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INTRODUCTION
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The control system is that means by which any quantity of interest in a machine, mechanism
or other equipment is maintained or altered in accordance with a desired manner. Consider,
for example, the driving system of an automobile. Speed of the automobile is a function of the
position of its accelerator. The desired speed can be maintained (or a desired change in speed
can be achieved) by controlling pressure on the accelerator pedal. This automobile driving
system (accelerator, carburettor and engine-vehicle) constitutes a control system. Figure 1.1
shows the general diagrammatic representation of a typical control system. For the automobile
driving system the input (command) signal is the force on the accelerator pedal which through
linkages causes the carburettor valve to open (close) so as to increase or decrease fuel (liquid form)
flow to the engine bringing the engine-vehicle speed (controlled variable) to the desired value.

Rate of
1uel_ﬂuw
Input (command) ' Qutput (controlled)
signal Accelerator pedal, v | Engine- variable
——="»  linkagesand |— ety 1

Fig. 1.1. The basic control system.

The diagrammatic representation of Fig. 1.1 is known as block diagram representation
wherein each block represents an element, a plant, mechanism, device etc., whose inner details
are not indicated. Each block has an input and output signal which are linked by a relationship
characterizing the block. It may be noted that the signal flow through the block is unidirectional.



Closed-Loop Control

Let us reconsider the automobile driving system. The route, speed and acceleration of the
automobile are determined and controlled by the driver by observing traffic and road conditions
and by properly manipulating the accelerator, clutch, gear-lever, brakes and steering wheel,
etc. Suppose the driver wants to maintain a speed of 50 km per hour (desired output). He
accelerates the automobile to this speed with the help of the accelerator and then maintains it
by holding the accelerator steady. No error in the speed of the automobile occurs so long as
there are no gradients or other disturbances along the road. The actual speed of the automobile
is measured by the speedometer and indicated on its dial. The driver reads the speed dial
visually and compares the actual speed with the desired one mentally. If there is a deviation of
speed from the desired speed, accordingly he takes the decision to increase or decrease the
speed. The decision is executed by change in pressure of his foot (through muscular power) on
the accelerator pedal.

These operations can be represented in a diagrammatic form as shown in Fig. 1.2. In
contrast to the sequence of events in Fig. 1.1, the events in the control sequence of Fig. 1.2
follow a closed-loop, i.e., the information about the instantaneous state of the output is feedback
to the input and is used to modify it in such a manner as to achieve the desired output. It is on
account of this basic difference that the system of Fig. 1.1 is called an open-loop system, while
the system of Fig. 1.2 is called a closed-loop system.

Rate of
fuel flow
Dasirad PRI a s ] Dutpgt
speed | Driver's eyes Leg B 3 B SPoe
*  and brain { EM vehicle
|
Force A
Speedometer | ¥ )
M

Visual link from speedometer

Fig. 1.2. Schematic diagram of a manually controlled closed-loop system.

Let us investigate another control aspect of the above example of an automobile (engine
vehicle) say its steering mechanism. A simple block diagram of an automobile steering
mechanism is shown in Fig. 1.3(a). The driver senses visually and by tactile means (body
movement) the error between the actual and desired directions of the automobile as in Fig. 1.3(b).
Additional information is available to the driver from the feel (sensing) of the steering wheel
through his hand(s), these informations constitute the feedback signal(s) which are interpreted
by driver’'s brain, who then signals his hand to adjust the steering wheel accordingly. This
again is an example of a closed-loop system where human visual and tactile measurements
constitute the feedback loop.

In fact unless human being(s) are not left out of in a control system study practically all
control systems are a sort of closed-loop system (with intelligent measurement and sensing
loop or there may indeed by several such loops).

Systems of the type represented in Figs. 1.2 and 1.3 involve continuous manual control
by a human operator. These are classified as manually controlled systems. In many complex
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and fast-acting systems, the presence of human element in the control loop is undersirable
because the system response may be too rapid for an operator to follow or the demand on
operator’s skill may be unreasonably high. Furthermore, some of the systems. e.g., missiles,
are self-destructive and in such systems human element must be excluded. Even in situations
where manual control could be possible, an economic case can often be made out for reduction
of human supervision. Thus in most situations the use of some equipment which performs the
same intended function as a continuously employed human operator is preferred. A system
incorporating such an equipment is known as automatic control system. In fact in most situations
an automatic control system could be made to perform intended functions better than a human
operator, and could further be made to perform such functions as would be impossible for a
human operator.

Steering wheel |

== sensor i' -

e B N | I . o
——»{  ——» Driver e 8w
Desied 5 [l ey @ [ of travel
course

|
|  Measurement :

- visual and tactile |*_

Desired direction —
of travel :

Error (sensed) o |
by the driver |

Actual direction
of travel

(b)

Fig. 1.3. (a) Automobile steering control system. (b) The driver uses the difference between
the actual and desired direction of travel to adjust the steering wheel accordingly..

The general block diagram of an automatic control system which is characterised by a
feedback loop, is shown in Fig. 1.4. An error detector compares a signal obtained through
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feedback elements, which is a function of the output response, with the reference input. Any
difference between these two signals constitutes an error or actuating signal, which actuates
the control elements. The control elements in turn alter the conditions in the plant (controlled
member) in such a manner as to reduce the original error.

|. Forward path elements |

............................ !

. Error !

Reference | detector ; Controlled
i N, _ output
et ) Eroror R L o

: %/ actuating elements |
| 4 signal
Controller

_., Feedback path | _
elements

Fig. 1.4. General block diagram of an automatic control system.

In order to gain a better understanding of the interactions of the constituents of a control
system, let us discuss a simple tank level control system shown in Fig. 1.5. This control system
can maintain the liquid level A (controlled output) of the tank within accurate tolerance of the

Mechanical link hd
PR - — D — - . S .r.. r FE
Error detector
{potentiometers)
A . .
e e -
iMuiur | : " |
ve o :EI‘I’OFVDHEDE i
T . T T t_ Float = 5
Power amplifier _[:_____:::;
R et
H  Liquid i
¥ o =]
V;

Fig. 1.5. Automatic tank-level control system.

desired liquid level even though the output flow rate through the valve V| is varied. The liquid
level is sensed by a float (feedback path element), which positions the slider arm B on a
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potentiometer. The slider arm A of another potentiometer is positioned corresponding to the
desired liquid level H (the reference input). When the liquid level rises or falls, the
potentiometers (error detector) give an error voltage (error or actuating signal) proportional to
the change in liquid level. The error voltage actuates the motor through a power amplifier
(control elements) which in turn conditions the plant (i.e., decreases or increases the opening
of the valve V,) in order to restore the desired liquid level. Thus the control system automatically
attempts to correct any deviation between the actual and desired liquid levels in the tank.

Open-Loop Control

As stated already, any physical system which does not automatically correct for variation in
its output, is called an open-loop system. Such a system may be represented by the block
diagram of Fig. 1.6. In these systems the output remains constant for a constant input signal
provided the external conditions remain unaltered. The output may be changed to any desired
value by appropriately changing the input signal but variations in external conditions or internal
parameters of the system may cause the output to vary from the desired value in an uncontrolled
fashion. The open-loop control is, therefore, satisfactory only if such fluctuations can be tolerated
or system components are designed and constructed so as to limit parameter variations and
environmental conditions are well-controlled.

input .
! ontroller —DI ant
l L

Output

=

Fig. 1.6. General block diagram of open-loop system.

It is important to note that the fundamental difference between an open and closed-loop
control system is that of feedback action. Consider, for example, a traffic control system for
regulating the flow of traffic at the crossing of two roads. The system will be termed open-loop
if red and green lights are put on by a timer mechanism set for predetermined fixed intervals
of time. It is obvious that such an arrangement takes no account of varying rates of traffic
flowing to the road crossing from the two directions. If on the other hand a scheme is introduced
in which the rates of traffic flow along both directions are measured (some distance ahead of
the crossing) and are compared and the difference is used to control the timings of red and
green lights, a closed-loop system (feedback control) results. Thus the concept of feedback can
be usefully employed to traffic control.

Unfortunately, the feedback which is the underlying principle of most control systems,
introduces the possibility of undersirable system oscillations (hunting). Detailed discussion of
feedback principle and the linked problem of stability are dealt with later in the book.

1.2 __SERVOMECHANISMS

In modern usage the term servomechanism or servo is restricted to feedback control systems
in which the controlled variable is mechanical position or time derivatives of position, e.g.,
velocity and acceleration.



A servo system used to position a load shaft is shown in Fig. 1.7 in which the driving
motor is geared to the load to be moved. The output (controlled) and desired (reference) positions
6, and 65 respectively are measured and compared by a potentiometer pair whose output
voltage vy is proportional to the error in angular position 6 = 8, — 6. The voltage vy = K0 is
amplified and is used to control the field current (excitation) of a dc generator which supplies
the armature voltage to the drive motor.

To understand the operation of the system assume K, = 100 volts/rad and let the output
shaft position be 0.5 rad. Corresponding to this condition, the slider arm B has a voltage of +50
volts. Let the slider arm A be also set at +50 volts. This gives zero actuating signal (v, = 0).

Thus the motor has zero output torque so that the load stays stationary at 0.5 rad.

Assume now that the new desired load position is 0.6 rad. To achieve this, the arm A is
placed at +60 volts position, while the arm B remains instantaneously at +50 volts position.
This creates an actuating signal of +10 volts, which is a measure of lack of correspondence
betwuven the actual load position and the commanded position. The actuating signal is amplified
and fed to the servo motor which in turn generates an output torque which repositions the
load. The system comes to a standstill only when the actuating signal becomes zero, i.e., the
arm B and the load reach the position corresponding to 0.6 rad (+60 volts position).

Consider now that a load torque T; is applied at the output as indicated in Fig. 1.7. This
will require a steady value of error voltage v, which acting through the amplifier, generator,
motor and gears will counterbalance the load torque. This would mean that a steady error will
exist between the input and output angles. This is unlike the case when there is no load torque
and consequently the angle error is zero. In control terminology, such loads are known as load
disturbances and system has to be designed to keep the error to these disturbances within
specified limits.

Constant

Generator Motor

Flg. 1.7. A position control system.
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By opening the feedback loop i.e., disconnecting the potentiometer B, the reader can
easily verify that any operator acting as part of feedback loop will find it very difficult to adjust
8 to a desired value and to be able to maintain it. This further demonstrates the power of a
negative feedback (hardware) loop. '

The position control systems have innumerable applications, namely, machine tool
position control, constant-tension control of sheet rolls in paper mills, control of sheet metal
thickness in hot rolling mills, radar tracking systems, missile guidance systems, inertial
guidance, roll stabilization of ships, etc. Some of these applications wili be discussed in this
book.

Robotics

Advances in servo mechanism has led to the development of the new field of control and
automation, the robots and robotology. A robot is a mechanism devised to perform repetitive
tasks which are tiresome for a human being or tasks to be performed in a hazardous environment
say in a radioactive area. Robots are as varied as the tasks that can be imagined to be performed
by them. Great strides are being made in this field with the explosion in the power of digital
computer, interfacing and software tools which have brought to reality the application of vision
and artificial intelligent for devising more versatile robots and increased applications of
robotology in industrial automation. In fact in replacing a human being for a repetitive and/or
hazardous task the robots can perform the task at a greater speed (so increased productivity)
and higher precision (better quality and higher reliability of the product or service).

We shall describe here a robot manipulator arm as an example. The arm is devised to
preform some of the tasks performed by a human arm (shoulder, elbow and wrist). Imitation of
some of the elementary functions of hand is carried out by an end effector with three degrees
of freedom in general (roll, yaw and pitch). The robot arm is a set of serial links with the
beginning of each link jointed with the end of the preceeding link in form of a revolute joint (for
relative rotary motion between the two links) or a prismatic joint (for relative translatory
motion). The number of joints determine the degrees of freedom of the arm.

Figures 1.8 (a) and (b) show the schematic diagrams of two kinds of manipulator arms.
To reduce joint inertia and gravity loading the drive motors are located in the base and the
joints are belt driven. For a programmed trajectory of the manipulator tip, each joint requires
not only a controlled angular (or translatory) motion but also controlled velocity, acceleration
and torque. Further the mechanism complexity is such that the effective joint inertia may
change by as much as 300% during a trajectory traversal. The answer to such control complexity
is the computer control. The versatility of high-speed on-line computer further permits the
sophistication of control through computer vision, learning of new tasks and other intelligent
functions. Manipulators can perform delicate (light) as well as heavy tasks; for example,
manipulator can pick up objects weighing hundreds of kilograms and position them with an
accuracy of a centimeter or better.

Using robots (specially designed for broken-down tasks) an assembly line in a
manufacturing process can be speeded up with added quality and reliability of the end product.
Example can be cited of watch industry in Japan where as many as 150 tasks on the assembly
are robot executed.



(b)
Fig. 1.8. (a) Cincinnati Milacron T2 robot arm (b) PUMA 560 series robot arm.
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For flexible manufacturing units mobile automations (also called AGV (automated guided
vehicle)) have been devised and implemented which are capable of avoiding objects while
travelling through a room or industrial plant.

1.3 _HISTORY AND DEVELOPMENT OF AUTOMATIC CONTROL

It is instructive to trace brief historical development of automatic control. Automatic control
systems did not appear until the middle of eighteenth century. The first automatic control
system, the fly-ball governor, to control the speed of steam engines, was invented by James
Watt in 1770. This device was usually prone to hunting. It was about hundred years later that
Maxwell analyzed the dynamics of the fly-ball governor.

The schematic diagram of a speed control system using a fly-ball governor is shown in
Fig. 1.9. The governor is directly geared to the output shaft so that the speed of the fly-balls is
proportional to the output speed of the engine. The position of the throttle lever sets the desired
speed. The lever pivoted as shown in Fig. 1.9 transmits the centrifugal force from the fly-balls
to the bottom of the lower seat of the spring. Under steady conditions, the centrifugal force of
the fly-balls balances the spring force* and the opening of flow control valve is just sufficient to
maintain the engine speed at the desired value.

i Flow control valve

"\Q ] -i/-v Fuel flow to
"—-—"..r’:* i
i | engine
i

Fig. 1.9. Speed control system.

* The gravitational forces are normally negligible compared to the centrifugal force.
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If the engine speed drops below the desired value, the centrifugal force of the fly-balls
decreases, thus decreasing the force exerted on the bottom of the spring, causing x to move
downward. By lever action, this results in wider opening of the control valve and hence more
fuel supply which increases the speed of the engine until equilibrium is restored. If the speed
increases, the reverse action takes place.

The change in desired engine speed can be achieved by adjusting the setting of throttle
lever. For a higher speed setting, the throttle lever is moved up which in turn causes x to move
downward resulting in wider opening of the fuel control valve with consequent increase of
speed. The lower speed setting is achieved by reverse action.

The importance of positioning heavy masses like ships and guns quickly and precisely
was realized during the World War I. In early 1920, Minorsky performed the classic work on
the automatic steering of ships and positioning of guns on the shipboards.

A date of significance in automatic control systems in that of Hazen’s work in 1934. His
work may possibly be considered as a first struggling attempt to develop some general theory
for servomechanisms. The word ‘servo’ has originated with him.

Prior to 1940 automatic control theory was not much developed and for most cases the
design of control systems was indeed an art. During the decade of 1940’s, mathematical and
analytical methods were developed and practised and control engineering was established as
an engineering discipline in its own rights. During the World War II it became necessary to
design and construct automatic aeroplane pilots, gun positioning systems, radar tracking
systems and other military equipments based on feedback control principle. This gave a great
impetus to the automatic control theory.

The missile launching and guidance system of Fig. 1.10 is a sophisticated example of
military applications of feedback control. The target plane is sited by a rotating radar antenna
which then locks in and continuously tracks the target. Depending upon the position and
velocity of the plane as given by the radar output data, the launch computer calculates the
firing angle in terms of a launch command signal, which when amplified through a power
amplifier drives the launcher (drive motor). The launcher angular position is feedback to the
launch computer and the missile is triggered as soon as the error between the launch command
signal and the missile firing angle becomes zero. After being fired the missile enters the radar
beam which is tracking the target. The control system contained within the missile now receives
a guidance signal from the beam which automatically adjusts the control surface of the missile
such that the missile rides along the beam, finally homing on to the target.

It is important to note that the actual missile launching and guidance system is far
more complex requiring control of gun's bearing as well as elevation. The simplified case
discussed above illustrates the principle of feedback control.

The industrial use of automatic control has tremendously increased since the World
War II. Modern industrial processes such as manufacture and treatment of chemicals and
metals are now automatically controlled.

A simple example of an automatically controlled industrial process is shown in Fig, 1.11.
This is a scheme employed in paper mills for reeling paper sheets. For best results the paper
sheet must be pulled on to the wind-up roll at nearly constant tension. A reduction in tension



will produce a loose roll, while an increase in tension may result in tearing of the paper sheet.
If reel speed is constant, the linear velocity of paper and hence its tension increases, as the
wind-up roll diameter increases. Tension control may be achieved by suitably varying the reel
speed.

Flight path Target plane

Later position ok > L P
of beam ity e
Rotating antenna it ierl el ’
\ _RE .7’: - 4 Missile path
— e ol
| Tracking& |/ k%%R" " e——— Lead angle
guidance —k Present iz ST
radar position I
[l » Firing angle
= olbeam | | e Fiing
¥ Feadback e
Launch (Launcher anglé) | | auncher
computer e | (drive motor) |
i . - | e -:* 47 =ik
i :
Launch command
Power amplifier

Fig. 1.10. Missile launching and guidance system.
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Fig. 1.11. A constant tension reeling system.

In the scheme shown in Fig. 1.11 the paper sheet passes over two idling and one jockey
roll. The jockey roll is constrained to vertical motion only with its weight supported by paper
tension and spring. Any change in tension moves the jockey in vertical direction, upward for
increased tension and downward for decreased tension. The vertical motion of the jockey is
used to change the field current of the drive motor and hence the speed of wind-up roll which
adjusts the tension.
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Another example of controlled industrial processes is a batch chemical reactor shown in
Fig. 1.12. The reactants are initially charged into the reaction vessel of the batch reactor and
are then agitated for a certain period of time to allow the reaction to take place. Upon completion
of the reaction, the products are discharged. |

Reactants
Em"nﬂ ﬁ.ﬂ'* % i
water g~ : ~ f
ke = I-‘"\\___,:-"'M .-._: 1—:_ s1aam

. : @ = i
% [ i ;
s U [ : :
# I Temperature
- Tagf:ﬂ o “71 controller "

Jacket —» |- 3 Ll
e element -
- | |
.~ i .

R o [N\
wa
.

Reaction vessel

Products
Fig. 1.12. A batch chemicai process.

For a specific reaction there is an optimum temperature profile according to which the
temperature of the reactor mass should be varied to obtain best results. Automatic temperature
control is achieved by providing both steam and cooling water jackets for heating or cooling
the reactor mass (cooling is required to remove exothermic heat of reaction during the period
the reaction proceeds vigorously). During the heating phase, the controller closes the water
inlet valve and opens and controls the steam inlet valve while the condensate valve is kept
open. Reverse action takes place during the cooling phase.

Control engineering has enjoyed tremendous growth during the years since 1955.
Particularly with the advent of analog and digital computers and with the perfection achieved
in computer field, highly sophisticated control schemes have been devised and implemented.
Furthermore, computers have opened up vast vistas for applying control concepts to non-
engineering fields like business and management. On the technological front fully automated
computer control schemes have been introduced for electric utilities and many complex
industrial processes with several interacting variables particularly in the chemical and
metallurgical processes.

A glorious future lies ahead for automation wherein computer control can run our
industries and produce our consumer goods provided we can tackle with equal vigour and
success the socio-economic and resource depletion problems associated with such sophisticated
degree of automation.
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1.4 _DIGITAL COMPUTER CONTROI

In some of the examples of control systems of high level of-complexity (robot manipulator of
Fig. 1.9 and missile launching and guidance system of Fig. 1.11) it is seen that such control
systems need a digital computer as a control element to digitally process a number of input
signals to generate a number of control signals so as to manipulate several plant variables. In
these control systems signals in certain parts of the plant are in analog form i.e., continuous
functions of the time variable, while the control computer handles data only in digital (or
discrete) form. This requires signal discretization and analog-to-digital interfacing in form of
A/D and D/A converters.

To begin with we will consider a simple form the digital control system knows as sampled-
data control system. The block diagram of such a system with single feedback loop is illustrated
in Fig. 1.13 wherein the sampler samples the error signal e(t) every T seconds. The sampler is
an electronic switch whose output is the discritized version of the analog error signal and is a
train of pulses of the sampling frequency with the strength of each pulse being that the error
signal at the beginning of the sampling period. The sampled signal is passed through a data
hold and is then filtered by a digital filter in accordance with the control algorithm. The smoothed
out control signal u(t) is then used to manipulate the plant.

M <o /N ot ot
ol y— -, d‘:ﬁ'ﬁ:{ L » Plant
Command /‘

——

Fig. 1.13. Block diagram of a sampled-data control system.

It is seen above that computer control is needed in large and complex control schemes
dealing with a number of input, output variables and feedback channels. This is borne out by
the examples of Fig. 1.9 and 1.11. Further in chemical plants, a number of variables like
temperatures, pressures and fluid flows have to be controlled after the information on
throughput, its quality and its constitutional composition has been analyzed on-line. Such
systems are referred to as multivariable control ¢ ystems whose general block diagram is shown
in Fig. 1.14.

Smmm— | —a) >
Input —» - v » Output
T L R o Controller f Plant -~ 4=-1-0-----»variables

' L—{  Feedback |« |
g3 =it SIEIMENMS - - -~ - === ===

Fig. 1.14. General block diagram of a multivariable control system.
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Where a few variable are to be controlled with a limited number of commands and the
control algorithm is of moderate complexity and the plant process to be controlled is at a given
physical location, a general purpose computer chip, the microprocessor (uP) is commonly
employed. Such systems are known as yP-based control systems. Of course at the input/output
interfacing A/D and D/A converter chips would be needed.

For large systems a central computer is employed for simultaneous control of several
subsystems wherein certain hierarchies are maintained keeping in view the overall system
objectives. Additional functions like supervisory control, fault recording, data logging etc, also
become possible. We shall advance three examples of central computer control.

Automatic Aircraft Landing System

The automatic aircraft landing system in a simplified form is depicted in Fig. 1.15(a). The
system consists of three basic parts: the aircraft, the radar unit and the controlling unit. The
radar unit measures the approximate vertical and lateral positions of the aircraft, which are
then transmitted to the controlling unit. From these measurements, the controlling unit
calculates appropriate pitch and bank commands. These commands are then transmitted to
the aircraft autopilots which in turn cause the aircraft to respond.

Assuming that the lateral control system and the vertical control system are independent
(decoupled), we shall consider only the lateral control system whose block diagram is given in
Fig. 1.15(b). The aircraft lateral position, y(t), is the lateral distance of the aircraft from the
extended centerline of the landing area on the deck of the aircraft carrier. The control system
attempts to force y(¢) to zero. The radar unit measures y(kT) is the sampled value of y(¢), with
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| command — pisition |
* |
Pitch Controlling Vertical '
command urit | _position |

(a) Schematic
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(b) Lateral landing system.
Fig. 1.15. Automatic aircraft landing system.

T=0.05sand k=0, 1,2, 3 ... The digital controller processes these sampled values and generates
the discrete bank command constant at the last value received until the next value is received.
Thus the bank commands is updated every t = 0.05s, which is called the sampling period. The
aircraft responds to the bank command, which changes the lateral position y(¢).

It may be noted here that the lateral digital controller must be able to compute the
control signal within one sampling period. This is the computational stringency imposed on
the central computer in all on-line computer control schemes.

Two unwanted inputs called disturbances appear into the system. These are (i) wind
gust affecting the position of the aircraft and (i7) radar noise present in measurement of aircraft
position. These are labelled as disturbance input in Figure 1.15(5). The system has to be designed
to mitigate the effects of disturbance input so that the aircraft lands within acceptable limits
of lateral accuracy.

Rocket Autopilot System

As another illustration of computer control, let us discuss an autopilot system which steers a
rocket vehicle in response to radioed command. Figure 1.16 shows a simplified block diagram
representation of the system.

The state of motion of the vehicle (velocity, acceleration) is fed to the control computer
by means of motion sensors (gyros, accelerometers). A position pick-off feeds the computer
with the information about rocket engine angle displacement and hence the direction in which
the vehicle is heading. In response to heading-commands from the ground, the computer
generates a signal which controls the hydraulic actuator and in turn moves the engine.



Fig. 1.16. A typical autopilot system.

Coordinated Boiler-Generator Control

Coordinated control system for a boiler-generator unit by a central computer is illustrated by
the simplified schematic block diagram of Fig. 1.17. Various signal inputs to the control computer
from suitable sensor blocks are:
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Fig. 1.17. Coordinated control for a boiler-generator.
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* Temperature and pressure of steam inlet to turbine.
* Oxygen content in furnace air.

These inputs are processed by the control computer by means of a coordinated control
algorithm to produce control signals as below:

* Signal to adjust throttle valve. This controls the rate of steam input to turbine and so
controls the generator output.

* Signals to adjust fuel, feed water and air in accordance with the throttle valve opening.

* Signals which adjust generator excitation so as to control its var output (which indirectly
controls the terminal voltage of the generator).

.5 _APPLICATION OF CONTROL THEORY IN NON-ENGINEERING FIELDS

We have considered in previous sections a number of applications which highlight the
potentialities of automatic control to handle various engineering problems. Although control
theory originally evolved as an engineering discipline, due to universality of the principles
involved it is no longer restricted to engineering confines in the present state of art. In the
following paragraphs we shall discuss some examples of control theory as applied to fields like
economics, sociology and biology.

Consider an economic inflation problem which is evidenced by continually rising prices.
A model of the vicious price-wage inflationary cycle, assuming simple relationship between
wages, product costs and cost of living is shown in Fig 1.18. The economic system depicted in
this figure is found to be a positive feedback system.

Initial Present Product Cost of
wages <\ wages K, cost K, living
1 Industry

Dissatistaction |,
Wage increment factor d

Fig. 1.18. Economic inflation dynamics.

To introduce vet another example of non-engineering application of control principles,
let us discuss the dynamies of epidemics in human beings and animals. A normal healthy
community has a certain rate of daily contracts C. When an epidemic disease affects this
community the social pattern is altered as shown in Fig. 1.19. The factor K, contains the

Rate of daily Infectious D}s&asa
contacts C contacts e pumng mntants*

Fig. 1.19. Block diagram representation of epidemic dynamics.
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statistical fraction of infectious contacts that actually produce the disease, while the factor K,
accounts for the isolation of the sick people and medical immunization. Since the isolation and
immunization reduce the infectious contacts, the system has a negative feedback loop.

In medical field, control theory has wide applications, such as temperature regulation,
neurological, respiratory and cardiovascular controls. A simple example is the automatic
anaesthetic control. The degree of anaesthesia of a patient undergoing operation can be
measured from encephalograms. Using control principles anaesthetic control can be made
completely automatic, thereby freeing the anaesthetist from observing constantly the general
condition of the patient and making manual adjustments.

The examples cited above are somewhat over-simplified and are introduced merely to
illustrate the universality of control principles. More complex and complete feedback models
in various non-engineering fields are now available. This area of control is under rapid
development and has a promising future.

1.6 _THE CONTROL PROBLEM _

In the above account the field of control systems has been surveyed with a wide variety of
illustrative examples including those of some nonphysical systems. The basic block diagram of
a control system given in Fig. 1.3 is reproduced in Fig. 1.20 wherein certain alternative block
and signal nomenclature are introduced.

Disturbance
Comparator ""F“t
| .
Command Error [~ =y Controlled
input )< N\ eld Control | () | pjant | Output o
oL ) » elements > (process) | ——
= (contraller) | P
BB e deiia
Feedback
alements
F 1
! Noise

Fig. 1.20. The basic control loop.

Further the figure also indicates the presence of the disturbance input (load disturbance)
in the plant and noise input in feedback element (noise enters in the measurement process;
see example of automatic aircraft landing system in Fig. 1.15). This basic control loop with
negative feedback responds to reduce the error between the command input (desired output)
and the controlled output.

Further as we shall see in later chapters that negative feedback has several benefits
like reduction in effects of disturbances input, plant nonlinearities and changes in plant

parameters. A multivariable control system with several feedback loops essentially follows the
same logic. In some mechanical systems and chemical processes a certain signal also is directly
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input to the controller elements particularly to counter the effect of load disturbance (not
shown in the figure).

(Generally, a controller (or a filter) is required to process the error signal such that the
overall system statisfies certain criteria specifications. Some of these criteria are:

1.
2,

Reduction in effect of disturbance signal.
Reduction in steady-state errors.

3. Transient response and frequency response performance.

4.

Sensitivity to parameter changes.

Solving the control problem in the light of the above criteria will generally involve
following steps:

1.
2,

NSk

Choice of feedback sensor(s) to get a measure of the controlled output.

Choice of actuator to drive (manipulate) the plant like opening or closing a valve,
adjusting the excitation or armature voltage of a motor.

Developing mathematical models of plant, sensor and actuator.

Controller design based on models developed in step 3 and the specified criteria.
Simulating system performance and fine tuning.

Iterate the above steps, if necessary.

Building the system or its prototype and testing.

The criteria and steps involved in system design and implementation and tools of analysis
needed of this, form the subject matter of the later chapters.
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21 _INTRODUCTION.

A physical system is a collection of physical objects connected together to serve an objective.
Examples of a physical system may be cited from laboratory, industrial plant or utility services—
an electronic amplifier composed of many components, the governing mechanism of a steam
turbine or a communications statellite orbiting the earth are all examples of physical systems.
A more general term system is used to describe a combination of components which may not all
be physical, e.g., biological, economic, socio-economic or management systems. Study in this
book will be mainly restricted to physical systems though a few examples of general type
systems will also be introduced.

. No physical system can be represented in its full physical intricacies and therefore

idealizing assumptions are always made for the purpose of analysis and synthesis of systems.
An idealized physical system is called a physical model. A physical system can be modelled in
a number of ways depending upon the specific problem to be dealt with and the desired accuracy.
. For example, an electronic amplifier may be modelled as an interconnection of linear lumped
elements, or some of these may be pictured as nonlinear elements in case the stress is on
distortion analysis. A communication satellite may be modelled as a point, a rigid body or a
flexible body depending upon the type of study to be carried out. As idealizing assumptions are
gradually removed for obtaining a more accurate model, a point of diminishing return is reached,
i.e., the gain in accuracy of representation is not commensurate with the increased complexity
of the computation required. In fact, beyond a certain point there may indeed be an
undetermined loss in accuracy of representation due to flow of errors in the complex
computations,

Once a physical model of a physical system is obtained, the next step is to obtain a
mathematical model which is the mathematical representation of the physical model through

22



use of appropriate physical laws. Depending upon the choice of variables and the coordinate
system, a given physical model may lead to different mathematical models. A network, for -
example, may be modelled as a set of nodal equations using Kirchhoff's current law or a set of
mesh equations using Kirchhoff's voltage law. A control system may be modelled as a scalar
differential equation describing the system or state variable vector-matrix differential equation. +
The particular mathematical model which gives a greater insight into the dynamic behaviour ;
of physical system is selected.

When the mathematical model of a physical system is solved for various input conditions,
the result represents the dynamic response of the system. The mathematical model of a system
is linear, if it obeys the principle of superposition and homogeneity. This principle implies that =
if a system model has responses y,(#) and y,(¢) to any two inputs x,(#) and x,(¢) TE!EPEEH?E]]TJ
then the system response to the linear combination of these inputs

r.rl:rl{tl + Ox,(t)

is given by the linear combination of the individual outputs, t.e.,

oy, () + ogy,(t)

where o, are o, are constants.

Mathematical models of most physical systems are characterized by differential
equations. A mathematical model is linear, if the differential equation describing it has
coefficients, which are either functions only of the independent variable or are constants. If
the coefficients of the describing differential equations are functions of time (the independent
variable), then the mathematical model is linear time-varying. On the other hand, if the
coefficients of the describing differential equations are constants, the model is linear time-
invariant.

The differential equation describing a linear time-invariant system can be reshaped
into different forms for the convenience of analysis. For example, for transient response or
frequency response analysis of single-input-single-output linear systems, the transfer function
representation (to be discussed later in this chapter) forms a useful model. On the other hand,
when a system has multiple inputs and outputs, the vector-matrix notation (discussed in Chapter
12) may be more convenient. The mathematical model of a system having been obtained, the
available mathematical tools can then be utilized for analysis or synthesis of the system.

Powerful mathematical tools like the Fourier and Laplace transforms are available for
use in linear systems. Unfortunately no physical system in nature is perfectly linear. Therefore
certain assumptions must always be made to get a linear model which, as pointed out earlier,
is a compromise between the simplicity of the mathematical model and the accuracy of results
obtained from it. However, it may not always be possible to obtain a valid linear model, for
example, in the presence of a strong nonlinearity or in presence of distributive effects which
can not be represented by lumped parameters.

