V = −NA
dB

dt
sinα (5)

In order to extract power from the generator, a connection is established between the coil and
load resistance RL. A magnetic field is generated by the current that is induced in the coil; furthermore,
the magnet field is parallel to the magnets developed on the basis of the rule of electromagnetic
induction by Faraday Lenz permanent magnets. The outcome of this electromagnetic induction is an
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electromotive force, Fem which contradicts the generator motor by which the mechanical energy is
converted into electricity. Fem is described in Equation (6); it is also proportional to current and speed.

Fem = Dem
dx
dt

, Dem =
1

RL + Rc + jωLc

(
dϕ
dx

)2

(6)

where Dem denotes the electromagnetic damping, RL is the load, Rc is the coil resistance, Lc is the
coil inductance, and d/dx is the magnetic flux. Thus, Dem and speed must be maximized by the
generator design so that the maximum electrical power output can be obtained. If Dem is increased, this
means the flux connection gradient is maximized and the coil impedance is raised. The flux linkage
gradient depends on the magnets’ strength, their relative positions on the coil and the direction of their
movement, and on the area and number of spins for the coil.

3.3.2. Electrostatic Conversion of Vibration

Electric harvesters [33–36] are made of variable condensers, the plates of which are electrically
separated by air, a vacuum or insulator; the gap between the plates differs because of external
mechanical vibration, thereby causing a change in the capacitance. For energy to be harvested here, the
plates must be charged. Under such circumstances, the electrostatic forces in the device are opposed
by the mechanical vibrations. Thus, in the event that a voltage V biases the capacitor, and if load
circuitry is linear, electrical power is produced by the motion of the movable electrode. There are
several advantages of electrostatic energy compared with other methods of harvesting vibrating energy.
Some of these advantages include the wide range of tuning, less noise, high-quality factor Q, and
limited size. Nevertheless, the energy produced by electrostatic harvesters is less than that produced
by other kinetic harvesters, and because of their operational features, they have a restricted amount
of functionality.

The mechanical action of the harvester is based on the main side of the models of the converter.
The vibration source is represented by the voltage source, the mass is represented by the capacitor, the
inductor is the spring, and the resistor reflects the parasitic damping. The secondary side contains
the generator’s electrical elements, where the piezoelectric material or moving capacitor terminal
capacitance is determined by the capacitor.

The mechanism of electrostatic conversion is dependent on a microelectromechanical system
(MEMS) variable capacitor. A capacitor that was previously charged is placed in a system in a way
that shifts the location of the conductors by mechanical movement, the aforementioned capasitor is
made up of these conductors. Variability in the direction of the conductors allows the capacitance
value to shift. Thus, there are changes in the energy stored in the capacitor, because mechanical energy
is turned into electric energy. A capacitor can also be utilized to hold the transferred energy or it can be
used as external load. However, because the capacitor needs to have been charged prior to its use, this
type of system requires a different source of voltage [27].

3.3.3. Piezoelectric Conversion of Vibration

In piezoelectric harvesters [33,34,37], mechanical elements such as membranes or beams are bent
to enable energy generation. The resultant mechanical vibrations are transferred from tens to hundreds
of Hertz at resonance frequencies. In a dynamic system, many factors, including an imbalance of
weight and the wear or tear of the components, induce vibrations on a rigid body. Every system
acts in a unique manner, which could be explained by the damping constant and natural frequency.
A single degree of freedom lumped spring–mass mechanism explores the dynamic properties of the
vibrating body correlated with energy harvesting. Therefore, the resonant inertial vibration harvester’s
fundamental principles can be defined by utilizing the lumped model. The motion equation of the
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system is defined by D’Alembert’s theory regarding the energy balance equation provided by the
differential, as shown in Equation (7).

m
d2z
dt2 + Dv

dz
dt

+ kz + F = −m
d2Z
dt2 (7)

where m represents the seismic mass, the coefficient of Dv is the viscous damping, k is the spring of
stiffness, F is the power, and the place of equilibrium is z(t). Since energy production is dependent on
the relative movement process between the mass and the inertial frame, Equation (8) provides the
standard steady-state solution for mass displacement:

z(t) =
ω2√(

k
m −ω

2
)2
+

(
Dvω

m

)2
Ysin

(
ωt− φ

)
, φ = arctan

( Dvω

k−ω2m

)
(8)

where ω is the frequency and Y sin (ωt − φ) is the steady-state solution for z(t), with Y (Y = A/ω2)
being the displacement of the amplitude and φ the phase-shift. The maximum energy of a system is
obtained when the excitation frequency is proportionate to the system’s natural frequency, ωn, given
by Equation (9):

ωn =

√
k
m

(9)

The maximum power can be produced, and therefore the output power can be supplied by
Equation (10), only when the equation is shifted at its normal frequency.

