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Chapter 1

An Overview and Brief
History of Feedback Control

1.1 Problems and Solutions

1. Draw a component block diagram for each of the following feedback control
systems.

(a) The manual steering system of an automobile

(b) Drebbel�s incubator

(c) The water level controlled by a �oat and valve

(d) Watt�s steam engine with �y-ball governor

In each case, indicate the location of the elements listed below and
give the units associated with each signal.

� the process
� the process output signal
� the sensor
� the actuator
� the actuator output signal
� The reference signal

Notice that in a number of cases the same physical device may per-
form more than one of these functions.

Solution:

(a) A manual steering system for an automobile:
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(b) Drebbel�s incubator:

(c) Water level regulator:

(d) Fly-ball governor:



1.1. PROBLEMS AND SOLUTIONS 103

(e) Automatic steering of a ship:

(f) A public address system:

2. Identify the physical principles and describe the operation of the thermo-
stat in your home or o¢ ce.

Solution:

A thermostat is a device for maintaining a temperature constant at a
desired value. It is equipped with a temperature sensor which detects
deviation from the desired value, determines whether the temperature
setting is exceeded or not, and transmits the information to a furnace
or air conditioner so that the termperature in the room is brought back
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Figure 1.1: A paper making machine From Karl Astrom, (1970, page 192)
reprinted with permission.

to the desired setting. Examples: Tubes �lled with liquid mercury
are attached to a bimetallic strip which tilt the tube and cause the mer-
cury to slide over electrical contacts. A bimetallic strip consists of two
strips of metal bonded together, each of a di¤erent expansion coe¢ cient
so that temperature changes bend the metal. In some cases, the bending
of bimetallic strips simply cause electrical contacts to open or close di-
rectly. In most cases today, temperature is sensed electronically using,for
example, a thermistor, a resistor whose resistance changes with tempera-
ture. Modern computer-based thermostats are programmable, sense the
current from the thermistor and convert that to a digital signal.

3. A machine for making paper is diagrammed in Fig. 1.12. There are two
main parameters under feedback control: the density of �bers as controlled
by the consistency of the thick stock that �ows from the headbox onto the
wire, and the moisture content of the �nal product that comes out of the
dryers. Stock from the machine chest is diluted by white water returning
from under the wire as controlled by a control valve (CV). A meter supplies
a reading of the consistency. At the �dry end�of the machine, there is a
moisture sensor. Draw a signal graph and identify the seven components
listed in Problem 1 for

(a) control of consistency

(b) control of moisture

Solution:

(a) Control of paper machine consistency:
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(b) Control of paper machine moisture:

4. Many variables in the human body are under feedback control. For each
of the following controlled variables, draw a graph showing the process
being controlled, the sensor that measures the variable, the actuator that
causes it to increase and/or decrease, the information path that completes
the feedback path, and the disturbances that upset the variable. You may
need to consult an encyclopedia or textbook on human physiology for
information on this problem.

(a) blood pressure

(b) blood sugar concentration

(c) heart rate

(d) eye-pointing angle

(e) eye-pupil diameter

Solution:

Feedback control in human body:
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Variable Sensor Actuator Information path Disturbances
a) Blood pressure -Arterial -Cardiac output -A¤erent nerve -Bleeding

baroreceptors -Arteriolar/venous �bers -Drugs
dilation -Stress,Pain

b) Blood sugar -Pancreas -Pancreas secreting -Blood �ow to -Diet
concentration insulin pancreas -Exercise
(Glucose)
c) Heart rate -Diastolic volume -Electrical stimulation -Mechanical draw -Hormone release

sensors of sino-atrial node of blood from heart -Exercise
-Cardiac sympathetic and cardiac muscle -Circulating
nerves epinephrine

d) Eye pointing -Optic nerve -Extraocular muscles -Cranial innervation -Head movement
angle -Image detection -Muscle twitch
e) Pupil diameter -Rods -Pupillary sphincter -Autonomous -Ambient light

muscles system -Drugs
f ) Blood calcium -Parathyroid gland -Ca from bones to blood - Parathormone -Ca need in bones
level detectors -Gastrointestinal hormone a¤ecting -Drugs

absorption e¤ector sites

5. Draw a graph of the components for temperature control in a refrigerator
or automobile air-conditioning system.

Solution:

This is the simplest possible system. Modern cases include computer
control as described in later chapters.

6. Draw a graph of the components for an elevator-position control. Indi-
cate how you would measure the position of the elevator car. Consider a
combined coarse and �ne measurement system. What accuracies do you
suggest for each sensor? Your system should be able to correct for the
fact that in elevators for tall buildings there is signi�cant cable stretch as
a function of cab load.

Solution:

A coarse measurement can be obtained by an electroswitch located before
the desired �oor level. When touched, the controller reduces the motor
speed. A ��ne� sensor can then be used to bring the elevator precisely
to the �oor level. With a sensor such as the one depicted in the �gure,
a linear control loop can be created (as opposed to the on-o¤ type of the
coarse control).Accuracy required for the course switch is around 5 cm;
for the �ne �oor alignment, an accuracy of about 2 mm is desirable to
eliminate any noticeable step for those entering or exiting the elevator.
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7. Feedback control requires being able to sense the variable being controlled.
Because electrical signals can be transmitted, ampli�ed, and processed
easily, often we want to have a sensor whose output is a voltage or current
proportional to the variable being measured. Describe a sensor that would
give an electrical output proportional to:

(a) temperature
(b) pressure
(c) liquid level
(d) �ow of liquid along a pipe (or blood along an artery) force
(e) linear position
(f) rotational position
(g) linear velocity
(h) rotational speed
(i) translational acceleration
(j) torque

Solution:
Sensors for feedback control systems with electrical output. Exam-
ples

(a) Temperature: Thermistor- temperature sensitive resistor with resis-
tance change proportional to temperature; Thermocouple; Thyrister.
Modern thermostats are computer controlled and programmable.

(b) Pressure: Strain sensitive resistor mounted on a diaphragm which
bends due to changing pressure
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(c) Liquid level: Float connected to potentiometer. If liquid is conductive
the impedance change of a rod immersed in the liquid may indicate
the liquid level.

(d) Flow of liquid along a pipe: A turbine actuated by the �ow with a
magnet to trigger an external counting circuit. Hall e¤ect produces
an electronic output in response to magnetic �eld changes. Another
way: Measure pressure di¤erence from venturi into pressure sensor
as in �gure; Flowmeter. For blood �ow, an ultrasound device like a
SONAR can be used.

(e) Position.
When direct mechanical interaction is possible and for �small�dis-
placements, the same ideas may be used. For example a potentiome-
ter may be used to measure position of a mass in an accelerator (h).
However in many cases such as the position of an aircraft, the task is
much more complicated and measurement cannot be made directly.
Calculation must be carried out based on other measurements, for
example optical or electromagnetic direction measurements to several
known references (stars,transmitting antennas ...); LVDT for linear,
RVDT for rotational.

(f) Rotational position. The most common traditional device is a pote-
niometer. Also common are magnetic machines in shich a rotating
magnet produces a variable output based on its angle.

(g) Linear velocity. For a vehicle, a RADAR can measure linear velocity.
In other cases, a rack-and-pinion can be used to translate linear to
rotational motion and an electric motor(tachometer) used to measure
the speed.

(h) Speed: Any toothed wheel or gear on a rotating part may be used to
trigger a magnetic �eld change which can be used to trigger an elec-
trical counting circuit by use of a Hall e¤ect (magnetic to electrical)
sensor. The pulses can then be counted over a set time interval to
produce angular velocity: Rate gyro; Tachometer
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(i) Acceleration: A mass movement restrained by a spring measured by
a potentiometer. A piezoelectric material may be used instead (a ma-
terial that produces electrical current with intensity proportional to
acceleration). In modern airbags, an integrated circuit chip contains
a tiny lever and �proof mass�whose motion is measured generating a
voltage proportional to acceleration.

(j) Force, torque: A dynamometer based on spring or beam de�ections,
which may be measured by a potentiometer or a strain-gauge.

8. Each of the variables listed in Problem 7 can be brought under feedback
control. Describe an actuator that could accept an electrical input and be
used to control the variables listed. Give the units of the actuator output
signal.

Solution:

(a) Resistor with voltage applied to it ormercury arc lamp to generate
heat for small devices. a furnace for a building..

(b) Pump: Pumping air in or out of a chamberto generate pressure. Else,
a �torque motor�produces force..

(c) Valve and pump: forcing liquid in or out of the container.

(d) A valve is nromally used to control �ow.

(e) Electric motor

(f) Electric motor

(g) Electric motor

(h) Electric motor

(i) Translational acceleration is usually controlled by a motor or engine
to provide force on the vehicle or other object.

(j) Torque motor. In this motor the torque is directly proportional to
the input (current).



Chapter 2

Dynamic Models

Problems and Solutions for Section 2.1

1. Write the di¤erential equations for the mechanical systems shown in Fig. 2.39.
For (a) and (b), state whether you think the system will eventually de-
cay so that it has no motion at all, given that there are non-zero initial
conditions for both masses, and give a reason for your answer.