A commonly adopted approach for handling a new problem is: first build a simplified
model, linear as far as possible, by ignoring certain nonlinearities and other physical properties
which may be present in the system and thereby get an approximate idea of the dynamic
response of a system; a more complete model is then built for more complete analysis.



This section presents the method of obtaining differential equation models of physical systems
by utilizing the physical laws of the process. Depending upon the system well-known physical
laws like Newton’'s laws, Kirchhoff 's laws, etc. will be used to build mathematical models.

We shall in first step build the physical model of the system as interconnection of idealized
system elements and describe these in form of elemental laws. These idealized elements are

sort of building blocks of the system. An ideal element results by making two basic assumptions.

1. Spatial distribution of the element is ignored and it is regarded as a point phenomen.
Thus mass which has physical dimensions, is considered concentrated at a point and
temperature in a room which is distributed out into the whole room space is replaced
by a representative temperature as if of a single point in the room.

The process of ignoring the spatial dependence by choosing a representative value
is called lumping and the corresponding modelling is known as lumped-parameter
modelling as distinguished from the distributed parameter modelling which accounts

- for space distribution.

2. We shall assume that the variables associated with the elements lie in the range that
the element can be described by simple linear law of (i) a constant of proportionality
or (ii) a first-order derivative or (iii) a first-order integration.

The last two forms are in fact alternatives and can be interconverted by a single
differentiation or integration.

To begin with we shall consider ideal elements which |‘+ v, .!
have a single-port or two-terminal representation and so have
two variables associated with it as shown in Fig. 2.1. These
variables are indentified as v, r

1. Through variable V,, which sort of passes through T —

the element and so has the same value in at one port
and out at the other. For example, current through
an electrical resistance.

Fig. 2.1

2. Across variable V, which appears across the two terminals of the element. For
example, voltage across an electrical resistance.

Another classification of the element variables is
1. Input variable or independent variable (V,)

2. Output variable or dependent (response) variable (V) v ». | v
o
Thus V, could be V. or V, and corresponding V, would be | f I__'
V, or V. The element is then represented in block diagram form l"éér;q'ml o
(cause-effect form) as in Fig. 2.2 wherein the signal V, flows V,=1fV,)

into the block and flows out of it (V) suitably modified by the law

Fig. 2.2. Block diagram of
represented by the block.

element.
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Mechanical Systems

Mechanical systems and devices can be modelled by means of three* ideal translatory and
three ideal rotary elements. Their diagrammatic representation and elemental relationships
are given in Fig. 2.3. In case of mass/inertia elements it may be noted that one terminal is
always the inertial reference frame with respect to which the free terminal moves/rotates.

Through and Across variables for ideal mechanical elements* of Fig. 2.3 are indentified
in Table 2.1 along with their units.

Table 2.1. Variables of Mechanical Elements

Through Integrated Across Integrated
variable through variable across
variable variable
Translational elements Force, F Translational Velocity Displacement
N = kg-m/s? momentum difference difference
!
pzj Fdt U=y — Uy x=x —x
(N-5) (m/s) (m)
Rotational elements Torque, T Angular Angular Angular
(N-m) momentum velocity Displacement
f
h= J Tdt difference difference
W= @ — 0= - &
(N-ms) (rad/s) (rad)

Mass/inertia and the two kinds of springs are the energy storage elements where in
energy can be stored and retrieved without loss and so these are called conservative elements.
Energy stored in these elements in expressed as:

Mass : E = (1/2) Mv? = kinetic energy (J) ; motional energy

Inertia : E = (1/2) Jo? = kinetic energy (JJ) ; motional energy

Spring (translatory) : E = 1/2 Kx? = potential energy () ; deformation energy

Spring (torsional) : E = 1/2 K® = potential energy (J) ; deformation energy

Damper is a dissipative element and power it consumes (lost in form of heat) is given as

P = fu* (W)

The elemental relationships in Fig. 2.3 are not expressed in momentum form (which is
used mainly in impulse excitation). For illustration the relationship of mass can be integrated
and expressed as

J'_’ Fit =M[ (dv/dydt o  p=Mv;ifvi—e)=0

*Another element generally needed is the gear train which will be considered later in this Section.



(1) The mass element
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(5) The torsional spring element

) O;)—’D’Gmm\ﬁ—e T=K(8, - 6,) = K6 = K_[;{ml —w,)dt =K f_uxf.t

T &, a
(6) The damper element

Jet—T— T=flo,- w)=fo= f6,-8,)=fb
T o6 | w8
&rad), wirad/sec), J(kg-m?), T{newton-m)
K(newton-m/rad), inewton-m per rad/sec)

Fig. 2.3. Ideal elements for mechanical systems.
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A mechanical system which is modelled using the three ideal elements presented above
would yield a mathematical model which is an ordinary differential equation. Before we advance
examples of this type of modelling, we will examine in some detail the friction which has been
modelled as a linear element, the damper.

Friction

The friction exists in physical systems whenever mechanical surfaces are operated in sliding
contact. The friction encountered in physical systems may be of many types:

(i) Coulomb friction force: The force of sliding friction between dry surfaces. This
force is substantially constant.

(i1) Viscous friction force: The force of friction between moving surfaces separated by

viscous fluid or the force between a solid body and a fluid medium. This force is
approximately linearly proportional to velocity over a certain limited velocity range.

(iti) Stiction: The force required to initiate motion between two contacting surfaces (which
is obviously more than the force required to maintain them in relative motion).

In most physical situations of interest, the viscous friction predominates. The ideal
relation given in Fig. 2.3 is based on this assumption.

The friction force acts in a direction opposite to that of velocity. However, it should be
realised that friction is not always undesirable in physical systems. Sometimes it may even be
necessary to introduce friction intentionally to improve the dynamic response of the system
(discussed in Chapter 5). Friction may be introduced intentionally in a system by use of a
dashpot shown in Fig. 2.4. It consists of a piston and o1l filled cylinder with a narrow annular
passage between piston and cylinder. Any relative motion between piston and cylinder is resisted
by oil with a friction force (fv).

Housing filled with oil

LTI T,

&
. | Bl

+— |// /
v is/’"
ffj:: Annular fﬁ
| passage 1/
"I::'){.l" , — ) ‘*_.-'".- _,-f;
.-"'.J.-"'I1""”.:"'1J r'r!’.f'll"l{"”lif:’fr'f."'-: . .-": : : Fi )'JH.: i .""..-"'.r.l:."'r"".l

Fig. 2.4, Dashpot construction.

Translational Systems

Let us consider now the mechanical system shown in Fig. 2.5 (a). It is simply a mass M attached
to a spring (stiffness K) and a dashpot (viscous friction coefficient f) on which the force F acts.
Displacement x is positive in the direction shown. The zero position is taken to be at the point
where the spring and mass are in static equilibrium.*

*Note that the gravitational effect is eliminated by this choice of zero position.
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Kx f dx/alt

. .

TGRS 1, e 1

F F
(a) (b)

Fig. 2.5. (a) A mass-spring-dashpot system; (b) Free-body diagram.

The systematic way of analyzing such a system is to draw a free-body diagram* as
shown in Fig. 2.5 (b). Then by applying Newton's law of motion to the free-body diagram, the
force equation can be written as

2 2
F-f%—!&=M% or F= Md— +f—+K:: (2.1)
Equation (2.1) is a linear, constant coefficient differential equatmn of second-order. Also

observe that the system has two storage elements (mass M and spring K).

Mechanical Accelerometer

In this simplest form, an accelerometer consists of a spring-mass-dashpot system shown in
Fig. 2.6. The frame of the accelerometer is attached to the moving vehicle.

Ky Md* (y - x)/t” ey :
1/ A —— '
J 5 Tt v Tk 1
_\_.JI | .
J + ¥ = /R
N B iy R e A//R
0 —»x

Fig. 2.6. Simpilified diagram of an accelerometer.

Whenever the moving vehicle and hence the frame of the accelerometer is accelerated,
the spring deflects until it produces enough force to accelerate the mass at the same rate as the

. T —

* In example (2.1), we shall see that there is one to one correspondence between free-body diagram
approach and nodal methed of analysis.
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frame. The deflection of the spring which may be measured by a linear-motion potentiometer
is a direct measure of acceleration.

Let
x = displacement of the moving vehicle (or frame) with respect to a fixed reference frame.

y = displacement of the mass M with respect to the accelerometer frame.

The positive directions for x and y are indicated on the diagram. Since y is measured
with respect to the frame, the force on the mass due to spring is —Ky and due to viscous friction

is —f% The motion of the mass with respect to the fixed reference frame in the positive
direction of v is (y —
The force equation for the system becomes

dﬂi;.r x)
y=0
dt? f
2 E
or i!i f +K_}' M{; 5 =Ma .(2.2)

where a is the input acceleration.

If a constant acceleration is applied to the accelerometer, the output displacement y
becomes constant under steady-state as the derivatives by ¥ become zero, i.e,,

M

The steady-state displacement v is thus a measure of the constant input acceleration.
This instrument can alsoc be used for displacement measurements as explained later in

Section 2.3.

Nonlinear Spring
No spring is linear over an arbitrary range of extensions—in fact that is true of all physical as
well as nonphysical systems. The linear spring elemental law
F =Ky
is applicable within a limited range of extension y measured beyond the unstretched end of the
spring as in Fig. 2.7. Where large extensions are encountered the spring law changes to
F=Ky? {2.3)

which is graphically represented in Fig. 2.8. This law does not obey the principle of superposition
as shown below:

Ma = Ky or as= (EJ:}

Fg =Ky, ; ¥, = spring extension is linear range
Fg =Ky,?; v, = spring extension in nonlinear range

F-Sz = Fgl o+ Fsﬂ,y =¥, + ¥, = total spring extension
F¢ =Ky, + Ky,® #Ky*
So this behaviour (response) of the spring is not linear (nonlinear)
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Linearization

Consider the mass-spring system of Fig. 2.7, under gravitational force Mg which when large
pushes the spring to nonlinear region of operation. From the freebody diagram we can write
the describing equation of the system as

Mg= My + [y + Ky* .(2.4)
Under steady condition (rest position of the mass) all derivatives of y are zero. So eqn. (2)
gives
Mg =Ky ?ory, = UMg/K) .(2.5)
Consider now that the system moves through a small value Ay about y,. Equation (2.4)

can then be written as
2

d
Mg=M_5 0, + &)+ 0, + &)+ Ky, + &) ..(2.6)
The nonlinear spring term can be approximated by retaining the first derivative term in
Taylor series, i.e.,

y=Kly, + AyP= Ky, + %{Kyﬂ} 4y = Ky, + (2Ky )Ay

d ¥=X

Substituting this approximated value we get
2

d
Mg = 22 Vet &) +fE(}r" + Ay) + Ky, + (2Ky ) Ay
d* d
or 0=M_7(4)+ fE;{dy} + (2Ky Ay (2.7

It is seen from eqn. (2.7) that the spring behaviour for small movement around
P(F, = Mg, y) in Fig. 2.8 is linear with spring constant modified to (2Ky,), the slope of the
spring characteristic at the point P, called the operating point.
If we relabel x = Ay and also apply an external force F in positive direction uf x (i.e.,
downwards), eqn. (2.7) becomes
F=Mx+fx+Kx;K =2Kly, ...(2.8)
The technique of linearization presented above is also known as small-signal modelling.
This is commonly used in automatic regulating systems which operate in a narrow range



systems which are nthe:-wme nonlinear. The technique of small-signal linearization will be
elaborated in Section 2.4 for multivariable components/devices.

Levered Systems

An ideal (mass and friction less) lever is shown in Fig. 2.9 (a) so long as the rotation 8 about the
axis of the lever is small

x=afandy =50
X [ ] = o
so that ; - b’ displacement ratio ..(2.9a)
also aF, = bF, ..(2.9b)
or ﬂ P— - force advantage
F, a
o drdsr
F, hl) K
-« a- b > "
-I"""h.
Il T E B t m, t
IT : i .Ti:.l' 3 T
| M . i
F Fi Fo=F +F

(a) (b)
Fig. 2.9. Levered systems.

Consider now the levered system of Fig. 2.9 (b). External force F, acting on m, comprises
two components, i.e.,

F,=F +F,
F; acts on (m,, K,) subsystem and F,’ the reflection of F, at a-end of the lever acts on
(m,, f,) subsystem. The dynamical equations for the two systems are written as
F))=m,y + Ky ...(2.10a)
F/'=m i +fx ...(2.10b)
But F| = (b/a) F, and x = (a/b)y. Substituting in eqn. (2.105), we get
(bla) F, = (a/b) m,¥ + (a/b) f, ¥
or F,=(@bPmy +@blfy=m'y +f . .(2.11)
where m’ =(a/b)* m_; mass at end ‘a’ reflected at end ‘b’ of the lever.
f| = (a/b)? f, friction at end ‘@’ reflected at end ‘b’ of the lever
Adding eqns. (2.10a) and (2.10b), we have
Fo=F +Fy=(m,+my) 5 +f y + Kyy .(2.12)

Equation (2.12) can be written down directly by reflecting the parameters from one end
of the lever to the other in the inverse square displacement ratio of the lever.
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Rotational Systems
Mechanical systems involving fixed-axis rotation occur in the study of machinery of many
types and are very important. The modelling procedure is very close to that used in translation.
In these systems, the variables of interest are the torque and angular velocity (or displacement).
The three basic components for rotational systems are: moment of inertia, torsional spring
and viscous friction.

The three ideal rotational elements with their relevant properties and conventions are
shown in Fig. 2.3.

Let us consider now, the rotational mechanical system shown in Fig. 2.10 (a) which
consists of a rotatable disc of moment of inertia o and a shaft of stiffness K. The disc rotates in
a viscous medium with ‘viscous friction coefficient f.

Let T be the applied torque which tends to rotate the disc. The free-body diagram is
shown in Fig. 2.10 ().

B W W T " Y T .
2
=

(@) (o)
Fig. 2.10. (a) Rotational mechanical system; (b} Free-body diagram.
The torque equation obtained from the free-body diagram is

de d?e d*e .de
T-f—-K8=dJd— T=. + + Ko (2.13
Fa dr or a2 s
Equation (2.13) is a linear constant coefficient differential equation describing the
dynamics of the system shown in Fig. 2.10 (a). Again observe that the system has two storage

elements, inertia J and shaft of stiffness K.

Gear Trains
Gear trains are used in control systems to attain the mechanical matching of motor to load.
Usually a servomotor operates at high speed but low torque. To drive a load with high torque
and low speed by such a motor, the torque magnification and speed reduction are achieved by
gear trains. Thus in mechanical systems gear trains act as matching devices like transformers
in electrical systems.

Figure 2.11 shows a motor driving a load through a gear train which consists of two

gears coupled together. The gear with N, teeth is called the primary gear (analogous to primary
winding of a transformer) and gear with N, teeth is called the secondary gear.
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Angular displacements of shafts 1 and 2 are denoted by €, and 6, respectively. The
moment of inertia and viscous friction of motor and gear 1 are dencted by J, and f; and those
of gear 2 and load are denoted by J, and f, respectively.

N, teeth

-4— Gear 1 (primary gear)

Gear 2 (secondary gear) —m

N, teeth

Fig. 2.11. Gear train system,
For the first shaft, the differential equation is
Jlél-i-flél +T1 = TH .{214}
where T is the torque developed by the motor and T, is the load torque on gear 1 due to the
rest of the gear train.

For the second shaft ~ J,0; + f,0, + T, =T, ...{2.15)
where T, is the torque transmitted to gear 2 and T, is the load torque.

Let r, be the radius of gear 1 and r, be that of gear 2. Since the linear distance travelled
along the surface of each gear is same, 8,r, = 6,r,. The number of teeth on gear surface being
proportional to gear radius, we obtain

8 _N;
8, N,

Here the stiffness of the shafts of the gear train is assumed to be infinite. In an ideal

case of no loss in power transfer, the work done by gear 1 is equal to that of gear 2. Therefore,

...(2.16)

T,6, = T,6, «{2.17)
Combining eqns. (2.16) and (2.17) we have
1% _ N (2.18)
Tz El Nﬂ o )

Differentiating 6, and 6, in eqn. (2.18) twice, we have the following relation for speed
and acceleration.
ﬁz oy, éﬂ e Nl

.(2.19)
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Thus if N,/N,<1, from eqns. (2.18) and (2.19) it is found that the gear train reduces the
speed and magnifies the torque.

Eliminating T, and T, from eqns. (2.14) and (2.15) with the help of eqns. (2.18) and
(2.19), we obtain

J,8, +f,0,+ % (J404 + [0 +Ty) =Ty ...(2.20)
2

Elimination of 6, from eqn. (2.20) with the help of eqn. (2.19) yields,

2 2 .
N, N . N
Jl'*'[NE) Jﬂ:ial+[fl [N:] f2]51 +['PT;]TL:TM .{221)

Thus the equivalent moment of inertia and viscous friction of gear train referred to
shaft 1 are

2 2
N, N
e (2] sti=se (]
In terms of equivalent moment of inertia and friction, eqn. (2.21) may be written as

z . (N,
T 10qB1 + FregBs + [NJTL T

Here (N/N,) T, is the load torque referred to shaft 1.

Similarly, expressing 6, in terms of 6, in eqn. (2.20) with the help of eqn. (2.19), the
equivalent moment of inertia and viscous friction of gear train referred to load shaft are
2

2
N, N
oo () st (3] 5
Torque equation referred to the load shaft may then be expressed as

" ; N,

It is observed that inertia and friction parameters are referred from one shaft of the
gear train to the other in the direct square ratio of the gear teeth. The same will hold for shaft
stiffness when present.

Electrical Systems
The resistor, inductor and capacitor are the three basic elements of electrical circuits. These
circuits are analyzed by the application of Kirchhoff’s voltage and current laws.

Let us analyze the L-R-C series circuit shown in Fig. 2.7 by using Kirchhoff’s voltage
law. The governing equations of the system are

di .
L—~+R;+CJ idt=e .(2.22)

d
EI idt=e e =e, .(2.23)



Fig. 2.12. L-R-C series circuit.

Elemental relationships are obvious from these equations. It is also to be noted that
inductor and capacitor are the storage elements and resistor is the dissipative element. In

terms of electric charge g = _[i'dt, eqn. (2.12) becomes

dg 1
Ld +Rn!t C' =g ..12.24)

Similarly, using Kirchhoff's current law, we obtain the following equations for L-R-C
parallel circuit shown in Fig. 2.13.

de 1 ¢t e
C— +— dt+ — =1 29
di L—mE R : \2.20)

In terms of magnetic flux linkage ¢ = Iedt, eqn. (2.25) may be written as

d? ¢ 1 di
C’— —— . 2.26
a2 Rar L¢ :'
£ ' [
Current | e,
source L R c__ @

Fig. 2.13. L-R-C parallel circuit.

Analogous System

Comparing eqn. (2.1) for the mechanical translational system shown in Fig. 2.5 (a) or eqgn.
(2.13) for the mechanical rotational system shown in Fig. 2.10 (a) and eqn. (2.24) for the electrical
system shown in Fig. 2.11, it is seen that they are of identical form. Such systems whose
differential equations are of identical form are called analogous systems. The force F (torque T
and voltage e are the analogous variables here. This is called the Force (Torque)-Voltage analogy.
A list of analogous variables in this analogy is given in Table 2.2.
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Table 2.2. Analogous Quantities In Force (Torque)-Voltage Analogy

| Mechanical translational Mechanical Electrical systems
! systems rotational systems
i Force F Torgue T Voltage e
Mass M Moment of inertia ./ Inductance L
Viscous friction coefficient f Viscous friction coefficient f Resistance R
Spring stiffness K Torsional spring stiffness K Reciprocal of
capacitance 1/C
|
Displacement x Angular displacement # Charge g i
Velocity ¢ Angular velocity ¢ Current i

Similarly eqns. (2.1) and (2.3) referred above and eqn. (2.26) for the electrical system
shown in Fig. 2.13 are also identical. In this case force F (torque T) and current ¢ are the
analogous variables. This is called the Force (Torque)-Current analogy. A list of analogous
quantities in this analogy is given in Table 2.3.

Table 2.3. Analogous Quantities In Force (Torque)-current Analogy

Mechanical translational Mechanical Electrical systems
systems rotational systems

Force F Torque T Voltage i

Mass M Moment of inertia .J Capacitance C

Viscous friction coefficient f Viscous friction coefficient [ Reciprocal of
: resistance 1/R

Spring stiffness K Torsional spring stiffness K Reciprocal of

inductance /L
Displacement x Anguvlar displacement 8 Magnetic flux linkage A
Velocity x Angular velocity @ Voltage e

The concept of analogous system is a useful technique for the study of various systems
like electrical, mechanical, thermal, liguid-level, etc. If the solution of one system is obtained,
it can be extended to all other svstems analogous to it. Generally it is convenient to study a
non-electrical system in terms of its electrical analog as electrical systems are more easily
amenable to experimental study.

Thermal Systems
The basic requirement for the representation of thermal systems by linear models is that the
temperature of the medium be uniform which is generally not the case. Thus for precise analysis
a distributed parameter model must be used. Here, however, in order to simplify the analysis,
uniformity of temperature is assumed and thereby the system is represented by a lumped
parameter model.
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Consider the simple thermal system shown in Fig. 2.14. Assume that the tank is insulated
to eliminate heat loss to the surrounding air, there is no heat storage in the insulation and
liquid in the tank is kept at uniform temperature by perfect mixing with the help of a stirrer.
Thus a single temperature may be used to describe the thermal state of the entire liquid. (If
complete mixing is not present, there is a complex temperature distribution throughout the
liquid and the problem becomes one of the distributed parameters, requiring the use of partial
differential equations). Assume that the steady-state temperature of the inflowing liquid is 6,
and that of the outflowing liquid is 8. The steady-state heat input rate from the heater is H.
The liquid flow rate is of course assumed constant. To obtain a linear model we shall use small-
signal analysis already illustrated for a nonlinear spring.

Let AH (J/min) be a small increase in the heat input rate from its steady-state value.
This increase in heat input rate will result in increase of the heat outflow rate by an amount

AH, and a heat storage rate of the liquid in the tank by an amount AH,. Consequently the
temperature of the liquid in the tank and therefore of the outflowing liquid rises by A&°C).
Since the insulation has been regarded as perfect, the increase in heat outflow rate is only due
to the rise in temperature of the outflowing liquid and is given by

AH, = Qs A8
where @ = steady liquid flow rate in kg/min; and s = specific heat of the liquid in J/kg °C.
The above relationship can be written in the form
AH| = AGR .(2.27)
where R = 1/Qs, is defined as the thermal resistance and has the units of “C/J/min.
The rate of heat storage in the tank is given by
d(Af)
dt
d(AB)

dH2=ME

where M = mass of liquid in the tank in kg; and = rate of rise of temperature in the tank.

The above equation can be expressed in the form

d(Af
AH,=C {iﬂ ! ...(2.28)
where C = M3, is defined as the thermal capacitance o
and has the units of J/°C. For the system of Fig. 2.14, | -
the heat flow balance equation is s "
Liquid in  \sssshissis\
A8 d(Af) - - \
AH = ‘dHl + ﬂHﬂ = E + T Temperature 'E; . | i
] | |
d(AQ ! o pt
or RC iﬂ ) + A6 = R(AH) ...(2.29) : ‘EH I\
! [
| - Liguid
Equation (2.29) describes the dynamics of the \ g 7 —.l—,;-,——._ Rt 2
thermal system with the assumption that the WL L Temperature 6
temperature of the inflowing liquid is constant. . Heater '

Fig. 2.14. Thermal system.



In practice, the temperature of the inflowing liquid fluctuates. Thus along with a heat
input signal from the heater, there is an additional signal due to change in the temperature of
the inflowing liquid which is known as the disturbance signal.

Let A6, be change in the temperature of the inflowing liquid from its steady-state value.
Now in addition to the change in heat input from the heater, there is a change in heat carried
by the inflowing liquid. The heat flow equation, therefore, becomes

A8, A8 d
e Z(a
AH + B +Cdt( )
or RC —i (AB) + AB = dﬂl + R(AH) . (2.30)

Let us now relax the assumption that the tank insulation is perfect. As the liquid
temperature increases by A6, the rate of heat flow through the tank walls to the ambient
medium increases by

AB
where R, is the thermal resistance of the tank walls. Equation (2.30) is then modified to
A8, A6 AP d
AH + R _(R + R, ]+Gdt[dm
d R’ :
or R’UE{.&E}+.&E=[RJ.&H¢.+R{AH]
where R’ = R+R - effective thermal resistance due to liquid outflow and tank walls (it is a
t

parallel combination of R and R,).

It is still being assumed above that there is no heat storage in the tank walls. Relaxing
this assumption will simply add to the thermal capacitance C.

Fluid Systems

The dynamics of the fluid systems can be represented by ordinary linear differential equations
only if the fluid is incompressible and fluid flow is laminar, Industrial processes often involve
fluid flow through connecting pipes and tanks where the flow is usually turbulent resulting in
nonlinear equations describing the system.

Velocity of sound is a key parameter in fluid flow to determine the compressibility
property. If the fluid velocity is much less than the velocity of sound, compressibility effects
are usually small. As the velocity of sound in liquids is about 1500 m/s, compressibility* effects
are rarely of importance in liquids and the treatment of compressibility is generally restricted
to gases, where the velocity of sound is about 350 m/s.

Another important fluid property is the type of fluid flow-laminar or turbulent. Laminar

flow is characterized by smooth motion of one laminar of fluid past another, while turbulent
flow is characterized by an irregular and nearly random motion superimposed on the main

*The tendency of so-called incompressible fluids to compress slightly under pressure is called fTuid
compliance. This type of effect is accounted for in hydraulic pumps and motors discussed in Section 4.5.



Reynolds, who after experimentation found that for pipe flow the transition conditions could
be correlated by a dimensionless group which is now known as Reynolds number, Re.

From his experiments, Reynolds found that pipe flow will be laminar for Re less that
2,000 and turbulent for Re greater than 3,000. When Re is between 2,000 and 3,000, the type
of flow is unpredictable and often changes back and forth between the laminar and turbulent
states because of flow disturbances and pipe vibrations.

The pressure drop across a pipe section is given by
1281u

P= D @ ; for laminar flow ...(2.31a)
= RQ
8K
P=— ;Jf Q? ; for turbulent flow .(2.31b)
= K.Q°

where [ = length of pipe section (m); D = diameter of pipe (m); u = viscosity (Ns/m?);
@ = volumetric flow rate (m3/s) ; K, = a constant (to be determined experimentally); and p = mass
density (kg/m?).

Equation (2.31a) representing laminar flow is linear, i.e.,

P = RQ
2
where R = lﬁy [‘:‘::TS ] is the fluid resistance.
Equation (2.31b) representing turbulent flow is nonlinear, i.e.,
P =K Q*
8K, pl
here K, = —+—.
whnere ,'.l'l','E ,.DE

This equation can be linearized about the operating point (P, @) by techniques discussed
earlier in this section (See Nonlinear Spring). At the operating point,
Pﬂ' - KTQQ'E

Expanding the turbulent flow equation (2.315) in Taylor series about the operating point
and retaining first-order term only, we have

P=P + ar (Q@-8Q,)
aQlp @)
It follows that P-P =2K.Q(Q@-Q)
or AP = RAQ ..(2.32)

where R = 2K _1is the turbulent flow resistance.

Equation (2.32) relates the incremental fluid flow to incremental pressure around the
operating point in the case of turbulent flow.

Large pipes even when long offer small resistance while short devices that contain some
contractions (orifices, nozzles, valves, etc.) offer large resistance to fluid flow. For these
dissipation devices, head loss
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ziD° —55 @
where K is a constant. Experimentally detemuned values of X for various dissipation devices

can be found in handbooks. This equation is analogous to egn. (2.315) and can be linearized
about the operating point to obtain resistance offered by a dissipation device.

The other ideal element used in modelling fluid systems is the fluid capacitance. Consider
a tank with cross-sectional area = A(m?).

The rate of fluid storage in the tank = A dH = L =C aP ..(2.33)

di pg dt di
where H = fluid head in the tank (m); P = pgH (N/m?) = pressure at tank bottom; and

3
= A( i ]=mpacimnceufthet.ank.

g | N/m?*
Inertial effect of fluid in a pipe line is modelled as inertance defined below.
de
L—
v dt

where AP = pressure drop as on the pipe
@ = rate of fluid flow through pipe

L= j = inertance (Ns?/m®),

For small fluid accelerations, the inertance effect is usually neglected to obtain a simple
mathematical model of the system. This is really true of hydraulic components used in control
systems.

Liguid Level Systems
In terms of head H(m), the fluid pressure is given by
P=pgH
The pressure-flow rate relations given by eqns. (2.32a) and (2.32b) may be expressed as
the following head-flow rate relations:

H = RQ; for laminar flow (2.34a)
where R = IEEEH
D" pg
AH = RAQ ; for turbulent flow (2.34b)
2K :
where R=—"—" 79
PE
The parameter R in eqns. (2.34) is referred to as hydraulic resistance.
The rate of fluid storage in a tank = A% = C%

where C = A (m?) = hydraulic capacitance of the tank.

Consider a simple liquid-level system shown in Fig. 2.15 where a tank is supplying
liquid through an outlet. Under steady conditions, let @, be the liquid flow rate into the tank
and @, be the outflow rate, while H is the steady liquid head in the tank. Obviously @, = @,.



Let AQ, be a small increase in the liquid inflow
rate from its steady-state value. This increase in
liquid inflow rate causes increase of head of the liquid X Y
in the tank by AH, resulting in increase of liquid ©°™!| W \ |
outflow rate by SR EE e

AQ = AH/R bl toteaavienl vt ik

i -y e i e e« B - i - s

The system dynamics is described by the liquid =~ F---------f=-----2°2]

oo s s =

flow rate balance equation: Q, +AQ,

Rate of liquid storage in the tank = rate of
liquid inflow-rate of liquid outflow ¥
Therefore Fig. 2.15. Liguid-level system.

d(AH) AH
c o ap  AH
3 ~Ri~q

or Rcd—i!"‘lf-—} + AH = R(AQ) (2.35)
where C is the capacitance of the tank and R is the total resistance offered by the tank outlet

and pipe.

e .

Pneumatic Systems

We shall assume in our discussion that velocities of gases are a small fraction of the velocity of
sound, which is true in a number of engineering applications. With this assumption, we treat
pneumatic flow also as nearly incompressible. Therefore, the results presented earlier are
directly applicable to this class of pneumatic systems. :

Consider a simple pneumatic system shown in Source \_.__/ Vessel \
Fig. 2.16. A pneumatic source is supplying air to the Fi+ AF, /—\ Fo+ 4P, )
pressure vessel through a pipe line.

Let us define: Fig. 2.16. Simple pneumatic system,

P, = air pressure of the source at steady-state (N/m*).
P, = air pressure in the vessel at steady-state (N/m?).

AP; = small change in air pressure of the source from its steady-state value.
AP, = small change in air pressure of the vessel from its steady-state value.
System dynamics is described by the equation:
Rate of gas storage in vessel = rate of gas inflow
c d(AP,) AP AP - AP

dd =~ R R

d(AF,)
dt
Table 2.4 summarizes the variables and parameters of the thermal, liquid level and
pneumatic gystems which are analogous to those of electrical systems.

or RC

+ d.ﬁ'_.. = d.Fl- (235}



Table 2.4, Analogous Quantities

3 DYNAMICS OF ROBOTIC MECHANISMS

Dynamical equations for robotic serial links will be illustrated here by means of two simple
examples of two-link mechanisms,
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Fig. 2.17. Simplied model of a gantry robot.
Gantry Robot

A simple gantry robot mechanism is shown in Fig. 2.17(a) wherein the main body the crane is
propelled by traction force, F. To the body is attached a rotating arm (mass m, and moment of

Copyrighted material



inertia J about the axis nf rutahnn] driven by an actuator located on the crane body. At the end
of the arm a hand (end effector) would be attached for picking up objects (not shown in
figure).
The free-body diagrams of the masses M and m are drawn in Figs. 2.17(b) and (c).
For mass M
Mil =Fx+F u-{i':)
Mjy,=R,+R,-F - Mg (i)
Equation (i) is needed to be used only if reaction R, and R, are to be calculated.
For mass m

miy ==F, (1)
miys = FJ, -mg 1)
Jﬁ:aF:maE—Fy sin 8+ T V)
Eliminating F, in eqns. (i) and (iii), we get
. Mx, + mi, =F wA0i)
Eliminating F; in egns. (iv) and (v), we have
JB =mx,acos 6+ ma(y, +8)=T ...(vii)

The displacements x, and y, are related to 8 as follows:
Xy =x, +asin 6
yg=—acos b
Differentiating twice
Xp=X%¥—-asin08%+cos 6B - (UIEE)
J2=acos 06 +asinb b .(ix)
Substituting %, and j, into egns. (vi) and (vii), we get

(J + ma*)8 + ma cos 6 ¥, + mga sin =T k)

(M +m)%, + macos 66 —masin #82=F (xi)

It is observed that the dynamic equations are nonlinear and coupled. Serial link
manipulator is too complex a mechanism to be modelled by the free-body technique. It is much
simpler to use energy method which employs generalized coordinates.