Pmax =
mY2ω3

n
4ζT

(10)

The peak power is denoted by ωn, whereas the damping factor is denoted by ζT. The magnitude
of excitation vibrations and the influence of the frequency used should, therefore, be taken into
account alongside the maximum displacement mass. An adequately high input acceleration causes an
increase in the damping, which broadens the bandwidth; thus, a generator which is less responsive to
fluctuations in arousal frequency is created. In the long run, environmental factors of temperature
gradients may lead to changes in frequency. Additionally, a nonlinear behavior can be demonstrated
by a device with a considerable amplitude of oscillations, thereby making it difficult to maintain the
operation of the generator at resonance. For the power output to be maximized, the designing of the
damping level and frequency of the generator must be done in a way that allows them to correspond
to some explicit needs for the application. The amount of energy collected is proportional to the mass,
which must be optimized according to the specific size restrictions. Only by examining the vibration
spectrum is it possible to determine the most appropriate operating frequency for this generator size,
configuration constraint, and peak displacement.

One of the main benefits of the process of piezoelectric energy harvesting is the fact that it could
utilize a wide variety of sources of vibration. Further power could be produced by increasing the
resonant frequency of the unit as the frequency of vibrations increases. The typical effectiveness
depending on the nature of crystal utilized is 0.5% for polyvinyl fluoride (PVDF) and up to 20% for
lead. Figure 4 shows the schematic representation of the concept of a piezoelectric energy harvesting
system [38].
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3.4. Radio Frequency (RF) Energy Harvesting

There is a constant availability of RF signals [31,39,40], particularly in heavily populated mega-cities.
Thus, WBANs can be charged wirelessly when RF signals are harvested from the environment.
Furthermore, environmental factors such as weather and temperature do not affect RF scavenging, and
this is significant for WBAN apps. The different sources of ambient RF are as follows:

• AM radio band (550 kHz–1605 kHz);
• FM radio band (87.5 MHz–108 MHz);
• TV band (41MHz–950 MHz);
• GSM band (0.85–0.90 GHz, 1.8–1.9 GHz);
• Code Division Multiple Access (CDMA) band(450 MHz–2100 MHz);
• 3G band (1.8–2.5 GHz);
• 4G band (2–8 GHz);
• ISM band (2.4 GHz);
• WIFI band (2.45 GHz–5.8 GHz).

An antenna is utilized to collect radio signals from the atmosphere in RF spectrum scavenging.
The system has impedance matching circuits to fit the remaining circuit to the antenna, thereby
preventing the occurrence of reflections. After the RF signals have been captured, they are then
converted to DC through the use of different available approaches that are reliant on applications.
Then, the modified signal is then redirected in wireless body area network (WBAN) applications
to the energy management device. The amount of power that RF energy scavenging systems can
harvest depends on the antenna gain, the source power, and the distance between source and antenna.
Ambient RF scavenging’s density of output is between 0.0002–1 µW/cm2. In comparison with other
methods of scavenging, this range of power output is comparatively low. The distance sensitivity
is another key point that should be considered in RF scavenging. In Table 2, the energy levels,
efficiencies, and limitations of the different sources of RF are presented. Nevertheless, the ability of the
RF scavenging method to always capture RF signals in both outdoor and indoor environments makes
it attractive for WBANs. Furthermore, the RF scavenging approach is increasingly important for future
implementations due to the possibility of antenna integration as well as the development of antenna
design techniques.

Table 2. Radio frequency (RF) energy scavenging comparison for different frequencies [40].

Source Efficiency Energy Level Limitation

RF-GSM Low mW 0–100 m
RF-TV Low µW 0–4 km

RF-WIFI Low nW–µW 0–10 m
RF-AM Low µW–mW 0–20 km

3.5. Hybrid Energy Harvesting

Since the ambient harvestable sources are not continuously available, it is unwise to rely on
only one source, as this limits the reliability and functioning capacity of the node of the sensor
may completely stop the functionality of a node. A sensor node can harvest energy from multiple
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revolving sources, thereby permitting the optimal utilization of the ambient energy by the sensor
node. A sensor node can be equipped with several harvesting modules, enabling it to harvest energy
from multiple sources (multi-sources harvesting). With this system, wind and solar energy can be
harvested; maximum power point tracking (MPPT), which consists of two 22 F super-capacitors and a
70 mAh Li-polymer battery that serves as a subordinate buffer, is also used. The solar panel device
has a maximum current and voltage output of 3.75 and 2.5, respectively, equivalent to the Helimote,
between 4.0 V and 100 mA. An output power of 400 mW can be generated by the panel [41].

Because hybrid scavenging is a recent development, high-output production and the increased
reliability of several hybrid systems is anticipated in the future. In addition, the majority of the studies
conducted in this area are centered on the integration of all approaches to harvesting into one circuit
for the sake of facilitating the extraction of the maximum obtainable energy, eliminating the use of the
batteries in WBANs or increasing their communication range and capability [31]. The system combines
a thermoelectric generator (TEG) as well as vibration-based electromagnetic (EM), and piezoelectric
transducer (PZT) harvesters. Figure 5 shows the structure of the harvester. In addition, Table 3 shows
the basic characteristics of the method of scavenging, and then the methods are compared in terms of
their disadvantages and advantages; each technique is also briefly explained.Sensors 2020, 20,  11 of 27 
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Table 3. Energy harvesting methods and their characteristics [31].