Figure 2.39: Mechanical systems

Solution:

2003
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The key is to draw the Free Body Diagram (FBD) in order to keep the
signs right. For (a), to identify the direction of the spring forces on the
object, let x2 = 0 and �xed and increase x1 from 0. Then the k1 spring
will be stretched producing its spring force to the left and the k2 spring
will be compressed producing its spring force to the left also. You can use
the same technique on the damper forces and the other mass.

(a)
Free body diagram for Problem 2.1(a)

m1�x1 = �k1x1 � b1 _x1 � k2 (x1 � x2)
m2�x2 = �k2 (x2 � x1)� k3 (x2 � y)� b2 _x2

There is friction a¤ecting the motion of both masses; therefore the
system will decay to zero motion for both masses.

Free body diagram for Problem 2.1(b)

m1�x1 = �k1x1 � k2(x1 � x2)� b1 _x1
m2�x2 = �k2(x2 � x1)� k3x2

Although friction only a¤ects the motion of the left mass directly,
continuing motion of the right mass will excite the left mass, and
that interaction will continue until all motion damps out.
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Figure 2.40: Mechanical system for Problem 2.2

m1 m2

x1 x2

k (x ­ x )2 1 2 k (x ­ x )2 1 2

k x1 1

b (x ­ x )1 1 2 b (x ­ x )1 1 2
. .. .

F

Free body diagram for Problem 2.1(c)

m1�x1 = �k1x1 � k2(x1 � x2)� b1( _x1 � _x2)

m2�x2 = F � k2(x2 � x1)� b1( _x2 � _x1)

2. Write the di¤erential equations for the mechanical systems shown in Fig. 2.40.
State whether you think the system will eventually decay so that it has
no motion at all, given that there are non-zero initial conditions for both
masses, and give a reason for your answer.

Solution:

The key is to draw the Free Body Diagram (FBD) in order to keep the
signs right. To identify the direction of the spring forces on the left side
object, let x2 = 0 and increase x1 from 0. Then the k1 spring on the left
will be stretched producing its spring force to the left and the k2 spring
will be compressed producing its spring force to the left also. You can use
the same technique on the damper forces and the other mass.

m1 m2

x1 x2

x2

k (x ­ x )2 1 2

k x1 1 k1

b (x ­ x )2 1 2 b (x ­ x )2 1 2
. . . .

Free body diagram for Problem 2.2
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Then the forces are summed on each mass, resulting in

m1�x1 = �k1x1 � k2(x1 � x2)� b1( _x1 � _x2)

m2�x2 = k2(x1 � x2)� b1( _x1 � _x2)� k1x2

The relative motion between x1 and x2 will decay to zero due to the
damper. However, the two masses will continue oscillating together
without decay since there is no friction opposing that motion and no �ex-
ure of the end springs is all that is required to maintain the oscillation of
the two masses.

3. Write the equations of motion for the double-pendulum system shown in
Fig. 2.41. Assume the displacement angles of the pendulums are small
enough to ensure that the spring is always horizontal. The pendulum
rods are taken to be massless, of length l, and the springs are attached
3/4 of the way down.

Figure 2.41: Double pendulum

Solution:
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1θ 2θ

k

1sin
4
3 θl 2sin

4
3 θl

m m

l
4
3

De�ne coordinates

If we write the moment equilibrium about the pivot point of the left pen-
dulem from the free body diagram,

M = �mgl sin �1 � k
3

4
l (sin �1 � sin �2) cos �1

3

4
l = ml2��1

ml2��1 +mgl sin �1 +
9

16
kl2 cos �1 (sin �1 � sin �2) = 0

Similary we can write the equation of motion for the right pendulem

�mgl sin �2 + k
3

4
l (sin �1 � sin �2) cos �2

3

4
l = ml2��2

As we assumed the angles are small, we can approximate using sin �1 �
�1; sin �2 � �2, cos �1 � 1, and cos �2 � 1. Finally the linearized equations
of motion becomes,

ml��1 +mg�1 +
9

16
kl (�1 � �2) = 0

ml��2 +mg�2 +
9

16
kl (�2 � �1) = 0

Or



2008 CHAPTER 2. DYNAMIC MODELS

��1 +
g

l
�1 +

9

16

k

m
(�1 � �2) = 0

��2 +
g

l
�2 +

9

16

k

m
(�2 � �1) = 0

4. Write the equations of motion of a pendulum consisting of a thin, 4-kg
stick of length l suspended from a pivot. How long should the rod be in
order for the period to be exactly 2 secs? (The inertia I of a thin stick
about an endpoint is 1

3ml
2. Assume � is small enough that sin � �= �.)

Solution:

Let�s use Eq. (2.14)

M = I�;

mg

θ

2
lO

De�ne coordinates
and forces

Moment about point O.

MO = �mg � l

2
sin � = IO��

=
1

3
ml2��

�� +
3g

2l
sin � = 0
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As we assumed � is small,

�� +
3g

2l
� = 0

The frequency only depends on the length of the rod

!2 =
3g

2l

T =
2�

!
= 2�

s
2l

3g
= 2

l =
3g

2�2
= 1:49m

<Notes>

(a) Compare the formula for the period, T = 2�
q

2l
3g with the well known

formula for the period of a point mass hanging with a string with

length l. T = 2�
q

l
g .

(b) Important!
In general, Eq. (2.14) is valid only when the reference point for
the moment and the moment of inertia is the mass center of the
body. However, we also can use the formular with a reference point
other than mass center when the point of reference is �xed or not
accelerating, as was the case here for point O.

5. For the car suspension discussed in Example 2.2, plot the position of
the car and the wheel after the car hits a �unit bump� (i.e., r is a unit
step) using MATLAB. Assume that m1 = 10 kg, m2 = 350 kg, kw =
500; 000 N=m, ks = 10; 000 N=m. Find the value of b that you would
prefer if you were a passenger in the car.

Solution:

The transfer function of the suspension was given in the example in Eq.
(2.12) to be:

(a)

Y (s)

R(s)
=

kwb
m1m2

(s+ ks
b )

s4 + ( b
m1
+ b

m2
)s3 + ( ksm1

+ ks
m2
+ kw

m1
)s2 + ( kwb

m1m2
)s+ kwks

m1m2

:

This transfer function can be put directly into Matlab along with
the numerical values as shown below. Note that b is not the damping
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ratio, but damping. We need to �nd the proper order of magnitude
for b, which can be done by trial and error. What passengers feel
is the position of the car. Some general requirements for the smooth
ride will be, slow response with small overshoot and oscillation.

From the �gures, b � 3000 would be acceptable. There is too much
overshoot for lower values, and the system gets too fast (and harsh)
for larger values.

% Problem 2.5
clear all, close all

m1 = 10;
m2 = 350;
kw = 500000;
ks = 10000;
B = [ 1000 2000 3000 4000 ];
t = 0:0.01:2;

for i = 1:4
b = B(i);
num = kw*b/(m1*m2)*[1 ks/b];
den =[1 (b/m1+b/m2) (ks/m1+ks/m2+kw/m1)

(kw*b/(m1*m2) kw*ks/(m1*m2)];
sys=tf(num,den);
y = step( sys, t );

subplot(2,2,i);
plot( t, y(:,1), �:�, t, y(:,2), �-�);
legend(�Wheel�,�Car�);
ttl = sprintf(�Response with b = %4.1f �,b );
title(ttl);

end

6. Write the equations of motion for a body of mass M suspended from a
�xed point by a spring with a constant k. Carefully de�ne where the
body�s displacement is zero.

Solution:

Some care needs to be taken when the spring is suspended vertically in
the presence of the gravity. We de�ne x = 0 to be when the spring is
unstretched with no mass attached as in (a). The static situation in (b)
results from a balance between the gravity force and the spring.
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From the free body diagram in (b), the dynamic equation results

m�x = �kx�mg:

We can manipulate the equation

m�x = �k
�
x+

m

k
g
�
;

so if we replace x using y = x+ m
k g,

m�y = �ky
m�y + ky = 0

The equilibrium value of x including the e¤ect of gravity is at x = �m
k g

and y represents the motion of the mass about that equilibrium point.

An alternate solution method, which is applicable for any problem
involving vertical spring motion, is to de�ne the motion to be with respect
to the static equilibrium point of the springs including the e¤ect of gravity,
and then to proceed as if no gravity was present. In this problem, we
would de�ne y to be the motion with respect to the equilibrium point,
then the FBD in (c) would result directly in

m�y = �ky:

7. Automobile manufacturers are contemplating building active suspension
systems. The simplest change is to make shock absorbers with a change-
able damping, b(u1): It is also possible to make a device to be placed in
parallel with the springs that has the ability to supply an equal force, u2;
in opposite directions on the wheel axle and the car body.
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(a) Modify the equations of motion in Example 2.2 to include such con-
trol inputs.

(b) Is the resulting system linear?

(c) Is it possible to use the forcer, u2; to completely replace the springs
and shock absorber? Is this a good idea?

Solution:

(a) The FBD shows the addition of the variable force, u2; and shows b
as in the FBD of Fig. 2.5, however, here b is a function of the control
variable, u1: The forces below are drawn in the direction that would
result from a positive displacement of x.