Lagrangian Mechanics
The Lagrangian L is defined as the difference between the kinetic energy K and the potential
energy P of the system
L=K-P ...(2.37)

The kinetic potential energy of the system may be expressed in any convenient coordinate
system that will simplify the problem. It is not necessary to use Cartesian coordinates.

The dynamics equations, in terms of the coordinates used to express the kinetic and
potential energy, are obtained as

d dL JL

F;= d¢ 3, Hq ...(2.38)




where g, are the coordinates in which the kinetic and potential energy are expressed g. is th.
corresponding velocity, and F; the corresponding force or torque; F, is either a force or a torque
i, depending upon whether g, is a linear or an angular coordinate. These factors, torques, and
coordinates are referred to as generalized forces, torques, and coordinates.

IMlustrative Example

We shall derive the dynamic equations for a two-link serial manipulator
as shown in Fig. 2.18. Here the link masses are represented by point
masses at the end of the link. The manipulator hangs down in a field
of granity g. As indicated in the figure 8, and 6, are chosen as the
generalized coordinates.

The Kinetic and Potential Energy
The kinetic energy of a mass is K = 1/2 mv®. So far the mass m, the

kinetic energy is expressed as
K, = (1/2)m,d;63 (D)

The potential energy with reference to the coordinate frame is
expressed by the y-coordinate as

P, =-mgd, cos (6,) 1)

J.-'-i

gl 6
my

Fig. 2.18. A two link
manipulator.

In the case of the second mass let us first write expressions for its Cartesian position

coordinates. These are
x, =d, sin (8,) + d, sin (6, + 8,)
¥y, =~—d,cos (6,) ~d,cos (6, + 6,)

i)
)

Differentiating these we get the velocity components of the mass m, as

X5 = d1 cos {H'l]é] + dz cos (8, + 6,) {él + E?E}

Y2 =d, sin (6,)8, + d, sin (8, + 6,) (6, + 8,)
The magnitude of the velocity squared is then

v2=d;e3 + di (6% +26,0, +6%)

+2d,d, cos (6,) cos (6, + 6,)(8% + 6,6,)

+2d,d, sin () sin (8, + 8,(8? + 6,6,)
= di6T + d2(6? + 20,0, + 63) + 2d.d, cos(8,)(9% + 8,8,)

and the kinetic energy of the mass m, is then

K, = 12m,d;87 + 1/2m,d3 (% + 26,6, + 62) + m,d,d, cos(6,)(6? + 6,6,

From eqn. (iv) the potential energy of the mass m, is

P, = -m.gd, cos(6,) — mgd, cos(f, + 6,)

The Lagrangian
The Lagrangian for the two-link system is

L=(K +K,)~ (P, +P,)

LAU)
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Substituting the values we get
L = 1/2(m, + m,)di85 + 1/2m,d2(8? + 20,6, + 62)
+ myd,d, cos(6,)(8% + 8,8,)
+(m, + mylgd, cos (8,) + mgd, cos (6, + 6,) .vt)

The Dynamic Equations
The dynamic equations are derived below using the Lagrangian of eqn. (vi)

dL : . :
20, - (m, + mﬂ}dfﬂf +mydy?6, + myd,*0,
1
+ 2m,d,d, cos (8,)8, + m,d,d, cos(8,)8,
d oL ;
S aa =[(my + myd,? + myd,? + 2m,d d, cos(6,)]
dt 98, i
+ [m,d,* + myd,d, cos (Ezlléz
- 2m.d.d, sin (8,)8,0, - m.d.,d, sin (8,)03
% =—{m, + mylgd, sin (8,) — mgd, sin (8, + 8,)
1

These equations yield the torque at joint 1 as
T, =[(m, + myd,?+ mzrziﬂ2 +2m,d,d, cos {Eﬂ]jﬁl
+ [mod,? + m,d.d, cos (6,)]8,
~2md,d, sin(6,)8,8, — m,d,d, sin (6,)8;

+(m, + mylgd, sin (8,) + mgd, sin (6, + 6,)  -..(viD)
Performing similar operations at joint 2,we have
d aL i i = ; ;=
Fi mqds 8y + Mmydy 0, + myd,d, cosld,) 8, — m,d,d, sin (6,)0,0,
2
dL _ s % _
0, - -mqd,d, sin (6,)8,6, — mgd, sin (8, + 6,)

The torque at joint 2 is then given by
T, =[m,d? + m,d.d, cos (8,)18, + m,d28, - 2m.d,d, sin (8,)8,0,

—m,d,d, sin (6,)87 + m.gd, sin (8, + 6,) (i)

The torques at joint 1 and 2 (eqns. (vii) and (viii)), can be rewritten in the general form
ve == " a 2 = " = 8 s

T,=D,,0, +D,0,+D,,,0] + D 5,05 + D,1,0,0, + D,,,08,0, + D, Aix)

Ty =D,8, + Dyyby + Dy 87 + Dypo03 + Dyy6,8, + Dy 8,6, +D, (%)

Various coefficients in the torque expressions of eqns. (x) and (xi{) are defined below;
Dy, =(m, + my)d; + myd; + 2m,d,d, cos(8,)]
D,, = m,dj
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Coupling inertias
D\, = Dy, = myd; + myd,d, cos (6,)

Centripetal acceleration coefficients

D,,=0
D, = D,y = -myd,d, sin (6,)

Coriolis acceleration coefficients
D,y = Dyyy = —myd,d, sin (6,)
D,,, = Dy, = -myd,d, sin (6,)
Gravity terms
D, =(m, + m,)gd, sin (8)) + m,gd, sin (8, + 8,)
D, = m,gd, sin (8, + 6,).

2.4 _TRANSFER FUNCTIONS

The transfer function of a linear time-invariant system is defined to be the ratio of the Laplace
transform of the output variable to the Laplace transform of the input variable under the
assumption that all initial condition are zero.

Consider the mass-spring-dashpot system shown in Fig. 2.5 (a), whose dynamiecs is
described by the second-order differential equation (2.1).

Taking the Laplace transform of each term of this equation (assuming zero initial
conditions), we obtain
F(s) = Ms?X(s) + fsX(s) + KX(s)

Then the transfer function is
X(s) 1

9= P " M+ o i K

The highest power of the complex variable s in the denominator of the transfer function
determines the order of the system. The mass-spring-dashpot system under consideration is
thus a second-order system, a fact which is already recognized from its differential equation.

The transfer function of the L-R-C circuits shown in Fig. 2.12 is similarly obtained by
taking the Laplace transform of eqns. (2.22) and (2.23), with zero initial conditions. The resulting
equations are

...(2.39)

sLI(s) + RI(s) + 1= = E(s)
g €
11(s)
5 C TP

If e is assumed to be the input variable and e, the output variable, the transfer function
of the system 1is
Eu{ﬂ) 1
E(s) ~ LCs®+RCs +1

..(2.40)
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Equation (2.39) and (2.40) reveal that the transfer function is an expression in s-domain,
relating the output and input of the linear time-invariant system in terms of the system
parameters and is independent of the input. It describes the input output behaviour of the
system and does not give any information concerning the internal structure of the system.
Thus, when the transfer function of a physical system is determined, the system can be
represented by a block, which is a shorthand pictorial representation of the cause and effect
relationship between input and output of the system. The signal flowing into the block (called
input) flows out of it (called output) after being processed by the transfer function characterizing
the block, see Fig. 2.19 (a). Functional operation of a system can be more readily visualized by
examination of a block diagram rather than by the examination of the equations describing
the physical system. Therefore, when working with a linear time-invariant system, we can
think of a system or its sub-systems simply as interconnected blocks with each block described
by a transfer function.

Laplace transforming eqn. (2.29), the transfer function of the thermal system shown in
Fig. 2.14 is

A6(s) R
AH(s) RCs+1
The block diagram representation of the system is shown in Fig. 2.19 (a). When this

system is subjected to a disturbance, the dynamics is described by eqn. (2.30). Taking the
Laplace transformation of this equation, we get

(RCs + 1) AB(s) = Af(s) + RAH(s) .(2.42)
The corresponding block diagram representation is given in Fig. 2.19 (b).

..(2.41)

Ad|s)
| 2
AH(s) A A6(s) AH(s) | AN A A8(s)
— > ——— -] b { +¢ ] » -
ACs + 1 1 ACs + 1
| 3
(a) (b)

Fig. 2.19. Block diagram of the thermal system shown in Fig. 2.14.

Sinusoidal Transfer Functions

The steady-state response of a control system to a sinusoidal input is obtained by replacing s
with jo in the transfer function of the system.

Transfer function of the mechanical accelerometer shown in Fig. 2.6, obtained from eqn.
(2.2), is

Y(s) Ms® ~ st
X)) Ms?+fs+K o2, f K
8° + ME + M
Its sinusoidal transfer function becomes
s . 2
E{mi = [“:f”} - .(2.43)
JO (G + Fr o+



Equation (2.43) represents the behaviour of the accelerometer when used as a device to

measure sinusoidally varying displacement. If the frequency of the sinusoidal input signal

X(jw) is very low, i.e., @ << @, = /(K / M), then the transfer function given by eqn. (2.43) may
be approximated by

Y(jmw) - ~0*
Xjw) K/M

The output signal is very weak for values of frequency @ << @ . Weak output signal
coupled with the fact that some inherent noise may always be present in the system, makes
the displacement measurement by the accelerometer in the low frequency range as quite
unreliable.

For @ >> w,_, the transfer function given by eqn. (2.43) may be approximated by
Y(jw) 2
X(jw)

Thus, at very high frequencies the accelerometer output follows the sinusoidal

displacement input. For this range of frequencies the basic accelerometer system can be used
for displacement measurement particularly in seismographic studies.

For a sinusoidal input acceleration, the steady-state sinusoidal response of the accelero-
meter is given by

1

Yjw _ 1
As long as w<< @, = (K /M),

Yjo) M

Ajjo) K

The accelerometer is thus suitable for measurement of sinusoidally varying acceleration
from zero frequency (constant acceleration) to a frequency which depends upon the choice of
w, for the accelerometer. The sinusoidal behaviour of this type of transfer functions will be
studied in greater details in Chapter 8.

Procedure for Deriving Transfer Functions
The following assumptions are made in deriving transfer functions of physical systems.

1. It is assumed that there is no loading, i.e., no power is drawn at the output of the
system. If the system has more than one nonloading elements in tandem, then the
transfer function of each element can be determined independently and the overall
transfer function of the physical system is determined by multiplying the individual
transfer functions. In case of systems consisting of elements which load each other,
the overall transfer function should be derived by basic analysis without regard to
the individual transfer functions.

2. The system should be approximated by a linear lumped constant parameters model
by making suitable assumptions.

To illustrate the point (1) above, let us consider two identical RC circuits connected in
cascade so that the output from the first circuits is fed as input to the second as shown in
Fig. 2.20.
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The describing equations for this system are

ot
N T T e, .(2.44a)

C J-
1 ¢f . . : 1 ¢t
E__"[lg -ipdt + Rip, = —Ej_w;ldt =-e, LA2.44b)

Taking the Laplace transforms of eqns. (2.44 (a)) and (2.44 (b)), assuming zero initial
conditions, we obtain

1
;’C”[II(S] - I(s)] + RI(s) = E{s)

EIHE{E] - 1,(s)] + Ri,(s) = -é [I(s)] = -E (s)

The transfer funection obtained by eliminating /,(s) and I.(s) from the above equation is
E (5] 1

E;(s) I

.{2.45)

where 7= RC,

The transfer function of each of the individual RC [= R
circuits is 1/(1 + s7). From eqn. (2.45) it is seen that overall “——"VVV\v—¢—" Vg0
transfer function of the two RC circuits connected in i
cascades is not equal to [1/(z + 1)1 [1A s + 1}] but instead it

e o C-— e,
is 1/(t%s? + 315 + 1). 1
This difference is explained by the face that while " iy
deriving the transfer function of a single RC circuits, it is ° . —0

assumed that the output is unloaded. However, when the Fig. 2.20. RC circuits in cascade.
input of second circuit is obtained from the output of first, a

certain amount of energy is drawn from the first circuit and hence its original transfer function
is no longer valid. The degree to which the overall transfer function is modified from the product
of individual transfer functions depends upon the amount of loading.

As an example to illustrate the point (2) above, let us derive the transfer function of a
d.c. servomotor. In servo applications, a d.c. motor is required to produce rapid accelerations
from standstill. Therefore the physical requirements of such a motor are low inertia and high
starting torque. Low inertia is attained with reduced armature diameter with a consequent
increase in armature length such that the desired power output is achieved. Thus, except for
minor differences in constructional features, a d.c. servometer is essentially an ordinary d.c.
motor.

In control systems, the d.c. motors are used in two different control modes: armature-
control mode with fixed field current, and field-control mode with fixed armature current.

‘Armature-control
Consider the armature-controlled d.c. motor shown in Fig. 2.21.

In this system,
R_ = resistance of armature (£2).
L_ = inductance of armature winding (H).
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Fig. 2.21. Armature-controlled d.c. motor.

i, = armature current (A).
i."' = field current (A).
e, = applied armature voltage (V).
e; = back emf (volts).
T,, = torque developed by motor (Nm).
8 = angular displacement of motor-shaft (rad).

J = equivalent moment of inertia of motor and load referred to motor shaft (kg-m?).
f, = equivalent viscous friction coefficient of motor and load referred to motor shaft

Eid
rad/s )

In servo applications, the d.c. motors are generally used in the linear range of the
magnetization curve. Therefore, the air gap flux ¢ is proportional of the field current, i.e.,

¢=K.i, ...(2.46)

where Kf is a constant.

The torque T,, developed by the motor is proportional to the product of the armature
current and air gap flux, i.e,,

Ty =K, K : .(2.47)
where K, is a constant.

In the armature-controlled d.c. motor, the field current is kept constant, so that eqn. (2.46)
can be written as
TH =Kriﬂ .[2-45]
where K, is known as the motor torque constant.
The motor back emf being proportional to speed is given as

r= Ky .(2.49)

where Kb 15 the back emf constant.

The differential equation of the armature circuit is
di,

=e, ..[2.50)

i}
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The torque equation is

p
‘; f +ogr dﬂ =Ty =Ky, .(2.51)

Taking the Laplace transforms of eqns. {2.4-8,'! to (2.50), assuming zero initial conditions,
we get

E, (s) = K, s8(s) ..(2.52)
(L,s +R)I (s) =E (s5) - E,(s) ...(2.53)
(Js? + fi3) Bs) = Ty (s) = K1 (s) ..(2.54)
From eqns. (2.51) to (2.53), the transfer function of the system is obtained as
b(s) Kr

Gl) = (&) = SR, +sL)Js + f5) + KoK, ] +(2.99)

The block diagram representation of eqn. (2.53) is shown in Fig. 2.22 (a) where the
circular block representing the differencing action is known as the summing point. Equation
(2.54) is represented by a block shown in Fig. 2.22 (b).

_ _ - T
. ﬂ . R 1 § al8) i L) | K, ~ 6(s) i
G "\ = Ak s[s+1)
E,(s)  Summing — )
i
bt (a) (b)
a(s) 45/ < 1 1,(s) K; #s)
5 1 S —NEy I Lo*R, T TIA e
F
Take off S i |
B J
Efs) | poin
e i Hbﬁ Y HDS -

(c) : (d)
Fig. 2.22. Block diagram of armature-controlled d.c. motor.

Figure 2.22 (c¢) represents eqn. (2.52) where a signal is taken off from a take-off point
and fed to the feedback block (K;s). Fig. 2.22 (d) is the complete block diagram of the system
under consideration, obtained by connecting the block diagram shown in Fig. 2.22 (a), (b) and
(e). It may be pointed out here that when a signal is taken from the output of a block, this does
not affect the output as per assumption 1 of the procedure for driving transfer functions advanced
earlier.

However, it should be noted that the block diagram of the system under consideration
can be directly obtained from the physical system of Fig. 2.21 by using the transfer functions of
simple electrical and mechanical networks derived already. The voltage applied to the armature
circuit is E_(s) which is opposed by the back emf (E,(s)). The net voltage (E, — E,) acts on a
linear circuit comprised of resistance and inductance in series, having the transfer function
1/(sL, + R ). The result is an armature current I _(s). For fixed field, the torque developed by
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the motor is K.J (s). This torque rotates the load at a speed &(s) against the moment of inertia
J and viscous friction with coefficient f, [the transfer function is 1/(Js + f)]. The back emf
signal E, = K, 6(s) is taken off from the shaft speed and fedback negatively to the summing
point. The angle signal &(s) is obtained by integrating (i.e., 1/s) the speed &(s). This results in
the block diagram of Fig. 2.23, which is equivalent to that of Fig. 2.22 as can be seen by shifting

the take off point from 8(s) to &s).

e = ] |

E s | 1 | TuelS) | . #(s)
.f,l *..+ g 1 —» 1 arE-.._! K Mr{ 1

'y P ] . f Hpaiys N0

E,(s)

Fig. 2.23. Block diagram of armature-controlled d.c. motor.
The armature circuit inductance L, is usually negligible. Therefore from eqn. (2.55), the
transfer function of the armature controlled motor simplifies to
B(s K,/
. ey ..(2.56)
E,(s) Js +slf, + K+ K,/R,)
The term (f, + K.K,/R ) indicates that the back emf of the motor effectively increases
the viscous friction of the system. Let |
f=f+ Kp KJ/R,
be the effective viscous friction coefficient. Then from eqgn. (2.56)
ﬂfu'.':]' = KT JFRE
E (s)  s(Js+f)
The transfer function given by egn. (2.56) may be written in the form
6s) K,
E_ (s) " slst, +1)
where K| = K;/R f = motor gain constant, and 7., = J/f = motor time constant.

The motor torque and back emf constants K, K, are interrelated. Their relationship is
deduced below. In metric units, K, is in V/rad/s and K is in Nm/A.

...(2.67)

...(2.98)

Electrical power converted to mechanical form = e,i_ = K, 08i W
Power at shaft (in mechanical form) = T8 = K, iﬂé W
At steady speed these two powers balance. Hence
K,6i =K,i 6 or K, = K (in MKS units)
This result can be used to advantage in practice as K, can be measured more easily and
with greater accuracy than K.



Field-control
A field-controlled d.c. motor is shown in Fig. 2.24 (a).

B4 ] e [T e

Le+R, [ | 8seh |

(b)
Fig. 2.24. (a) Field-controlled d.c. motor, (b) Block diagram of field-controlled motor.

In this system,

Rf = field winding resistance ({2).

L_, = field winding inductance (H).

e = field control voltage (V).

ir. = field current (A).
T, = torque developed by motor (Nm).

J = equivalent moment of inertia of motor and load referred to motor shaft (kg-m?).

Nm

f=equivalent viscous friction coefficient of motor and load referred to motor shaft =TT

@ = angular displacement of motor shaft (rad).

In the field-controlled motor, the armature current is fed from a constant current source.
Therefore, from eqn. (2.36)

Ty = K.Kid, = K;i,

where K is a constant.
The equation for the field circuit is
di
L= d;’ +Ryi =e, ..(2.59)
The torque equation is
sa%0 :
F’f =Ty =Kri .. (2.60)

Taking the Laplace transform of eqns. (2.48) and (2.49), assuming zero initial conditions,
we get

(Js2 + fs) B(s) = T,(s) = K If{s} ...(2.62)
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From the above equations, the transfer function of the motor is obtained as

#

A = X - =" (2.63)
Ep(s) ~ s(Lys+Re)Js+f) ~ s(tps+ D8+ 1) it
where K, = K;7/R.f= motor gain constant; 7. = L,/R, = time constant of field circuit; and

t.. =<J/f; mechanical time constant.

The block diagram of the field-controlled d.c. motor obtained from eqns. (2.61) and (2.62)
is given in Fig. 2.24 (b).

For small size motors field-control is advantageous because only a low power servo
amplifier is required while the armature current which is not large can be supplied from an
expensive constant current amplifier. For large size motors it is on the whole cheaper to use
armature-control scheme. Further in armature-controlled motor, back emf contributes
additional damping over and above that provided by load friction. With the advances made in
permanent magnet materials, permanent magnet armature-controlled d.c. servomotor are now
universally adopted (see Chapter 5).

S .

2.5 BLOCK DIAGRAM ALGEBRA

As introduced earlier, the input-output behaviour of a linear system or element of a linear
system is given by its transfer function

(Gis) = C(s)VRi(s)

where R(s) = Laplace transformation of the input variable; and C(s) = Laplace transform of the
output variable.

A convenient graphical representation of this behaviour is the block diagram as shown
in Fig. 2.25 (a) wherein the signal into the block represents the input R(s) and the signal out of
the block represents the output C(s), while the block itself stands for the transfer function
G(s). The flow of information (signal) is unidirectional from the input to the output with the
output being equal to the input multiplied by the transfer function of the block. A complex
system comprising of several non-loading elements is represented by the interconnection of
the blocks for individual elements. The blocks are connected by lines with arrows indicating
the unidirectional flow of information from the output of one block to the input of the other. In
addition to this, summing or differencing of signals is indicated by the symbols shown in Fig. 2.25
(b), while the take-off point of a signal is represented by Fig. 2.25 (¢).

As) 1 Cfs) o > i
e —@ [
(@) (b) (©)

Fig. 2.25

Block diagrams of some of the control systems turn out to be very complex such that the
evaluation of their performance requires simplification (or reduction) of block diagrams which
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is carried out by block diagram rearrangements. Some of the important block diagram
rearrangements are discussed in this section.

Block Diagram of a Closed-loop System

Fig. 2.26 (a) shows the block diagram of a negative feedback system. With reference to this
figure, the terminology used in block diagrams of control systems is given below.

R(s) = reference input.

C(s) = output signal or controlled variable.

Bi(s) = feedback signal.

E(s) = actuating signal.

G(s) = C(sVE(s) = forward path transfer function.

Hi(s) = transfer function of the feedback elements.

G(s) H(s) = B(sVE(s) = loop transfer function.

T(s) = C(s)VR(s) = closed-loop transfer function.

From Fig. 2.26 (a) we have

C(s) = Gis)VE(s) ...[2.64)
E(s) = R(s) — B(s) = R(s) — H(s)C(s) ...[(2.65)
Summing point Take off point
L d ] :
R(s) < » E(s) | | e
. EL-:' + % H:- —m » GE) —3 {s}i
'.{._:} . | = s ——— —y

'y s~ ol | Afs) | Cys) - Cifs)

B(s) , ) 1+ G(s)H(s)
B }f
|

(a) (b)

Fig. 2.26. (a) Block diagram of closed-loop system;
(b) Reduction of block diagram shown in Fig. 2.26 (a).

Eliminating E(s) from egns. (2.64) and (2.65) we have

Cis) = G(s)R(s) — G(s)H(s)C(s)
Cis) Gis)
Re) = T¥ = 11 G)HG)

Therefore the system shown in Fig. 2.26 (a) can be reduced to a single block shown in
Fig. 2.26 (b).

or ...12.66)

Multiple-input-multiple-output Systems

When multiple inputs are present in a linear system, each input can be treated independently
of the others. Complete output of the system can then be obtained by superposition, i.e., outputs
corresponding to each input along are added together.
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Consider a two-input hnear system shown in Fig. 2.27 (a). The response to the reference
input can be obtained by assuming U(s) = 0. The corresponding block diagram shown in
Fig. 2.27 (b) gives

Cj(s) = output due to R(s) acting alone

3 G_-[[E}Gﬂ{ﬁ}
"~ 1+G4(8)G,y(8)H(s)
Similarly the response to the input Ul(s) is obtained by assuming R(s) = 0. The block

diagram corresponding to this case is shown in Fig. 2.27 (¢), which gives
C/(s) = input due to U(s) acting along
G,(s)

T 1+@ 1(8)G,(s)H (5)

The response to the simultaneous application of R(s) and Uls) can be obtained by adding
the two individual responses.

R(s) ..(2.67)

Uls) ...(2.68)

U(s)
s _!ﬁ c
A :
_fs} + ~ L Gy(s) —+' + +__ G.(8) — f_&j*
i ' - |
—
== : _i Hrs} " — — =Lk
I
(a)
R(s) ~ | | G
o 6w | ae B
.__._i_ ” | |
|
; = |
I— His) ‘e— —
|
(b)
Bl Y
u | C
rﬂjﬂ*lll +_.-f"':-,__ _I:' : s ‘_i Gﬂl'sj I = — “fs}
{_i'_;-‘ |
' | | |
—  Gy(s) <—| Hfs) |(+—
o . .
(c) .
Fig. 2.27. Block diagram of two-input system.
Adding eqns. (2.67) and (2.68), we get
Gyls
C(s) = Cyls) + Cpfs) = 2(5) [G,(s)R(s) + Uls)] .(2.69)

1+ G,(8)G,(s)H(s)
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In case of multiple-input multiple-output system shown in Fig. 2.28 (r inputs and m
outputs), the i-th output C(s) is given by the principle of superposition as

Cls)= ) Gy()R;(s);i=1,2,...,m (2.70)
J=1
where R,(s) is the j-th input and G,(s) is the transfer function between the i-th output and j-th
input with all other inputs reduced to zero.

Ry(s) — | L 5 Cs)

Af) —=> __ |vCs w0 m
(a) (b)
Fig. 2.28. Multiple-input-multiple-output systems.
Equation (2.69) can be expressed in matrix form as
[ Cy(8)] R,(8)]
'Cg (s) G:n(ﬂ'] Gﬂ (s) ... GI_,.[E] RZ[S]
=| : ; : . W (2.71)
C.\(6) G1(8) Gpo(s) ... G, (s) R,(s))
This can be expressed in compressed matrix notation as
C(s) = G(s)R(s) (2.72)

where R(s) = vector of inputs (in Laplace transform), dimension r
G(s) = matrix transfer function (m x r)
C(s) = vector of output (m)

The corresponding block diagram can be drawn as in Fig. 2.28(b) where thick arrows
represent multi inputs and outputs.

When feedback loop is present each feedback signal is obtained by processing in general
all the outputs. Thus for ith feedback signal we can write

Bs)= Y Hy(s)C,(s) .(2.73)
j=1
The ith error signal is then
E(s) = R(s) - B(s) (2.74)
Generalizing in matrix form we can write
C(s) = G(s) E(s) well)
E(s) = R(s) — B(s) o {E5)
B(s) = H(s) C(s) ..(1i1)

Substituting eqgns. (ii) and (iif) in eqn. (i), we get
Ci(s) = G(s) [R(s) - H(s) C(s)] = G{s) Ris) — G(s) H(s) C(s) i)
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This can be simplified as LR - Gj{sa_ co)
Cl(s) + G(s) H(s) C(s) = G(s) R(s) T E'B = — - SPGB -':r;m].
or C(s) [I + G(s) H(s)] = G{s) R(s) f) e e
or Cis)=[I+ G(s) H(s)I"' G(s) R(s) ...(2.75) L m FEstihama
wherein closed loop matrix transfer function as — - z'f;] o
T(s) = G(s) [1 + G{s) H(s)]" ..(2.76) -

Fig. 2.29. Block diagram of multi-input

The results are represented in thick arrow multi-output closed-loop system.

block diagram of Fig. 2.29. The reader may
compare this block diagram and matrix equation (2.76) with the block diagram of Fig. 2.26 and
eqn. (2.66) of the single-input-single-output case.

Block Diagram Reduction

An indicated earlier, a complex block diagram configuration can be simplified by certain
rearrangements of block diagram using the rules of block diagram algebra. Some of the
important rules are given in Table 2.4. All these rules are derived by simple algebraic
manipulations of the equations representing the blocks.

As an example, let us consider the liquid-level system shown in Fig. 2.30 (note that
because of interaction of the tanks, the complete transfer function cannot be obtained by
multiplying individual transfer functions of the tanks). |

In this system, a tank having liquid capacitance C, is supplying liquid through a pipe of
resistance R, to another tank of liquid capacitance C,;, which delivers this liquid through a
pipe of resistance R,. The steady-state outflow rates of tank 1 and that of tank 2 are @, and @,

and heads are H, and H, respectively.
Let AQ be a small deviation in the inflow rate §. This results in
AH | = small deviation of the head of tank 1 from its steady-state value.
AH, = small deviation of the head of the tank 2 from its steady-state value.
, = small deviation of the outflow rate of tank 1 from its steady-state value.
AQ, = small deviation of the outflow rate of tank 2 from its steady-state value.

Table 2.5. Rules of Block Diagram Algebra

Rule Original diagram Equivalent diagram
1. Combining blocks X,G,G;
: d . X, G
in cascade . o i X 6.6, | 15;.-_
I
2. Mclwmga summing (X £X) G X) GiX £ X.)
point after a block - : l
- 1 XiG T
X A A l l % G EIS )
—‘H+;' :—ﬁ ——i = _"'L_x, t'—h
k5 e f :
X, — x,
| L—1 & frrrii
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3. Moving a

(X, £ X%/G) (X,GxX)

summing point et X)
ahead of a block s xa l
—» G +
- -
%
X, X,G

4. Moving a take off

o
point after a block l
X
‘x‘l
—

15. Moving a take off X,G
point ahead of a a T L
block ' X6 [—
X,G +— G
6. Eliminating a X, # e bl
feedback loop sX 6 +— "
+ el ‘ ' G X
. 1FGH
v
H
| B8 P

Fig. 2.30. Liquid-level system.

The flow balance equation for tank 1 is

d
AQ = AQ, + G1E{5H1:'

Similarly for tank 2
d
AH, - AH.
where 4Q, = 1 3 and

R,




Tak.mg the Laplace transform of the above equations we get

AQ(s) — AQ,(s) = sC,AH (s) A2.7T)
AQ,(s) — AQ,(s) = sC,AH |(s) .(2.78)
4Q,(s) = 250 _; i .(2.79)
1
AH,(s)
AQy(s) = Rﬂﬁ ..(2.80)

The block diagram corresponding to eqns. (2.77) — (2.80) are given in Figs. 2.31 (a)-(d).
Connecting the block diagrams of Fig. 2.31 (a) and (b) gives the block diagram for tank 1,
which is shown in Fig. 2.31 (e). Similarly connecting the block diagrams of Fig. 2.31 (¢) and (d)
gives the block diagram for tank 2 which is shown in Fig. 2.31 (f ). Connecting the block diagrams
of Figs. 2.31 (e) and (f ), gives the overall block diagram of the system as shown in Fig. 2.31 (g).
This block diagram is reduced in steps given below.

(i) In Fig. 2.31 (g) shift the take off point T, after the block with transfer function /R,
(rule 4 of Table 2.5). This results in the block diagram of Fig. 2.31.

(ii) Minor feedback loop enclosed in dotted line is now reduced to a single block by rules
1 and 6 of Table 2.5 resulting in Fig. 2.31.

(iti) Shift the take off point T, to the block with transfer function 1/(R,C,s + 1) resulting
in Fig. 2.31.

(iv) Reduce the encircled feedback loop giving Fig. 2.31 (k).

(v) Reduce Fig. 2.31 (k) to the single block of Fig. 2.31, which gives the overall transfer
function of the system.

AH,(s)
AQ(s) é AH,(s) AH,(s) K dﬂ,rsi AQ,(s)
' 'éb R

_ | AHL(s)
AQ(s) AQ,(s)
(a) (b)
| AHy(s)
— . w—
A '-GrsJ . | AH, P AQ, (s
- _....d,.&{s} = _._'_az{'&)r —pi -;;g?}- — ~5—1E : = fsjﬁgxr — _F1|'u -:+-1{ }h-
.-% L{}, i | A i i i
AQ, q’sf.l! J

(d) (e)

AQy(s) < Bzl .LHE:E.{_T AGy(s)

“ﬁ; —>
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Fig. 2.31. Formation and reduction of block diagram of the system shown in Fig. 2.30.
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Feedforward Compensation

Let us consider the example of Fig. 2.27 (a). The input Uls) in this block diagram represents
Disturbance input in control systems. Such an example will be considered later in this section
2.5 speed control system of Fig. 2.40. The effect of such an input is to introduce error into the
system performance which needs to be kept low, within acceptable limits this is known as
compensation. In several systems where the disturbance input can be predicted (or computed
before hand), its effect can be eliminated by a feedforward compensation technique illustrated
in the modified block diagram of Fig. 2.32.

Uis)

| Ggls) , —

Ris)
bi:‘ G,() —@—. Gols) o

H(s) |e

Fig. 2.32. Forward compensation.

The compensating block G (s) causes additional input of G (s)U(s) alongwith U(s). It
then follows from egn. (2.67) that this would contribute to output a term
Gy (s) + G,(5)G, (8)G, (s)
1+ G,(8)Gy(5)H(s)
For this to cancel out the output component C,(s) due to disturbance input Uls), the
following condition has to be met.

Uls) ...(2.81)

{?U{S}:z

1
(}1{3}
The issues of this type of compensation will be considered further in chapter.

szs] + Gl{EEE{S}GE[E} =0 or G(s) =- ..(2.82)

Block diagrams are very successful for representing control systems, but for complicated
systems, the block diagram reduction process is tedious and time consuming. An alternate
approach is that of signal flow graphs developed by S.J. Mason, which does not require any
reduction process because of availability of a flow graph gain formula which relates the input
and output system variables.