PV Solar Thermoelectric Piezoelectric
Vibration

Electromagnetic
Vibration Ambient RF

Power density

Outdoor: 100
Mw/cm2

Indoor:
<100 µW/cm2

50–100 µW/cm2

per ◦C 10–200 µW/cm3 1–2 µW/cm3 0.0002–1 µW/cm2

Output voltage 0.5 Vmax 10–100 Mw 10–20 V (open
ckt) Few 100 Mw 3–4 V (open ckt)

Available
condition

Lighted
environment Surfaces with ∆T Hz–kHz

vibration Hz vibration Vicinity to
radiation source

Pros

High-power
density

well developed
technology

Non-intermittent/less
intermittent than

alternatives

High-voltage
well

development
technology

Well developed
Antenna can be

integrated,
widely available

Cons

Intermittent
highly

dependent on
light

Low voltage
needs ∆T

Highly variable
output, large

area, high
output

impedance

Bulky, low
power density

Low output
voltage

Very sensitive to
distance of the RF

source

4. Rectenna

The rectenna, which is able to transform RF energy into DC, is commonly utilized for wireless
power transfer (WPT) systems and also for RF-EH systems. The rectenna, therefore, is generally
responsible for determining the overall RF to DC power conversion efficiency (PCE). A high PCE can
be achieved through the use of two approaches. Nonetheless, the commonly employed method is to
absorb the maximum power and transmit it to the revising circuit. The use of broadband antennas,
large array antennas, etc. can be applied to achieve this, at the disadvantage of broad sizes. A low-pass
filter between the rectifier and antenna is used in the second method. Additionally, harmonic antennas
of rejection could be designed to ensure that the nonlinear elements which are present in the rectifier
do not re-radiate signals [39,42]. The rectenna is basically made up of a matching circuit, harmonic
suppression filter, antenna, voltage multiplier, and load, as shown in Figure 6. Ambient/dedicated RF
signals can be received by the antenna, and the use of the matching circuit is employed to match the
necessary circuit’s antenna impedance to reach high performance. Furthermore, the matching circuit
can be used as a filter to eliminate re-radiated signals. The AC signals are converted to DC using the
rectifier, and the output voltage is determined by the number of multiplier circuit stages. The use of
voltage multipliers is required so that the output DC can be boosted because the DC output voltage
amplitude is greater than the obtained RF signal amplitude. The major challenge associated with the
design of the rectenna is its power conversion efficiency (PCE). The rectifier’s conversion efficiency is
measured by the PCE. The PCE is used to measure the rectenna’s effectiveness to convert the received
RF energy into DC current [39].
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Equation (11) shows the efficiency of conversion of the RF to DC rectenna:

ηR f−DC =
PDc

PR f
(11)

where PDC is the output DC power and PRf is the input RF power. There is a variation in the rectifier’s
input depending on the strength and frequency of the incident wave, which causes a difference in
the diode impedance. As a result of this variation, impedance mismatch occurs, thereby creating a
decrease in the PCE. Several factors, including the following, influence the conversion efficiency of the
RF-EH systems:

• Unpredictable incident RF power availability;
• Losses for every component;
• Minimal associated circuit responsiveness;
• Restricted overall power of radiation;
• The distance between transmitter and receiver;
• High non-linear dependence of the output voltage on the input at low input powers;
• Variation in the antenna output impedance because of variation in the incident power and

frequency leading to mismatch losses;
• A trade-off between bandwidth and efficiency due to miniaturization.

In research conducted by Okba, Takacs and Aubert [44], a rectenna was presented and implemented
with the best trade-off between compactness and high RF-to-DC efficiency for low incident power
density levels (<5 µW/cm2). In the study by Palazzi et al. [45], a new compact ultra-weight multiband
RF energy harvester was introduced that was produced on a paper substrate. A new rectenna design
was proposed by Cambero et al. [46] for solar and RF energy harvesting. Almohaimeed, Amaya, Lima,
and Yagoub [47] proposed and implemented an adaptive rectifier concept to address the problem of the
early breakdown that occurs in conventional rectifiers while demonstrating a high level of efficiency
over a wide range of RF input power levels. A new rectenna system was proposed by Chen and
You [48], and the proposed rectenna was able to achieve multidirectional reception and scalability at the
same time. In their work, the power generated by the antennas with varying half-power beamwidths
(HPBWs) was evaluated through the use of the ray-tracing technique. A novel, compact, ultra-weight
RF energy harvester was proposed by Eid et al. [49]; the proposed harvester was produced on a flexible
substrate. The proposed rectenna was designed to operate over the 2.4 GHz industrial, scientific,
and medical radio band (ISM). In the work of Bakogianni and Koulouridis [50], an arm-implantable
rectenna was proposed; a lightweight inverted planar F-antenna (PIFA) and a rectifier were also fitted
with a planned rectenna. The researchers suggested the use of the rectenna in the medical device
band (401–406 MHz) and in industrial, scientific research and medical (ISM) bands (902.8–928 MHz) to
provide wireless data telemetry and transmit power. A novel, low-profile, implantable planar dipole
was introduced by Lesnik, Verhovski, Mizrachi, Milgrom, and Haridim [51], in which a folded meander
section was included in the proposed dipole. The work made two new contributions: firstly, a specially
tailored folded meander section was used; secondly, the replacement of only part of each otherwise
straight arm by the meander section was performed. A summarize of different kinds of rectenna in
state of art is illustrated in Table 4.
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Table 4. Comparison of reported studies on rectennas.