Free body diagram

m1�x = b (u1) ( _y � _x) + ks (y � x)� kw (x� r)� u2
m2�y = �ks (y � x)� b (u1) ( _y � _x) + u2

(b) The system is linear with respect to u2 because it is additive. But
b is not constant so the system is non-linear with respect to u1 be-
cause the control essentially multiplies a state element. So if we add
controllable damping, the system becomes non-linear.

(c) It is technically possible. However, it would take very high forces
and thus a lot of power and is therefore not done. It is a much bet-
ter solution to modulate the damping coe¢ cient by changing ori�ce
sizes in the shock absorber and/or by changing the spring forces by
increasing or decreasing the pressure in air springs. These features
are now available on some cars... where the driver chooses between
a soft or sti¤ ride.

8. Modify the equation of motion for the cruise control in Example 2.1,
Eq(2.4), so that it has a control law; that is, let u = K(vr � v); where

vr = reference speed

K = constant:
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This is a �proportional�control law where the di¤erence between vr and
the actual speed is used as a signal to speed the engine up or slow it down.
Put the equations in the standard state-variable form with vr as the input
and v as the state. Assume that m = 1000 kg and b = 50 N � s=m; and
�nd the response for a unit step in vr using MATLAB. Using trial and
error, �nd a value of K that you think would result in a control system in
which the actual speed converges as quickly as possible to the reference
speed with no objectional behavior.

Solution:

_v +
b

m
v =

1

m
u

substitute in u = K (vr � v)

_v +
b

m
v =

1

m
u =

K

m
(vr � v)

Rearranging, yields the closed-loop system equations,

_v +
b

m
v +

K

m
v =

K

m
vr

A block diagram of the scheme is shown below where the car dynamics
are depicted by its transfer function from Eq. 2.7.

m
bs

m
+

1
KΣ

u vrv

−
+

Block diagram

The transfer function of the closed-loop system is,

V (s)

Vr(s)
=

K
m

s+ b
m +

K
m

so that the inputs for Matlab are
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num =
K

m

den = [1
b

m
+
K

m
]

For K = 100; 500; 1000; 5000 We have,

Time (sec.)

A
m

pl
itu

de

Step Response

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
From: U(1)

To
: Y

(1
)

K=100

K=500

K=1000

 K=5000

Time responses

We can see that the larger the K is, the better the performance, with no
objectionable behaviour for any of the cases. The fact that increasing K
also results in the need for higher acceleration is less obvious from the
plot but it will limit how fast K can be in the real situation because the
engine has only so much poop. Note also that the error with this scheme
gets quite large with the lower values of K. You will �nd out how to
eliminate this error in chapter 4 using integral control, which is contained
in all cruise control systems in use today. For this problem, a reasonable
compromise between speed of response and steady state errors would be
K = 1000; where it responds is 5 seconds and the steady state error is 5%.
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% Problem 2.8
clear all, close all

% data
m = 1000;
b = 50;
k = [ 100 500 1000 5000 ];

% Overlay the step response
hold on
for i=1:length(k)
K=k(i);
num =K/m;
den = [1 b/m+K/m];
step( num, den);

end

9. In many mechanical positioning systems there is �exibility between one
part of the system and another. An example is shown in Figure 2.6
where there is �exibility of the solar panels. Figure 2.42 depicts such a
situation, where a force u is applied to the mass M and another mass
m is connected to it. The coupling between the objects is often modeled
by a spring constant k with a damping coe¢ cient b, although the actual
situation is usually much more complicated than this.

(a) Write the equations of motion governing this system.

(b) Find the transfer function between the control input, u; and the
output, y:

Figure 2.42: Schematic of a system with �exibility

Solution:

(a) The FBD for the system is
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Free body diagrams

which results in the equations

m�x = �k (x� y)� b ( _x� _y)

M �y = u+ k (x� y) + b ( _x� _y)

or

�x+
k

m
x+

b

m
_x� k

m
y � b

m
_y = 0

� k

M
x� b

M
_x+ �y +

k

M
y +

b

M
_y =

1

M
u

(b) If we make Laplace Transform of the equations of motion

s2X +
k

m
X +

b

m
sX � k

m
Y � b

m
sY = 0

� k

M
X � b

M
sX + s2Y +

k

M
Y +

b

M
sY =

1

M
U

In matrix form,�
ms2 + bs+ k � (bs+ k)
� (bs+ k) Ms2 + bs+ k

� �
X
Y

�
=

�
0
U

�
From Cramer�s Rule,

Y =

det

�
ms2 + bs+ k 0
� (bs+ k) U

�
det

�
ms2 + bs+ k � (bs+ k)
� (bs+ k) Ms2 + bs+ k

�
=

ms2 + bs+ k

(ms2 + bs+ k) (Ms2 + bs+ k)� (bs+ k)2
U

Finally,
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Y

U
=

ms2 + bs+ k

(ms2 + bs+ k) (Ms2 + bs+ k)� (bs+ k)2

=
ms2 + bs+ k

mMs4 + (m+M)bs3 + (M +m)ks2
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Problems and Solutions for Section 2.2

10. A �rst step toward a realistic model of an op amp is given by the equations
below and shown in Fig. 2.43.

Vout =
107

s+ 1
[V+ � V�]

i+ = i� = 0

Figure 2.43: Circuit for Problem 10.

Find the transfer function of the simple ampli�cation circuit shown using
this model.

Solution:

As i� = 0,

(a)
Vin � V�
Rin

=
V� � Vout

Rf

V� =
Rf

Rin +Rf
Vin +

Rin
Rin +Rf

Vout

Vout =
107

s+ 1
[V+ � V�]

=
107

s+ 1

�
V+ �

Rf
Rin +Rf

Vin �
Rin

Rin +Rf
Vout

�
= � 107

s+ 1

�
Rf

Rin +Rf
Vin +

Rin
Rin +Rf

Vout

�
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Figure 2.44: Circuit for Problem 11.

Vout
Vin

=
�107 Rf

Rin+Rf

s+ 1 + 107 Rin

Rin+Rf

11. Show that the op amp connection shown in Fig. 2.44 results in Vo = Vin
if the op amp is ideal. Give the transfer function if the op amp has the
non-ideal transfer function of Problem 2.10.

Solution:

Ideal case:

Vin = V+

V+ = V�

V� = Vout

Non-ideal case:

Vin = V+; V� = Vout

but,

V+ 6= V�

instead,

Vout =
107

s+ 1
[V+ � V�]

=
107

s+ 1
[Vin � Vout]
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so,

Vout
Vin

=
107

s+1

1 + 107

s+1

=
107

s+ 1 + 107
�=

107

s+ 107

12. Show that, with the non-ideal transfer function of Problem 2.10, the op
amp connection shown in Fig. 2.45 is unstable.

Figure 2.45: Circuit for Problem 12.

Solution:

Vin = V�; V+ = Vout

Vout =
107

s+ 1
[V+ � V�]

=
107

s+ 1
[Vout � Vin]

Vout
Vin

=
107

s+1

107

s+1 � 1
=

107

�s� 1 + 107
�=

�107
s� 107

The transfer function has a denominator with s� 107; and the minus sign
means the exponential time function is increasing, which means that it
has an unstable root.

13. A common connection for a motor power ampli�er is shown in Fig. 2.46.
The idea is to have the motor current follow the input voltage and the
connection is called a current ampli�er. Assume that the sense resistor,
Rs is very small compared with the feedback resistor, R and �nd the
transfer function from Vin to Ia: Also show the transfer function when
Rf =1:
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Solution:

At node A,
Vin � 0
Rin

+
Vout � 0
Rf

+
VB � 0
R

= 0 (93)

At node B, with Rs � R

Ia +
0� VB
R

+
0� VB
Rs

= 0 (94)

VB =
RRs
R+Rs

Ia

VB � RsIa

The dynamics of the motor is modeled with negligible inductance as

Jm��m + b _�m = KtIa (95)

Jms
+ b
 = KtIa

At the output, from Eq. 94. Eq. 95 and the motor equation Va =
IaRa +Kes


Vo = IaRs + Va

= IaRs + IaRa +Ke
KtIa
Jms+ b

Substituting this into Eq.93

Vin
Rin

+
1

Rf

�
IaRs + IaRa +Ke

KtIa
Jms+ b

�
+
IaRs
R

= 0

This expression shows that, in the steady state when s ! 0; the current
is proportional to the input voltage.

If fact, the current ampli�er normally has no feedback from the output
voltage, in which case Rf !1 and we have simply

Ia
Vin

= � R

RinRs

14. An op amp connection with feedback to both the negative and the positive
terminals is shown in Fig 2.47. If the op amp has the non-ideal transfer
function given in Problem 10, give the maximum value possible for the
positive feedback ratio, P =

r

r +R
in terms of the negative feedback

ratio,N =
Rin

Rin +Rf
for the circuit to remain stable.

Solution:
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Figure 2.46: Op Amp circuit for Problem 14.