A signal flow graph is a graphical representation of the relationships between the
variables of a set of linear algebraic equations. It consists of a network in which nodes
representing each of the system variables are connected by directed branches. The closed-loop
system whose block diagram is shown in Fig. 2.26 (a) has the signal flow representation given
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in Fig. 2.33 (a). The formulation of this signal flow graph is explained through the various
signal flow terms defined below.

1. Node. It represents a system variable which is equal to the sum of all incoming signals
at the node. Outgoing signals from the node do not affect the value of the node variable. For
example, R, E, B and C are nodes in Fig. 2.33 (a). These symbols are also represent the
corresponding node variables.

2. Branch. A signal travels along a branch from one node to another in the direction
indicated by the branch arrow and in the process gets multiplied by the gain or transmittance
of the branch. For example, the signal reaching the node C from the node E is given by GE
where (& is the branch transmittance and the brance is directed from the node E to the node C
in Fig. 2.33 (a). Thus the value of the node variable C = GE,

A c

Cr - - &
Input 1 1 Qutput
node node

Fig. 2.34. Node as a summing point and as a transmitting point.

(a) Node as a summing point

With reference to the signal flow graph of Fig. 2.34, the node variable x, is expressed
Xy =y Xy + gy Xq + Ty, X, = sum of all incoming signals.

(b) Node as a transmitting point

A node variable is transmitted through all branches outgoing from the node. Thus in the
signal flow graph of Fig. 2.34.

1‘5 = ﬂlﬁ ;t.‘l ..(2.83)
o Bl T
As already stated in (1) above the value of the node variable is not affected by the outgoing
branches.
3. Notation. a,; is the transmittance of the branch directed from node x, to node x;.

4. Input node or source. It is a node with only outgoing branches. For example, R is an
input node in Fig. 2.33 (a).
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5. Output node or sink. It is a node with only incoming branches. However, this condition
is not always met. An additional branch with unit gain may be introduced in order to meet this
specified condition. For example, the node C in Fig. 2.33 (a) has one outgoing branch but after
introducing an additional branch with unit transmittance as shown in Fig. 2.33 (5) the node
becomes an output node. '

6. Path. It is the traversal of connected branches in the direction of the branch arrows
such that no node is traversed more than once.

7. Forward path. It is a path from the input node to the output node. For example, R-E-
C is a forward path in Fig. 2.33 (a).

8. Loop. It is a path which originates and terminates at the same node. For example,
E-C-B-E is a loop in Fig. 2.33 (a).

9. Non-touching loops. Loops are said to be non-touching if they do not possess any
common node.

10. Forward path gain. It is the product of the branch gains encountered in traversing a
forward path. For example, forward path gain of the path R-E-C in Fig. 2.33 (a) is G.

11. Loop gain. It is the product of branch gains encountered in traversing the loop. For
example, loop gain of the loop E-C-B-E in Fig. 2.33 (a) is -GH.
Construction of Signal Flow Graphs
The signal flow graph of a system is constructed from its describing equations. To outline the
procedure, let us consider a system described by the following set of equations:
T = Qypky + Bgply + A Xy + AgpXy
Xy = UgaXy .(2.84)
Xy = Ogg¥y + 0%y
Xg = Qgp¥y + Qy5Xy
where x, is the input variable and x; is the output variable.

The signal flow graph for this system is constructed as shown in Fig. 2.35. First the
nodes are located as shown in Fig. 2.35 (a). The first equation in (2.84) states that x, is equal to
sum of four signals and its signal flow graph is shown in Fig. 2.35 (b). Similarly, the signal flow
graphs for the remaining three equations in (2.84) are constructed as shown in Figs. 2.35 (c),

(d) and (e) respectively giving the complete signal flow graph of Figs. 2.35 (f).
The overall gain from input to output may be obtained by Mason's gain formula.

o) o) O
X X3 X3 Xy X X, X 8y /X X, / X5
{a)



Fig. 2.35. Construction of signai flow graph for egns. {2.84).

Mason's Gain Formula

The relationship between an input variable and an ocutput variahie of a signal flow graph is
given by the net gain between the input and output nodes and is known as the overall gain of
the system. Mason’s gain formula for the determination of the overall system gain is given by:

1
- — ¥y P.A
T_.d; K4k ..(2.85)

where Py = path gan of K-th forward path; A = determinant of the graph = 1 — (sum of loop
gains of all individual loops) + (sum ¢f gain products of all possible combinations of two non-
touching loops) — (sum of gain products of all possible combinations of three non-touching
loops) + ... , L.e.,

A=1- 3 Py +Y P -3 P, +.. .(2.86)

where P, _ = gain product m-th possible combination of r non-touching* loos; A; = the value of
A for the part of the graph not touching the K-th forward path; and 7' = overall gain of the
system. ;

Let us illustrate the use of Mason’s formula by finding the overall gain of the signal flow
graph shown in Fig. 2.35. The following conclusions are drawn by inspection of this signal flow
graph.

1. There are two forward paths with path gains

P, = 0,y8004,0,; Fig. 2.36 (a)

P,=a,0..0, Fig. 2.36 (b)
2. There are five individual loops with loop gains

Py, =0y, Fig. 2.36 (¢)

*Non-touching implies that no node is common between the two.



66 CONTROL SYSTEMS ENGINEERING

P, =a,08,0, Fig. 2.36 (d)
Py =a, Fig. 2.36 (e)
P, =aa.0,.0 Fig. 2.36 (f)
Py =a,0..0a. Fig. 2.36 (g)
3. There are two possible combinations of two non-touching loops with loop gain products
P, =a,05,0,, Fig. 2.36 (h)
Poy = Qplarlesly, Fig. 2.36 (i)

4, There are no combinations of three non-touching loops, four non-touching loops, etc.
Therefore

PmEI:P =..=0

mrid

Hence from eqn. (2.85)

A=1-(ay5az + G050, + Qg + Q03,0 45050 + Uyglggly) + (Qy30490,, + Upglalsya,,)
5. First forward path is in touch with all the loops. Therefore, 4, = 1. The second forward
path is not in touch with one loop (Fig. 2.36 (j)). Therefore, 4, = 1-a,,.
From eqn. (2.85), the
PA, + BA,

r=3%_5H
%y A

_ Q13093034045 + Q10o3055(1—ayy) ) (2.87)
1- ag3agp — Gg3l34Qyp — Gyq — Gg3034045052 + Gg3G3904y + Go3@350salyy

State Variable Formulation

So far we have considered the transfer function approach (single/multi input, output) using
both block diagram algebra and signal flow graph. Before we consider further examples of
signal flow graphs in control systems, we will consider an alternate organization of a system'’s
differential equations as a set of first-order differential equations. This is known as the state
variable formulation and will studies in detail in Chapter 12. Here we shall introduce the
technique through a simple example by using the insight acquired into the physical systems
considered so far.

Consider a simple system described by the first-order differential equation
x=qax;x(t=0)=x(0) ..{2.88)
As x defines the system state for ¢ 20, it is called a state variable and eqn. (2.88) is the
state equation.

Observe that the system has no input but has an initial condition (at ¢ = 0). Integrating
x we have

- _[:e dt + x(0) .(2.89)



x O
'}.]
J°
X0
& O
x O
it

Y
a2 0
4
ol
;G

g
g

» O

_}:El

Fig. 2.36. Application of Mason's formula to the signal flow graph shown in Fig. 2.35.

The signal flow diagram for eqns. (2.88) and (2.89) can be drawn as in Fig. 2.37 (a) with

integration symbol introduced as a transmittance of the branch from node x to x. This is the
time-domain representation.



X(s) s
X(s)
a
(a) Time-domain representation (b) s-domain representation
Fig. 2.37. Signal flow graph of first-order system.

Take now the Laplace transform of eqn. (2.88)
X (s) = aX(s) .(2.90a)
But X (s) = 5 X(s) - x(0) ..(2.90b)

1

or X(s) = ;X(s] + = x(0) ...(2.91)

Equations (2.90a) and (2.91) would give the signal flow graph in s-domain, as in
Fig. 2.37 (b).

Consider now a first-order system with input u

X =ax + bu; x(t =0) = x(0) ..(2.92)
whose s-domain signal flow diagram is drawn in Fig. 2.38 (a).
0x(0)
&
v
us) b X s Us) b X&) s Xs) ¢ Y(S)
o b UI{S) o - U
F- | d
(a) (b) x(0) =0
Fig. 2.38

Assume that the system output is given as
yYy=cx ...(2.93)
The modified signal flow graph is drawn in Fig. 2.38 (b) wherein it is assumed that
x(0) = 0. Observing that there is one forward path and one loop and applying the Mason’s gain
formula, we have
Pl = bels
A =1
A=1-A,=1-(als)=(s—als
Y(s) PA (be/s) be
al= Uls) ~ t&l “(s-aVs s-a i)
In case of second-order system two first-order state variable equations would be needed
and in general n equations for n-th-order system. Let us consider the example of armature-
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controlled dc motor of Fig. 2.21 wherein we shall now regard the output of inferest as motor

speed @ = 6. The block diagram of Fig. 2.22 is then redrawn as in Fig, 2.38 from which we can
write

K.l (s) = JsaXs) + f as)
E(s) - K, aXs) = L _sI (5) + R (s)
Taking the inverse Laplace transform (initial condition being zero)

|
= B o [T .,
Ls+A, (Js + 1) i

Eqls)

Fig. 2.38. Armature-controlled d.c. motor.

: dat)
K =
ra(t) = =

di, ()

+ fw(t)

et)—K,at) =L, +Ri ()

We can recognize these equations as first-order equations in w and i, which are then
recognized as state variables, while e(f) is the system input. We thus have

daxt)

T = {fd’ﬂﬂit.} + {KHJ}IH{” ...(2.95a)
di, (t) .
o =~E/L)at) - (R/L,) i,(t) + (UL e, (t) .(2.95b)

Droping the bracketed variable ¢ for convenience of writing we can then rewrite these
state equations in vector-matrix form as

g
20| [ =fo) (gt o] [0

! = + L ."(2.9511]
‘;‘u ~(K,/L,) ~(R/L)|i | |vL,
| dt _

We will reidentify the state variables as
Xy =0,%=1,
and input as u = ¢ and output as

vt O] [:“] | ..(2.96b)
We can now write eqns. (2.96a) and (b) in standard form as
x b
{ lj| =|:‘ﬁl11 am}lixl]+|i l]H;H=Eﬂ ..(2.97a)
Xg Qg1 Qg9 || X2 by

b 4
}"=[f1 1‘32]|: 1] ...(2.97b)
Xg



In compact vector-matrix rotation
x = Ax + bu ...(2.98a)
y=Cx ...(2.98b)
This is the state variable representation of a single-input-single-output (SISO) system.
In multi-input multi-output (MIMO) system u and y will acquire the vector form.
 The state variables identified in the above example are physical variables and are directly

available for measurement. Indeed the state variables for a given system are not unique and
these can be defined in a number of other ways. These and associated topics and will be discussed

at length in Chapter 12.

Speed Control System
As an example let us consider a feedback speed control system whose objective is move the
load at desired speed. This is easily achieved using the armature controlled de motor of Fig.
2.21 by providing a feedback control loop as in Fig. 2.39 wherein the voltage signal e, proportional
to input speed (@) generated by a de tachometer coupled the motor armature is fed back
negatively and is substracted from the reference voltage e, creating the difference (error) signal
e. This error signal e is then amplified to control the armature current i such that the motor
acquires the desired speed, while driving the load (, f and torque T',)).

A dc tachometer is just a conventional dec generator usually of permanent magnet kind,
whose output voltage is a measure of speed. Thus

e, = Klm; excitation being constant ...(2.99)
where K, (V/rad/s) is the techometer constant.

Techometer
€3 )T
o f
[ ] To

Fig. 2.39. A speed control system.

The block diagram of the speed control system of Fig. 2.39 can be easily drawn as in
Fig. 2.40 (a) by modifying the block diagram of Fig. 2.23 of the armature-controlled de motor.
The outer feedback loop accounts for the speed feedback which is basic to the speed regulation
action. The load torque T, which opposes the motor torque enters negatively in the block
diagram so that the torque applied to load (and motor) inertia and fraction is (T, — T')).

Let us convert this block diagram into a signal flow graph while making the simplifying
assumption that L = 0. The signal flow graph is drawn in Fig 2.40 (b). Various system transfer
functions are derived below using the Mason’s gain formula.



71

TD
. | PT—— ¥ I
E(s) E(s)| E.(s | ' | | _
= | | iy . = e
| ! : o TS
| Exfs) —
| B, I
K
k=
_ _ — B e ;
|
(a) Block diagram
Tofs)

1
E(s) 1 Es) Ky, E, 1R, I(s) K o7 ofs) 1 ofs)
O —O——O0—r— 00— +—0——>

= h"
(b) Signal flow graph (L, = 0)

Fig. 2.40. Speed control system.

Consider first the case with zero disturbance torque. By inspection of the signal flow
graph, with T (s) = 0, it is found that:

1. There is only one forward path with path gain

K Ky

Pr=R.s+h

2. There are two individual loops with loop gains
-KrK,

Pu=R s+

p K, KK,
207 R (Js+f)

3. There are no combinations of two non-touching loops, three non-touching loops, ete.
Therefore

PM-2=P 3=”.=D

I

Hence from eqn. (2.86)

oz [ KyK, , EAKrK, | KK, + K,KK,
am _I_Rn(Js+,l"} R (Js+f)| ¥ R,(Js+ )
4. The forward path is in touch with both the loops. Therefore

4, = 1




i - i - - - = —
Pm iy

From the Mason’s gain formula of eqn. (2.84), the overall gain is
_ols) A4, K Ky
Tis)= E(s)~ A ~ R/Js+f)+ KK, + K,K,K, #iErLov}

With K, = 0, the system is reduced to open-loop with the transfer function

K, Ky K
)= R(Js+ )+ K, Ky  (m+1 =SB
K,Ky R,J
Where K= R,f + KpK, T R,f + KrK,
From eqn. (2.100), the closed-loop transfer function of the system is given by

K/t
T(s) = +[1+KE,] ...(2.102)

T

When the load (disturbance) torque T} (s) is present, the only change in the graph is the
additional input T'(s).

Applying Mason’s gain formula to the graph, the following transfer function is obtained
between output speed and disturbance torque with zero reference voltage, i.e., E (s) = 0

w(s) ﬂ?ﬂ(ﬁ] -1

..(2.103)

To@lgw.0 T~ poyrs ? (KK, + K;)
When there is no feedback (K, = 0), eqn. (2.102) modifies to
w(s) _wpls) -1 (2.104)
Tp®)|g -0 Tpls) Jes L+ KrK, e
R,

KrK,4

The additional term [ ] K, in the denominator of eqn. (2.102) (compared to eqn.

(2.103)) arises on account of output {speed} feedback. As we shall see in Chapter 5 that this
term reduces the effect of load (disturbance) torque on motor speed.

37 ILLUSTRATIVE EXAMPLES

Example 2.1 : Consider the mechanical system shown in Fig. 2.41 (a). A force F(t) is applied to
mass M,. The free-body diagrams for the two masses are shown in Fig. 2.41 (b). From this
figure, we have the following differential equations describing the dynamics of the system.

Solution. Ft) - f(33 = 31) = Ky, = ¥,) = M, 35,
| fol9s = 30 + Kyy =y - iy — Ky, =M, §,
Rearranging we get

M,jy + folyg — 31) + Koy, — y,) = F(#) ...(2.105)
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M,y + i3 —folye — 31) + Ky —Ky(y, -y, =0 ..(2.106)

These are two simultaneous second-order linear differential equations. Manipulation of

these equations will result in a single differential equation (fourth-order) relating the response
¥, (or y,) to input F(¢).

A spring-mass-damper system may be schematically represented as a network by showing
the inertial reference frame as the second terminal of every mass (or inertia) element. As an
example, the mechanical system of Fig. 2.41 (a) is redrawn in Fig. 2.42 which may be referred
to as the mechanical network. Analogous electrical circuit based on force-current analogy (Table

2.2) is shown in Fig. 2.43. A look at Fig. 2.43 (electrical analog of Fig. 2.41 (a)) and Fig. 2.42
reveals that they are alike topologically.

The dynamical equations of the system [egns. (2.105)-(2.106)] could also be obtained by
writing nodal equations for the electrical network of Fig. 2.43 or for the mechanical network of

Fig. 2.42 (with force and velocity analogous to current and voltage respectively) since the two
are alike topologically. The result is:

—» ¥y (1) — V(1) (displacement)
L ¥y (1) —» Vol (velocity)
4
A
::: . 'H‘-i ] ) _Ka_ = | |
— 00— — 0 —
\
: M, | M,
4 Fit) s !
4 l I
] n | JI
1 ~ -§ |
:::ir f‘ WT;’W_’% rz 'd__.-":b:l;l.- il 7 r
1 Zero frictiony
(a) A mechanical system
—p ¥4 —p Y2
Koy +— S
M, M, —» F
hyy « .\ Tt ) I —
(b) Free-body diagram

Fig. 2.41. (a) A mechanical system; (b) Free-body diagram.
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Fig. 2.42. Mechanical network for the system of Fig. 2.41.

Ly (= 1/Ky)

Bo(= )

Ry=11t)
VW J_
~ Ci(=M,) Cz'[.'”z:'—[

i
T ko I
-

Fig. 2.43. Electrical analog for the system of Fig. 2.30 (a).

i) ( = F(t)

i
flul =H1-r L"-]dt+ Mlﬂ'j +K2‘[ {U-I +H2}dt+f2{l?] “Uﬂ] =0

i
My, + Ky [ (0 —v)dt + fylvy —vy) = F)

{
The result is same as obtained earlier (with y = I vdt,y =vand y = ) in eqns. (2.105)

and (2.106) using the free-body diagram approach.

Signal Flow Graph
The mechanical system of Fig. 2.41( a) has four storage elements so it is a fourth order system
and would be identified by four state variables. These can be defined as x, = y,, x, = 3, x5 = ¥,,

x, = ¥3. With reference to the free-body diagram of Fig. 2.41(b), the signal flow graph of Fig. 2.44
can be immediately drawn. The state variable equations can be written directly from the signal
flow graph. The reader should write out these equations and organize them in matrix form.
Here again the state variables are defined as physical variables, but this is not a unique choice.

Using Mason’s gain formula the transfer function between any output and input F(s)
can be derived. It is identified here that there are seven loops but no combinations of two or
more loops. Further there are two forward paths but there are no loops non-touching these
paths. The reader should find the transfer function y,(s)VF(s).
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Fig. 2.44. Signal flow graph of the mechanical system of Fig. 2.41 (a).

Example 2.2 : Consider the circuit (electrical) of Fig. 2.45.
(a) Identify a set of state variables (physical variables).

(b) Draw the signal flow graph of the circuit in terms of the state variables identified in
part (a).

() From the signal flow graph, write the state variable equations of the circuit.
(d) From the signal flow graph, determine the transfer function E.(s)/E(s).

J‘/Mﬂdn

il

Fig. 2.45

Solution.

(a) This circuit has two storage elements, so these shall be two state variables. We shall
identify these as the inductor current i; and capacitor voltage e.; both these are associated
with energy storage. Remember that the state variables do not form a unique set.

From the elemental laws of inductor and capacitor we can draw the signal flow graph as
in Fig. 2.46(a). The complete signal flow graph is then constructed by the KCL equation at the
node and the KVL equation round the loop. These equations are:

[
Sl o 10 . €6

l"_ iﬂ ﬂl' i=-l_ Hr{i}
L= R, c=LT R,

and e = RIIL +e; + e or e =€~ RIIL -€n R ETY
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Fig. 2.46

The complete signal flow graph is drawn in Fig. 2.47(b).
(c) From the signal flow graph the two state variable equations can be written as below.

di 1 1 ; R, . 1 1
-EidL:EEL = E[_EE—R:LIL +E}=—fIL""£EE+EE ...(HI}
dﬂc | B 1. er 1. 1 .
e — ) e | —y ———g s
i it ~C° G("‘- RE] CL RCC B

Equations (iii) and (iv) can be written in matrix form

[defdt] _[-RJ/L VL [i], [VL
dig/dt| | 1/C 1/R,C||ep 0

These are also known as state space equations.
(d) Input E(s), output E(s). From the singal flow graph we have,

Forward path P1=51K5::,=52£G:ﬂl=1
Single Joops p.=-Bap -1 p_-J1
11 sL’ sR,C’ "% siLC
Rl 1 1
A=1 = ngﬂ'
1
Ec(s) PA, _ s’LC  _ 1

Hence

Es) A R, 1 - L
1+ SR2C L SEL‘C 1+3[R1C+E]+SELC

Example 2.3 : Consider a salt mixing tank shown in Fig. 2.48. A solution of salt in water at a
concentration C,(moles™ of salt/m® of solution) is mixed with pure water to obtain an outflow

*A mole of a substance is defined as the amount of substance whose mass numerically equals its
molecular weight. For example, a gram-mole of helium would have a mass of 4.003 g (molecular weight
of helium = 4.003).



stream with salt concentration C,. The water flow rate is assumed fixed at @, and the solution
flow rate may be varied to achieve the desired concentration C, (also see Problem 2.6). Volumetric
hold-up of the tank is V, which is held constant. Let us assume that stirring causes perfect
mixing so that composition of the liquid in the tank is uniform throughout.

Solution. For this system,

Q,r= K x ;K is valve coefficient
The rate of salt inflow in the tank

m® moles

m:=Q!Cf;[ 5 . mﬂ' =mﬂ1ﬂ5;ﬂ]
The rate of salt outflow from the tank

m_=@Q C,;(moles/s)
The rate of salt accumulation in the tank

- d dcC,
m, = = [VC, (0] = V-

where VC (¢) the salt hold-up of the tank at time ¢.
From the law of conversation of mass, we have

m,=m_+m, or QL= Vd;" +@,C,

dcC,
dt
where K = (C.K )@, and 7= V/q, is the tank hold-up time.

or T

+Ca =Ktr,r

qu Stirrer

allr Gr _..,_6_

&0
V. Go

Q——

Fig. 2.48. A salt mixing tank.
The transfer function of the system is
C,(s) K
X, (s) st+1
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Example 2.4 : The manipulator shown in Fig. 2.49 has a rotating joint followed by a linear
(prismatic) joint. The whole mass of links is concentrated at the centre of mass. Derive the
dynamic equations for the manipulator.

Fig. 2.49

Solution. Linear velocity of first centre of mass, v_, = 1,0,

or

Kinetic energy of link 1 is
K, = (12)m, 16}

Linear velocity of second centre of mass is

H.':..'! - J{dgﬁf +d22}

Kinetic energy of link 2 is
Ky = 5 my(d36% +d})
Hence the total kinetic energy of manipulator is
K=K, +K,
. : o W
K(8), 0, dy, dy) = (U2)0myL] + myd)67 + 2 mad;
Potential energy of link 1 1s
u, =m,lg sin 6,
Potential energy of link 2 is
Uy = Mydog sin 6,
Hence total potential energy of manipulator is
U8, dy) = u, + uy, = glm,l, + myd,) sin 6,
Taking partial derivatives, we have

rd 9 3.
E (myly + mqds )84
9K maody

| dd; |

. (2)

(1))

..(iit)

LAin)

..(v)

.(vi)

-I-l-i{”i-i}

LA0iiL)

. (1x)

()



E )
_Bd, i _midzﬂf_
[9U  [g(myly + mydy)cos8, ]
o, | >
U = (X1
ddy | | gmysinf,
From Lagrangian mechanics we know that
d(K)| [k [aU]
T, dt\d, )| |a6, | |d6;
1_'2 = d F &K "\ £ E + ﬂ ..-{I-ll-l}
t\ad, )| %) |ada
Thus from (x), (xf), (xii), and (xiii) we have
T, = [ml.!l2 + mzdgflﬁl + Emzdﬂé‘l&a +(m,l, + m,d,) g cos 6, Axiv)
Ty = Mydy, — Myd,0° + myg sin 6, {(xv)

Equations (xiv) and (xv) are the dynamic equations of the manipulator.
Example 2.5 : The schematic diagram of a position control system is drawn in Fig. 2.50.

K, (pot constant)
Jp
\ !
MRS H) )
: EL TIETITIITIT
Input - ]
ot oo F,
f i
—
it Amp -

Motor field
olor lie Gear train speed ratio
constant excitation ity

Fig. 2.50

— Various constituents of the system are:

e Drive motor-de armature controlled.

e Load is driven through a reduction gearing, to amplify torque for moving the
load.



e

% L]
X I 4 X e
— e —

* Load angular position is sensed by a circular potentiometer.
» Angle reference input is sensed by an identical potentiometer.

e Position error (in form of voltage e) is fed to amplifier with a power stage to feed
the motor armature at voltage e,.

From physical reasoning it is easily seen that at steady position of load, voltage e should
be zero so the motor armature is stationary. It means 6, = 6 i.e. steady-state error is zero. Any
change in command 6 introduces error e and the motor drives the load till 6, = 6; once again.
The nature of this moment is an important performance measure.

Various parameters and variables are indicated in Fig. 2.50. Motor parameters are:

Torque constant = K; kg-m/Amp. (armature)

Back emf = K, Virad/sec

It is reminded here that numerically K, = K;.

Motor armature inductance L, is negligible.

(a) Draw the block diagram of the motor and reduce it to the form w,/(sVE _(s); @,, = motor
speed.

(6) Draw the complete system block diagram.

(c) Determine the overall transfer function T(s) = 6.(s)/6g(s).

(d) Briefly discuss the nature of T\s).

(e) For numerical data given within the solution determine T\(s); K, is variable gain.
Solution. From the control system knowledge acquired so far the block of the position control
system (Fig. 2.50) can be drawn directly. For this purpose the load is reflected to the motor
shaft giving the effective inertia and friction at motor shaft as

J=dJy + nEJL A1)
f=fu + nEfL [H}
(a) To begin with let us first draw the motor block diagram linking ®,,, motor speed, to

armature voltage e, . It is given in Fig. 2.51 (a) (this has been presented earlier and is repeated
here for the reader to become fully conversant with it).

Effective
motor load

Fig. 2.51

Reducing the block diagram of Fig. 2.51, we get
ﬂJH{S} = Km

E,(s) Cr's+1 ..(EIL)

where K = e

m= R.f+ KoK, i)
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= )
f+(K;K,)R,
This is represented in Fig. 2.52
E.(s) K. @yelS)
. ———

t's+ 1

Fig. 2.52. Motor and load.

Note. 7°is the effective motor time constant including friction f and equivalent frictional effect caused
by motor back emf (K, KR, . Symbol 7 is reserved for motor’s mechanical time constant i.e. 7= J/f.

(b) The complete block diagram of the speed control system is now drawn in Fig. 2.53.

Pot Amp Motor + load Integrator
E,ls) ,ﬂ ) 8,.(s)|
Ba(s) Eis) K, | K, Sl r;_u::1 f}ﬁ:’ﬁ % i 5) - _HEL
S L" |_
Fig. 2.53
(¢) Forward path transfer function
K K,K n
G(s) = —+ ,A i ..(vi)
s(t’s+1)
Overall transfer function
8 (s) G(s)
Ney=_+ —=
Or(s) 1+G(s)
Substituting G(s), we get
0.(s) Kpﬂ'dﬁmn

QR{SJ = T’SE +8+ HPKAKmn TH{UH}

It is to be noticed that it is a second-order system compared to the first-order speed
control system of Fig. 2.39. Increase in order has been caused by the integrator to get angle 6,
from speed 8, .

(d) Data of system components

DC Motor
K, =60 x 10~ kg-m/A
Jy =1 x 1073 kg-m?
fis = 10 x 10~ kg-m/rad/sec
R=10
Potentiometer

Kp =1 V/rad



Gear Train

n=110=0.1

Load

or

J; =900 x 10~ = kg-m?
f;, = 9,000 x 10~ kg-m/rad/sec.
Effective load at motor shaft
J=1x10"%+900 x 10~ x (0.1)
= 10 x 10~ kg-m?
=10 x 1073 + 9,000 x 103 x (0.1)2
= 100 x 10~ kg-m/rad/sec.
From Egs. (iv) and (v)

60 x 107"
K = ;K =K
™ 1%100x10° +(B0x1073)2 TP T
60
= 10+36 _ k4l
10 x 1073 10

T 100x10°% +(60x10°%)%/1  100+36 LG a0

Substituting (values in Eq. (vii)

0(s) _ 1x K, x441x0.1
Or(s) 00975 +s+1x K, x4.41x0.1
EL(E)_ 455 KA

. DIED)

Br(s) s%+1031s+455K,
Choice of gain K, in this transfer function depends on the system dynamics desired. The

issues involved will be discussed in Chapter 5.

Example 2.6 : The block diagram of a speed control system is drawn in Fig. 2.54. Define the
state variables and write the state and output equations of the system in vector-matrix form.

Servo motor Gaar trom
X; X,
| — v : 4 el
| = S . I ! — H ; A 5
LY 8141 K, —v-{}( B = -6 4 oM L = =
H[ E” = |_".~ '
|

f |

s T

|
, . —




Bulut::nn. There will be two state vannhlea as this is a second-order system. We define the
state variables as:
=6, x; = 6
State equations written fmm the block diagram. For each block with one denominator s,
input-output relations are written. In this block diagram there are two such blocks (2nd order

system)
n

o (2]

In time domain %) = nx,
Bl
. uck(JsJ

1
{(:d—xl}}i'ﬁ—[(}f +Kbll R, +ﬁ]}@}J$ = Xq

In time domain it can be expressed as

K
+(K, +K;)| =L
i__(ﬂ._ﬂ]thu t b[Rﬂ] +[ﬂ]ﬂ
2 J 1 J Ig J d
These two equation are written below as state equation
F p . "
; K 0
x T
L.;:I: _[ﬁ} ) fﬂ +(K¢ +Kb}[Ru ] [13] [?]Ed i)
| \d J 1
Output equation
y=6 =x or y=[1 0] [2] -iv)

1511143 S ——

2.1. Obtain the transfer functions of the mechanical systems shown in Figs. P-2.1(a) and (b).

-

4
———e ey ut
] :' il . | e
s 5 [ = |
:j = __H-'I : | |
o001 M, L
5 | - | Ft) (appiied orce)
: | o0 |
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B E il
R 57y —T
'y K X Esd |
T 6 f
(applied - | (Output)
Fig. P-2.1.

2.2, Write the differential equations governing the behaviour of the mechanical system shown in
Fig. P-2.2. Also obtain an analogous electrical circuit based on force-current analogy.

PN AT A8 A A A AT A A A A A A

= | f

vy

Fig. P-2.2.

2.3. Write the differential equations for the mechanical system shown in Fig. P-2.3. Also obtain an
analogous electrical circuit based on force-current analogy.

— X, — X, )
J Flt)—» ‘ E
sSLIIRe {— oo
4 K Kk

P, |
T "'?".'-“Z-"f__.-;f-'ﬁi'.-' F A A A o A S N A A T A

' "-z

Fig. P-2.3.

2.4.  Find the transfer function X(s)/E(s) for the electromechanical system shown in Fig. P-2.4.
[Hint: for a simplified analysis, assume that the coil has a back emf e, = k, dx/dt and the coil
current i produces a force F,, = ki on the mass M]



2.5.

2.6.

i AT A A AT AR A AR A A A A

K | ]rofk
xp | oondes ]
R L f
1] Ko e
4
® i
) :
4 g
Fig. P-2.4.

Fig. P-2.5 shows a thermometer plugged into a bath of temperature 6, Obtain the transfer func-
tion (s)/6/s) of the thermometer and its electrical analogue. (The thermometer may be consid-
ered to have a thermal capacitance C which stores heat and a thermal resistance R which limits
the heat flow). How the temperature indication of the thermometer will vary with time after the
thermometer is suddenly plugged in ?

*’_':‘m
Thermometer
Fig. P-2.5.

The scheme of Fig. P-2.6 produces a steady stream flow of dilute salt solution with controlled
concentration C,. A concentrated solution of salt with concentration C, is continuously mixed
with pure water in a mixing valve. The valve characteristic is such that the total flow rate @,
through it is maintained constant but the inflow @, of concentrated salt solution may be linearly
varied by controlling valve stem position x. The outflow rate from the salt mixing tank is the
same as the flow rate into it from the mixing valve, such that the level of the dilute salt solution
in the tank is maintained constant. Obtain the transfer function C(s)V/X{(s). If from fully closed
position, the valve stem is suddenly opened by x,, determine the outstream salt concentration C,
as a function of time.
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Fig. P-2.6.

In the speed control system shown in Fig. P-2.7, the generator field time constant is negligible. It
is driven at constant speed giving a generated voltage of K, volts/field amp. The motor is sepa-
rately excited so as to have a counter emf of K, volts per rad/sec. It produces a torque of K,
newton-m/amp. The motor and its load have a combined moment of inertia JJ kg-m® and negligi-
ble friction. The tachometer has K, volts per rad/sec and the amplifier gain is K, amps/volt. Draw
the block diagram of this system and determine therefrom the transfer function w(s)VE(s), where

w is the load speed.