Ref. Freq.
(GHz) Gain (dBi) Diode Efficiency

η (%)
Dimension
(cm × cm) Load Pin (dBm)

[44] 0.86 2.6 HSMS2850 24.2
37 11.0 × 06.0 5.0 –

[45] 0.90 1.3 HSMS2850 40.0 11.0 × 11.0 3.0 −20
[46] 2.45 6.24 SMS7630 18–32 – 3.3 −20 to −10
[47] 0.915 2 HSMS-2850 66.0 30 × 17 1.0 −06 to 32
[48] 2.45 9 HSMS-286C 10–39 75 × 40 – 15
[49] 2.45 0 SMS-7630 9–24 15.1 × 8.15 1.0 −20

[50] 0.915 −24.3 Zero-bias
Schottky – 16.0 × 14.0 2.0 −10

[51] 0.401–0.406 −23.7 – – 34.3 × 1.95 – 8.6

5. Antenna

As defined in Webster’s Dictionary, an antenna is “a usually metallic device (as a rod or wire) for
radiating or receiving radio waves.” According to the standard definition given by the IEEE Standard
Definitions of Terms for Antennas (IEEE Std 145 1983)∗, an antenna is a trough in which radio waves
are radiated or received. The antenna is one of the major parts of the WLAN network. With a properly
designed antenna, system requirements can be relaxed, while the general performance of the system is
improved. A classic example of this is Television, for which a high-performance antenna can be used
to improve the general performance of broadcast reception. Just as the eyes are to humans, so is the
antenna to communication systems [52].

An antenna is a key component of RF energy harvesting systems, and there are different kinds
of antennas [53]. The classification of antennas is based on antenna gain, polarization, frequency
band, radiation pattern, application area, and physical dimensions, etc [54]. For example, for different
frequency bands such as very high frequency (VHF) and ultra high frequency (UHF), the use of
specific antennas may be of great benefit. Some of the popular types of antennas include loop, horn,
dipole, aperture, array, microstrip, and log-periodic antennas. The conversion efficiency from RF to
the electrical signal is calculated by antenna gain in a particular direction. Antenna with high gain
is most desirable as they increase the conversion performance as well as the amount of energy they
harvest. Antenna gains have a large cost. The antenna radiation can be either isotropic or directional.
If the RF signal source is established, the amount of energy obtained could be improved with the aid of
the directional antenna. However, if the location is unknown, an isotropic antenna is employed. An
electric field’s orientation at an observation point is defined by the antenna polarization. An increase
occurs in the conversion efficiency when the same polarization is possessed by both the transmitting
and receiving antenna. There are four types of polarizations, including vertical, horizontal, elliptical,
and circular [53].

The whole electromagnetic energy distribution in the region around the harvesting antenna exists
in different spectral bands. As earlier noted, the spectral measurements are used to determine a
promising frequency band or bands. The choice of the design of band (whether broadband, multiband,
or single band) to be used in RF energy harvesting is determined based on the measurement results.
The process of designing and manufacturing a single band antenna is simple, but the energy harvested
by the single band antenna is less than that of the multiband antennas [53]. However, the output DC
voltage of the RF power harvester increases when the power harvester’s circuit is configured for a
multi-frequency band design [55]. The most suitable kind of antenna for harvesting power from a wide
frequency band is the broadband antenna, but a decrease occurs in its antenna gain when it is away
from the center frequency [53]. Besides, it is challenging to achieve the impedance matching across a
wideband. When there is need to harvest more power, the use of multiple antennas is employed, and
the RF-DC conversion efficiency is enhanced by this more power that is harvested [56,57], but when
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the multiplier stages and the number of the antenna is increased, an increase will also occur in the
efficiency, as well as the overall circuit size [58].