Vin � V�
Rin

+
Vout � V�

Rf
= 0

Vout � V+
R

+
0� V+
r

= 0

V� =
Rf

Rin +Rf
Vin +

Rin
Rin +Rf

Vout

= (1�N)Vin +NVout
V+ =

r

r +R
Vout = PVout

Vout =
107

s+ 1
[V+ � V�]

=
107

s+ 1
[PVout � (1�N)Vin �NVout]

Vout
Vin

=

107

s+ 1
(1�N)

107

s+ 1
P � 107

s+ 1
N � 1

=
107 (1�N)

107P � 107N � (s+ 1)

=
�107 (1�N)

s+ 1� 107P + 107N
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0 < 1� 107P + 107N
P < N + 10�7

15. Write the dynamic equations and �nd the transfer functions for the circuits
shown in Fig. 2.48.

(a) passive lead circuit

(b) active lead circuit

(c) active lag circuit.

(d) passive notch circuit

Solution:

(a) Passive lead circuit
With the node at y+, summing currents into that node, we get

Vu � Vy
R1

+ C
d

dt
(Vu � Vy)�

Vy
R2

= 0 (96)

rearranging a bit,

C _Vy +

�
1

R1
+
1

R2

�
Vy = C _Vu +

1

R1
Vu

and, taking the Laplace Transform, we get

Vy(s)

Vu(s)
=

Cs+ 1
R1

Cs+
�
1
R1
+ 1

R2

�
(b) Active lead circuit

inV outV

C

V

1R 2R

fR

Active lead circuit with node marked

Vin � V
R2

+
0� V
R1

+ C
d

dt
(0� V ) = 0 (97)
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Vin � V
R2

=
0� Vout
Rf

(98)

We need to eliminate V . From Eq. 98,

V = Vin +
R2
Rf
Vout

Substitute V �s in Eq. 97.

1

R2

�
Vin � Vin �

R2
Rf
Vout

�
� 1

R1

�
Vin +

R2
Rf
Vout

�
�C

�
_Vin +

R2
Rf

_Vout

�
= 0

1

R1
Vin + C _Vin = �

1

Rf

��
1 +

R2
R1

�
Vout +R2C _Vout

�
Laplace Transform

Vout
Vin

=
Cs+ 1

R1

� 1
Rf

�
R2Cs+ 1 +

R2

R1

�
= �Rf

R2

s+ 1
R1C

s+ 1
R1C

+ 1
R2C

We can see that the pole is at the left side of the zero, which means
a lead compensator.

(c) active lag circuit

inR

inV outV

1R2R

C

V

Active lag circuit with node marked

Vin � 0
Rin

=
0� V
R2

=
V � Vout
R1

+ C
d

dt
(V � Vout)

V = � R2
Rin

Vin
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Vin
Rin

=
� R2

Rin
Vin � Vout
R1

+ C
d

dt

�
� R2
Rin

Vin � Vout
�

=
1

R1

�
� R2
Rin

Vin � Vout
�
+ C

�
� R2
Rin

_Vin � _Vout

�
1

Rin

�
1 +

R2
R1

�
Vin +

1

Rin
R2C _Vin = �

1

R1
Vout � C _Vout

Vout
Vin

= � R1
Rin

R2Cs+ 1 +
R2

R1

R1Cs+ 1

= � R2
Rin

s+ 1
R2C

+ 1
R1C

s+ 1
R1C

We can see that the pole is at the right side of the zero, which means
a lag compensator.

(d) notch circuit

outV

C1VC

C2

R R
2/R

+ +

− −

inV

2V

Passive notch �lter with nodes marked

C
d

dt
(Vin � V1) +

0� V1
R=2

+ C
d

dt
(Vout � V1) = 0

Vin � V2
R

+ 2C
d

dt
(0� V2) +

Vout � V2
R

= 0

C
d

dt
(V1 � Vout) +

V2 � Vout
R

= 0

We need to eliminat V1; V2 from three equations and �nd the relation
between Vin and Vout

V1 =
Cs

2
�
Cs+ 1

R

� (Vin + Vout)
V2 =

1
R

2
�
Cs+ 1

R

� (Vin + Vout)
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CsV1 � CsVout +
1

R
V2 �

1

R
Vout

= Cs
Cs

2
�
Cs+ 1

R

� (Vin + Vout) + 1

R

1
R

2
�
Cs+ 1

R

� (Vin + Vout)� �Cs+ 1

R

�
Vout

= 0

C2s2 + 1
R2

2
�
Cs+ 1

R

�Vin =

"�
Cs+

1

R

�
�
C2s2 + 1

R2

2
�
Cs+ 1

R

�#Vout
Vout
Vin

=

C2s2+ 1
R2

2(Cs+ 1
R )�

Cs+ 1
R

�
� C2s2+ 1

R2

2(Cs+ 1
R )

=

�
C2s2 + 1

R2

�
2
�
Cs+ 1

R

�2 � �C2s2 + 1
R2

�
=

C2
�
s2 + 1

R2C2

�
C2s2 + 4CsR + 1

R2

=
s2 + 1

R2C2

s2 + 4
RC s+

1
R2C2

16. The very �exible circuit shown in Fig. 2.49 is called a biquad because
its transfer function can be made to be the ratio of two second-order or
quadratic polynomials. By selecting di¤erent values for Ra; Rb; Rc; and
Rd the circuit can realise a low-pass, band-pass, high-pass, or band-reject
(notch) �lter.

(a) Show that if Ra = R; and Rb = Rc = Rd =1; the transfer function
from Vin to Vout can be written as the low-pass �lter

Vout
Vin

=
A

s2

!2n
+ 2�

s

!n
+ 1

(99)

where

A =
R

R1

!n =
1

RC

� =
R

2R2
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Figure 2.47: Op-amp biquad

(b) Using the MATLAB comand step compute and plot on the same
graph the step responses for the biquad of Fig. 2.43 for A = 1;
!n = 1; and � = 0:1; 0:5; and 1:0:

Solution:

Before going in to the speci�c problem, let�s �nd the general form of the
transfer function for the circuit.

Vin
R1

+
V3
R

= �
�
V1
R2

+ C _V1

�
V1
R

= �C _V2
V3 = �V2

V3
Ra

+
V2
Rb

+
V1
Rc

+
Vin
Rd

= �Vout
R

There are a couple of methods to �nd the transfer function from Vin to
Vout with set of equations but for this problem, we will directly solve for
the values we want along with the Laplace Transform.

From the �rst three equations, slove for V1;V2.

Vin
R1

+
V3
R

= �
�
1

R2
+ Cs

�
V1

V1
R

= �CsV2
V3 = �V2
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�
1

R2
+ Cs

�
V1 �

1

R
V2 = � 1

R1
Vin

1

R
V1 + CsV2 = 0

�
1
R2
+ Cs � 1

R
1
R Cs

� �
V1
V2

�
=

�
� 1
R1
Vin
0

�

�
V1
V2

�
=

1�
1
R2
+ Cs

�
Cs+ 1

R2

�
Cs 1

R
� 1
R

1
R2
+ Cs

� �
� 1
R1
Vin
0

�

=
1

C2s2 + C
R2
s+ 1

R2

�
� C
R1
sVin

1
RR1

Vin

�

Plug in V1, V2 and V3 to the fourth equation.

V3
Ra

+
V2
Rb

+
V1
Rc

+
Vin
Rd

=

�
� 1

Ra
+
1

Rb

�
V2 +

1

Rc
V1 +

1

Rd
Vin

=

�
� 1

Ra
+
1

Rb

� 1
RR1

C2s2 + C
R2
s+ 1

R2

Vin +
1

Rc

� C
R1
s

C2s2 + C
R2
s+ 1

R2

Vin +
1

Rd
Vin

=

"�
� 1

Ra
+
1

Rb

� 1
RR1

C2s2 + C
R2
s+ 1

R2

+
1

Rc

� C
R1
s

C2s2 + C
R2
s+ 1

R2

+
1

Rd

#
Vin

= �Vout
R

Finally,

Vout
Vin

= �R
"�
� 1

Ra
+
1

Rb

� 1
RR1

C2s2 + C
R2
s+ 1

R2

+
1

Rc

� C
R1
s

C2s2 + C
R2
s+ 1

R2

+
1

Rd

#

= �R

�
� 1
Ra
+ 1

Rb

�
1

RR1
� 1

Rc

C
R1
s+ 1

Rd

�
C2s2 + C

R2
s+ 1

R2

�
C2s2 + C

R2
s+ 1

R2

= � R

C2

C2

Rd
s2 +

�
1
Rd

C
R2
� 1

Rc

C
R1

�
s+

�
1
Rb
� 1

Ra

�
1

RR1
+ 1

Rd

1
R2

s2 + 1
R2C

s+ 1
(RC)2
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(a) If Ra = R; and Rb = Rc = Rd =1;

Vout
Vin

= � R

C2

C2

Rd
s2 +

�
1
Rd

C
R2
� 1

Rc

C
R1

�
s+

�
1
Rb
� 1

Ra

�
1

RR1
+ 1

Rd

1
R2

s2 + 1
R2C

s+ 1
(RC)2

= � R

C2
� 1
R

1
RR1

s2 + 1
R2C

s+ 1
(RC)2

=
1

RR1C2

s2 + 1
R2C

s+ 1
(RC)2

=
R
R1

(RC)
2
s2 + R2C

R2
s+ 1

So,

R

R1
= A

(RC)
2
=

1

!2n

2
�

!n
=

R2C

R2

!n =
1

RC

� =
!n
2

R2C

R2
=

1

2RC

R2C

R2
=

R

2R2

(b) Step response using MatLab
% Problem 2.16
A = 1;
wn = 1;
z = [ 0.1 0.5 1.0 ];

hold on
for i = 1:3

num = [ A ];
den = [ 1/wn^2 2*z(i)/wn 1 ]
step( num, den )

end
hold o¤

17. Find the equations and transfer function for the biquad circuit of Fig. 2.49
if Ra = R; Rd = R1 and Rb = Rc =1:
Solution:
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Vout
Vin