With the system originally at rest, a control voltage e, = 100 volts is suddenly applied. Determine

how the load speed will change with time.

Given:
J = 6 kg-m?® K, = 4 amp/volt
K, = 50 volts/amp R_=1ohm
K, = 0.2 volts per rad/sec
[Hint: K, = K in MKS units]
Generator Moator Tachometer

K, = 1.5 newton-m/amp
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2.8. Consider the positional servomechanism shown in Fig. P-2.8. Assume that the input to the sys-
tem is the reference shaft position #, and the system output is the load shaft position ;. Draw
the block diagram of the system indicating the transfer function of each block. Simplify the block
diagram to obtain 8;(s)/68g(s) for the closed-loop system and also when the loop is open (in opening
the loop, the lead from the output potentiometer driven by 6, is disconnected and grounded). The

parameters of the system are given below:

Sensitivity of error detector, KF = 10 volt/rad

Gain of d.c. amplifier, K, = 50 volts/volt

Motor field resistance, R, = 100 ohms

Motor field inductance, L,= 20 henrys

Motor torque constant, Ky = 10 newton-m/amp

Moment of inertia of load, J; = 250 kg-m?

Coefficient of viscous friction of load, f; = 2,500 newton-m per rad/sec
Motor to load gear ratio, (8,/8,,) = 1/50

Load to potentiometer gear ratio, [E'lcfﬂ L) =1
Motor inertia and friction are negligible.

=T Motor
l_'l.l A ,h, - 0O
[N I, = constant
! -—j
e LS
! =
| ;
| , =
| - O
| -, -
- L Amplifier "_"'.y o 1
= () D]
= EL
E— [ L
< <
< | < =
o) o L o M
w3 174 N
.5"‘ { 5 o -F‘}_l'_'
| Iy .
| 6 |
Fig. P-2.8.

2.9. Using block diagram reduction techniques, find the closed-loop transfer functions of the systems
whose block diagrams are given in Figs. P-2.9(a) and (b).

2.10. For the system represented by the block diagram shown in Fig. P-2.10, evaluate the closed-loop
transfer function, when the input R is (i) at station I, (if) at station II.

2.11. From the block diagrams shown in Fig. P-2.11, determine C /R, and CJ/R, (assuming R, = 0).

2.12. Fig. P-2.12 shows a schematic diagram of liquid-level system. The flow of liquid @, into the tank
is controlled by the pressure P of the incoming liquid and valve opening V,_ (note that this is a
more realistic model than the one shown in Fig. 2.15) through a nonlinear relationship.

Q =P, V)



Linearized liquid-level model and about the operating point (P, @, = @,H,) is given as AQ, = K, AP

AQ,(8)

AV, )| 0 -

+ K,AV . Draw the signal flow graph and obtain therefrom the transfer function
with pressure remaining constant.
(The tank and output pipe may be considered to have liguid capacitance C and flow resistance R

respectively).

| H, |e
(a)
Hy fe—
G |+ G o Gy ,,@Jﬁ.
‘e H
G,
(b)
Fig. P-2.9.
Station 1
4
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Valve opening
'H"+d'nf
dﬂn
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ﬂﬂ + dﬂ{,

Fig. P-2.12.

2.13. Draw a signal flow graph and evaluate the closed-loop transfer function of a system whose block
diagram is given in Fig. P-2.13.

I
—
= |
| P i\‘
R I + c
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e
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Fig. P-2.13.
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2.14. ﬂhtam the overall transfer function l‘.'.'.l'R from the signal flow graph shown in Fig. P-2.14,

Fig. P-2.14.

2.15. Fig. P-2.15 gives the signal flow graph of a system with two inputs and two outputs. Find expres-
- sions for the outputs C, and C,. Also determine the condition that makes C, independent of R,
and C, independent of R,. .

Hy
L e, I
G,
G,
H,

Fig. P-2.15.

2.16. For the system represented by the following equations, find the transfer function X(s)U(s) by
signal flow graph technique.

:|:=:|:1+ﬂ3u
Xy =—0.%; + Xy + fou

X9 = —Gg%, + ,ﬁlu.
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3.1 _FEEDBACK AND NON-FEEDBACK SYSITEMS

Feedback systems play an important role in modern engineering practice because thev have
the possibility for being adopted to perform their assigned tasks automatically. A non-feedback
(open-loop) system represented by the block diagram and signal flow graph in Fig. 3.1 (a), is
activated by a single signal at the input (for single-input systems). There is no provision
within this system for supervision of the output and no mechanism is provided correct (or
compensate) the system behaviour for any lack of proper performance of system components,
changing environment, loading or ignorance of the exact value of process parameters. On the
other hand, a feedback (closed-loop) system represented by the block diagram and signal flow
graph in Fig. 3.1 () is driven by two signals (more signals could be employed), one the input
signal and the other, a signal called the feedback signal derived from the output of the system.
The feedback signal gives this system the capability to act as self-correcting mechanism as
explained below.

The output signal ¢ is measured by a sensor H(s), which produces a feedback signal b.
The comparator compares the feedback signal b with the input (command) signal r generating
the actuating signal e, which is as measure of discrepancy between r and 5. The actuating
signal is applied to the process G(s) so as to influence the output ¢ in a manner which tends to
reduce the errors.

Feedback as a means of automatic regulation and control is, in fact, inherent in nature
and can be noticed in many physical, biological and soft systems. For example, the body
temperature of any living being is automatically regulated through a process which is essentially
a feedback process, only it is far more complex than the diagram of Fig. 3.1 (b).

The beneficial effects of feedback in feedback systems with high loop gain, which will be
elaborated in this Chapter, are enumerated below (discussion will not follow this order).
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G(s) | 1| cs) 1 w
! “H(s)
Sensor =
H(s)
(b)

Fig. 3.1. (a) A non-feedback (open-loop) system
(b) A feedback (closed-loop) system

1. The controlled variable accurately follows the desired value.

2. Effect on the controlled variable of external disturbances other than those associated
with the feedback sensor are greatly reduced.

3. Effect of variation in controller and process parameters (the forward path) on system
performance is reduced to acceptable levels. These variations occur due to wear,
aging, environmental changes etc.

Feedback in the control loop allows accurate control of the output (by means of the
input signal) even when process or controlled plant parameters are not known
accurately.

4, Feedback in a control system greatly improves the speed of its response compared to
the response speed capability of the plant/components composing the system (forward
path).

The cost of achieving these improvements in system’s performance through feedback
will be discussed alongwith. These are: greater system complexity, need for much larger forward
path gain and possibility of system instability (it means undesired/persistent oscillations of
the output variable).

.2 HREDUCTION OF PARANMETER VARIATIONS BY USE OF FEEDBACK

One of the primary purpose of using feedback in control systems is to reduce the sensitivity of
the system to parameter variations. The parameters of a system may vary with age, with
changing environment (e.g., ambient temperature), etc. Conceptually, sensitivity is a measure
of the effectiveness of feedback in reducing the influence of these variations on system
Let us define sensitivity on a quantitative basis. In the open-loop case
C(s) = G(s) R(s)



Suppose due to parameter variations G(s) changes to [G(s) + AG(s)] where | G(s)|
>> | AG(s)|. The output of the open-loop system then changes to

C(s) + AC(s) = [G(s) + AG(s)] R(s)

or AC(s) = AG(s) R(s) el3.1)
Similarly, in the closed-loop case, the output
G(s)
OO = e
((5) + AGG(5)
ch to =
anges C(s) + AC(s) 1+ GoHG) + A6 H®) R(s)

due to the variation AG(s) in G(s), the forward path transfer function. Since | G(s)| >>1A4G(s)|
we have from the above, the variation in the output as

A(s)
aW) = 1+ G(s)H(s) ) -48.2)
From eqns. (3.1) and (3.2) it is seen that in comparison to the open-loop system, the
change in the output of the closed-loop system due to variation G(s) is reduced by a factor of
[1 + G(s) H(s)] which is much greater than unity in most practical cases over the frequency

(s = jw) of interest.

The term system sensitivity is used to describe the relative variation in the overall
transfer function TY(s) = C(s)/R(s) due to variation in G(s) and is defined below:
percentage change in T'(s)
percentage change in G(s)

For small incremental variation in G(s), the sensitivity is written in the quantitative
form as

Sensitivity =

ST_anT_aLﬂT
“738G/G  aLnG

where S/ denotes the sensitivity of T' with respect to G.

In accordance with the above definition, the sensitivity of the closed-loop system is
T=£}{E_[1+GH]—GH G 1

..(3.3)

= = 3.4
S¢ oG T (1+ GH)? HGH1+GH} 1+GH (>4
Similarly, the sensitivity of the open-loop system is
da' G
ST ey r— . 1 - LR &
G HGKT l(inthiscase T =G) (3.5)

Thus, the sensitivity of a closed-loop system with respect to variation in (= is reduced by
a factor (1 + GH) as compared to that of an open-loop system.

The sensitivity of T' with respect to H, the feedback sensor, is given as
oT :-:E— G -G H _ -GH
" |(1+GH)? |G/(1+GH) ~ 1+GH

;P
Sk =SE X7 ..(3.6)



with respect to H approaches unity. Thus, we see that the changes in H directly affect the
gsystem output. Therefore, it is important to use feedback elements which do not vary with
environmental changes or can be maintained constant.

Very often the system’s sensitivity is to be determined with a particular parameter (or
parameters), with the transfer function expressed in ratio of polynomial form i.e.,

T(s) = N@,a) , o = parameter under consideration
Dis,a)
From eqgn.(3.3)
dLnN dLnD
T _ = .
ST = Snal,, ~3Lodl, A8T8)
= SN _gP .(3.7b)

where ¢, is the nominal value of the parameter around which the variation occurs.

The use of feedback in reducing sensitivity to parameter variations is an important
advantage of feedback control systems. To have a highly accurate open-loop system, the
components of G(s) must be selected to meet the specifications rigidly in order to fulfil the
overall goals of the system. On the other hand, in a closed-loop system G(s) may be less rigidly
specified, since the effects of parameter variations are mitigated by the use of feedback.
However, a closed-loop system requires careful selection of the components of the feedback
sensor H(s). Since G(s) is made up of power elements and H(s) is made up of measuring elements
which operate at low power levels, the selection of accurate His) is far less costly than that of
(G(s) to meet the exact specifications.

The price for improvement in sensitivity by use of feedback is paid in terms of loss of
system gain. The open-loop system has a gain G(s), while the gain of the closed-loop system is
G(s)/[1 + G(s) H(s)]. Hence by use of feedback, the system gain is reduced by the same factor as
by which the sensitivity of the system to parameter variations is reduced. Sufficient open-loop
gain can, however, be ‘easily built into a system so that we can afford to lose some gain to
achieve improvement in sensitivity.

As a first example of feedback in reducing the system’s sensitivity to parameter variations
consider the feedback amplifier of Fig. 3.2(a) with negative feedback provided through a
-potential divider (feedback gain less than unity). Assuming the input impedance of the amplifier

(a) (b)
Fig. 3.2. Feedback amplifier.



to be infinite and its output meedanﬂa as zero, the Bqu.walent block dlagrﬂm of the system is
drawn in Fig. 3.2 (b). Observe that both the forward gain A and feedback gain k(< 1) are
. independent of frequency (in the range of frequencies of interest here).

It easily follows from the block diagram of Fig. 3.2 (b) that the overall gain of the amplifier

circuit 18

oo A B,
i Ty, k= RS .(3.8a)
dT A 1
sT =T = 11ka Seeean. (3.4) ...(3.8b)
For A =10% %k =0.1
1
T i
Sy = i1

While the feedback reduces the sensitivity to variation in forward gain to a very low*
figure (0.001), it also reduces the overall gain to

1 4
T= 1 ﬂma = 10 ; compare with forward gain of 10*
Now sensitivity to feedback gain is given by

dT k -kA

p G4 & _THRA ,

S; = E'T 1444 eqn. (3.6) ...(3.8¢)
-10°
=-1

1+10°

ST being equal to unity, the feedback constant k = R,/R, must not vary i.e., the resistor
ratio R,/R, must be accurate and stable.

In fact for such large A (= 10%), kA >> 1 and so from eqn. (3.8a)

T= E-R— = 10 ; independent of A

kR,

As an example of control of system sensitivity, let us consider the speed control system
of Fig. 2.39 which may be operated in open-or-closed-loop mode. The signal flow graph of this
system is given in Fig. 2.40(b). The reduced signal flow graph of this system with T}, = 0, is
drawn in Fig. 3.3

K4 Ky S R.f
R [+ Kr K, R, f + KK,

K

Es) Gls) =57 afs) ofs)

O B J - {3 3 O
1 1

H(s) = - K,

Fig. 3.3. Reduced signal flow graph (T, = 0) obtained from Fig. 2.29.

The sensitivity of the open-loop mode of operation to variation-in the constant K is
unity, while the corresponding sensitivity of the closed-loop mode is evaluated below.



From the signal flow graph of Fig. 3.3

K
T(s) = E‘+(1+KK,J (3.9a)
s
T K dilir”

- e Y n (3.9b)

oK T . ( 1+ KK, ]
T
The expression (3.9b) can also be obtained by substituting G(s) = K/(1s + 1) and H(s) = K,
in eqn. (3.4).
For a typical application of this system, we might have 1/t = 0.1 and (1 + KK))7 = 10.
Therefore from eqn, (3.4) we obtain
r 8 +0.1
K™ s+10 |
It follows from above that the sensitivity is a function of s and must be evaluated over
the complete frequency band within which input has significant components. Our interest is
to determine the upper limit for the sensitivity function | Sf | over the frequency band and
the frequency at which the maximum value occurs.

At a particular frequency, e.g., s = jo = j1, the magnitude of the sensitivity is
approximately:
ISk| =0.1

Thus the sensitivity of the closed-loop speed control system at this frequency is reduced
by a factor of ten compared to that of the open-loop case.

Sensitivity studies in the frequency domain will be taken up in Chapter 9.

3.3 CONIROL OVER SYSIEM DYNAMICS BY USE OF FEEDBACHK

Let us consider the elementary single-loop feedback system of Fig. 3.4. The open-loop transfer
function of this system is

Cis) K’
K
= _’E-I-__lh‘ K=HT{]', T= 1o el 3. 10 {b]}

Fig. 3.4. A simple feedback system.
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These are two alternative forms of expressing a transfer function. At s = — a, G{s) tends
to infinity so is known as the pole of the system, while = 1/&ris known as its time constant.
The dec gain of the system is

G0)=K=Kla
With the feedback loop closed the closed-loop transfer function is
C(s) K K’
Ris) wm+(1+K) s+(a+K") +(3.11 ()
K(1+K)
= T+l ,=7(1+K) ...{3.11 (b))

We find from eqns (3.11 (a)) and (3.11 (b)) that the effect of closing the loop (that is
introduction of negative feedback) is to shift the system’s pole from — & to — (a + K or — o1 +
K) ; alternatively to reduce the system time constant from tto 7(1 + K). Of course in the mean
time the de gain has reduced to K/(1 + K).

We shall now examine the effect of these changes in system transfer function on its
dynamic response.

For this purpose we shall assume that the system is excited (disturbed) by an impulse
input r{t) = d¢) (infinitely large input lasting for infinity short time). The Laplace transform of
an impulse excitation is R(s) = 1 (this will be further discussed in Chapter 5). Taking the
inverse Laplace transform of eqn. (3.10 (a)) and (3.11 (a)) with R(s) = 1, we have

f

cl(t) = ;:—13+ = Ke!
= K’ e Y1 (for non-feedback (open-loop) system) ...(3.12)
| -
aud t"m=J':-ls+t:rl'1+.!i:}| =Keal+™
= K’e”'* (for feedback (closed-loop) system) | ...{3.13)

The location of pole and the dynamic response of non-feedback (open-loop) and feedback
(closed-loop) system are shown in Fig. 3.5. These responses decay in accordance with respective

oft) 4 e 4 1

LT

> >
¢

e H >
-l + Ky =- 1/, —a=-=1r o

Fig. 3.5. Impulse response of open and closed-loop system (Fig. 3.4).
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time constants. As the closed-loop time constant 7, = (1 + K), its response decays much faster*
which means that the speed of system’s response with loop closed is faster by a factor of (1 + K)
compared to the open-loop system.

From this example, it is concluded that feedback controls the dynamics of the system
by adjusting the location of its poles. It is, however, important to note here that feedback
introduces the pessibility of instability, that is, a closed-loop system may be unstable even
though the open-loop is stable. The question of stability of control systems is treated in details
in Chapter 6.

Consider once again the speed control system of Fig. 2.40 (). Let the system be subjected
to a suddenly applied constant input called step** input for which E (s) = Afs, where A is a
constant. The output response of the system obtained by reference to the signal flow graph of
Fig. 3.3 or directly from egn. (2.101) is given by

K/t
oAs) = 7 (for open-loop operation, i.e., K, = 0)
3[3 + —]
T
K/t
= (for closed-loop operation)
s(s + o H‘—)
T
Taking the inverse Laplace transform of the above equations, we get
aft) = K(1 — ¢™'") (for open-loop operation) ..(3.14)
K g .
= 1- ¢ ¥ ) (for closed-loop operation) ...{3.15)
T 7 Jonid it

where 7, (closed-loop time constant) = 7(1 + KK).

It is seen from above that if the open-loop time constant 7is large, the transient response
is poor and one choice is to replace the motor by another one with a lower time constant. Such
a motor will obviously be more expensive and further due to physical limitations it is not
possible to design and manufacture motor of a given size with time constant lower than a
certain minimum value. Under such circumstances the closed-loop mode provides a lower
time constant . which can be conveniently adjusted by a suitable choice of KK,. Unlimited
reduction in 7, is of course not practicable.

It is seen from eqn (2.102) and also eqn. (3.15) that the dc gain T(0) of the closed-loop
system is reduced by 0 factor of (1 + KK) on account of the feedback loop. However, this only
needs a scaling of r{t) to obtain the desired ¢(t).

From the above illustration we conclude that feedback is a powerful technigue for control
of system dynamics.

Effect of feedback on bandwidth

A control system is a low-pass filter—it responds to frequencies from de up to a certain value
@, at which the gain drops to 1/v2 of its de value. This frequency , is the bandwidth of the

*In time 51 the response decay to e™® = 0.0067 or 0.67% of the value immediately after application
of impulse,

**Discussed in detail in Chapter 5.
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Nis)

Fig. 3.7. Ciosed-loop systern with measurement noise.

For large values of loop gain (| G,G,H H,(s)|>>1), the above equation reduces to

C.(8) __ 1
Ni(s) H,(s)
Therefore, the effect of noise on output is
N(s)
C =- .(3.24
2(8) H,(s) ( )

Thus, for optimum performance of the system, the measurement sensor should be
designed such that H,(s) is maximum, which is equivalent to maximizing the signal-to-noise
ratio of the sensor.

The design specifications of the feedback sensor are far more stringent than those of
the forward path transfer function. The feedback sensor must have low parameter variations
as these are directly reflected in system response (the sensitivity S, =~1). Further the signal-
to-noise ratio for the sensor must be high as explained above. Usually it is possible to design
and construct the sensor with such stringent specifications and at reasonable cost because the

feedback elements operate at low power level.

To conclude, the use of feedback has the advantages of reducing sensitivity, improving
transient response and minimizing the effects of disturbance signals in control systems. On
the other hand, the use of feedback increases the number of components of the system, thereby
increasing its complexity. Further it reduces the gain of the system and also introduces the
possibility of instability. However, in most cases the advantages outweigh the disadvantages
and therefore the feedback systems are commonly employed in practice.

3.0 __LINEARIZING EFEECT OF FEEDBACK

Yet another property of feedback is its linearizing effect which is illustrated by means of the
simple single-loop static system of Fig. 3.8 (a). In a static system various gains (transmittances)
are independent of time. We shall assume that the forward block function is nonlinear expresses
as

e = fle) = e?; square low function
When the feedback loop is open
e=r = c=r
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Subtracting eqn. (3.28) from egn. (3.27), we have the describing equation in terms of
the incremental values about the operating point as

2K e RAe = C(dAG/dt) + (A8 — AR, ..-.(3.29)

The incremental error is given by
Ade = Ae_— Ae ...(3.30)
Now Ae = K A0 ..(3.31)

K, being the constant of the temperature sensor.
Taking the Laplace transform of egns. (3.29), (3.30) and (3.31) and reorganizing we get

A 20N, A0, 0) .(3.32)
m+1 m+1
AE(s) = AE (s) — AE (s) ..(3.33)
AE (5) = K Af(s) ..(3.34)
where K=2K?RR,;t=RC

From eqns. (3.32), (3.33) and (3.34) we can draw the block diagram of the system as
shown in Fig. 3.12 where the open-loop transfer function is
K
m+1

and A@/s) is the change in the temperature of the inflowing liquid which can be regarded as a
disturbance input entering the system through 1/(w= + 1).

GfH:l =

1 Ad,(s)
1
LTS+

Fig. 3.12. Elocik diagram of the system shown in Fig. 3.9.

Assuming the disturbance signal A8, to be zero, the steady change in the temperature
of the outflowing liquid caused by an unwanted step change AE_in the reference voltage is
given by

AE, ] K AE K
ﬂﬂ[j} = jﬂ( s Jm+1+KK, - 1+ KK, (for closed-loop) ...[3.:?5]
= AE K (for open-loop ; K, = 0) . ...(3.36)

It is easily observed from above that the steady change in the temperature of the
outflowing liquid caused by an unwanted change in reference voltage is reduced by the factor
1/(1 + KK) in the closed-loop compared to the open-loop case.
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(¢) Under vehicle stalled conditions:

Vehicle speed, tachometer output (feedback signal), input to engine-vehicle block are
all=0

AK,  608x50

Hence AK, = KED or D= K, 00 - 30.4%
(d) Steady vehicle speed on level road = 10 km/h
Then A =60.8 x ;—g' =10.133 km/h
((10.133-10) K, - (-D) K ] K = 100
(6.65 + 100 D) x 1.5 = 100 or D = 0.6% (down)

: 60.4

(e) As in part (c) AK; =KD or KJ/K, =A/D = 50 - 1.21
60

(f) Open-loop system RxK xK=60 or R=5ﬂx15=ﬂ.ﬁkmfh
Closed-1 seh  Bwaln i R = 60.8 km/h

-loop system HI+K1K' or = 60.

K,K 08

(g) Open-loop system Vis) = o

Taking inverse Laplace transform

v(f) = 0.8 K, K(1 - et't): t=20s (given)

= 60 (11 — *20)
If 90% speed, t=1t,
09=1- /20 or t, =46 s
Closed-loop system
K,K 608 _ 608K’

s+1+K,K s s(t’s+1)
Taking the inverse Laplace transform

v(t)=08k"(1-e¥7)
K, K 50 x 1.5 75

Vis) =

K'=1TKK “1+50x15 _ 76
T 20
1": 1+K1H — 76 =0.263 s
Substituting value v(t) = 60 (1 — ¢~+0-263)
From which we get time at 90% speed as
t,=06s

Remarks : Observe that the closed-loop system reaches 90% of steady state speed in 0.6s compared to
the corresponding time 46s for the open-loop system i.e., speeding up of dynamic response by a faster of
46/0.6 = 77 times.
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E:l:nmple 3.5 : Consider the speed control system ﬁf Fig. 3. 17 wherem the inner loop corresponds
to motor back emf. The controller is an integrater with gain & observe that the load is inertia
only.

Controllier Motor
Vids) .@_.E‘r” K 0 M4
s §
&
{M
1 = !
Tachometer
Fig. 3.17

(a) Determine the value of K for which steady-state error to unit ramp input (V (s) = 1/5%)
is less than 0.01 rad/sec.

(b) For the value of K found in part (a) determine, the sensitivity SE;, T(s) = as)V (s).
What will be the limiting value of Sﬁ at low frequencies 7
Solution. (a) Reducing the inner loop

10/s 10 .
Crmod®) = 0 1% 100 541 e
From the forward path
als) = 10K E(s) aliE)
s(s+1
E(s) =V (s) — as) (L)
Ee) =V -| % _|E©
s(s+1
s(s+1) .
= Vv
or E(s) Lfﬂ T4 I[IK} -(s) (fv)
Input unit ramp,  V.(s) = 1/s%. Then
s(s+1) 1

E(s) = . (v)

s(s+1)+10K g2
Steady-state error  e(ss) = lim sE(s) = lim g+l

s—0 s—0 s(s+ 1+ 10K
1
or e(ss) = IEI'_K =0.01
which gives K =
10K
_wfs) _ s(s+1
(b) TNs) = Ve ” 0K

s(s+1)
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or

or

or

or

Laplace transforming yields

Q)+ @) = T HG)
R
H(s) = (RCs+ 1D [Q,(s) + Q,(s)]

According to level sensing feedback controller
Q,(s) = — G (s) H(s) ; negative feedback

From Egs. (v) and (vi) the block diagram of Fig. 3.20 can be drawn.

Qfs) £ > [ H(s)
g . RCs+1 | 2
i
G.(s)
Fig. 3.21
(i) G(s) =K
From Fig. 3.20
R
H(s) _ RCs+1
Q.-j{s} 1 KR
5 RCs+1
H(s) _ R

Q(s) RCs+(1+KR)

For unit step @ ,(s) = 1 Then
8

. ; sR
hy, = lim aH) =0t TRCe+(1s KRN
R
he = 1T KR
(ii) G (s) = %
From Fig. 3.20
H(s) _ Rs
Q,(s) RCs+(1+KR)
For unit step disturbance 6,(s) = %
s %X sR

h = lim sH(s)=lim
- SLmUs (s) s=0 g[RCs+(1+ KR)]

h,=0

.(ID)

)

(Vi)

Avii)

. (viid)

)
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3.7. The field of a d.c. servomotor is separately excited by means of a d.c. amplifier of gain K, = 90
(see Fig. P-3.7). The field has an inductance of 2 henrys and a resistance of 50 ohms. Calculate

the effective field time constant.

A voltage proportional to the field current is now fed back negatively to the amplifier input.
Determine the value of the feedback constant K to reduce the field time constant to 4 millisec-

onds.

+Q P10 "f“‘—L
| !
e & é1—|
g - 8 + g KA
o [_ L
L > _
Fig. P-3.7

3.8. For the speed control system shown in Fig. P-3.8 assume that

(i) the reference and feedback tachometer are identical;

(ii) generator field time constant is negligible and its generated voltage is K¥ volts/amp;

(iif) friction of motor and mechanical load is negligible.

(a) Find the time variation of output speed () for a sudden reference input of 10 rad/sec. Find

also the steady-state output speed.

(&) If the feedback loop is opened and gain K, adjusted to give the same steady-state speed as in
the case of the closed-loop, determine how the output speed varies with time and compare the
speed of response in the two cases (closed- and open-loop).

(¢) Compare the sensitivity of @ to changes in amplifier gain K, and generator speed @, with

and without feedback.

[Hint : The generator gain constant K, changes in direct proportion to generator speed i.e.,

Kg = H; a, where KS’ is constant. )

The system constants are given below:

Moment of inertia of motor and load

Motor back emf constant

Total armature resistance of motor and generator
(Generator gain constant

Amplifier gain

Tachometer constant

Reference Generator , , , . Motor
tachometer |- “YVV
r = ke L R,
= K, :
- 5
mr' A—
—-_— ' :
w,

Fig. P-3.8

J = 5 kg-m?
K, = 5 volts per rad/sec
E_=1 ohm
K;. = 50 volts/amp
K, = 5 amps/volt
K, = 0.5 volts per rad/sec
Feedback tachometer
Load
,mu
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3.13.

3.14

3.15

For the system whose signal flow graph is drawn in Fig. P-3.13

Gys)

/’Lﬁ G.(s) C(s)
- o s
As)  G(s) v

= H(s)

Fig. P-3.13
Find the transfer function T(s) = C(sVR(s)
Find the system sensitivity S£ using egn. (3.7a)

Fig. P-3.14 shows the block diagram of a speed control system with an integrator (K/s) in the
forward path for a desired speed of 100 rad/s, show that steady output speed will be 100 rad/s
(indicative of zero steady state error).

Dys)
Load
disturbance
wys) . S 1 (s)
Desired ! Q“ "1 @*® [T conrolied.
speed "| speed
Fig. P-3.14

For a unit load disturbance D(s) = 1/s find the s-domain expression for change in controlled
speed, m P(s). Find the change in speed, caused by the disturbance at ¢ = 0 and ¢ = = (steady state
change).

Find the expression for @ P(t) for K = 0.5, 1, 2 and 4. Sketch the nature of response. Which value
of K should be preferred and why ? You may use Table 1.3 (Appendix 1) for finding Laplace
Inverse.

In a radar system, an electromagnetic pulse is radiated from an antenna into space. An echo
pulse is received back if a conducting surface such as an airplane appears in the path of the
signal. When the radar is in search of target, the antenna is continuously rotated. When target
is located, the antenna is stopped and pointed towards the target by varying its angular direction
until a maximum echo is heard. If energy is radiated in a narrow directional beam, accurate
information about target location can be obtained. Narrow beam can be realised if the antenna
size is large (e.g., 20 m diameter). To drive this size of antenna, hydraulic or electric motors are
used. One of the schemes utilizing electric motor is depicted in Fig. P-3.15. Determine:

(a) Sensitivity to changes in SCR gain, K, for = 0.1.
(b) The steady-state error of motor shaft, i.e., (6, — 6,,) when antenna is subjected to a constant
wind gust torque of 100 newton-m.
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process (plant), turn a robot link w.r.t. to its neighbouring link, move a transformer tap (up or
down), move up/down the control rods of a nuclear reactor etc.

Because of the flexibility inherent in transmitting electrical power (through cables) and
desirable speed-torgque characteristics which are linear, electric actuators (motors) are now
widely adopted in control systems except in low speed but high torque applications where
hydraulic actuators are still in use. Pneumatic actuators are not as messy as hydraulic ones

but suffer from leakages and inherent inaccuracies.

4. Electric system. DC and ac motors are the two kinds of electric actuators; in low power
ratings these are known as servomotors. DC motors are costlier than ac motors because of the
additional cost of commutation gear. These have, however, the important advantages of lineanty
of characteristics and higher stalled torque/inertia ratio; this being an important figure of
merit for a servomotor. Stalled torque is the torque developed by motor when stationary with
full applied voltage (and full field in case of a DC motor). It may be pointed out here that high
torque/inertia ratio means lower motor time constant and so faster dynamic response.

With advanced manufacturing techniques, low brush commutator friction and still higher
torque/inertia ratios have been achieved in dc servomotors, such that these have practically
taken over from ac servomotors in most control applications.

Electric actuators for stepped motion are known as stepper motors which will be dealt
in details in section 4.

DC Servomotors

Modelling of dc motors, armature controlled and field controlled, has been considered at length
in Chapter 2. Here we shall consider some of the constructional features of de servomotors.
With recent development in rare earth permanent magnets (PM) which have high residual
flux density and a very high coercivity, dc servomotors are now constructed with PMs resulting
in much higher torquefinertia ratio and also higher operating efficiency as these motor have
no field losses. The speed of a permanent magnet de (PMDC) motor is nearly directly proportional
to armature voltage at a given load torque. Also the speed-torque characteristic at a given
voltage i3 more flat that in a wound field motor as the effect of armature reaction is less
pronounced in a PM motor.

Three types of constructions employed in PMDC servomotors are illustrated in Fig. 4.3
(a), (b) and (¢). In Fig. 4.3 (a) the armature is slotted with dc winding placed inside these slots
(as in a normal de motor). Though quite reliable and rugged this type of construction has high
inertia to reduce which the construction of Fig. 4.3 (b) is adopted where the windirig is placed
on the armature surface. Because of the larger air gap, stronger PMs are needed in this
construction. A much lower inertia is achieved by placing the winding on a nonmagnetic cylinder
which rotates in annular space between the PM stator and stationary rotor as i'lustrated in
Fig. 4.3 (c). The air gap has to be still larger with consequent need of much stronger PMs. The
constructional details of this low inertia motor are further brought out in Fig. 4.3 (d).
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1. The rotor of the servomotor is built with high resistance so that its X/R ratio is small
and the torque-speed characteristic, as shown by the curve b of Fig. 4.7, is nearly linear in
contrast to the highly nonlinear characteristic when large X/R ratio is used for servo applications,
then because of the positive slope for part of the characteristic, the system using such a motor
becomes unstable.

The rotor construction is usually squirrel cage or drag-cup type. The diameter of the

rotor is kept small in order to reduce inertia and thus to obtain good accelerating characteristics.
Drag-cup construction is used for very low inertia applications.

2. In servo applications, the voltages applied to the two stator windings are seldom
balanced. As shown in Fig. 4.8, one of the phases known as the reference phase is excited by a
constant voltage and the other phase, known as the control phase is energized by a voltage
which is 90° out of phase with respect to the voltage of the reference phase. The control phase
voltage is supplied from a servo amplifier and it has a variable magnitude and polarity (x 90°
phase angle with respect to the reference phase). The direction of rotation of the motor reverses

as the polarity of the control phase signal changes sign.