It must be noticed that efficiencies are possible to raise the harvested energy, but any increase
in the harvested energy does not guarantee increased efficiency. For example, the operation of two
similar antennas working in an energy harvesting system with the same frequency band will increase
the amount of the harvested energy. Still, the system’s output stays the same in this case [48]. Yang,
Sun, & Guo [59] developed a low-cost, series-fed dual-CP antenna printed on a single-layer PCB
for MM-wave applications. In the work of Cheng, Wang, & Liu [60], a 94 GHz substrate integrated
waveguide (SIW) parallel-plate long-slot array antenna was presented. With the proposed antenna,
dual-circular-polarization (CP) low sidelobe level (SLL) beams can be generated from a single radiating
aperture. Zhao & Luk [61] proposed a dual circularly polarized high gain scalable antenna array
for the 60 GHz applications. In the study carried out by Park & Park [62] Left-hand and right-hand
circularly polarized (LHCP and RHCP) substrate integrated waveguide (SIW) antenna arrays at the
28-GHz band were proposed for millimeter-wave (mm-wave) applications. A new low-profile dual
Cp-planar aperture antenna was proposed by Zhu, Liao, Yang, Li, & Xue [63]. The proposed antenna
is characterized by wide bandwidth, high gain, and excellent axial ratio (AR) for 60 GHz applications.
A novel scheme for building a dual-polarization was developed based on the proposed antenna.
A wideband multiple-microstrip dipole antenna with dual polarization was proposed by Zhou, Wei,
Tang, & Yin [64]. A novel broadband flush-mountable dual-polarized antenna was proposed by Cui,
Niu, Qin, & Li [65]. The proposed antenna has very high isolation. Lian, Wang, Yin, Wu, & Song [66]
proposed a low-profile microstrip-fed dual-polarized stepped impedance (SI) slot antenna element.
In the study of Liu, Wang, Wang, & Jia [67], the differential feeding technique was combined, and a
dual-polarized slot antenna was proposed. The proposed antenna is characterized by high isolation, a
consistent pattern of radiation, and XPD, these characteristics are desirable in base station applications.
Zhou, Wong, & Yeung [68] introduced a wireless cross-slot antenna. The inductor loadings are given
in the antenna for double polarization. The authors investigated the effects which the ground size
has on the impedance. A compact size can be achieved by using a very small ground that has the
same hypotenuse length as the slot. Table 5 below presents a summary of the comparison of previous
studies on antennas.

Table 5. Comparison of previous studies of antennas.

Refs. Freq.
(GHz) Bandwidth Gain

(dBi)
Isolation

(dB)
Dimension

(λ0)
Efficiency

(%)

[59] 30 29.13–31.10
6.57% 11.8 20 03.5 × 02.8 –

[60] 94 93.5–94.5
0.5% 26.0 15 10.3 × 10.3 57.5

[61] 60 55–69
23% 25.8 14 6.53 × 6.53 80

[62] 28 27.7–28.8
3.9% 13.5 – 6.53 × 5.93 –

[63] 60 57.2–64.2
11.5% 13.7 20 10.0 × 14.4 –

[64] 1.68– 2.75 48%
|S11 | < −10 dB 8.9 ± 0.7 >37 0.78 × 0.78 82

[65] 2.2 47%
|S11 | < −10 dB ~7.0 >40 1.05 × 1.05 –

[66] 1.69–2.5 31.2%
|S11 | < 10 dB ~13.7 >30 1.33 × 1.33 ~87.7

[67] 3.14–3.81 19.3%/20.3%
(VSWR < 1.5) ~8.1 >43 0.49 × 0.49 83

[68] 1.56–2.78
1.46– 2.73

56.2%/60.6%
|S11 | < 10 dB

8.05 ±
0.45 >26 0.44 × 0.44 90

Note: The operation bandwidth is the minimum bandwidth among voltage standing wave ratio VSWR < 2, AR < 3,
and 3 dB gain bandwidths.
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6. Types of Antennas

Although there are different kinds of antennas, only a few of them are explained here as Figure 7.
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resonant frequency. Figure 8(a) shows a complete dipole antenna comparable circuit. The conversion 
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6.1. Dipole Antenna

The dipole antenna is the most common antenna used in telecoms and consists of two metallic
bars in series and a feeder. The total length of the two metal bars is equal to half of the wavelength of
the RF signal or one-quarter of the wavelength of each metal bar, which defines the antenna’s resonant
frequency. Figure 8a shows a complete dipole antenna comparable circuit. The conversion of the
impedance into resistance occurs if the signal is received by the antenna at the resonant frequency.
Figure 8b [69,70] shows a simple equivalent antenna circuit functioning at a resonant frequency.
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6.2. Microstrip Patch Antenna