= � R

C2

C2

Rd
s2 +

�
1
Rd

C
R2
� 1

Rc

C
R1

�
s+

�
1
Rb
� 1

Ra

�
1

RR1
+ 1

Rd

1
R2

s2 + 1
R2C

s+ 1
(RC)2

= � R

C2

C2

R1
s2 +

�
1
R1

C
R2

�
s+

�
� 1
R

�
1

RR1
+ 1

R1

1
R2

s2 + 1
R2C

s+ 1
(RC)2

= � R
R1

s2 + 1
R2C

s

s2 + 1
R2C

s+ 1
(RC)2
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Problems and Solutions for Section 2.3

18. The torque constant of a motor is the ratio of torque to current and is
often given in ounce-inches per ampere. (ounce-inches have dimension
force-distance where an ounce is 1=16 of a pound.) The electric constant
of a motor is the ratio of back emf to speed and is often given in volts per
1000 rpm. In consistent units the two constants are the same for a given
motor.

(a) Show that the units ounce-inches per ampere are proportional to
volts per 1000 rpm by reducing both to MKS (SI) units.

(b) A certain motor has a back emf of 25 V at 1000 rpm. What is its
torque constant in ounce-inches per ampere?

(c) What is the torque constant of the motor of part (b) in newton-meters
per ampere?

Solution:

Before going into the problem, let�s review the units.

� Some remarks on non SI units.
�Ounce

1oz = 2:835� 10�2 kg

Originally ounce is a unit of mass, but like pounds, it is com-
monly used as a unit of force. If we translate it as force,

1oz(f) = 2:835� 10�2 kgf = 2:835� 10�2 � 9:81N = 0:2778N

� Inch

1 in = 2:540� 10�2m

�RPM (Revolution per Minute)

1 RPM =
2� rad

60 s
=
�

30
rad/ s

� Relation between SI units
�Voltage and Current

V olts � Current(amps) = Power = Energy(joules)= sec

V olts =
Joules= sec

amps
=
Newton�meters= sec

amps
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(a) Relation between torque constant and electric constant.
Torque constant:

1 ounce� 1 inch
1 Ampere

=
0:2778N� 2:540� 10�2m

1A
= 7:056�10�3Nm=A

Electric constant:

1V

1000 RPM
=

1J=(A sec)
1000� �

30 rad/ s
= 9:549� 10�3Nm=A

So,

1 oz in=A =
7:056� 10�3
9:549� 10�3 V=1000 RPM

= (0:739) V=1000 RPM

(b)

25V=1000 RPM = 25� 1

0:739
oz in=A = 33:872 oz in=A

(c)

25V=1000 RPM = 25� 9:549� 10�3Nm=A = 0:239Nm=A

19. The electromechanical system shown in Fig. 2.50 represents a simpli�ed
model of a capacitor microphone. The system consists in part of a parallel
plate capacitor connected into an electric circuit. Capacitor plate a is
rigidly fastened to the microphone frame. Sound waves pass through the
mouthpiece and exert a force fs(t) on plate b, which has mass M and is
connected to the frame by a set of springs and dampers. The capacitance
C is a function of the distance x between the plates, as follows:

C(x) =
"A

x
;

where

" = dielectric constant of the material between the plates;

A = surface area of the plates:

The charge q and the voltage e across the plates are related by

q = C(x)e:

The electric �eld in turn produces the following force fe on the movable
plate that opposes its motion:

fe =
q2

2"A
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(a) Write di¤erential equations that describe the operation of this sys-
tem. (It is acceptable to leave in nonlinear form.)

(b) Can one get a linear model?

(c) What is the output of the system?

Figure 2.48: Simpli�ed model for capacitor microphone

Solution:

(a) The free body diagram of the capacitor plate b

x

M
( )tfs

Kx−
xB&−

( ) efx&sgn−

Free body diagram

So the equation of motion for the plate is

M �x+B _x+Kx+ fesgn ( _x) = fs (t) :

The equation of motion for the circuit is

v = iR+ L
d

dt
i+ e

where e is the voltage across the capacitor,

e =
1

C

Z
i(t)dt



2034 CHAPTER 2. DYNAMIC MODELS

and where C = "A=x; a variable. Because i = d
dtq and e = q=C; we

can rewrite the circuit equation as

v = R _q + L�q +
qx

"A

In summary, we have these two, couptled, non-linear di¤erential
equation.

M �x+ b _x+ kx+ sgn ( _x)
q2

2"A
= fs (t)

R _q + L�q +
qx

"A
= v

(b) The sgn function, q2, and qx; terms make it impossible to determine
a useful linearized version.

(c) The signal representing the voice input is the current, i, or _q:

20. A very typical problem of electromechanical position control is an electric
motor driving a load that has one dominant vibration mode. The problem
arises in computer-disk-head control, reel-to-reel tape drives, and many
other applications. A schematic diagram is sketched in Fig. 2.51. The
motor has an electrical constant Ke, a torque constant Kt, an armature
inductance La, and a resistance Ra. The rotor has an inertia J1 and
a viscous friction B. The load has an inertia J2. The two inertias are
connected by a shaft with a spring constant k and an equivalent viscous
damping b. Write the equations of motion.

Figure 2.49: Motor with a �exible load

(a)

Solution:

(a) Rotor:

J1��1 = �B _�1 � b
�
_�1 � _�2

�
� k (�1 � �2) + Tm
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Load:

J2��2 = �b
�
_�2 � _�1

�
� k (�2 � �1)

Circuit:

va �Ke
_�1 = La

d

dt
ia +Raia

Relation between the output torque and the armature current:

Tm = Ktia
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Problems and Solutions for Section 2.4
21. A precision-table leveling scheme shown in Fig. 2.52 relies on thermal

expansion of actuators under two corners to level the table by raising or
lowering their respective corners. The parameters are:

Tact = actuator temperature;

Tamb = ambient air temperature;

Rf = heat� 
ow coe�cient between the actuator and the air;
C = thermal capacity of the actuator;

R = resistance of the heater:

Assume that (1) the actuator acts as a pure electric resistance, (2) the
heat �ow into the actuator is proportional to the electric power input,
and (3) the motion d is proportional to the di¤erence between Tact and
Tamb due to thermal expansion. Find the di¤erential equations relating
the height of the actuator d versus the applied voltage vi.

Figure 2.50: (a) Precision table kept level by actuators; (b) side view of one
actuator

Solution:

Electric power in is proportional to the heat �ow in

_Qin = Kq
v2i
R

and the heat �ow out is from heat transfer to the ambient air

_Qout =
1

Rf
(Tact � Tamb) :
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The temperature is governed by the di¤erence in heat �ows

_Tact =
1

C

�
_Qin � _Qout

�
=

1

C

�
Kq
v2i
R
� 1

Rf
(Tact � Tamb)

�
and the actuator displacement is

d = K (Tact � Tamb) :

where Tamb is a given function of time, most likely a constant for a table
inside a room. The system input is vi and the system output is d:

22. An air conditioner supplies cold air at the same temperature to each room
on the fourth �oor of the high-rise building shown in Fig. 2.53(a). The �oor
plan is shown in Fig. 2.53(b). The cold air �ow produces an equal amount
of heat �ow q out of each room. Write a set of di¤erential equations
governing the temperature in each room, where

To = temperature outside the building;

Ro = resistance to heat 
ow through the outer walls;

Ri = resistance to heat 
ow through the inner walls:

Assume that (1) all rooms are perfect squares, (2) there is no heat �ow
through the �oors or ceilings, and (3) the temperature in each room is
uniform throughout the room. Take advantage of symmetry to reduce the
number of di¤erential equations to three.

Solution:

We can classify 9 rooms to 3 types by the number of outer walls they have.

Type 1 Type 2 Type 1
Type 2 Type 3 Type 2
Type 1 Type 2 Type 1

We can expect the hotest rooms on the outside and the corners hotest of
all, but solving the equations would con�rm this intuitive result. That is,

To > T1 > T2 > T3

and, with a same cold air �ow into every room, the ones with some sun
load will be hotest.