Referance phase
V,
Servo
amplifier
:|— Y
A : - / ‘xm“ i U
ctuatin = f \ \|> Y |
Elgnﬂ!g E”T'J '—.;4: II T _;/j ) % .- -I_ | J| rﬂ :I
i ,-_-_:-_*; '-K o ‘IIJI _,r' \ _-I .‘__.
_.JJ -_— - a
~ L d
Lr Rotor
Control
phase

Fig. 4.8. Schematic diagram of a two-phase servomotor.

It can be proved using symmetrical components that starting torque of servomotor under
unbalanced operation, is proportional to E, the rms value of the sinusocidal control voltage e(?).
A family of torque-speed curves with variable rms control voltage is shown in Fig. 4.9 (a). All
these curves have negative slope. Note that the curve for zero control voltage goes through the
origin and the motor develops a decelerating torque.

As seen from Fig. 4.9 (a), the torque-speed curves are still somewhat nonlinear. However,
in the low-speed region, the curves are nearly linear and equidistant, i.e., the torque varies
linearly with speed as well as with control voltage. Since a servomotor seldom operates at high
speeds, these curves can be linearized about the operating point.

The torque generated by the motor is a function of both the speed 6 and rms control,

voltage E, i.e., Ty, = fle, E). Expanding this equation into Taylor’s series about the normal

operating point (T, , E , éﬂ} and dropping off the terms of second- and higher-order derivatives,
we get
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?REF [Pﬂt}

Xy

Resolution (Pot) = V/degree, x, = total pot turns (in degrees)

Hence,
Mechanical resolution of the system

_ Vaer (ADC) Viggp (Pot)  Viggp (ADC) x,
; EN Xy - EN vHE.F' (Pot)
For a single turn pot (340°), N = 8 bit, Ve (ADC) = Vi (Pot) =5V

Resolution (ADC) = 2% =20 mV

340°
Mechanical resolution (system) = b 1.36%bit

It may also be noted that V. (Pot) should not be more than Vg, (ADC), otherwise
ADC would get damaged.

Optical Encoders

Optical encoders are frequently used in control systems (robots in particular) to convert linear
or rotary displacement into digital code or pulse signals, Encoders are of two types:

Absolute encoders: Their output is a digitally coded signal with distinct digital code
indicative of each particular least significant increment of resolution.

Incremental encoders: Their output is a pulse for each increment of resolution but
these make no distinction between increments.

Because of their simple construction, low cost, ease of application and versatility
incremental encoders are by far one of the most popular encoders.

Incremental Encoder

An incremental encoder typically has four parts: a light source (LED), a rotary (or translatory)
disc, a stationary mask and a sensor (photodiode) as shown i1n Fig. 4.14. The disc has alternate
opague and transparent sectors (of equal width) which are etched by means of a photographic
process on to a plastic disc (slots are cut out in case a metal disc is used). As the disc rotates
during half of the increment cycle the transparent sectors of rotating and stationary discs
come in alignment permitting the light from LED to reach the sensor thereby generating an
electrical pulse (see Fig. 4.15). For fine resolution encoders (upto thousands of increments/
revolution), multi-slit mask is often used to maximize the reception of shutter light.

The wave form of the sensor output of an encoder is generally triangular or sinuseidal
depending upon the resolution required. Square wave signal compatible with digital logic are
obtained from it by means of linear OPAM and comparator. Alternate transparent/opaque
sectors of the disc (in developed form) and the square wave pulse train (obtained after signal
processing) in synchronous with the disc are shown in Fig 4.15. The resolution of such an
incremental encoder is give as:

Basic resolution = (360°/N)
where N = no. of sectors of disc; each sector is half transparent and half opague.
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Vsys, = Vin —Usn = /3 KV, sin (8 + 120°) sin ¢ ...(4.16)
Ugs, = Vsn —Usin = /3 KV, sin Osin ot ~(4.17)
when 6 = 0, from eqns. (4.12)—(4.14) it is seen that maximum voltage is induced in the stator

coil S,, while it follows from eqn. (4.17) that the terminal voltage v, , is zero. This position of
the rotor is defined as the electrical zero of the transmitter and is used as reference for specifving
the angular position of the rotor (see Fig. 4.20).

Thus it is seen that the input to the synchro transmitter is the angular position of its
rotor shaft and the output is a set of three single-phase voltages given by eqns. (4.15)—(4.17);
the magnitudes of these voltages are functions of the shaft position.

The output of the synchro transmitter is applied to the stator windings of a synchro
control transformer. The control transformer is similar in construction to a synchro transmitter
except for the fact that the rotor of the control transformer is made cylindrical in shape so that
the air gap is practically uniform. The system (transmitter-control transformer pair) acts as
an error detector. Circulating currents of the same phase but of different magnitudes flow
through the two sets of stator coils. The result is the establishment of an identical flux pattern
in the air gap of the control transformer as the voltage drops in resistances and leakage
reactances of the two sets of stator coils are usually small. The control transformer flux axis
thus being in the same position as that of the synchro transmitter rotor, the voltage induced in
the control transformer rotor is proportional to the cosine of the angle between the two rotors
and is given by

elt) = K’Vr cos ¢ sin @t .(4.18)
where ¢ is the angular displacement between the two rotors. When ¢ = 90°, i.e., the two rotors
are at right angles, then the voltage induced in the control transformer rotor is zero. This
position is known as the electrical zero position of the control transformer. In Fig. 4.19, the
transmitter and control transformer rotors are shown in their respective electrical zero positions.

Synchro transmitter Control transformer
= =
i I__"“-\.L_ __.-"_;_'H-\._L_‘
:"'_ﬂ__‘_h-\-\'\-::\ fl’:’ .-"""'-:-::I i \% i
Vo 2N A Ll %
f ==y | (i i | l iy
A.C. supply ! — 'a VI eft)
R I = ol Al J 3
o i s ) S h o e —
& QS Oy
e 5 Ty g i e )
S %1 |s s

Fig. 4.19. Synchro error detector.

Let the rotor of the transmitter rotate through an angle 6 in the direction indicated and let the
control transformer rotor rotate in the same direction through an angle o resulting in a net
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presents infinite reluctance to the phase ‘a’ axis and so the torque has also a zero there. Thus
the rotor torque is a function of the sin 28 as drawn in Fig. 4.24 (b). Seen from stator there are
thus two possible excitation for a given rotor position. For example, for rotor 8 = 0° locking
takes place when either ‘a’ or ‘b’ phase is excited. This fact is in contrast to the PM stepper
motor and has to be kept in mind in using this type of motor.

- 80° 0° + 90° + 180° + 270°
Rotor torque 4 4 4 » 4
in + @direction . Lo b
excited
- Phase a
(a) PM rotor 0 >0
Rotor position
for N, excited
Rotor torque
in + @ direction Winding N,
~ excited
Winding N,
(b) Variable excited
reluctancee 0 > 0
rotor
Rotor position
for N, excited
= 90° o + 90° + 180° + 270°

Fig. 4.24. Torque-angle characteristics of stepper motor
(a) PM motor (b) variable-reluctance motor,

Having illustrated the operation of an elementary stepper motor and its two types, we
shall now consider some further details.

Variable-reluctance Stepper Motor

A variable-reluctance stepper motor consists of a single or several stacks of stators and rotors—
stators have a common frame and rotors have a common shaft as shown in the longitudinal
cross-sectional view of Fig. 4.25 for a 3-stack motor. Both stators and rotors have toothed
structure as shown in the end view of Fig. 4.26. The stator and rotor teeth are of same size and
therefore can be aligned as shown in this figure. The stators are pulse excited, while the rotors
are unexcited.

Consider a particular stator and rotor set shown in the developed diagram of Fig. 4.27.
As the stator is excited, the rotor is pulled into the nearest minimum reluctance position-the
position where stator and rotor teeth are aligned. The stator torque acting on the rotor is a
function of the angular misalignment 8. There are two positions of zero torque: 8= 0, rotor and
stator teeth aligned and 6 = 360°/(2 x T) = 180°T (T = number of rotor teeth), rotor teeth
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another step of 22% . The reversal of phase a winding current will produce a farther forward

-]

movement of 22% , and so on. It is easy to visualize as to how the direction of movement can be

reversed.

To simplify the switching arrangement, which is accomplished electronically double
coils are provided for each phase. The schematic diagram of the switching circuit is shown in
Fig. 4.31.

Compared to variable-reluctance motors, typical permanent-magnet stepper motors
operate at larger steps up to 90°, and at maximum response rates of 300 pps.

o
O~ O -+ Switch a
O
a
Phase a
b
Q> O +» Switch b -]L—c-
— Phase b

Fig. 4.31. Switching arrangement 2-phases permanent-magnet stepper motor.

Hybrid Stepper Motor

This is in fact a PM stepper motor with constructional features of toothed and stacked rotor
adopted from the variable reluctance motor. The stator has only one set of winding-excited
poles which interact with two rotor stacks. The permanent magnet is placed axially along the
rotor in form of an annular cylinder over the motor shaft. The stacks at each end of the rotor
are toothed. So all the teeth on the stack at one of the rotor acquire the same polarity while all
the teeth of the stack at the others end of the rotor require the opposite polarity. The two sets
of teeths are displaced from each other by one half of the tooth pitch (also called pole pitch).
These constructional details are brought out by Figs. 4.32 (a) and (b) for the case of three teeth
on each stack so that tooth pitch y, = 360°/3 = 120°. This motor has a 2-phase, 4-pole stator.

Consider now that the stator phase ‘a’ is excited such that the top stator pole acquires
north polarity while the bottom stator pole acquires south polarity. As a result the nearest
tooth of the front stack (assumed to be of north polarity) is pulled into locking position with the
stator south pole (top) and the diametrically opposite tooth of the rear stack (south polarity) is
simultaneously locked into the stator north pole (bottom). The repulsive forces on the remaining
two front stack teeth balance out as these are symmetrically located w.r.t. the bottom stator
pole and so do the repulsive forces due to the top stator pole on the remaining two rear stack
teeth. This rotor position is thus a stable position with net torque on rotor being zero.
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pump and a fixed stroke h}rdraulm motor. Control of the motor is exercised by varying the
amount of oil delivered by the pump. This is carried out by mechanically changing the pump
stroke. Like in a dc generator and motor, there is no essential difference between hydraulic
pump and motor. In a pump, the input is mechanical power (torque at a certain speed) and
output, hydraulic power (flow at a certain pressure) and in a motor, the input is hydraulic and
output mechanical.

Figure 4.37 shows the constructional features of hydraulic pump and motor. The pistons
in hydraulic pump bear against the stationary wobble plate and are carried round by the cylinder

[ea | _____ CONTROL SYSTEMS ENGINEERING |

Stroke angle 8
\ x| Neutral positi ;
| Moutrst postion ‘H_—* Housing Fixed wobble plate
y XN 77777777 77 77T f{
./ N N \
?J '||I T —— e O _"_-_"'_'\ _______ — — — 1\' //‘A‘l
% | K \&\(]
i Y f.a”!.«" 2 fffz’ﬁ'ff i f}’ f
X Y s
Drive shaft Wobble plate T Rotatable cylinder block Load shaft
&
Low pressure
High pressure
Section AA Section BB

End-valve (stationary)

Fig. 4.37. Constructional details of hydraulic transmission system.

block which is made to rotate by the prime mover. (In some designs, the cylinder block is kept
stationary and the wobble plate rotated). First consider that the wobble plate of the pump is in
the neutral position. Now as the shaft is driven, the cylinder block with pistons rotates, but
there is no displacement of the pistons into the cylinders and hence no pumping action takes
place. Let the wobble plate be now tilted (Fig. 4.37). As the cylinder block is now rotated, the
pistons rotate along with and are guided along the ridge of the wobble plate. Each piston
therefore moves outwards in its cylinder as it comes in the top position and moves inwards in
its cylinder as it comes in the bottom position. The result is a reciprocating pumping action
with the high pressure oil being collected by the end-valve plate (fixed member) from cylinders
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Since g, = g, = g, we have from above equations

Kx
e § x>0
q ,-—2 0

where p =P, - P,
For x < 0, the relationship between p, ¢ and x may be obtained in a similar manner.

The valve characteristics are shown in Fig. 4.39 which relate the volumetric oil flow
rate g to the motor and the differential pressure p across the motor for different values of spool
displacement x. Although the valve characteristics are nonlinear, for small values of x, these
can be linearized. The relationship between g, x and p may be written as

q = fix, p) ...(4.37)

X
X=X
P
- >
= Fy P
X==X,
— Xz

Fig. 4.39. Typical valve characteristics.

Expanding eqn. (4.37) into Taylor’s series about the normal operating point (g, x,, p,)
and neglecting all the terms of second and higher derivatives, we get

9q g B8 B
gmgy, B %) Elxﬂn (P~ p,) ..(4.38)

gq=q, +—
pP=p, P=p,

dx
For this system, the normal operation point corresponds tog, =0, p, =0, x, = 0, therefore,
from eqn. (4.38)

q=Kx-Kyp ..(4.39)
where K1=%L_n;KE=—%Fﬂ
=0 p=o

Equation (4.39) gives a linearized relationship among g, x and p.

The response equation of the valve-motor combination can now be written down from
eqn. (4.29) of the pump-motor system by replacing its left-hand side by ¢ = K.x — K,p, the
inflow rate to the pipe-line-motor combination. Furthermore the compressibility is neglected
right at this stage. Thus
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Fig. 4.43. Signal flow graph of system shown in Fig. 4.42.

Hydraulic linear actuator can also be modified to act as hydraulic amplifier (proportional
controller) by providing a negative feedback through a link mechanism as shown in Fig. 4.42 (a).
For small movements x, ¥y and z can be regarded as linear. From the link geometry in Fig.
4.42 (b),

C'E_BD y+z _z2-x or  x = b 2O _y
A'E A'D a+b a a+b a+b

The transfer function Y(s)VX(s) of the actuator already derived, is give in eqn, (4.44).

Combining eqns. (4.44) and (4.51) we draw the signal flow graph of Fig. 4.42. The overall

transfer function is obtained therefrom as
Y(s) _ bK

...(4.51)

or

Z(s) (a+b)s(ms+1)+ Ka Sl
In the normal frequency range of hydraulic control systems

lla + bls(ms+ 1) << Ka
Therefore, Yis) 2 ...(4.53)

Z(s) a
Thus the hydraulic actuator can be made to function as a linear amplifier over the
frequency range of interest. The amplifier gain can be adjusted by a suitable choice of the link
mechanism lever ratio b/a.

Hydraulic Feedback System

Let us discus a hydraulic power steering mechanisms whose simplified schematic diagram is
shown in Fig. 4.44. The input to the system is the rotation of the steering wheel by the driver
and the output is positioning of the car wheels in accordance with the input signal.

When the steering wheel is in the zero position, i.e., the cross bar is horizontal, the
wheels are directed parallel to the longitudinal axis of the car. For this condition, the spool is
in the neutral position and the oil supply to the power cylinder is cut-off. When the steering
wheel is turned anticlock-wise through an angle 6, the spool is made to move towards right by
an amount x with the help of the gear mechanism. The high pressure oil enters on the left
hand side of the power cylinder causing the power piston and hence the power ram to move
towards right by an amount y. Through a proper drive linkage, a torque is applied to the
wheels causing the desired displacement 6, of the wheels.

A rigid linkage bar connects the power ram and the moveable valve housing. When the
power ram moves towards right, the linkage moves a3 shown in Fig. 4.45. It is seen from this
figure that movement of the power ram towards right causes a movement of the movable valve
housing in such a direction as to seal off the high pressure side. The system then operates with
a fixed 8, for a given input x under steady conditions.
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Solution. The fly-ball governor is coupled to engine shaft via upeed redux:t:mn gearing, thereby
sensing engine speed. As engine speed increases the fly balls move outwards under centrifugal
force. So that the governor sleeve moves upwards (e) corresponding to the speed error with
reference to the speed setting of the governor. This movement via the lever and hydraulic
actuator causes the power piston to move downward which in turn reduces the fuel valve

opening therefore reducing engine speed. The reverse happens when engine speed decreases.
The system thus has inherent negative feedback regulating action.

Using the lever eqn. (4.51) with appropriate symbols, we have

X(s) = ( % ]E[s] —( 4 )Z[s} (D)

If the hydraulic actuator’s time constant is assumed negligible (refer eqn (4.41)), it acts
as an integrator i.e.,

E‘; i“‘ : K, = actuator gain (i)
Assuming the force input at z to be negligible
; o oy Z(s) sB
Kz+B(z-3=0 =
+B(z-y) or Ys) sBiK (i)

Using component transfer functions of eqgns. (£)-(iii), the system block diagram is drawn
in Fig. 4.50. The overall transfer can be written down as

E(s)
.—.-.-..._'q

Fig. 4.50. Block diagram of the system of Fig. 4.48 transfer function can be written down as

Y(s) _[_a K,/s ..(iv)
X(s) \a,+ay 143 BK 4
a,+ay )\ Bs+ K
Let the gain be so adjusted that for the frequency range of interest (in hydraulic systems
bandwidth is very low)
( a BK,
 §
|[n1 +a, )[BE+K) we
The transfer function of egn. (iv) then simplifies to
Yis) aq K
= 1+
XG)  a [ Bs] proportional plus integral terms (v)
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f and mass M. For a small variation AP in the input pressure, the force acting on the diaphragm
is A(AP) where A is the area of the diaphragm. If Ay is the displacement of the actuator stem
because of this force, then the force balance equation is

A(AP) = MAy + fAy + KAy
Therefore the transfer function of the actuator is

AY(s) _ A

AP(s) Ms®+fs+K
y/fﬂﬂﬂffﬂﬂ@

..(4.64)

h\\‘h\h\\\\\\\\h\ﬁ\\\\\m\
ﬁx}}:
V4

W, Wffﬁﬁfﬂﬁﬂfffff

Backing plate
Stem

Fig. 4.55. Pneumatic actuator.

It may be noted that the stiffness and mass of the diaphragm and backing plate, are
considered to be negligible.

Pneumatic Position Control System
The pneumatic position control system shown in Fig. 4.56 is used to position a fluid flow valve.
The principle of operation of this system is that an input signal is applied to the flapper

corresponding to the required opening of the plug valve. The nozzle back pressure operates the
actuator and the actuator stem moves to give the required opening of the plug valve.

Input
%9 —"'x

Fig. 4.56. Pneumatic position control system.
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For the lever (positive x is in positive direction of e)
b a :
x= = y (i)
a+b a+b

For the pneumatic relay
p.=Kx (K> 0) (v)
The block diagram of Fig. 4.62 can now be drawn.

Es) | b L R o
a+b
a A Py(s) 1
a+h | Ke ¥ TS+ 1
75+ 1
Fig. 4.62
It is easily established from the block diagram that
F.(s) “b/(a+b)E(s)

E(SJ_I+K[ = A 7.8 1 -.(vt)
a+b )\ K, ]\ ;5+1)\ 758+ 1

Magnitude of second term in denominator >> 1 (for practical controller)
The transfer function of eqn. (vi) for frequencies of interest then approximates to

T; T.8

PE(E]_E’KEEi3+H{TdH+1}_EIKE T, +1T4 1 -
E(s) aA1;s T aA ( =t Tdﬂ] ..(vii)

As 7, >> 1, we can write

RO g (101 k, - K
E(s}_xﬁ’(h’f,ﬂ”‘“}"{ﬂ'm .(viii)

The controller is thus a proportional-plus-integral-plus-derivative controller (to be
discussed in Section 5.7).

() IfR. =0
F,(s) ; = .
EG) = KP{I + 17,8) ; proportional-plus-derivative controller (i)
() IfR,=0
P.(s) _ & |1 1 ; ‘
EG) P + =l proportional-plus-integral controller wilz)
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its amplitude. Find the transfer function X(s)/Y(s) assuming rate of oil-flow to piston to be pro-

portional to valve opening and neglecting oil compressibility, leakage effects and mass of the

piston. ;
4.6. A hydraulic servo system used to control the transverse feed of a machine tool is shown in Fig.

P-4.6. Each angular piston of the cam corresponds to a desired reference position x,_ such that

¥, = K x,. The load on the piston is that due to tool reactive force and may be assumed to consist

of mass M, friction f and spring with constant K.

Draw the block diagram and obtain the transfer function Y (s)X (s), assuming that:

Rate of oil flow to the piston = K| x valve opening

Leakage flow across the piston = K, x pressure across the piston

The compressibility effect is negligible.

s

b ; \\ K
i

—

a

Cam
‘L‘ : <+— Supply
=R L,,m

Fig. P-4.6. [From F. Raven, Aufomatic Control Engineering, 2nd ed,
1968, McGraw-Hill, New York. Reproduced with permission.]

4.7 The electrohydraulic position control system shown in Fig. P-4.6 positions a mass M with negli-
gible friction. Assume that the rate of oil flow to the piston is g = K x - K p, where x is the control
valve opening and p is the differential pressure. The mass of piston, oil compressibility and
leakage are assumed negligible. Draw the signal flow graph of the system and obtain therefrom
the transfer function Y(s)/X(s). How the transfer function will modify if the mass M is also neg-
ligible such that the differential pressure p needed to move the piston is nearly zero ?

N I
= = |F
| B~ |

—
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The nature of the transient response is revealed by any one of these test signals as this
nature is dependent upon system poles and not upon the type of input.

It is therefore sufficient to analyze the transient response to one of the standard test
signals—a step is generally used for this purpose as this signal can be easily generated. Steady
state response is then examined to this particular test signal (the step) as well other test
signals; the ramp and the parabolic signal. So except for the step test signal the time consuming
transient analysis need not be carried out for the ramp and parabolic signals, while their
steady state can be quickly determined by the final value theorem as illustrated in Section 5.5
and will also elaborated in other sections of this chapter.

As explained above control systems are inherently time-domain systems subject to time-
varying inputs and are to be tested, analyzed and designed by the time-domain test signals
like step, ramp and parabolic. The time-domain command signals in a control can also be
visualized as (through Fourier Transform) a band of sinusoidal signals of frequencies from dc
upwards (control systems are low-pass filters). So another important test signal for control
systems is the sinusoidal signal which can be easily generated and its frequency varied. Steady-
state sinusoidal response of a control system over a range of frequencies yields a great deal of
information about the system; both about its time-domain response and its stability, as there
is normally a good correlation between the frequency-domain response and time-domain
response of a system. Chapters 8 and 9 will be wholly devoted to steady-state sinusoidal response
of control systems.

The time response performance of a control system is measured by computing several
time response performance indices as well as steady-state accuracy for the standard input
signals described above. These indices give a quantitative method to compare the performance
of alternative system configurations or to adjust the parameters of a given system. As a given
parameter is varied, various performance indices may change in a conflicting manner. The
best parameter choice would thus be the best compromise solution. Certain of the performance
indices may be specified as upper or lower bounds in a design.

Step Signal
The step is a signal whose value changes from one level (usually zero) to another level A in
zero time. The mathematical representation of the step function is

r(t) = Au (t)
where ut)=1:t>0 LA5.1)
=0 i = 0

In the Laplace transform form, R(s) = A/s
The graphical representation of a step signal is shown in Fig. 5.1(a).
Ramp Signal

The ramp is a signal which starts at a value of zero and increases linearly with time.
Mathematically,

rit;=At;t>0
=0;t<0 ..05.2)
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Redumng the system time constant therefure not ﬂnly improves its speed uf response hut also
reduces its steady-state error to a ramp input.

c(t)4
)

L
t

Flg. 5.5. Unit-ramp response of a first-order system.

If we examine the derivative of c(t), i.e.,
é(t)=1-e*T
we find that it is identical to the system response to the unit-step input. The transient response
to the ramp input signal thus yields no additional information about the speed of response of

the system. We therefore need examine only the steady-state error to the ramp input which
can be obtained direﬂiy by the final value theorem as given below:

= limel(t)= hmaE[s]-hms[Rfs} Cis)]

t—3es

This avoids the need to obtain the inverse Laplace transform resulting in a considerable
labour saving in higher-order systems.

5.4 __TIME RESPONSE OF SECOND-ORDER SYSTEMS

Consider the servomechanism shown in Fig. 5.6, which controls the position of a
mechanical load in accordance with the position of the reference shaft. The two potentiometers
convert the input and output positions into proportional electrical signals, which are in turn
compared and an error signal equal to the difference of the two appears at the ieads coming
from potentiometer wiper arms.

The error signal (voltage) is
v, = KF(r - )
where r = reference shaft position in rad; ¢ = output shaft position in rad; and K, = potentiometer
sensitivity in volts/rad.
The error signal is amplified by a factor K, by the amplifier and is applied to the armature
circuit of the d.c. motor whose field winding is excited with a constant voltage or it could also
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As r;' is increased, the response becomes progressively less uam]latury till it becomes
critically damped (just non-oscillatory) for { = 1 and becomes overdamped for { > 1. Robotic
control systems cannot be allowed to have oscillatory response otherwise the end effector would
strike against the object that the robot is meant to manipulate. Highest possible speed of
response and yet non-oscillatoring response dictates that a robotic control system shall be
designed to have a damping factor of { = 1 (or close to it but less then unity). For { = 1, it easily
follows by inverse Laplace transferring eqn (5.12) that

ct)=1-e" —ate ™ ..(5.13)
where from the characteristic equation (5.10), the roots are
8, =8, =~ .
i.e., repeated real negative roots, also see Fig. 5.10.

clt)4
2.0 /-\
| |
[ | }¢30 /
0.2 \
1.5
0.4
1
0.6 =
1.0
1.0
15
0.5
|
>
o 2 4 6 8 10 12 !

Fig. 5.9. Unit-step response curves of second-order system.

Fig. 5.10 shows the locus of the poles of the second-order system discussed above with
@®_ held constant and { varying from 0 to . As { increases the poles move away from the
imaginary axis along a circular path of radius @, meeting at the point 0 = - @_ and then
separating and travelling along the real axis, one towards zero and the other tnwardﬂ infinity.
For 0 < { < 1, the poles are complex conjugate pair making an angle of # = cos™! { with the
negative real axis.
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The first undershoot will occur at t = 2n/w,+/(1- £*), the second over shoot at

t =3nw, J(1-{?) and so on. A plot of normalized peak time ,t, versus (is given in Fig. 5.13.
3. Peak overshoot M : From eqn. (5.11) and Fig. 5.11,
M, =clt)-1

—fw, i, ’ 2
= —— sinlo, f(l_gﬂ]tp T va-¢m
Ja-¢% ¢
_ g ®Ha-¢h
Therefore the peak percent overshoot
=100 ¢ %14 g ..(5.20)

As seen from Fig. 5.13, the peak overshoot is a monotonically decreasing function of
damping { and is independent of @_. It is, therefore an excellent measure of system damping.

4. Settling time t_: From Fig. 5.8, it is observed that the time response c(t) given by eqn.
(5.12) for £ < 1, oscillates between a pair of envelopes before reaching steady-state. The transient

is comprised of a product of an exponentially decaying term [exp (- §mﬂt}].f'-,dl'{1— {?) and a

sinusoidally oscillating term sin [mn.J‘{ 1-2%)t + ¢]. The time constant of the exponential

envelopes is T = 1/{w,. It may be noted that this time constant is equal to 27 where 7 is the
motor time constant in Fig. 5.7(b).

First discontinuity ~ Second discontinuity

1.2 l

e —
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Fig. 5.14. Settling time for various values of {.
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F'ranlg 5.17, we see that

Cls)  Gls)
R(s) 1+G(s)
C(s) = E[s}G(s}
Therefi E(s) = el D.23
erefore (8) = it G{s} R(s) ( )
The steady-state error e, may now be found by use of the final value theorem as follows.

¢, = lim e(t) = lim sE(s) = lim sR(s)
e s20 1+ G(s)

Equation (5.24) shows that the steady-state error depends upon the input R(s) and the
forward transfer function G(s). The expression for steady-state errors for various types of
standard test signals are derived below:

1. Unit-step Input

...(5.24)

Input r(t) = ul(t)
R(s) =
From eqn. (5.24)
: 1 1 i §
G 1 1+G(s) 1+G(0) 14K, $3-25)
where K, = G(0) is defined as the position error donstant. :

2. Unit-ramp (Velocity) Input
Input Af)=torr(t)=1

R(s) = 1/s?
From egn. (5.24)
1 : 1 =1
= lim = lim = (5.
. i 50 s+ 8G(s) s-038G(s) K, o)
where K = ]J'II% 8G(s) is defined as the velocity error constant.
3. Unit-parabolic (Acceleration) Input
Input ~t)=t32o0r F(t) =
R(s) = 1/s®
From eqn. (5.24)
y 1§ ; 1 1
e = ]]II.'I. ].'I.'I.'ﬂ ..-[5.2:"}

== 50 52 + 52G(s) =0 s2G(s) K,
where K = lim s°G(s) is defined as ‘the acceleration error constant.

e

Types of Feedback Control System

The open-loop transfer function of a unity feedback system can be written in two standard
forms—the time-constant form and the pole-zero form. In these two forms, G(s) is as given
below.
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Fig. 5.19(a). Effect of closed-loop zero on unit-step
response of a second-order system.
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Fig. 5.19(b). Peak overshoot to unit step input of a second-order
system with closed-loop zero.

‘57 DESIGN SPECIFICATIONS OF SECOND-ORDER SYSTEMS

A control system is generally required to meet three time response specifications: steady-state
accuracy (specified in terms of permissible error e_), damping factor { (or peak overshoot to
step input, M) and settling time ¢_. If the rise time ¢, is also specified, it should be consistent
with the specification of ¢, as both these depend upon { and ®,. Steady-state accuracy
requirement is met by a suitable choice of K, K or K, depending upon the type of the system.
As explained earlier, the damping factor { sufficiently less than one is preferred in most control
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JR,
= R+ K KK, ..(5.42)
The natural frequency and damping of the closed-loop can then be expressed as
@ = J{K; /t) = (KpKsKyn ! JR,) ..(5.43)
&= 120 (K,t') =(Rf+K,K.K)2.[(KpK,Kpn JR,) .(5.44)

For a specified K/, and {’, we can write from egns. (5.41) and (5.44)

1
(K, =5 J(KpK KrnlJR,)
from which K, is determined as
K, = 4{-;’?{”’}2{JRHIKPKTR)
Using this value of K v K, the tachometer constant is obtained from egn. (5.41) as
B (prn _ R, f ]
; K, Ky Kp
Thus, we notice that by a suitable choice of K,, K, we can simultaneously meet the
specification of K and {". On account of the negative derivative feedback, K, required may

sometimes be excessively large. Under such circumstances additional gain outside the derivative
loop is very helpful.

Further, it is to be noticed that for the same value of velocity error constant, the system
with compensation requires a higher value of K, and hence it will have a higher natural

frequency (eqn. 5.43). Compensation thus increases both the system damping and natural
frequency resulting in reduced settling time. '

Integral Error Compensation

In an integral error compensation scheme, the output response depends in some manner upon
the integral of the actuating signal. This type of compensation is introduced by using a controller
which produces an output signal consisting of two terms, one proportional to the actuating
signal and the other proportional to its integral. Such a controller is called proportional plus
integral controller or PI controller.

The block diagram of the system of Fig. 5.6 with proportional plus integral compensation
is shown in Fig. 5.23(a), while its simplified block diagram is given in Fig. 5.23(b) where

K= KKK R, f

K/=K/JK
R(E) ! < V.(s) AT _;T',;;g;;" C(s)
AR Kp — K ——h--,__-%y_:—r 1) e
"'-.\;,..-' . "q,_\_i_,_
Lo R
LR
. .




You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



2.9 _PFERFURNANCE INUILE

As discussed already, the design of a control system is an attempt to meet a set of specifications
which define the overall performance of the system in terms of certain measurable quantities.
A number of performance measures have been introduced so far in respect of dynamic response
to step input ({, M,t,t,t etc) and the steady-state error, e_, to both step and higher-order
inputs. These measures have to be satisfied simultaneously in design and hence the design
necessarily becomes a trial and error procedure. If, however, a single performance index could
be established on the basis of which one may describe the goodness of the system response,
then the design procedure will become logical and straightforward.

Furthermore, in many of the modern control schemes, the system parameters are
automatically adjusted to keep the system at an optimum level of performance under varying
inputs and varying conditions of operation. Such class of systems is called adaptive control
systems. These systems require a performance index which is a function of the variable system
parameters. Extremum (minimum or maximum) value of this index then corresponds to the
optimum set of parameter values. Other desirable features of a performance index are its
selectivity, i.e., its power to clearly distinguish between an optimum and non-optimum system,
its sensitivity to parameter variations and the ease of its analytical computation or its online
analogic or digital determination.