Figure 9 indicates that the microstrip antenna consists of a radiation patch, a ground plane,
a dielectric substrate, and a nourishing point that could be used in a variety of ways. The radiator
patch dimensions thickness (h), width (WP), and length (Lp) determine the bandwidth, resonant
frequency, and efficiency of the microstrip antenna [71]. The polarization, frequency band number,
antenna gain, and bandwidth are all determined by the shape of the radiator patch (rectangular [72–74],
circular [75,76], square [77,78], and others [79–81]), as well as the feeding technique (position, type,
and number of feeds). Plans of various types of techniques for the bandwidth improvement of
microstrip topologies have been made: (I) patch modifications generating complex designs to mix
various resonant frequency bands [73,75], (II) the addition of radiator patch slots [72,75,79], (III) the
insertion to the radiator patch layer of parasitic components [72,79], and (IV) adjustments in the feeding
technologies [72,82,83].
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For microwave frequencies, particularly on the 2.4 GHz band and above, the patch antenna is
useful. This antenna consists of one side of a printed circuit board of a plated geometric design and a
ground plane beyond the parched radiation dimensions. The most common designs for this antenna
include circular and rectangular forms. However, other designs are sometimes employed, such as
trapezoid. The board is exposed to excessive radiation. A square half-wave patch antenna is required
for a range of 7 to 8 dB [84].

A rectangular patch antenna is shown in Figure 9. Dimension L is about half a wavelength, which
is determined to be half of the free space wavelength (λ) separated by the square root of the effective
dielectric constant (ε) of the substance of the board. The fringing influence of the radiation from the
two opposing patch edges, which are L apart, and from the ground plane, is considerably less than
half a wavelength. Radiation does not emanate from the two other regions in as much as they feed
in positioned on the centreline. A microstrip feeder can be observed in Figure 9, and because it is
attached to the patch on the board alongside further element traces on the same side, it is preferable to
other designs. The width of the patch determines the impedance at the feed point. The microstrip
transforms the impedance into the best load (for the transmitter) or source (for the receiver) impedance.
The feed point can be moved from the edge of the centreline to the middle of the board to directly fit a
transmission line for the impedance of the feed point. In this way, a direct connection can be established
between a 50 ohm coax transmission line and the underside of the patch antenna. In this case, the
conductor passes to the feed point, whereas the shield is connected to the ground plane [84,85].

6.3. Horn Antenna

The horn antenna depicts a transfer or equivalent component from the guided mode within the
waveguide to the non-guided (free space) mode of the waveguide. The horn antenna reduces the
reflections as a matching component, thereby resulting in a reduced standing wave ratio (SWR). The
horn antennas have three types, as shown in Figure 10: (a) the sectoral E-plane horn (flared only in
the E-plane direction, (b) the sector-based H-plane horn (flared only in the H-plane direction), and
(c) the pyramidal horn antenna (flared both in E-plane and H-plane) [86]. The assumption here is
that the flare of the horns is linear even though the formation of some horns is carried out through
other kinds of flare. An exponential flare is an example of the latter. The horn antenna is mounted
on a waveguide, which is almost continuously excited in single-mode operations. In other words,
the operating frequency of the waveguide is above the TE10 mode cut-off frequency, yet below the
cut-off frequency of the next highest mode. The horn is typically utilized for communication, dishes,
large-scale radio astronomy, and satellite surveillance. This is because the horn is simple to construct,
is easily excited, has large gain, and performs well overall. The end of the waveguide can be flared in
different ways to enable the creation of a variety of horns. For example, a sectorial horn can be created
by flaring the E and H planes. In the same vein, a pyramidal horn can be formed when the waveguide
is flared in both dimensions, or a conical horn can be produced by flaring a circular waveguide [87,88].
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6.4. Loop Antenna

The popularity of the loop antenna lies in its application in hand-held transmitters, particularly
since it can be made on a circuit of a small board. It is also utilized widely because the influence of the
surrounding conducting objects is less than other low-resonant antennas. The biggest limitation of
this antenna is that it is highly ineffective. The current of a loop antenna with measurements that are
less than a wavelength smaller than 0.1 λ is constant [84]. The equation below is an expression of the
radiation field:

E(θ) =
120π2.I.N.A

rλ2 cosθ (12)

The loop zone is indicated by A, where I represents its current, r is the distance, the angle from the
plane of the loop is θ, and N is the number of loops in the case of multiple loops. The resistance to
radiation stems from the following expression:

Rr = 320π2.
(A.N)2

λ4
(13)

In handheld remote transmitters operating at low ultra high frequency (UHF) frequencies, loop
antennas are usually employed. These are typically defined by a radiation resistance below 10% and
an efficiency lower than 10%. Here, the use of a capacitor is employed across the loop terminals so that
parallel resonance can be created to enable the matching of the transmitter output stage to the low
antenna resistance. Even though it may seem that, in this approach, an increase occurs in the efficiency
and radiation resistance when the area of the loop or number of turns increase, this approach offers
limited possibilities. The loop inductance increases as the turns or area increases, thereby needing a
smaller resonating capacitance value. When the resonant capacitance is as low as various picofarads,
the approach reaches its limit. The poor performance of this approach renders it unattractive for use
in UHF receivers for a short distance. Pager receivers are unsual since their use of low data levels is
highly sensitive and thus balances poor antenna performance. However, the loop antenna is useful in
the sense that it does not need a ground plane [84,89].