Let�s rede�nce the resistances

Ro = resistance to heat 
ow through one unit of outer wall

Ri = resistance to heat 
ow through one unit of inner wall
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Figure 2.51: Building air conditioning: (a) high-rise building, (b) �oor plan of
the fourth �oor

Room type 1:

qout =
2

Ri
(T1 � T2) + q

qin =
2

Ro
(To � T1)

_T1 =
1

C
(qin � qout)

=
1

C

�
2

Ro
(To � T1)�

2

Ri
(T1 � T2)� q

�
Room type 2:

qin =
1

Ro
(To � T2) +

2

Ri
(T1 � T2)

qout =
1

Ri
(T2 � T3) + q

_T2 =
1

C

�
1

Ro
(To � T2) +

2

Ri
(T1 � T2)�

1

Ri
(T2 � T3)� q

�
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Room type 3:

qin =
4

Ri
(T2 � T3)

qout = q

_T3 =
1

C

�
4

Ri
(T2 � T3)� q

�
23. For the two-tank �uid-�ow system shown in Fig. 2.54, �nd the di¤erential

equations relating the �ow into the �rst tank to the �ow out of the second
tank.

Figure 2.52: Two-tank �uid-�ow system for Problem 23

Solution:

This is a variation on the problem solved in Example 2.18 and the de�ni-
tions of terms is taken from that. From the relation between the height
of the water and mass �ow rate, the continuity equations are

_m1 = �A1 _h1 = win � w
_m2 = �A2 _h2 = w � wout

Also from the relation between the pressure and outgoing mass �ow rate,

w =
1

R1
(�gh1)

1
2

wout =
1

R2
(�gh2)

1
2
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Finally,

_h1 = � 1

�A1R1
(�gh1)

1
2 +

1

�A1
win

_h2 =
1

�A2R1
(�gh1)

1
2 � 1

�A2R2
(�gh2)

1
2 :

24. A laboratory experiment in the �ow of water through two tanks is sketched
in Fig. 2.55. Assume that Eq. (2.74) describes �ow through the equal-sized
holes at points A, B, or C.

(a) With holes at A and C but none at B, write the equations of motion
for this system in terms of h1 and h2. Assume that h3 = 20 cm,
h1 > 20 cm; and h2 < 20 cm. When h2 = 10 cm, the out�ow is
200 g/min.

(b) At h1 = 30 cm and h2 = 10 cm, compute a linearized model and the
transfer function from pump �ow (in cubic centimeters per minute)
to h2.

(c) Repeat parts (a) and (b) assuming hole A is closed and hole B is
open.

Figure 2.53: Two-tank �uid-�ow system for Problem 24

Solution:
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(a) Following the solution of Example 2.18, and assuming the area of
both tanks is A; the values given for the heights ensure that the
water will �ow according to

WA =
1

R
[�g (h1 � h3)]

1
2

WC =
1

R
[�gh2]

1
2

WA �WC = �A _h2

Win �WA = �A _h1

From the out�ow information given, we can compute the ori�ce re-
sistance, R; noting that for water, � = 1 gram/cc and g = 981
cm/sec2 ' 1000 cm/sec2:

WC = 200 g=mn =
1

R

p
�gh2 =

1

R

p
�g � 10 cm

R =

p
�g � 10 cm
200 g=mn

=

p
1 g= cm3 � 1000 cm= s2 � 10 cm

200 g=60 s

=
100

200
60

s
g cm2 s2

cm3 s2 g2
= 30 g�

1
2 cm�

1
2

(b) The nonlinear equations from above are

_h1 = � 1

�AR

p
�g (h1 � h3) +

1

�A
Win

_h2 =
1

�AR

p
�g (h1 � h3)�

1

�AR

p
�gh2

The square root functions need to be linearized about the nominal
heights. In general the square root function can be linearized as
below

p
x0 + �x =

s
x0

�
1 +

�x

x0

�
�=

p
x0

�
1 +

1

2

�x

x0

�
So let�s assume that h1 = h10+�h1 and h2 = h20+�h2 where h10 = 30
cm, h20 = 10 cm, and h3 = 20 cm. And for round numbers, let�s
assume the area of each tank A = 100 cm2: The equations above then
reduce to

� _h1 = � 1

(1)(100)(30)

p
(1)(1000) (30 + �h1 � 20) +

1

(1)(100)
Win

� _h2 =
1

(1)(100)(30)

p
(1)(1000) (30 + �h1 � 20)�

1

(1)(100)(30)

p
(1)(1000)(10 + �h2)



2042 CHAPTER 2. DYNAMIC MODELS

which, with the square root approximations, is equivalent to,

� _h1 = � 1

(30)
(1 +

1

20
�h1) +

1

(100)
Win

� _h2 =
1

(30)
(1 +

1

20
�h1)�

1

(30)
(1 +

1

20
�h2)

The nominal in�ow Wnom = 10
3 cc/sec is required in order for the

system to be in equilibrium, as can be seen from the �rst equation.
So we will de�ne the total in�ow to be Win = Wnom + �W; so the
equations become

� _h1 = � 1

(30)
(1 +

1

20
�h1) +

1

(100)
Wnom +

1

(100)
�W

� _h2 =
1

(30)
(1 +

1

20
�h1)�

1

(30)
(1 +

1

20
�h2)

or, with the nominal in�ow included, the equations reduce to

� _h1 = � 1

600
�h1 +

1

100
�W

� _h2 =
1

600
�h1 �

1

600
�h2

Taking the Laplace transform of these two equations, and solving for
the desired transfer function (in cc/sec) yields

�H2(s)

�W (s)
=

1

600

0:01

(s+ 1=600)2
:

which becomes, with the in�ow in grams/min,

�H2(s)

�W (s)
=

1

600

(0:01)(60)

(s+ 1=600)2
= :

0:001

(s+ 1=600)2

(c) With hole B open and hole A closed, the relevant relations are

Win �WB = �A _h1

WB =
1

R

p
�g(h1 � h2)

WB �WC = �A _h2

WC =
1

R

p
�gh2

_h1 = � 1

�AR

p
�g(h1 � h2) +

1

�A
Win

_h2 =
1

�AR

p
�g(h1 � h2)�

1

�AR

p
�gh2
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With the same de�nitions for the perturbed quantities as for part
(b), we obtain

� _h1 = � 1

(1)(100)(30)

p
(1)(1000)(30 + �h1 � 10� �h2) +

1

(1)(100)
Win

� _h2 =
1

(1)(100)(30)

p
(1)(1000)(30 + �h1 � 10� �h2)

� 1

(1)(100)(30)

p
(1)(1000)(10 + �h2)

which, with the linearization carried out, reduces to

� _h1 = �
p
2

30
(1 +

1

40
�h1 �

1

40
�h2) +

1

100
Win

� _h2 =

p
2

30
(1 +

1

40
�h1 �

1

40
�h2)�

1

30
(1 +

1

20
�h2)

and with the nominal �ow rate of Win =
10
p
2

3 removed

� _h1 = �
p
2

1200
(�h1 � �h2) +

1

100
�W

� _h2 =

p
2

1200
�h1 + (

p
2

1200
� 1

600
)�h2 +

p
2� 1
30

However, unlike part (b), holding the nominal �ow rate maintains h1
at equilibrium, but h2 will not stay at equilibrium. Instead, there
will be a constant term increasing h2: Thus the standard transfer
function will not result.

25. The equations for heating a house are given by Eqs. (2.62) and (2.63)
and, in a particular case can be written with time in hours as

C
dTh
dt

= Ku� Th � To
R

where

(a) C is the Thermal capacity of the house, BTU=oF

(b) Th is the temperature in the house, oF

(c) To is the temperature outside the house, oF

(d) K is the heat rating of the furnace, = 90; 000 BTU=hour

(e) R is the thermal resistance, oF per BTU=hour

(f) u is the furnace switch, =1 if the furnace is on and =0 if the furnace
is o¤.
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It is measured that, with the outside temperature at 32 oF and the house
at 60 oF , the furnace raises the temperature 2 oF in 6 minutes (0.1
hour). With the furnace o¤, the house temperature falls 2 oF in 40
minutes. What are the values of C and R for the house?

Solution:

For the �rst case, the furnace is on which means u = 1.

C
dTh
dt

= K � 1

R
(Th � To)

_Th =
K

C
� 1

RC
(Th � To)

and with the furnace o¤,

_Th = �
1

RC
(Th � To)

In both cases, it is a �rst order system and thus the solutions involve
exponentials in time. The approximate answer can be obtained by simply
looking at the slope of the exponential at the outset. This will be fairly
accurate because the temperature is only changing by 2 degrees and this
represents a small fraction of the 30 degree temperature di¤erence. Let�s
solve the equation for the furnace o¤ �rst

�Th
�t

= � 1

RC
(Th � To)

plugging in the numbers available, the temperature falls 2 degrees in 2/3
hr, we have

2

2=3
= � 1

RC
(60� 32)

which means that
RC = 28=3

For the second case, the furnace is turned on which means

�Th
�t

=
K

C
� 1

RC
(Th � To)

and plugging in the numbers yields

2

0:1
=
90; 000

C
� 1

28=3
(60� 32)

and we have

C =
90; 000

23
= 3910

R =
RC

C
=
28=3

3910
= 0:00240



Chapter 3

Dynamic Response

Problems and Solutions for Section 3.1: Review
of Laplace Transforms
1. Show that, in a partial-fraction expansion, complex conjugate poles have
coe¢ cients that are also complex conjugates. (The result of this relation-
ship is that whenever complex conjugate pairs of poles are present, only
one of the coe¢ cients needs to be computed.)