A number of such performance indices are used in practice, the most common being the
integral square error (ISE), given by

ISE = J:eﬂuur (551)

Apart from the ease of implementation, this index has the advantage that it is
mathematically convenient both for analysis and computation. Fig. 5.27(a) and (b) show the
system response c(f) and error e(f) respectively to unit-step input. The square error is shown in
Fig. 5.27(c) and its integral in Fig. 5.27(d). It is obvious that ISE coverges to a limit as ¢t — e,
Minimization of ISE by adjusting system parameters is a good compromise between reduction
of rise time to limit the effect of large initial error, reduction of peak overshoot and reduction
of settling time to limit the effect of small error lasting for a long time.

Consider now the second-order system discussed previously in this chapter from eqn.
(5.12), the error response to unit-step is given by

- ¢ || __ i
e{t}:—ﬁJ;—E-—E’iﬂ m"\-'[l—gi}t+tan“l%
(1-£7)

ISE = _Ee“(ﬂdt = mi _L'e*f:n \dt,,

n

Therefore

where ¢ = @, {, i.e., the normalized time.
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_TIME RESPONSE ANALYS

Table 5.2. Optimum Forms of the Closed-Loop Transfer Functions Based on the
ITAE Criterion (Zero Steady-State Step Error Systems)

Cls) _ a,,
Ris) a" +a;s" '4..+ta,_sta,

5+,

s+ l4ws + o}

s* + 1.76m,8° + 2.160,%s + w0

s+21ws® +34 n:ul,,.“ﬂri +2.70 % + a’

7+ 28 s+ 500% +55 0% +340% + &

% + 3.250 5% + 6.600 %' + B.60m %s® + T.45m *s? + 3.950, % + of

In the case of zero steady-state ramp error systems, the general closed-loop transfer
function is o
C(s) & a,_18+a,
R(s)  s"+a;s" '+..+a,_;5+a,

T(s) = ..(5.54)

Table 5.3 gives the optimum forms of the closed loop transfer functions based on the
ITAE criterion (refer Problem 5.18)

Table 5.3. Optimum Forms of the Closed-Loop Transfer Functions Based on
the ITAE Criterion (Zero Steady-State Ramp Error Systems)

Cls) Gy 18 + Gy
Rs) s"+apti.ta, s+a,

£+ 3208 + @

83 + 1.75m 5% + 3.2560 % + @)

s* + 241a,5% + 4.930.%* + 5.140.% + o]

57 + 2.19a s* + 6.500, %% + 6.30w. %" + 524 0% + 0]

5% + 6.120,5° + 13.420 %* + 17.160 %" + 14.140 %" + 6.7T60, s + @

2 A0 ILLUSTHATIVE EXAMPLES

The design concepts introduced in this chapter are further illustrated with the help of following
examples. :
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Since this introduces one more integration in the forward path, the system becomes
type-2 and hence the steady-state error to ramp input is reduced to zero.

Example 5.3 : In a d.c. position control servomechanism the load is driven by a motor supplied

with constant armature current. The motor field current is supplied from a d.c. amplifier, the

input to which is the difference between the voltages obtained from input and output
potentiometers.

The load and motor together have a moment of inertia of J/ = 0.4 kg-m? and the viscous
friction is f = 2 newton-m/rad/sec. Each potentiometer constant is K, = 0.6 V/rad. The motor
develops a torque of K, = 2 newton-m per amp of field current. The field time constant is
negligible.

(a) Make a sketch of the system showing how the hardware is connected.

(b) Derive the equation of motion of the system and find the value of the amplifier gain
K, (in amperes output per volt input) to give a natural frequency of 10 rad/sec.

(c) A tachogenerator of negligible inertia and friction is connected in the system to
improve the damping. Determine the tachogenerator constant (in V/rad/sec) to give critical
damping for K, = 5.

Solution.

() Fig'ure 5.30 gives the sketch of the position control servomechanism. The switch S’
can be closed to provide the tachogenerator feedback.

Fig. 5.30

(b) Figure 5.31 gives the signal flow graph of the system with switch ‘S’ open, i.e.,
tachogenerator not in the loop.
Bcls) _ By(s) _ KpK Ky
Brs)  Ou(s)  s(Is+f)+KpK Ky
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For unit-step input
1
E(s) = TR
Therefore
elt) = et ..(5.63)
2
ISE =J, = || ¢*(t)dt = 12K) .(5.64)

Obviously, the minimum value of J, is obtained as K — . This is an impractical solution
resulting in excessive strain on physical components of the system. Increasing the gain means
in effect increasing the pump size.

Sound engineering judgement tells us that we must include in our performance index
the ‘cost’ of the control effort. We can do this in many ways. One of the ways is to modify the
peformance index J, so as to include the cost of control effort as a performance measure. For
the system under consideration, this cost is proportional to power rating of pump which depends
upon kinetic energy required to accelerate the fluid.

Mass of fluid/sec = @p; p = fluid density
- Velocity of fluid = % = Q); A = area of cross-section of tank
=1 m?2
Kinetic energy/sec required to accelerate the fluid
QE

= T = pump power

Q%
Therefore, total control effort required = L Tdr
We may limit this control effort, i.e.,

[ 9}& <

where M is a constant.
The above inequality may be expressed in the form

J = Jmu*"dt <N ..(5.65)
" 0

where u = @ (Fig. 5.34) and N is the constant determined by M and p. J_ is the index based on
the cost of control effort.

As per eqn. (5.63)
u=Q=Kelt
- 2
J = [~ w3,k 5, _ K~
. L KoMt = =
Now J, given by (5.64) is minimized when K has the largest permissible value, i.e.,

2
H? =N or K= 3N ...15.66)

<N
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It can be easily seen from eqn. (5.72) that the actuator inertia which is a constant tends
to reduce any variation in D, the structural component of inertia.

A dc servomotor is characterized by an actuator gain and effective viscous friction (which
also accounts for motor back emf) expressed in terms of link variables. These are:

Actuator gain K = motor torque in Nm per
unit desired speed in rad/s (which is scaled value Ecm, [T
of motor armature current i.e., the unit are Nm/ &
rad/s)

F = Effective viscous friction in Nm/rad/s
Coulomb friction is ignored in our modelling of
the link-actuator mechanism whose block diagram

is drawn as in Fig. 5.36 where 6, = desired speed and 6; = link speed in rad/s.
The transfer function corresponding to the block diagram of Fig. 5.36 is

8, (s)

Fig. 5.36

8, (s) ___IE_,! : E — :
6,(5) s +F ~(5.73)  64s) {g}_h ;f—,E 1 . O
The damping factor of the closed-loop + ~ !
actuators can be increased by providing rate feedback | |
from a tachogenerator (refer Section 5.6.) resulting L — K, fe—
in the block diagram of Fig. 5.37. The transfer
function of egn (5.73) now modifies to Fig. 5.37
S K .(5.74)

8,(s) sd +(F+K,K,)
For controlling the position (link angle) feedback is provided from the output angle 6, as

in the block diagram of Fig. 5.38 where in an adjustable gain K, is included in the forward
path. The units of K, are s~'. The closed-loop transfer function of this position control system is

ELl:S] K.:Km

ﬂd{s} s’J+s(F+K K, )+K,K, ...{5.75)
K. K, /dJ
[ : ..(5.76)

i +3{F+KI{ ydJ+ KK, [J

éL (s)

64s) 6,(s) | ’ K { Fo] e
| @ '!s.anfH.,KﬂJ 1 - I

Fig. 5.38
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Find the steady-state error for ramp input.

Suggest ways of eliminating this error and draw the
block diagram of the modified system.

Solution.
100/ s* 100
Ge) = 17 100K /s ~ 55 + 100K)
Characteristic equation is b s
100 3
or 1+ 5(s + 100K) -.{]' or s+ 100Ks + 100 =0
which gives

w, = 10, 2§mn = 100K
For lowest possible settling time with nonoscillatary response
{=1=K=20/100=0.2
For ramp input

R[ﬂ} = Wsz
1 V/s*

E@®) =176 B® = 1310075 + 10050
V(s + 100K)

= s(s + 100Ks + 100)
elss)= g El(s) =KV =02V

g0
For reducing this steady-state error
to zero, system is provided with feedforward e, _%
as in Fig. 5.42. 1
Check
With R(s) = V/s® consider the steady-state =

contributed by additional input sR(s) = V/s.

100s
But C(s) = - E(s)

Lo G(s) = —[1 + G(s)]E(s)

100s
(KV / 1008)G(s) Fig. 5.42
i E@) =766

Substituting value of G(s)

[ﬂ— + E(E:li| G(s) = C(s)

KV
s(s* + 100Ks + 100)
e(ss) = — KV =— 0.2V, due to additional input

E(s) = -
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247 |

Let us take the inverse transform of the resolvant matrix

. 3+20 1
adj (s1-A) =] 109 s]

§ -1
d.Et {EI - -&} = ].En 8 + 2u:| = 1}{3}

Dis)=s(s +20)+100=0
82 4+208+100=0 :

or
Its eigenvalues are given as

8,, 8, = =10 ; the two eigen values are repeated. This is a critically damped case.

@®(s) = (sI — A)! = resolvant matrix

_adj (sI-A) _[3+2|I} l]L
T det(sI-A) L-100 s]D(s)

Taking the inverse Laplace transform term by term
ia s+ 20 e g+ 20 _ S———
L [ ]-L‘I:(E+1n]3 =10te ™ +e %t >0

1, 1
D(s) ~ = (s+10)*

-100
Flm =-100t e 1% ;¢ > 0
B
D(s) ~ (s+10)?

Thus the state transition matrix is given as

=e1¥:t50

=10t e 1% 4 1% ;> 0

1

lﬂte-lﬂl + ~10¢ t ~10¢
ot) = [-—lﬂﬂte'm'e _iﬂm-lnt + 10 >0
For X(s)=[(sI-Ar'B (1/s)]; Uls) = 1/s

_ 1 [s+2ﬂ 1}[{1]_ ﬂﬁ[us} 1
= D) [-100 s]|100)= 1% 1 |G

Taking the inverse Laplace transform term by term

1 1
1 = 11 =te %450
D(s) (s +10)?
e - i -
sD(s) ~ = s(s+10)?
1
oy ——— _ =10t _ ~10¢
100 (1= 10¢e e~

=, -10¢t _ . -10¢
Thus x(t) = 100 [1 1{:; .*,E‘_lme ] T E> 0

The output is given as
yt)=x,(t)=1-10e1% — 10t ; ¢ 5 0

L)

welU)

(VL)

...(vit)

Aviii)
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The area on s plane where the complex dominant roots should be in Fig. 5.45

Area for
= oot to lie

ayY

: 4
(b) From Eq, (z) gﬂln = ﬁ

We choose the third root to be at least 6-time further on negative real axis than the real

part of the complex conjugate roots. Thus

or

6x4
=—6 = —
8 x (5@.) 075
§=-32
4
t =075, M_=30% = 0.35, = —— = 5.33, = 1B
(e) ¢, p = § cw, 075 @,

Complex conjugate roots term is
(s? + 2 {o, 5 + ®,) = (s* + 10.66s + 225)

Third root §s=-32
The closed-loop transfer function can then be written as
C(s) 32 x 225
I(s) =

" R(s) (s+32)(s? +50.665 + 225)
The numerator (32 x 225) assures that T(s = 0) = 1, which mean C(0) = R(0) or steady

state error is zero, system type-1.

G(s) _ 32 x 225

N " -
i &)= 147G~ (64 32) (s + 10663 + 225)

From which we can write

T(s)
Gie 1-T(s)
32x225
1vi i = ;
Solving yleld e 8(s® + 435 + 566)
Example 5.11. The open-loop transfer function of a unity feedback system is
K
({s) =

s(s+2)
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Wy - RS PR Y sin [@, (1-&%) t +¢];

s? +28w s+ W,
From eqn. (iv), we find ;

J1-£2) ’

2

¢ = tan™ ——(1; },ﬁ-ez 1

@, J(1- £*) = 10.85 ; 1 1262
Ja-&)
4= tant 9792 _ 5oge
0.61
By use of Laplace transform pair of eqn. (iv), we have

6,(t) =1 - 1.262¢837  gin (10.85¢ + 52.4°) ...(iv)

This is the well-known response to unit step input of a second-order undamped system.

The reader may plot of this response and check its nature. The result of Eq. (iv) may be checked
that 6t =0)=0, 6,(f = «<) = 1.

PROBLEMS

5.1 A servomechanism is used to control the angular position 6, of a mass through a command signal
6.. The moment of inertia of moving parts referred to the load shaft is 200 kg-m? and the motor

torque at the load is 6.88 x 10* newton-m per rad of error. The damping torque coefficient re-
ferred to the load shaft is 5 x 10° newton-m per rad/sec.

(@) Find the time response of the servomechanism to a step input of 1 rad and determine the
frequency of transient oscillation, the time to rise to the peak overshoot and the value of the
peak overshoot.

(b) Determine the steady-state error when the command signal is a constant angular velocity of
1 revolution/min.

(e) Determine the steady-state error which exists when a steady torque of 1,200 newton-m is
applied at load shaft.

5.2 In the position control system shown in Fig. P-5.2, the transfer function of the motor is found to
be

By(sWV i) = K, Js(1 s + 1)
where K = 15 rad/s/V ; 1 = 0.15 s. The gear ratios are given as

ﬂcféL-].: 'ﬁ'LfEH = 1/560
The input is given through a pot of sensitivity K,=01 V/deg. The input and output are given to
a d.c. difference amplifier of gain K, V/V. The output of this amplifier is then modulated by a
carrier of 50 Hz. The gain of this modulator is K, = s/5 V__/V, _. This signal is then amplified by

an a.c. amplifier of gain K, = 25 V/V and given to the control phase winding of the a.c. servomo-
tor.

(@) If the input shaft is driven at a constant speed of x rad/sec, determine the value of the ampli-
fier gain K,, such that the steady-state error in the position is less than 5 degree. For this
value of K,, determine the damping ratio and the 2% settling time of the system.

(b) To improve the system dynamics, the amplifier is modified by introducing an additional de-
rivative term such that its output is given by

e, = Ke(t) + Ky (t)
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5.11

5.12

5.13

5.14

(¢) Illustrate how the steady-state error of the system with derivative feedback to unit-ramp
input can be reduced to same value as in part (a), while the damping factor is maintained at
0.6.

A unity feedback system is characterized by the open-loop transfer functien
Gis) = 1/s(0.68 + 1X0.2s + 1)

Determine the steady-state errors for unit-step, unit-ramp and unit-acceleration inputs. Also
determine the damping ratio and natural frequency of the dominant roots.
The open-loop transfer function of a servo system with unity feedback is

Gs) = 10/s(0.1s + 1)

Evaluate the static error constants {KF. K, K ) for the system. Obtain the steady-state error of
the system when subjected to an input given by the polynomial

r{ﬂ:aﬂ+nlr+221t2

For Problem 5.12, evaluate the dynamic error using the dynamic error coefficients.
Hint : For a unity feedback system
Efﬂ} 1 1 1 1 o

B¥+—8 + ...

R(s) ~ 1+06(s) _ K, * Ks Ky
Coefficients K., K,, K, ... are defined to be dynamic-error coefficients.

1 1 1
£ Sl sy
X, Ris) + K sRis) + K, s“Rig) + ...

E(s) =

1 1 1 .
elt) = E rit) + K, Fit) + K Fit) + ...

A machine tool is required to cut a 30° circular arc of 1 ¢cm radius. The tool moves at a constant
feed velocity of 0.1 cm/sec parallel to the x-axis, as shown in Fig. P-5.14. A unity feedback
servomechanism with open-loop transfer function Gis) = 10/s(s + 1) drives the tool in y-direction.
Estimate the error when x = 0.3

Ya

©.1) |,

'

Fig. P-5.14

Hint : The equation of the circular arc is
Prly-1PF=1

y=1-1,‘{1_rﬂj,fnrﬂ-r:x{{‘.'.5

which gives
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CONCEPTS OF STABILITY AND ALGEBRAIC CRITERIA 271

that there is no clearcut correspondence between the two notions of stability defined above.
For a free stable nonlinear system, there is no guarantee that output will be bounded whenever
input is bounded. Also if the output is bounded for a particular bounded input, it may not be
bounded for other bounded inputs. Many of the inportant results obtained thus far concern the
stability of the nonlinear systems in the sense of the second notion above, i.e., when the system
has no input. Here in this chapter, we are concerned with the stability determination of linear
time-invariant systems,
Let us observe the physical implication of the two notions of stability defined earlier, by
considering a single-input, single-gutput system with transfer function
Cis) bos™ +b,8™ "+ ...+ b,

——=0Gl(s) =
R{E} Euﬂn +ﬂ13n71 + ..+ 4,

'm<n ...(6.1)

With initial conditions assumed zero, the output of the system is given by
c(t) = L G(s)R(s)]
Therefore (see Appendix 1)
e(t) = .{: glort - dt
where g(t) = £'G(s)) is the impulse response of the system (egn. (5.4)).
Taking the absolute value on both sides we get
= | - |
e | = | [ g(oire -id 7

Since the absolute value of integral is not greater than the integral of the absolute value
of the integrand,

| eft) | Sj: | gloir(t — 1) |dT

< J: gD ||rit - 1) dT ..(6.2)

The first notion of stability is satisfied if for every bounded input (1 r{t) | M, < <), the
output is bounded (| ¢(f) | £ M, < ). From (6.2), we have for bounded input, the bounded
output condition as

| o(t) | <M, [ g(r) |t < M,
Thus the first notion of stability is satisfied if the impulse response g(t) is absolutely

integrable, i.e., I:I £(1)| dt is finite (area under the absolute-value curve of the impulse response

g(t) evaluated from ¢ = 0 to ¢ = e must be finite).

The nature of g{t) is dependent on the poles of the transfer function G(s) which are the
roots of the characteristic equation. These roots may be both real and complex conjugate and
may have multiplicity of various orders. The nature of response terms contributed by all possible
types of roots are given in Table 6.1 and have been illustrated in Fig. 6.1.
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(i) If all the roots of the characteristic equation have negative real parts, the system is
stable.

(i) If any root of the characteristic equation has a positive real part or if there is a re-
peated root on the jw-axis, the system is unstable.

(iii) If the condition (i) is satisfied except for the presence of one or more nonrepeated
roots on the jw-axis, the system is limitedly stable.

In further subdivision of the concept of stability, a linear system is characterized as:

(i) Absolutely stable with respect to a parameter of the system if it is stable for all values
of this parameter.

(ii) Conditionally stable with respect to a parameter, if the system is stable for only certain
bounded ranges of values of this parameter.

It follows from the above discussion that stability can be established by determining the
roots of the characteristic equation. Unfortunately, no general formula in algebraic from is
available to determine the roots of the characteristic equations of higher than second-order.
Though various numerical methods exist for root determination of a characteristic equation,
these are quite cumbersome even for third-and fourth-order systems.

However, simple graphical and algebraic criteria have been developed which permit the
study of stability of a system without the need of actually determining the roots of its
characteristic equation. These criteria answer the question, whether a system be stable or not,
in ‘yes’ or ‘no’ form.

Relative Stability

In practical systems, it is not sufficient to know that the system is stable but a stable system
must meet the specifications on relafive stability which is a quantitative measure of how fast
the transients die out in the system.

Relative stability may be measured by relative settling times of each root or pair of
roots. It has been shown in the preceding chapter that the settling time of a pair of complex
conjugate poles is inversely proportional to the real part (negative) of the roots. This result is
equally valid for real roots. As a root (or a pair of roots) moves farther away from the imaginary
axis as shown in Fig. 6.3, the relative stability of the system improves.

6.2 _NECESSARY CONDITIONS FOR STABILIT

Certain conclusions regarding the stability of a system can be drawn by merely inspecting the
coefficients of its characteristic equation in polynomial form. In the following sections, we
shall show that a necessary (but not sufficient) condition for stability of a linear system is that
all the coefficients of its characteristic equation g(s) = 0, be real and have the same sign.
Furthermore, none of the coefficients should be zero.

Consider the characteristic equation |
gls) +as”"+a;5" '+ ... +a,_s+a,=0,a,>0 ..{6.3)

It is to be noted that there is no loss of generality in assuming a, > 0. In case a, < 0, it can
be made positive by multiplying the characteristic equation by — 1 throughout.
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Routh Array

8 07 30 9
m-3 xbﬂ; e
8 b #b, by
n-3
8 & G
n—4
d, d,
=84 [E 5 9}
s | e, a,
1
8 | fi
s | a,

The coefficients b,, b, ... , are evaluated as follows:
b,=(a,a, - asa)b,; ...
This process is continued till we get a zero as the last coefficient in the third row. In a
similar way, the coefficients of 4th, 5th, ..., nth and (n + 1)th rows are evaluated, e.g.,

¢, =(bag—abyVb;
¢y = (byag - a,b,Vb,; ...
and d, = (¢;by — b,c;Vey;
d,=(c,by—byche,; ...
It is to be noted here that in the process of generating the Routh array, the missing

terms are regarded as zero. Also all the elements of any row can be divided by a positive
constant during the process to simplify the computational work.

The Routh stability criterion is stated as below.

For a system to be stable, it is necessary and sufficient that each term of first column of
Routh array [as given in eqn. (6.9)] of its characteristic equation be positive if a, > 0. If this
condition is not met, the system is unstable and number of sign changes of the terms of the first
column of the Routh array corresponds to the number of roots of the characteristic equation in
the right half of the s-plane.

The Routh criterion stated above and the Hurwitz criterion are equivalent, as is shown
below.

Elements of first column of the Routh array can be interpreted in terms of Hurwitz
determinants as follows:

a4 G
b= 3192 ~Gg@3 _ |83 O 4y
! a4 a4 dl
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287

288-K
where b, = 10
. _ (288 K)(K +32) - 100K«
A by
In order for the system to be stable the following three conditions should be satisfied.
K <288
Ka >0

(288 -KHK +32)- 100 Ka > ()

If we choose K = 200

88 x 232
%= 100 x 200
This choice gives system’s velocity error constant as
Ko Ko
K= ixaxa 32

% velocity error = 4/25 x 100 = 16 (acceptable)

= 25/4

Observe that the controller transfer function becomes

g+1
s+4

Gls) =

which as we shall see in Chapter 12 is a lead network.

Once a system is shown to be stable, we proceed to
determine its relative stability quantitatively by
finding the settling time of the dominant roots of its
characteristic equation. The settling time being
inversely proportional to the real part of the dominant
roots, the relative stability can be specified by
requiring that all the roots of the characteristic
equation be more negative than a certain value, i.e.,
all the roots must lie to the left of the lines s = — 5,(s,
> (). The characteristic equation of the system under
study is then modified by shifting the origin of the s
plane to ¢ = — 0,, i.e., by the substitution

A

Z-plane axis —m»

&

+— s-plane axis

a¥

- =

Fig. 6.6

as illustrated in Fig. 6.6. If the new characteristic equation in z satisfies the Routh criterion, it
implies that all the roots of the original characteristic equation are more negative than - g,.

Example 6.10 : Consider a third-order system with the characteristic equation

s+ T2+ 265 +39=0
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T""' -_" -. t ! ='l'! . _ﬂ'?}.':-l_-l':ﬁ.;-.,_? 'i_ e

TheRuutharrayls
s® 1 3 3 1
P 1 3 2
gt E 1 |
3 3e-1 2e -1
2 , € £
§2 -2e° +4e-1 1
S3e-1
1 4e? - ¢
8
2e® —4e+1
@ 1

As £ — 0, the element of s! row tend to zero. This indicates that there are symmetrically
located roots in the s-plane. We therefore need to examine the auxiliary polynomial to find out

the possibility of the imaginary-axis roots. If no such roots exist, the usual procedure of replacing
the all-zero row by coefficients of the derivative of the auxiliary polynomial is adopted. If the

imaginary-axis roots are found to exist, the original polynomial is divided out by the auxiliary
polynomial and test is performed on the remainder polynomial.

For the example under consideration, the auxiliary equation is (left £ — 0 in s*-row)
s2+1=0

yielding two roots on the imaginary axis. Dividing the original polynomial g(s) by
(52 + 1), we get

gla)=st+s3+2s2+2s+1
The Routh array for this polynomial is

st 1 2 1
33 1 &

32 £ 1

$ £

& 1

As £ — 0, there are two sign changes in the first-column elements. This indicates that
there are two roots in the right s-plane.

6.7 SIABILITY OF SYSTEMS MODELLED IN STATE VARIABL

We have seen in Section 2.7, that a single-input-single-output system can be expressed in
state-variable form as (see eqns. 2.95(a), (b))

x =Ax + bu ...(6.10)
y=Cx .A6.11)
The system’s characteristic equation is given by (eqn. 5.105)
| AI-Al=0
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6.10

6.11

6.12

6.13

(b) Check if for K = 1, all these roots of the characteristic equation of the above system have
damping factor greater than 0.5.
Note. Part (b) requires actual determination of the roots.
Determine whether the largest time constant of the characteristic equation given below is greater
than, less than, or equal to 1.0 sec.
s +452 + 65 +4=0.

A feedback system has an open-loop transfer function of
KE'_'
Gl)(s) = s(s? +55+9)

Determine by use of the Routh criterion, the maximum value of K for the closed-loop system to
be stable.

[Hint : For low frequencies e =(1 - 5)]
A process iz represented by the following state equations

%y =8x, +u
The process dynamics is modified by state feedback
==k, -k,
where k, and &, are real constants. Sketch the region of (k,, k,) for the system to be stable.

Determine the range of values of K (K > 0) such that the characteristic equation
3+ 3k+1)s*+(TK+55+(4K+T) =0

has roots more negative than s = - 1.
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(2) K = a*/4, the roots are real and equal in value, i.e., s, = 5, = — a/2.

(3) a%/4 < K < e, the roots are complex conjugate with real part = — a/2, i.e., unvarying
real part.

The roat locus with varying K is plotted in Fig. 7.2.
These loci given the following information about the
system behaviour.

1. The root locus plot has two branches starting at
the two open-loop poles (s =0, and s =—-a) for K =0,

2. As K is increased from 0 to a%/4, the roots move
towards the point (—a/2, 0) from opposite directions. Both
the roots lie on the negative real axis which corresponds k=0 2
to an overdamped system. The two roots meet at s = — a/2 ‘:r_: al
for K = a?/4. This point corresponds to a critically-damped ar2
system. As K is increased further (K > a?/4), the roots break
away from the real axis, become complex conjugate and K>a'l4
since the real part of both the roots remains fixed at —a/2,
the roots move along the line ¢ = — a/2 and the system  Fjg. 7.2. Root loci of s> + as + K=0
becomes underdamped. as a function of K

3. For K > a?/4, the real parts of the roots are fixed, therefore the settling time is nearly
constant.

The root locus shown in Fig. 7.2 has been drawn by the direct solution of the characteristic
equation. This procedure becomes highly tedious for higher-order systems. Evans developed a
graphical technique by use of which the root locus for third-and higher-order systems can be
constructed as easily as for a second order system. The characteristic equation of any system is
given by

_.rj:,g_] —. ﬂ "-{T.4}
where A(s) is the determinant of the signal flow graph of the system and is given by eqn. (2.86)

which is reproduced below:
A8)=1= 3 Puy+ ) Pug= 3 Pug+...

where P_ = gain product of mth possible combination of r non-touching loops of the graph.
Thus, the characteristic equation can always be written in the form

1+P)=0 (7.5)
For the single-loop system shown in Fig. 7.3 Als) cls)
P(s) = G(s)H(s) 6o
where G(s)H(s) is the open-loop transfer function in block
diagram terminology or loop transmittance in signal flow H(s)
graph terminology.
From egn. (7.5) it is seen that the roots of the Fig. 7.3. Single-loop feedback
characteristic equation (i.e., the closed-loop poles of the system.

system) occur only for those values of s, where
P(s) =-1 ..(7.6)
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F
(5, + po) £(8+py)

£(8 + py)
S

>

Fig. 7.5. Determining a point on root locus.
x represents a pole; 0 represents a zero.

Further, approximate root locus sketch, as obtained by the rules discussed below, is
very useful in visualizing the effects, of variation of system gain K, the effects of shifting pole-
zero locations and of bringing in a new set of poles and zeros. Actual root locus plot can then be
obtained by MATLAB software; Appendix III.

Construction Rules
Rule 1 : The root locus is symmetrical about the real axis (o-axis)

~ We know that the roots of the characteristic equation are either real or complex conjugate
or combinations of both. Therefore their locus must be symmetrical about the o-axis of the
s-plane.

Rule 2 : As K increases from zero to infinity, each branch of the root locus originates from
on open-loop pole with K = 0 and terminates either on an open-loop zero or on infinity with
= oo, The number of branches terminating on infinity equals the number of open-loop poles
MINUS zeros.

The characteristic eqn. (7.14) can be written as

f[(s +p;) +Kﬁ(s+ 2;) =0

j=1 i=1
When K = 0, this equation has roots at -p;(=1,2,..n) which are the open-loop poles.
The root locus branches therefore start at the open-loop poles.
The same characteristic equation can also be written as

2 ; (s+p;)+ q (s+2)=0
K
j=1

i=1

As K tends to infinity, the first term of the characteristic equation vanishes and the

roots are located at —z; (i = 1, 2, ..., m) which are the open-loop zeros of the system. Therefore m
branches of the root locus terminate on the nmen-lann sarne



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



double root at such a point. Aa thagmn.ﬂ'm ﬁuth&rmmnaed,tha root locus branches break
away from the real axis to give a complex conjugate pair of roots. The point which represents
a double root is known as breakaway point (determination of the breakaway point is discussed
in the next rule). The branches which represent complex roots are known as complex-root
branches. ’

Fig. 7.9. Root locus plot of the equation 1 + K/s(s + 1)(s + 2) = 0.

In Fig. 7.9, the two real-root branches originating from the open-loop poles s = 0 and
s = -1 approaches each other, breakaway at the point - and then one branch moves to infinity
along 60° asymptote and the other movers to infinity along 300° asymptote. The third branch
being a real-root branch coincides with the 180° asymptote.

Rule 6 : The breakaway points (points at which multiple roots of the characteristic equation
occur) of the root locus are the solutions of dK/ds = 0.

Assume that the characteristic equation 1 + G(s)H(s) = 0 has a multiple root at s = —b of
multiplicity r. The

1+ G(s)H(s)=(s+brA,(s) - .(7.25)
where A, (s) does not contain the factor (s + b).

Differentiating eqn. (7.25) with respect to s we have

*{% [G(s)H(s)] = (s + b)Y ~1[rA,(s) + (s + b)A4%s)]
where A, 1s) represents the derivative of A,(s).



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



PERs, P O o L TP SRR T, T T & T | AL
— ) - - 1 : :-".. - . - — { - C

the roots of which are found to be at s = -2 and s = -2 + j2.45.
Therefore, there is one breakaway point on the real axis at s = -2 and two complex
conjugate breakaway points at s = —2 + j2.45. The rooot locus plot is sketched in Fig. 7.12.

jo
S #
LY Fa
'h.\ ________ j" #,
"i.l ”"
Fa
. 1'1-0 i
b JI *
Wy F
L e
R oy 1 j2.45
'\\ x
L F
breakaway

Fig. 7.12. Root locus plot with complex breakaway points.
Breakaway Directions of Root Locus Branches
The root locus branches must approach or leave the breakaway point on the real axis at
an angle of = 180°/r, where r is the number of root locus branches approaching or leaving the
point. '
The above statement can easily be verified by considering the root locus of Fig. 7.9. It is

seen that two root locus branches approach the breakaway point and therefore according to
the above statement, the root locus branches must leave the real axis breakaway point at an

angle of + 90°.

Take a point at an angle of 90° to the real axis and very close to the breakaway point. It
can be shown by the angle criterion that the point lies on the root locus.

Rule 7 : The angle of departure from an open-loop pole is given by
9,=+180°12¢g+1)+¢;9=0,1,2,.. ..(7.32)
where ¢ is the net angle contribution, at this pole, of all other open-loop poles and zeros.
Similarly the angle of arrival at an open-loop zeros is given by
¢, =+180°(2¢+1)-¢;g=0,1,2, ..
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Fig. 7.16. Root locus piot of characteristic equation
(s2+25+2+ K)=0.

Example 7.7 : An autonomous guided vehicle (AGV) is used to carry payloads to various
destinations by an on-board computer. The vehicle having four wheels is powered by two de
servomotors of identical ratings, the two back wheels being free. Each of the motors is
independently controlled by a PID scheme.

The basic block diagram of the control scheme is given in Fig. 7.16, wherein the motor is
provided with an internal feedback loop.

PID
s | LR & | B(s)
—ﬂﬂﬂi\/(: A:rﬂp !_"1| fw} | 4 » Motor —» Load JS >
%.__a ‘__I‘_J |_ | -.__;__.' s
! L Ks e
| .
Fig. 7.16
The values of various constants are:
1. PID controller a =100, B=275
2. Motor K,=K, =0.066 Nm/A, R, =232 Q

J._ =0.0002 kg m?
Motor inductance and viscous friction can be neglected.
3. Load inertia J; = 0.002 kg m? ; directly coupled to motor.
4. Tachometer constant K = 11 V/rad(s)
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The above information is confirmed by the root locus plot of Fig. 7.19 obtained by means
of MATLAB Control Tool.