6.5. Helical Antenna

In comparison with the loop antenna, better results can be provided by a helical antenna in
terms of radiation efficiency. In contrast with a dipole or a quarter-wave ground plane, the antenna is
relatively small.

The helical antenna is made up of a spring with a diameter far smaller than a wavelength or by a
winding wire in a cylindrical shape, as shown in Figure 11 [84,90]. This helical winding produces an
apparent axial speed along with the coil, which lies below the propagation speed along a straight wire,
which is almost light speed in a vacuum.
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A quarter-wave will, therefore, be far shorter on the helical source than on a straight wire.
The length is sufficient for the antenna, but the resistance to radiation is smaller; thus, the efficiency of
the regular quarter-wave antenna is lower. The wire length in the region of half a wavelength induces
the resonance of the helical antenna. The impedance of a transmitter or receiver is quite easy to match.
The polarization of a helical antenna is elliptic because its radiation has both horizontal and vertical
components. Nevertheless, for the popularly used form factors, where the length of the antenna is
much more than its diameter, polarization is vertical.For the predictable and optimal performance of
the helical antenna, it must possess a good ground plane. In hand-held devices, the body and arms of
the user serve as a counterpoise, and as such, the design of the antenna should be done in a manner
that is appropriate for this configuration [84].

7. RF System of Harvesting Power Conversion

The overall block diagram for an RF system converting harvested power is demonstrated in
Figure 12. The system generally aims to optimize the voltage that approaches the RF–DC power
conversion system to stabilize the DC power output voltage at a low power level. The circuit comprises
an antenna, a voltage regulator, an impedance matching network, a multi-stage rectifier circuit, and a
load capacitor. The antenna takes charge of the power radiated by the RF waves. Maximum power
transmission is assured in the system with an impedance matching network. The RF signal is converted
to DC voltage using the multi-stage rectifier circuit. The fluctuation of DC power, which occurs as
a result of rectification, is eliminated with the voltage regulator circuit. Lastly, the load capacitor is
used for the storage of the DC voltage. Figure 12 demonstrates that two cascading circuits, including
an RF-to-DC rectification mechanism and a DC-to-DC (regulator) conversion method, specify the
effectiveness of a power harvesting system. It is important to identify the component that causes losses
in the rectifier so that highly efficient RF power harvesting can be achieved; this can also be achieved
by designing an energy-efficient regulator [91,92].
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7.1. Impedance Matching Network

It is essential to create an adjustable network between the receiving antenna and the antenna
rectifier to suit the impedance between the two, which could also minimize the transmission loss
and increase the voltage gain [83]. Figure 13 shows an illustration of an antenna and rectifier
equivalent circuit.Sensors 2020, 20,  20 of 27 
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Capacitors and inductors can simply build the impedance matching network. Capacitive (Crec) and
resistive (Rrec) components are the elements that are possessed by the Zrec rectifier’s input impedance.

Zrec = Rrec‖
1

sCrec
(14)

It is noticeable in Figure 13 that the sequence of Rrec and Crec networks can be acquired at resonance
by the conversion of resistive and capacitive components of the rectifier.

At resonance [94],
Zs = Rs (15)
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the power dispersed over the antenna is equivalent to that dispersed over the resistive component Rsr

in the rectifier.
Equation (16) is an expression of the correlation between the voltages across Rs and Rsr:

VIN = VsQsr

√
Rsr

Rs
(16)

where Vs and VIN are the amplified input voltage and the voltage at the input of the rectifier, respectively.
Thus, the presence of the matching network can provide passive input voltage amplification to the
receiving voltage at the antenna. With an increase in the amplitude of the voltage which reaches the
input of the rectifier, the output voltage of the rectifier also increases and, therefore, the overall power
conversion efficiency of the system is increased.

7.2. Rectifier Circuit

The rectifier circuit is one of the most essential components of the rectenna RF energy harvesting
system [18]. A rectification circuit is considered to be a non-linear circuit, which implies that the diode
correlation current and voltage (IV) are not linear, which indicates that the input voltage is raised
linearly and that the input voltage is “turned on” when the required input voltage is reached. This
could be used for different applications of RF systems, such as oscillators, mixers and rectifiers, and
mixers [95]. There is a conceivable nonlinearity.