Fig. 7.19
Example 7.9 : A unity feedback control system has an open-loop transfer function of
K(s*/3)

Gls) = s2(s+12)

Plot the root locus. Find the value of K for which all the roots are equal. What is the
value of these roots ?

Solution.
Poles:5=0,0,-12
Zeros : s = —4/3
-0, = '123";41;3 = -16/3
g :130;{_2?“} . 90°
Z- s% +24s +azfs+ 12) _
(s+4/3) (s+4/3)
or —~3s(s +8Bis+4/3)+sHs+12)=0 or ss+4PF =0
s=0,5=—-4,-4
Breakaway pointisats =—4

Equal roots (3 nos) areats =—4

4x4x8 _ 128 x 3 N

= 48
(4-4/3) 8

Kis=-4)=
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Fig. 7.23. Root contours of the system shown in Fig. 7.1.

Example 7.11 : Consider the feedback control system with an open-loop transfer function
K
Claiti) = s(s + 1Ns + )
in which the open-loop gain and the pole s = —a are both regarded as variable.
The characteristic equation of the system is
K
T ss+ Ds+a)
It can be manipulated into the form below where & appears as a root locus parameter
e ss+1
s2(s+ D+ K
Though eqn. (7.39) is in the form that root locus with respect to the parameter o can be

drawn, however, we cannot proceed with it without determining its open-loop poles from the
reduced characteristic equation

1 =0 or sis+l)+a(s+1s+K=0 ...(7.38)

1 -.(7.39)

2s+1)+K=0

where K is a variable. The reduced characteristic equation can be obtained from the complete
characteristic eqn. (7.38) by putting a = 0. The reduced characteristic equation can be rewritten
as
K
s2(s+1) -
The root locus of the reduced characteristic equation with K as a variable parameter is
plotted in Fig. 7.24(a). The three roots of eqn. (7.40) for a particular value of K contribute the
open-loop poles of eqgn. (7.39).
The root contours for various values of K with varying a are drawn in Fig. 7.24(b). The
value of a at which the root contours will cross the jo-axis into the left half s-plane and the

system will become stable is obtained by application of the Routh criterion to the characteristic
equation (7.38) as given below:

1+ 0 ...(7.40)
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This method is applied here to analyze the system of Flg 7.26. This system shows an
arrangement of controlling the thickness of a steel plate produced by a rolling mill. A voltage
signal corresponding to the desired thickness is the reference input to the system. A thickness
gauge provides a feedback voltage signal proportional to the actual thickness of the plate. The
error voltage actuates the motor which positions the rolls.

The open-loop transfer function of the system is given by

K,

s(r, s+ 1)

where for the sake of simplicity, we assume a single dominant time constant in the loop, probably
that of the motor.

In the transfer function given by eqn. (7.46), we have ignored the fact that a finite time
must elapse before a change in thickness of steel plates between rolls reaches the point of
measurement at the gauge.

G{(s)H(s) = ...[7.46)

‘Gaugs | o the actual thickness) m

i
:

Fig. 7.26. A feedback system with transportation lag.

If this delay in transportation of signal is assumed to be T sec, then the open-loop transfer
function of the system becomes.

G(s)H(s) = K, e*"/[s(t s + 1)]
The above equation may be rearranged in the following form
G(s)H(s) = Ke™*/[s(s + a)] ..(7.47)

Assuming the transportation lag to be small, we use the approximating e~ = (1 - sT).
Equation (7.47) can now be rearrange in the form

-K(s—-1/
G(s)H(s) = i i

s(s + )
The characteristic equation becomes
1-K(s-1UTVsis+a)]=1-P(s)=0 ...(7.48)
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q(s) = As) + KB(s) =K, [ [(s + ) =0 ..(7.55)
k=1

where —r, (k = 1, 2, ..., n) are the roots of the characteristic equation. In eqn. (7.55) K is given by
K, =1ifn>m
=1+Kifn=m
Taking logarithm of each side egn. (7.55), we get

Ing(s)=InK, + | [In(s+n) .(1.56)
k=1

Differentiating eqn. (7.55) and (7.56) with respect to the parameter K, we have

di(s)/ oK _ Bls) .. _, oK, _ o d(-ry)/ dK
Q{B} B q(s) FHI aK ey l'..S"I'rk} ..L1.5T)

Each side of eqn. (7.57) must have the same residue at any pole. Taking the residue of
both the sides at the pole s = —r,, we have

a{—r*_]

Bs)|  __ Ben)

= —($+ 1) — i, ..(7.58
K o)., q'n) }
dg(s)
where glr) = ——
k ds s

In taking the residue above it has been assumed that the root —r, is a nonrepeated root
of the characteristic equation.

It follows from eqgn. (7.54) that

Bry =— A

Therefore we can write egn. (7.58) as

- Atn)

KIK = qCr) ...(7.59)
The sensitivity of the roots = = —r, can thus be computed from the expression* given in

eqgn. (7.59).

The transfer function sensitivity and sensitivities of the roots of the characteristic
equation can be correlated as follows.

The transfer function can be expressed as

Sg* =

Ng)= ————— ..(7.60)

*The derivation of this expression is from Horowitz. Reproduced with permission.
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With the switch S closed, draw the root locus plot of the system with o as a varying parameter.
Show that the complex-root branches are part of a circle. From the root locus plot, determine the
value of @ such that the resulting system has a damping ratio of 0.5. For this value of «, find the
overall transfer function in factored form.

7.5. The block diagram of a control system is shown m Fig. P-7.5. Draw the root locus plot of the
system with & as varying parameter.

(a) Determine the steady-state error to the unit-ramp input, damping ratio and settling time for
the system without derivative feedback, i.e.,

ax=0
(b) Discuss the effect of derivative feedback on transient as well as steady-state behaviour of the
system assuming o = 0.2..
(¢) Determine the value of « for the system to be critically damped.

ol N I <

O

Fig. P-7.5

7.6. A unity feedback system has an open-loop transfer function
Gis) = Kls¥s + 2)
(a) By sketching a root locus plot, show that the system is unstable for all values of K
(b) Add a zero at s = —a (0 £a < 2) and show that the addition of zero stabilizes the system.

(¢) If a = 1, sketch the root locus plot and determine approximately the value of K which gives the
greatest damping ratio for the oscillatory mode. Find also the value of this damping ratio and
the corresponding undamped natural frequency.

7.7. Open-loop transfer function of a unity feedback system is
Gis) = Klis + 2
Sketch the root locus plot and determine the following:

(@) Static loop sensitivity for which the root locus crosses the jw-axis and the corresponding
frequency of sustained oscillations.

(b) The position error constant corresponding to a damping ratio of 0.5. Also determine the peak
overshoot, time to peak overshoot and settling time considering the effect of dominant poles
only.

(Note : The static loop sensitivity is defined to be the gain in pole-zero form.)

7.8. The characteristic equation of a feedback control system is
st +35% + 125 + (K- 16ls + K =0

Sketch the root locus plot for 0 < K < - and show that the system is conditionally stable (stable

for only a range of gain K). Determine the range of gain for which the system is stable.

7.9. Find the roots of the following polynomial by use of the root locus method.
35 + 10s% + 215% + 245 + 30 =0

7.10. Figure P-7.10. shows an arrangement of controlling the thickness of steel plates. A signal
proportional to the desired steel thickness is the reference input and a signal proportional to the
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FREQUENCY RESPONSE ANALYSIS

Various standard test signals used to study the performance of control systems were discussed
in Chapter 5. While the sinusoidal test signal was introduced there, the discussion on the same
was postponed till this chapter which is fullv devoted to it on account of its importance in
control engineering. Consider a linear system with a sinusoidal input

rit) = A sin ax

Under steady-state, the system output as well as the signals at all other points in the
system are sinusoidal. The steady-state output may bhe written as

elf) = B sin (oXf + ¢)

The magnitude and phase relationship between the sinusoidal input and the steady-
state ouput of a system is termed the frequency response. In linear time-invariant systems, the
frequency response ig independent of the amplitude and phase of the input signal.

The frequency response test on a system or a component is normally performed by keeping
the amplitude A fixed and determining B and ¢ for a suitable range of frequencies. Signal
generators and precise measuring instruments are readily available for various ranges of
frequencies and amplitudes. The ease and accuracy of measurements are some of the advantages
of the frequency response method. Wherever it is not possible to obtain the form of the transfer
function of a system through analvtical techniques, the necessary information to compute its
transfer function can be extracted by performing the frequency response test on the system.
The step response test can also be performed easily but the extraction of transfer function
from the step response data is quite a laborious procedure. For systems with very large time
constants, the frequency responsze test is cumbersome to perform as the time required for the
output te reach steady-state for each frequency of the test signal is excessively long. Therefore,
the frequency response test is not recommended for systems with verv large time constants.

346
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0<{=< 1/J2, and the resonant frequency @, of the frequency response is indicative of its
natural frequency for a given { and hence indicative of its speed of response (ast_ = 4/{w ). M,
and w, of the frequency response could thus be used as performance indices for a second-order
system.

Re-examining Fig. 8.2, we notice that for > ®,, M decreases monotonically. The frequency
at which M has a value* of 1/V2 is of special significance and is called the cut-off frequency ..
The signal frequencies above cut-off are greatly attenuated in passing through a system.

For feedback control systems, the range of frequencies over which M is equal to or greater
than 1/7/2 is defined as bandwidth @, . Control systems being lowpass filters (at zero frequency,

M = 1), the bandwidth @, is equal to cut-off frequency @.. The definition of the bandwidth is
depicted on typical frequency response of a feedback control system in Fig. 8.3a.

In general, the bandwidth of a control system indicates the noise-filtering characteristic
of the system. Also, bandwidth gives a measure of the transient response properties as observed
below.

1.0

0.707

: 2
0 a, e w

Fig. 8.3. (a) Typical magnification curve of a feedback control system.

The normalized bandwidth u, = @,/@, of the second-order system under consideration
can be readily determined as follows:

U i
[(1-u,2)? +(20u,)?] V2
or ut-2(1-20u,t-1=0
Solving for u, we get
u, = [1- 222+ (2402 +404)1V2 .(8.6)

As the bandwidth must be a positive real quantity, the negative sign in quadratic solution
and the negative sign in taking the square-root have been discarded.

We observe from eqn. (8.6) that the normalized bandwidth is a function of damping
only; u, versus ( is plotted in Fig. 8.3(b).

* This value corresponds to — 3db point on the Bode plot of T\jw) of the second-order system
under consideration. Bode plots are dealt with in later part of this chapter.
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This transfer function may be rearranged as
GU&I] = = ] 1

Ry T e |
1+0°T? ~ o(1+0T?)
From eqn. (8.14) we get
lim G jw) = =T = jeo = eos — 90°

—+ (1

lim G(jw) = -0 —j0 = 0.£ - 180°

d—+{)

The general shape of the polar plot of this transfer im
function is shown in Fig. 8.8. The plot i1s asymptotic to the -270° ¢
vertical line passing through the point (=T, 0).
The major advantage of the polar plot lies in stability T4 y==

study of systems. N. Nyquist (in 1932) related the stability -180°

of a system to the form of these plots. Because of his work,
the polar plots are commonly referred to as Nyquist plots.

The general shapes of the polar plots of some
important transfer functions are given in Table 8.1.

e GORCEEE

From the polar plots of Table 8.1, following observa-
tions are made:

@ increasing

(i) Addition of a nonzero pole to a transfer function
results in further rotation of the polar plot through an angle
of —90° as @ — e

il
*
0 =80
(ii) Addition of a pole at the origin to a transfer Fig. 8.8. Polar plot of
function rotates the polar plot at zero and infinite frequencies 1/jw(1 + jwT)

by a further angle of -90°.
The effect of addition of a zero to a transfer function is to rotate the high frequency
portion of the polar plot by 90° in counter-clockwise direction.

Inverse Polar Plots

The inverse polar plot of G{jw) is a graph of 1/G{jw) as Jiia
function of @. For example, for the RC filter shown in -270° 4 '
: ) oo
Fig. 8.6.
1
= (i
Gljw) G~ o) Tmimr&asing
=1+jol = J(1+@*T?) £tan™ T .
* Re

The corresponding inverse polar plot is shown in - 180° 1.0 0°
Fig. 8.9. _90°

It will be seen later in Chapter 9 that the inverse

: B S Fig. 8.9. Inverse polar plot
polar plots are useful in applying M-criterion and are of 1/(1 + jT).

also valuable in stability study of nonunity feedback
systems.
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As an illustration, let us derive the transfer function of the system whose experimental
log-magnitude and phase-angle curves are shown in Fig. 8.21. First of all, the asymptotes are
drawn on the experimentally determined curve as shown.

ay w=5 ﬂf : i’a
20 '-h.;;_.‘{_;._ —+' T ] ‘
=3 4— —20 db/decade
10 —
T 0 Vs —
db Experimentally —
-10 determined curve -
-20 - 1
—40 db/decade
-30
-90°
""""--..._
—120° Tr——
| o
_15.09
y =210°
—240°
=270°
0.5 1 2 B 10 20 50 100

W —p
Fig. 8.21. Experimentally obtained log-magnitude and phase characteristics.

The low frequency asymptote has a slope of =20 db/decade and when extended, intersects
the 0 db axis at @w=5. Therefore the asymptote is a plot of the factor 5/(jw). The corner frequencies
are the asymptote is a plot of the factor 5/(jw). The corner frequencies are found to be located at
@, =2, @, = 10 and @, = 50. At the first corner frequency, the slope of the curve chianges by —20
db/decade and at the second corner frequency, it changes by +20 db/decade. Therefore the
transfer function has the factors 1/(1 + ja/2) and (1 + ja'10) corresponding to these corner
frequencies. At @ = w,, the curve changes by a slope of 40 db/decade. At this frequency the
error between actual and approximate plots is +4 db. Therefore, the transfer function has a
qguadratic factor

1

1+ j2(w/50) + (jw/50)°
where { = 0.3, as obtained from the error graph of Fig. 8.15, corresponding to the error + 4 db.
Thus the transfer function of the system becomes
: 5(1+ jw/10)
o= jo(l+ jo/2)[1+ jO.8(@/50) + (jw/50)*]

From the experimental phase angle curve shown in Fig. 8.21, it is seen that the phase
angle at very high frequencies is —270° which is equal to —-90° (g — p) = -90° (4 — 1). Therefore
the Bode plot represents a minimum-phase transfer function.

‘8.7 LOG-MAGNITUDE VERSUS PHASE PLOTS

In the previous sections, we considered polar plots and Bode plots as the graphical
representations of the frequency response. An alternative approach to the frequency response
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STABILITY IN FREQUENCY DOMAIN 391

N=P-2Z
~1=0-2% or Z=1

The system is therefore unstable for K > -;- It would be stable for K < % when

N=0,P =0 = Z=0
Example 9.7 : Sketch the Nyquist plot and determine there from the stability of the fnllnwmg
open-loop transfer function of unity feedback control systems.
K (s +2) s K
GH(s) =
s2(s+1) L s(s® +s+4)
If the system is conditionally stable, find the range of K for which the system is stable.

Solution. ajv
(K/2)(1+ ja2)
(G’ (1+ jw/d)

The Nyquist contour is the same as in Fig. 9.13(a).
Following standard steps the Nyquist plot is sketched % | s o

=10 ,
in Fig. 9.15. w=0 1+
It easily concluded from the Nyquist plot that the
system is absolutely stable.

(i) GH(s) =

(i) GH(jw) =

cy

= 420

23 : K
(i1) GH(jw) = P g S,

Real axis crossing of Nyquist plot at
- Klo + j(4 - 0*)]
o{0® +(4 - 0*)*]
Equating imaginary part to zero
4-¢?=0 or o'=4 or w=22
|IGH(jw)| - _,=-K/4

Fig. 9.15

GH{jo) =

So the Nyquist plot crosses the axis of reals
at @ = + 2 with an intercept of — K/4. The plot is
sketched in Fig. 9.16.

From the Nyquist plot

K4 >1 or K>4
For this value of K

N=P-Z

-2=0~-Z or Z=2

So the system is unstable. It can be shown to
be stable for

L~

K<4 . Fig. 9.16
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STABILITY IN FREQUENCY DOMAIN 397

In decibels the increase in gain for G{jw)H(jw)-plot to pass through (-1 + j0) is given by
GM =-20loga db
Since a is less than 1 for stable systems, log a is negative and hence GM is positive.
In the example considered earlier in this section if T, = 1, T, = 0.5, then for K = 0.75, the
gain margin is given by

-1
KTsz] 4

GM =
Ii‘l"1._+1"2

In decibels, the gain margin is given by
GM=20log4=124db

This value of gain margin indicates that the system gain may be increased by a factor of
4 before the stability limit is reached.

Phase margin. The frequency at which | Gw)H(jw) [ = 1 is called the gain cross-over
frequency. It is given by the intersection of the G{jw)H{jw)-plot and a unit circle centred at the
origin as shown in Fig. 9.20. At this frequency, the phase angle £G{jw,)H(jw,) is equal to
(= 180° + ¢). If an additional phase-lag equal to ¢ is introduced at the gain cross-over frequency,
the phase angle <G(jw,)H(jw,) will become ~180°, while the magnitude remains unity. The
G{(jw)H(jw)-plot will then pass through (-1 + j0) point, driving the system to the verge of
instability. This additional phase-lag ¢ is known as the phase margin (PM).

The phase margin is thus defined as the amount of additional phase-lag at the gain
cross-over frequency required to bring the system to the verge of instability. From Fig. 9.20 it
is seen that the phase margin is measured positively in counter-clockwise direction from the
negative real axis. The phase margin is always positive for stable feedback systems.

The value of phase margin for any system can be computed from

Phase margin ¢ = ZG(jo)H(jw) +180° ..{9.17)

a = @,
where the angle at ®,, the gain cross-over frequency, is measured negatively.

Gain margin (GM) and phase margin (PM) are frequently used for frequency response
specifications by designers. It is important to note once again that these measures of stability
- are valid for open-loop stable systems only. A large gain margin or a large phase margin indicates
a very stable feedback system but usually a very sluggish one. A GM close to unity or a PM
close to zero corresponds to a highly oscillatory system. Usually a GM of about 6 db or a PM of
30-35° results in a reasonably good degree of relative stability. In most practical systems a
good gain margin automatically guarantees a good phase margin and vice versa. However, the
cases where the specification on one does not necessarily satisfy the other, also exist as shown
in Figs. 9.22 and 9.23.

In a second-order system with G(ja)H(jw) = K/jo(jaT + 1) whose polar plot is shown in
Fig. 9.24. GM always remains fixed at infinite value as the plot always reaches the real axis at
the origin, while the PM reduces continuously with increasing system gain. In this case, as
shall be seen below, PM is the correct measure of relative stability.

Usually it is the phase margin which is specified as a measure of system performance in
design.
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The Nichols chart is very useful for determining the closed-loop frequency response
from that of the open-loop. This is accomplished by superimposing the log-magnitude versus
phase angle plot of G{jw) on Nichols chart. The intersections of the log-magnitude versus phase
angle plot and constant-M and -a contours give the magnitude M and phase angle o of the
closed-loop frequency response at different frequency points.

(zain adjustments

When a control system is found to be unstable or has poor transient response, the first step is
to check if its performance can be modified by adjustment of gain. This adjustment is usually
based on a desirable value of M_. While this adjustment can also be carried out by means of
constant-M circles, we shall present here how this is done by means of the Nichols chart which
is more convenient and i1s commonly used.

Gain adjustment by the Nichols chart. The determination of K for specified resonant
peak or specified gain and phase margins carried out very conveniently on Nichols chart. For
this purpose the log-magnitude versus phase angle [db vs £G{jw)] plot is superimposed on the
Nichols chart. Since the gain adjustment has no effect on the phase angle, the db vs £G(jw)
plot merely moves vertically up for increase in gain and down for decrease in gain. The vertical
location of the plot is adjusted till it is tangent to the desired M-curve. The db-shift determines
the adjustment in gain required to meet the specified M . Phase margin or gain margin
adjustments are similarly carried out on the Nichols chart. The following example illustrates
the procedure for gain adjustment.

Example 9.15 : Let us reconsider the system discussed in Example 9.7. The system has an
open-loop transfer function

; 10 1
) jo(j0.1o + 1(j0.05w + 1) db 12 2p
The db-£G(jw) plot for this G(jw) is shown in T A;
Fig. 9.38. (It is important to note that this plot iz  |g(ju) " qaanT 2 i
conveniently drawn by obtaining the log-magnitude and 0
phase angle data for various values of frequency from T 7
the Bode plot of G(jw) shown in Fig. 9.27). From Fig. 9.39, o N i
it is found that _12 l
GM = + 12 db; PM = + 33° A‘E
Gain adjustment for desired GM or PM. Suppose Moy
it is desired to find the open-loop gain for (i) a GM of 20 -24 4
db, (ii) a PM of 24°, /
(i) A GM of 20 db is obtained if the plot of Fig. 9.38 = [
is shifted downwards by (20 — 12) = 8 db. The system ~36 B 50
gain is therefore changed by — 8 db or decreased by a 4D
factor of 2.5. —240° -210°~180°~150° ~120°-90°
(ii) A PM of 24° is obtained if the plPt of Fig. 9.38 is £ Gljw) —»
raised upwards by 3.5 db or the system gain is increased Fig. 9.38. Determination of GM

by a factor of 1.5. and PM.
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Consider the system of Fig. 10.2 which has an open-loop transfer function
5K ,

..(10.1
Gls) = SR+ Xsl6+ 1) vl
From eqn. (10.1), K, the velocity error constant of the system is given by
K, = lim sG(s) = 5K, .(10.2)
g—0
Ris) A 2 | K, | 5 | Cis
— & _"'I B+ | | sizs+1)| |
Amplifier Motor

Fig. 10.2. A position control system.
For K, = 1 (i.e, K, = 5) the steady-state error to unit velocity input (e, = VK ) is 0.2,
which may be assumed to be an acceptable value.
From eqn. (10.1), we have
60K 4 _ K
s(s+2)s+6) s(s+2)Ns+6)

The root locus plot of the uncompensated system appears in Fig. 10.3. Corresponding to
the value K = 60 (i.e., K, = 5) on the root locus plot, the dominant pair of root is found to be

8 5=—03=x;2.8

For this root pair, the damping ratio {is 0.105 and the undamped natural frequency o,
is 2.85. The settling time (= 4/{w,) for the response is therefore about 13.36 sec.

From the above investigation of the uncompensated system, it is seen that the system
has poor relative stability and large settling time.
Assume that the specifications on the transient performance are
£=08;
settling time < 4 sec.
A line corresponding to { = 0.6 is shown in Fig. 10.3. The intersection of this line with
root locus branch determines the value of K which yields the specified {. From Fig. 10.3 we find
that

G(s) = ...(10.3)

K =10.5[K, = 10.5/(2 x 6) = 0.875, i.e.,, K, = 0.175];
@ =1.26;

Settling time = 5.3 sec;
e, =114

Thus the reduction in gain satisfies the specification on { but the steady state error
increases well beyond the tolerable of 0.2 and further the settling time specification is not fully
satisfied. Therefore we conclude that our purpose is not served by mere given adjustment.
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in passing through the network whereby the signal to noise ratio is improved, in contrast to
the lead network. A typical choice of fis 10.

: 20
db Slop-20 log p
IGlj)l db/decade _i

[

1/pr @, = 1Npr 1/t
log @ —»

Fig. 10.14. Bode plot of phase-lag network.

Lag-lead Compensator*

As discussed earlier, the lag-lead compensator is a combination of a lag compensator and a
lead compensator. The lag-section has one real pole and one real zero with the pole to the right
of zero. The lead-section also has one real pole and one real zero but the zero is to the right of
the pole. The general form of this compensator is

s+Vry | s+Vry |,
Gﬂ[s]—[s+ﬂﬁrl}(s+ﬂm2],ﬁ} La<l ) ..(10.21)
g Lasd | |
Lag Lead c, l
The eqn. (10.21) can be realized by a single electric lag-lead § ° ‘"2““ T
network shown in Fig. 10.15. From this figure, the transfer function ’
of the network is given by & R, €
Ey(s) _ R, + UsC, X &
E;(s) R, + 1 _BysC Fig. 10.15, Electric
sC, R, +VsC, | lag-lead network.
[ b )[ ;1 ] '
C C
= G TG ..(10.22)

1 1 1
s + [ + + Js +
! R,C, R C, RyCy R\R,C\Cy

*When the forward path transfer function has complex poles close to the jw-axis, phase lead,
phase-lag or phase lag-lead networks are not effective. In such cases compensation may be achieved by
Bridged-T' networks.
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INTRODUCTION TO DESIGN : 445

compensation wherein the compensating zero is placed exactly in the open-loop pole location
completely cancelling the effect of this pole. In case the uncompensated system does not have
any open-loop pole in the region below desired closed-loop poles, the dominance condition
must be checked by locating the real axis closed-loop pole created by the compensating zero.

Example 10.2: A type-2 system with an open-loop transfer function
K

(s + 15)

is to be compensated to meet the specifications in Example 10.1.

Following the procedure of the previous example, the desired dominant roots are found
to lie at s, = ~1j2 (Fig. 10.22). The angle contribution required from a lead compensator is

¢ ==180° - .a'fosd] = 2180° - (-2 x 117° - 75°) = 129°

The large value of ¢ here 1s an indication that a double lead network is appropriate.
Each section of a double lead network has then to contribute an angle of 64.5° at s,.

Let us locate the compensator zero at s = —1.7, i.e., in the region below the desired
dominant closed-loop pole location and just to the left of the open-loop pole at s = -1.5. Join the
compensator zero to s, and locate the compensator pole by making an angle ¢ = 64.5° as shown
in Fig. 10.22. The location of the pole is found to be at -19.8.

The open-loop transfer function of the compensated system becomes
8.30(s + 17)°

G!{s] =

Gis) =
8)= 25+ 15K + 19.8)2
T e
|
: l | : +— ' 3
-19.8 -18 -6 -4 L

Fig. 10.22. Design of double lead compensator.

By locating the closed-loop poles of the compensated system, it can be easily verified
that one closed-loop pole is located very close to the open-loop zero at —1.7 (contributed by the
compensating zero) and therefore makes negligible contribution to system dynamics, while
the other closed-loop poles are located far to the left of -1 and hence the dominance of the
desired closed-loop poles (-1 %72) is preserved.

Example 10.3: Consider a type-1 system with an open-loop transfer function of

K
8(s+ 1Ns + 4)

Gf{s} =



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



This additional integration reduces the steady state error; t:,rpe -0 steady state step input
error is reduced to zero and ramp input error is limited to a finite value ; type-1 ramp input

error is also reduced to zero.

PI controller design proceeds conveniently by root locus technique. All the poles (including
additional pole at s = 0) of G'(s) are located on the s-plane. The transient response specifications
lead to the location of s, the desired root location. The compensating zero s = — a is located so
that the angle criterion at s, is met. The root locus gain can then be cumputed at s, but this

does not affect the steady-state error.

The zero of PI controller appears in the closed-loop transfer function which impairs the
transient response which was computed on dominant pole pair basis ; see Section 5.6. This

problem is more intense in PI controller than in lead network compensation.

Prefilter

To cancel out the closed-loop zero a prefilter

1
GPISJ =

S+

is introduced as shown in Fig. 10.26 of the complete compensated system

Rs) T

i
Fy

— 6)

[ B

Fig. 10.26. Pl compensated system.

Cis)
—»

The procedure enunciated above is illustrated below through two examples.
Example 10.5: A unity negative feedback system has an open-loop transfer function of

K
(s+4)
Consider a cascade compensator
s+a

G(s) =
s

(a) Select the values of K and « to achieve
(£) Peak overshoot of about 20%.
and (ii) Settling time (2% basis) = 1 sec

G(s) =

(b) For the values of K and a found in part (a) calculate the unit ramp input steady-state

ErTor.

Solution. In this simple example we can proceed analytically. Compensated forward path

transfer function is

K(s+ o)
G.(s) G(s) = = T
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Then
0 1 1y -1
an =% ol
The composite matrix defined in egn. (12.90) is given by

1 -1
Qr=[BEAB]=|:_1 l]
The rank of r of this matrix is 1. The system is therefore not completely controllable.
One state of the system is uncontrellable (r out of n states are controllable).

By the methods discussed in Section 12.3, the given differential equation can be
transformed to the following controllable phase variable model:

R MR

Thus state controllability depends on how the state variables are defined for a given
system.

Observability

Consider the state model of an nth order single-output linear time-invariant system,
X =Ax + Bu
y=0Cx

The state equation may be transformed to the canonical form by the linear transformation
x = Mv. The resulting state and output equations are

v =Av+ Bu ..(12.95a)
y=Cv
= §1Vq + CoVy + e + G,V ...(12.95b)

Since diagonalization decouples the states, no state now contains any information
regarding any other state, i.e., each state must be independently observable. It therefore follows
that for a state to be observed through the output v, its corresponding coefficient in egn. (12.95b)
should be nonzero.

If any particular ¢ is zero, the corresponding v, can have any value without its effect
showing up in the output v. Thus the necessary (it is also sufficient) condition for complete
state observability is that none of the ¢,’s (i.e., none of the elements of C = CM) should be zero.

The result may be extended to the case of multi-input-multi-output systems where the
output vector, after canonical transformation is given by

Y1 € Tz v i ||V 1
Yai € €2z v Can ||V
 ¥el LB Epp = € 145
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so that a,,8(x,) >0

a,;, = TS{II} o ULE)

The first of these conditions is satisfied when the other two are met with, because

%gﬂ(.ﬁ} >0

We can therefore choose a,, to be any positive constant.
Thus

1
VV= [E 98(%)x, ..(viid)

O Xy
- 1
V=- S8 (0) - apx’
It may also be noticed that the gradient vector in (viii) meets the curl conditions (13.19).

The Liapunov function can now be obtained by taking the line integral of the gradient
vector along the path defined in egn. (13.17). Thus
1

1 Iy i
V= E“ﬂjﬂ g(x))x,dx, + ﬂzﬂju xydx

1 * 1
i “22_'; glxy )xydx, + 2 dgg%p” -(x)

If g(x,) > 0, i.e. fix,) = glx,)x, lies in first and third quadrants, V is positive definite.
Under this condition the system is asymptotically stable.

Also if

lim ng(:ﬂ:ldxl g

the system would be asymptotically stable in-the-large.
Example 13.8: A simple mass, spring and viscous friction system is shown in Fig. 13.9.

|
X '/
—> ;
(-
Y,
b | m NN
i
,-".-"\#-"'. PSR :’.-",-"' &
Fig. 13.9

Show that the system is stable.

Solution:

The differential equation governing the system is
mi+bi+kx=0
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Fig. 15.25. Step input response : FLC Vs PID,

15.4 _NEURAL NETWORKS

Artificial neural networks have emerged from the studies of how brain performs. The human
brain is made up of many millions of individual processing elements, called neurons, that are
highly interconnected. A schematic diagram of a single biological neuron is shown in Fig. 15.26.
Information from the outputs of the other neurons, in the form of electrical pulses, are received
by the cell at connections called synapses. The synapses connect to the cell inputs, or space
dendrites, and the single output of the neuron appears at the axon. An electrical pulse is sent
down the axon when the total input stimuli from all of the dendrites exceeds a certain threshold.

Fig. 15.26. A biclogical neuron,
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Absolutely stable, 275
Ac position control system, 151
Ac servomotor, 138
— incremental transfer function, 141
Ac tachometer, 141
Accelerometer, mechanical, 28
Across variable, 24
Adaptive control, 715
- MIT rule, 717
Adding zero, effect of, 214
All-pass system function, 366
Analogous guantities, 42
Analogous systems, 35
Analogy, force (torque)-voltage, 36
— force (torque)- current, 36

Approximation of, higher-order systems by lower
order, 248

Armature control, de motor, 49
Artificial neuron model, 749
Asymptotic stability, 643

- in-the-large, 644

— in-the-small, 644
Automatic control system, 4

— history and development of, T

— general block diagram, 5
Autonomous system, 642

Bellman’s dynamic programming, 688-691, 694-696
Bandwidth, effect of feedback, 99

Bandwidth, 350, 351

Barbalat's Lemma, 721

Bilinear transformation, 553
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Block diagram algebra, 54
— closed-loop, 55
- reduction rules, 58-59
- summing &' differencing point, 54
— take-off point, 54
Block diagram, 24
- cause-effect form, 24
Bode plots, 355
~ complex conjugate poles, 360
— corner frequency (break frequency), 357
—~ db error normalized, first-order-factor, 358
—db error normalized, second-order factor, 361
— decade, 357
— decibel, 356
— genural construction procedure, 362
— octave, 357
— pole or zero on real axis, 360
~ typical factors of G (jw), 358
Break frequency, 357
Brushless dc motor, 136
Bush form or companion form, 587

Caley-Hamilton theorem, 611
Canonical state model, 592
Canonical variables, 599
Cascade compensation, frequency domain, 459
- lag, 466
— lag-lead, 470
— lead, 460
— translation of specifications, 459
Cascade compensation, time domain, 440
— cancellation, 444
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