A perfect diode acts simply as a switch (which is also non-linear) that is closed when the alternating
current (AC) signal is in one polarity and is open when the AC signal is in the other polarity. The
classic non-linear model [85] of the current on a diode can be written as

I(V) = Is(eαV
− 1) (17)

where Is is the saturation current (typically between 10−6–10−15 A), α is equivalent to q/nKT, where q
is the charge of an electron (1.602 × 10−19 C), n is the ideality factor (between 1 and 2), k is Boltzmann’s
constant (1.38 × 10−23 m2 kgs−2 k−1), T is the temperature (290 K for room temperature), and V is
the voltage. Thus, a typical value of α is roughly 1/(25 mV) [80]. An ideal IV plot for a generic diode
using Equation (17) as well as simulated and measured IV curves for an SMS7630 diode are shown in
Figure 13. Since the exponential term in Equation (17) is quite large, it is often simplified as

I(V) = Is
(
eαV

)
(18)

which illustrates the current as a non-linear function of the voltage. The non-linearity of the diode is
responsible for creating DC as well as the harmonic components. This could be because, in Equation (18),
the exponential may be represented as an extension of the Taylor series [95] in the following form:

ex =
∞∑

n=0

xn

x!
= 1 + x +

x2

2
+

x3

3!
+ · · · (19)

and Equation (18) therefore becomes

I(V) = I(s)

1 + (αV) +
(αV)2

2
+

(αV)3

3!
+ · · ·

 (20)

This shows the creation of a DC component alongside the original signal and higher harmonics.
A close look at the response of the diode in the frequency domain, as contained in Figure 14c shows
this phenomenon. The spectral response and the time domain of a time-varying signal that has been
applied to a diode are shown in Figure 14. The use of the Keysight Advanced Design System (ADS)
was employed for all simulations of the rectifier [95].
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Based on this vantage point, the RF-to-DC rectification can be expressed as follows:

η =
PDC,out

PRF, in
(21)

where PRF, in is the quantity of power in the frequency that is fundamental, and PDC, out is the power in
the output DC signal [96].

7.3. Technologies of Energy Storage

The construction of an energy storage system may be one of the most challenging tasks in the
domain of energy harvesting. In most cases, energy is stored in common storage systems such as an
electric double layer capacitor (EDLC) and batteries. Each of these storage options is accompanied by
some advantages and restrictions. Carbon is used as an electrode in EDLC, and charging is stored by
aqueous or non-aqueous electrolytes in the electric field of the interface. EDLC charging is simply
physical and not a chemical reaction, and as such it is incredibly reversible, which leads to increased
hours of life, shelf life, and a product that is free of maintenance. A few benefits can result from using
EDLC for storage [97], such as the following:

• Unlimited charge cycle life;
• High density of power;
• Thermal heat during discharge is absent;
• No risk of overcharging;
• Effect-free under deep discharges;
• Longer lifetime;
• A functional temperature range between −50 ◦C and 85 ◦C.

Intrinsic leakage is associated with supercapacitors due to the parasitic paths that are present in
the external circuitry, thereby making them unusable for long-term energy storage [85]. In comparison
with supercapacitors, batteries are comparatively advanced technologies that possess higher power
density. In EH applications, the use of different kinds of rechargeable batteries is employed, including
nickel metal hydride (NiMH), sealed lead acid (SLA), nickel cadmium (NiCd), and llithium-based
(Li) batteries. Among these batteries, the least used ones are the NiCD and SLA batteries due to
their temporary loss of capacity and comparatively low energy density. The problems associated
with the aforementioned batteries occur as a result of their shallow discharge cycles, also known
as the memory effect. There are several benefits and limitations that should be considered when
making a choice between Li and NiMH batteries; for instance, the lifespan of Li batteries is longer than
that of the NiMH, and their efficiency is also higher than that of the NiMH. In addition, the rate of
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self-discharge in Li is lower than that of NiMH batteries. Nevertheless, they are more costly than the
NiMH, even after their increased lifecycle is accounted for. Furthermore, Li batteries need a charging
circuit, which is significantly complicated. Despite the fact that high energy densities are not offered
by batteries, the absence of a high power density makes them inappropriate for certain applications,
such as sensor networks, that require instant power transmissions. Meanwhile, supercapacitors cannot
be independently used as an energy storage unit because of their low energy densities [97].

8. Conclusions

Radio frequency energy signals are now ubiquitous, and they have indispensable features for RF
energy harvesting systems. Compared to other energy sources such as thermal gradients, solar, and
mechanical vibrations, the power density of RF energy is relatively low, but it is sufficient to charge
some sensors or devices of harvested energy. Antennas are one of the essential parts of the developed
energy harvesting system, and the performance of those antennas, such as their efficiency, gain and
radiation patterns, is critical to improve overall performance. For this reason, it very important to
select suitable antennas based on their intended applications, such as in RFID, 5G, WSN, etc. For
instance, IoT-based sensors require a low-profile antenna with wide bandwidth and high gain to be
used. However, antenna arrays with omnidirectional radiation patterns are dedicated to ambient
RFEH systems, so signals can be received from all directions, improving the PCE of the system. Besides
this, the backside radiation of antennas should be very low, as exemplified by wearable applications.
An overview of energy harvesting is presented in this article with explanations of several modeling
requirements such as the power supply converter architecture, additional storage system (capacitors or
batteries), control systems which can manage and correlate the energy availability statistics over time,
and the electronic load consumption patterns of the target application.
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