Solution:

Consider the second-order system with poles at ��� j�,

H(s) =
1

(s+ �+ j�) (s+ �� j�) :

Perform Partial Fraction Expansion:

H(s) =
C1

s+ �+ j�
+

C2
s+ �� j� :

C1 =
1

s+ �� j� js=���j� =
1

2�
j;

C2 =
1

s+ �+ j�
js=��+j� = �

1

2�
j;

) C1 = C
�
2 :

2. Find the Laplace transform of the following time functions:

(a) f(t) = 1 + 2t

(b) f(t) = 3 + 7t+ t2 + �(t)

(c) f(t) = e�t + 2e�2t + te�3t

(d) f(t) = (t+ 1)2

3001
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(e) f(t) = sinh t

Solution:

(a)

f(t) = 1 + 2t:

Lff(t)g = Lf1(t)g+ Lf2tg;

=
1

s
+
2

s2
;

=
s+ 2

s2
:

We can verify the answer using Matlab:

>> laplace(1+2*t)

ans =

(2+s)/s^2

(b)

f(t) = 3 + 7t+ t2 + �(t);

Lff(t)g = Lf3g+ Lf7tg+ Lft2g+ Lf�(t)g;

=
3

s
+
7

s2
+
2!

s3
+ 1;

=
s3 + 3s2 + 7s+ 2

s3
:

We can verify the answer using Matlab:

>> laplace(3+7*t+t^2+dirac(t))

ans =

1+3/s+7/s^2+2/s^3

(c)

f(t) = e�t + 2e�2t + te�3t;

Lff(t)g = Lfe�tg+ Lf2e�2tg+ Lfte�3tg;

=
1

s+ 1
+

2

s+ 2
+

1

(s+ 3)2
:

We can verify the answer using Matlab:

>> laplace(exp(-t)+2*exp(-2*t)+t*exp(-3*t))

ans =

1/(1+s)+2/(2+s)+1/(s+3)^2
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(d)

f(t) = (t+ 1)2;

= t2 + 2t+ 1:

Lff(t)g = Lft2g+ Lf2tg+ Lf1g;

=
2!

s3
+
2

s2
+
1

s
;

=
s2 + 2s+ 2

s3
:

We can verify the answer using Matlab:

>> laplace((t+1)^2)

ans =

(2+2*s+s^2)/s^3

(e) Using the trigonometric identity,

f(t) = sinh t;

=
et � e�t
2

;

Lff(t)g = L
�
et

2

�
� L

�
e�t

2

�
;

=
1

2

�
1

s� 1

�
� 1
2

�
1

s+ 1

�
;

=
1

s2 � 1 :

We can verify the answer using Matlab:

>> laplace(sinh(t))

ans =

1/(s^2-1)

Remark: A useful reference for this problem and the next several
problems is: K. R. Coombes, B. R. Hunt, R. L. Lipsman, J. E.
Osborn, G. J. Stuck, Di¤erential Equations with Matlab, Wiley,
1998.

3. Find the Laplace transform of the following time functions:

(a) f(t) = 3 cos 6t

(b) f(t) = sin 2t+ 2 cos 2t+ e�t sin 2t

(c) f(t) = t2 + e�2t sin 3t

Solution:
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(a)

f(t) = 3 cos 6t

Lff(t)g = Lf3 cos 6tg
= 3

s

s2 + 36
:

We can verify the answer using Matlab:
>> laplace(3*cos(6*t))
ans =
3*s/(s^2+36)

(b)

f(t) = sin 2t+ 2 cos 2t+ e�t sin 2t

= Lff(t)g = Lfsin 2tg+ Lf2 cos 2tg+ Lfe�t sin 2tg;

=
2

s2 + 4
+

2s

s2 + 4
+

2

(s+ 1)2 + 4
:

We can verify the answer using Matlab:
>> laplace(sin(2*t)+2*cos(2*t)+exp(-t)*sin(2*t))
ans =
2*(9+7*s+4*s^2+s^3)/(s^2+4)/(5+2*s+s^2)

(c)

f(t) = t2 + e�2t sin 3t;

= Lff(t)g = Lft2g+ Lfe�2t sin 3tg;

=
2!

s3
+

3

(s+ 2)2 + 9
;

=
2

s3
+

3

(s+ 2)2 + 9
:

We can verify the answer using Matlab:
>> laplace(t^2+exp(-2*t)*sin(3*t))
ans =
2/s^3+3/(s^2+4*s+13)

4. Find the Laplace transform of the following time functions:

(a) f(t) = t sin t

(b) f(t) = t cos 3t

(c) f(t) = te�t + 2t cos t

(d) f(t) = t sin 3t� 2t cos t
(e) f(t) = 1(t) + 2t cos 2t
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Solution:

(a)

f(t) = t sin t

Lff(t)g = Lft sin tg

Use multiplication by time Laplace transform property (Table A.1,
entry #11),

Lftg(t)g = � d
ds
G(s):

Let g(t) = sin t and use Lfsin atg = a

s2 + a2
:

Lft sin tg = � d
ds

�
1

s2 + 12

�
;

=
2s

(s2 + 1)2
;

=
2s

s4 + 2s2 + 1
:

We can verify the answer using Matlab:
>> laplace(t*sin(t))
ans =
2*s/(s^2+1)^2

(b)
f(t) = t cos 3t

Use multiplication by time Laplace transform property (Table A.1,
entry #11),

Lftg(t)g = � d
ds
G(s):

Let g(t) = cos 3t and use Lfcos atg = s

s2 + a2
:

Lft cos 3tg = � d
ds

�
s

s2 + 9

�
;

=
�[(s2 + 9)� (2s)s]

(s2 + 9)2
;

=
s2 � 9

s4 + 18s2 + 81
:

We can verify the answer using Matlab:
>> laplace(t*cos(3*t))
ans =
(s^2-9)/(s^2+9)^2
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(c)
f(t) = te�t + 2t cos t

Use the following Laplace transforms and properties (Table A.1, en-
tries 4,11, and 3),

Lfte�atg =
1

(s+ a)2
;

Lftg(t)g = � d
ds
G(s);

Lfcos atg =
s

s2 + a2
;

Lff(t)g = Lfte�tg+ 2Lft cos tg;

=
1

(s+ 1)2
+ 2

�
� d
ds

s

s2 + 1

�
;

=
1

(s+ 1)2
� 2

�
(s2 + 1)� (2s)s
(s2 + 1)2

�
;

=
1

(s+ 1)2
+
2(s2 � 1)
(s2 + 1)2

:

We can verify the answer using Matlab:
>> laplace(t*exp(-t)+2*t*cos(t))
ans =
1/(1+s)^2+2*(s^2-1)/(s^2+1)^2

(d)
f(t) = t sin 3t� 2t cos t:

Use the following Laplace transforms and properties (Table A.1, en-
tries 11, 3),

Lftg(t)g = � d
ds
G(s);

Lfsin atg =
a

s2 + a2
;

Lfcos atg =
s

s2 + a2
;

Lff(t)g = Lft sin 3tg � 2Lft cos tg;

= � d
ds

�
3

s2 + 9

�
� 2

�
� d
ds

�
s

s2 + 1

��
;

=
(2s� 3)
(s2 + 9)2

+ 2
[(s2 + 1)� (2s)s]

(s2 + 1)2
;

=
6s

(s2 + 9)2
� 2(s

2 � 1)
(s2 + 1)2

:

We can verify the answer using Matlab:
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>> laplace(t*sin(3*t)-2*t*cos(t))

ans =

6*s/(s^2+9)^2-2*(s^2-1)/(s^2+1)^2

(e)

f(t) = 1(t) + 2t cos 2t;

Lf1(t)g =
1

s
;

Lftg(t)g = � d
ds
G(s);

Lfcos atg =
s

s2 + a2
;

Lff(t)g = Lf1(t)g+ 2Lft cos 2tg;

=
1

s
+ 2

�
� d
ds

s

s2 + 4

�
;

=
1

s
� 2

�
(s2 + 4)� (2s)s
(s2 + 4)2

�
;

=
1

s
� 2(�s

2 + 4)

(s2 + 4)2
:

We can verify the answer using Matlab:

>> laplace(1+2*t*cos(2*t))

ans =

1/s+2*(s^2-4)/(s^2+4)^2

5. Find the Laplace transform of the following time functions (* denotes
convolution):

(a) f(t) = sin t sin 3t

(b) f(t) = sin2 t+ 3 cos2 t

(c) f(t) = (sin t)=t

(d) f(t) = sin t � sin t

(e) f(t) =
R t
0
cos(t� �) sin �d�

Solution:

(a)

f(t) = sin t sin 3t:
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Use the trigonometric relation,

sin�t sin�t =
1

2
cos(j�� �jt)� 1

2
cos(j�+ �jt);

� = 1 and � = 3:

f(t) =
1

2
cos(j1� 3jt)� 1

2
cos(j1 + 3jt);

=
1

2
cos 2t� 1

2
sin 4t:

Lff(t)g =
1

2
Lfcos 2tg � 1

2
Lfcos 4tg;

=
1

2

�
s

s2 + 4
� s

s2 + 16

�
:

=
6s

(s2 + 4)(s2 + 16)
:

We can verify the answer using Matlab:

>> laplace(sin(t)*sin(3*t))

ans =

6*s/(s^2+16)/(s^2+4)

(b)

f(t) = sin2 t+ 3 cos2 t:

Use the trigonometric formulas,

sin2 t =
1� cos 2t

2
;

cos2 t =
1 + cos 2t

2
;

f(t) =
1� cos 2t

2
+ 3

�
1 + cos 2t

2

�
;

= 2 + cos 2t:

Lff(t)g = Lf2g+ Lfcos 2tg

=
2

s
+

s

s2 + 4
;

=
3s2 + 8

s(s2 + 4)
:

We can verify the answer using Matlab:

>> laplace(sin(t)^2+3*cos(t)^2)

ans =

(8+3*s^2)/s/(s^2+4)
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(c) We �rst show the result that division by time is equivalent to inte-
gration in the frequency domain. This can be done as follows,

F (s) =

Z 1

0

e�stf(t)dt;Z 1

s

F (s)ds =

Z 1

s

�Z 1

0

e�stf(t)dt

�
ds;

Interchanging the order of integration,Z 1

s

F (s)ds =

Z 1

0

�Z 1

s

e�stds

�
f(t)dt;Z 1

s

F (s)ds =

Z 1

0

�
�1
t
e�st

�1
s

f(t)dt;

=

Z 1

0

f(t)

t
e�stdt:

Using this result then,

Lfsin tg =
1

s2 + 1
;

L
�
sin t

t

�
=

Z 1

s

1

�2 + 1
d�;

= tan�1(1)� tan�1(s);
=

�

2
� tan�1(s);

= tan�1
�
1

s

�
:

where a table of integrals was used and the last simpli�cation follows
from the related trigonometric identity.

(d)
f(t) = sin t � sin t:

Use the convolution Laplace transform property (Table A.1, entry 7),

Lfsin t � sin tg =

�
1

s2 + 1

��
1

s2 + 1

�
;

=
1

s4 + 2s2 + 1
:

(e)

f(t) =

Z t

0

cos(t� �) sin �d� :

Lff(t)g = L
�Z t

0

cos(t� �) sin �d�
�
= Lfcos(t) � sin(t)g:
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This is just the de�nition of the convolution theorem,

Lff(t)g =
s

s2 + 1

1

s2 + 1
;

=
s

s4 + 2s2 + 1
:

6. Given that the Laplace transform of f(t) is F(s), �nd the Laplace transform
of the following:

(a) g(t) = f(t) cos t

(b) g(t) =
R t
0

R t1
0
f(�)d�dt1

Solution:

(a) First write cos t in terms of the related Euler identity (Eq. B.33),

g(t) = f(t) cos t = f(t)
ejt + e�jt

2
=
1

2
f(t)ejt +

1

2
f(t)e�jt:

Then using entry 4 of Table A.1 we have,

G(s) =
1

2
F (s� j) + 1

2
F (s+ j) =

1

2
[F (s� j) + F (s+ j)] :

(b) Let us de�ne ef(t1) = Z t1

0

f(�)d� ;

then

g(t) =

Z t

0

ef(t1)dt1;
and from entry 6 of Table A.1 we have

Lf ef(t)g = eF (s) = 1

s
F (s)

and using the same result again, we have

G(s) =
1

s
eF (s) = 1

s

�
1

s
F (s)

�
=
1

s2
F (s):

7. Find the time function corresponding to each of the following Laplace
transforms using partial fraction expansions:

(a) F (s) = 2
s(s+2)

(b) F (s) = 10
s(s+1)(s+10)

(c) F (s) = 3s+2
s2+4s+20
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(d) F (s) = 3s2+9s+12
(s+2)(s2+5s+11)

(e) F (s) = 1
s2+4

(f) F (s) = 2(s+2)
(s+1)(s2+4)

(g) F (s) = s+1
s2

(h) F (s) = 1
s6

(i) F (s) = 4
s4+4

(j) F (s) = e�s

s2

Solution:

(a) Perform partial fraction expansion,

F (s) =
2

s(s+ 2)
;

=
C1
s
+

C2
s+ 2

:

C1 =
2

s+ 2
js=0 = 1;

C2 =
2

s
js=�2 = �1;

F (s) =
1

s
� 1

s+ 2
:

L�1fF (s)g = L�1
�
1

s

�
� L�1

�
1

s+ 2

�
;

f(t) = 1(t)� e�2t1(t):

We can verify the answer using Matlab:

>> ilaplace(2/(s*(s+2)))

ans =

1-exp(-2*t)
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(b) Perform partial fraction expansion,

F (s) =
10

s(s+ 1)(s+ 10)
;

=
C1
s
+

C2
s+ 1

+
C3

s+ 10
:

C1 =
10

(s+ 1)(s+ 10)
js=0 = 1;

C2 =
10

s(s+ 10)
js=�1 = �

10

9
;

C3 =
10

s(s+ 1)
js=�10 =

1

9
;

F (s) =
1

s
�

10

9
s+ 1

+

1

9
s+ 10

;

f(t) = L�1fF (s)g = 1(t)� 10
9
e�t1(t) +

1

9
e�10t1(t):

We can verify the answer using Matlab:
>> ilaplace(10/(s*(s+1)*(s+10)))
ans =
-10/9*exp(-t)+1+1/9*exp(-10*t)

(c) Re-write and carry out partial fraction expansion,

F (s) =
3s+ 2

s2 + 4s+ 20
;

= 3
(s+ 2)� 4

3
(s+ 2)2 + 42

;

=
3(s+ 2)

(s+ 2)2 + 42
� 4

(s+ 2)2 + 42
;

f(t) = L�1fF (s)g = (3e�2t cos 4t� e�2t sin 4t)1(t):

We can verify the answer using Matlab:
>> ilaplace((3*s+2)/(s^2+4*s+20))
ans =
exp(-2*t)*(3*cos(4*t)-sin(4*t))

(d) Perform partial fraction expansion,

F (s) =
3s2 + 9s+ 12

(s+ 2)(s2 + 5s+ 11)

=
C1
s+ 2

+
C2s+ C3
s2 + 5s+ 11

C1 =
3(s2 + 3s+ 4)

(s2 + 5s+ 11)
js=�2 =

6

5
:
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Equate numerators:

6

5
(s+ 2)

+
C2s+ C3

(s2 + 5s+ 11)
=

3s2 + 9s+ 12

(s+ 2)(s2 + 5s+ 11)
;

(C2 +
6

5
)s2 + (6 + C3 + 2C2)s+ (2C3 +

66

5
) = 3s2 + 9s+ 12:

Equate like powers of s to �nd C2 and C3:

C2 +
6

5
= 3) C2 =

9

5
;

2C3 +
66

5
= 12) C3 = �

3

5
;

F (s) =

6

5
(s+ 2)

+

9

5
s� 3

5
(s2 + 5s+ 11)

;

=

6

5
(s+ 2)

+
9

5

s+
5

2�
s+

5

2

�2
+
19

4

� 9
5

17
p
19

57

p
19

2�
s+

5

2

�2
+

 p
19

2

!2 :

f(t) = L�1fF (s)g =

0@6
5
e�2t +

9

5
e
�
5

2
t
cos

p
19

2
t� 153

p
19

285
e
�
5

2
t
sin

p
19

2
t

1A 1(t):
We can verify the answer using Matlab:

>> ilaplace((3*s^2+9*s+12)/((s+2)*(s^2+5*s+11)))

ans =

6/5*exp(-2*t)+3/95*exp(-5/2*t)*(57*cos(1/2*19^(1/2)*t)-17*19^(1/2)*sin(1/2*19^(1/2)*t))

(e) Re-write and use entry #17 of Table A.2,

F (s) =
1

s2 + 4
:

=
1

2

2

(s2 + 22)
:

f(t) =
1

2
sin 2t:

We can verify the answer using Matlab:

>> ilaplace(1/(s^2+4))

ans =

1/2*sin(2*t)
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(f)

F (s) =
2(s+ 2)

(s+ 1)(s2 + 4)
:

=
C1

(s+ 1)
+
C2s+ C3
(s2 + 4)

:

C1 =
2(s+ 2)

(s2 + 4)
js=�1 =

2

5
:

Equate numerators and like powers of s terms:�
2

5
+ C2

�
s2 + (C2 + C3)s+

�
8

5
+ C3

�
= 2s+ 4;

8

5
+ C3 = 4 ) C3 =

12

5
;

C2 + C3 = 2 ) C2 = �
2

5
;

2

5
+ C2 = 0:

F (s) =

2

5
(s+ 1)

+
�2
5
s+

12

5
(s2 + 4)

;

=

2

5
(s+ 1)

+
�2
5
s

(s2 + 22)
+
6

5

2

(s2 + 22)
:

f(t) =
2

5
e�t � 2

5
cos 2t+

6

5
sin 2t:

We can verify the answer using Matlab:
>> ilaplace(2*(s+2)/((s+1)*(s^2+4)))
ans =
-4/5*cos(t)^2+12/5*sin(t)*cos(t)+2/5+2/5*exp(-t)

(g) Perform partial fraction expansion,

F (s) =
s+ 1

s2
;

=
1

s
+
1

s2
:

f(t) = (1 + t)1(t):

We can verify the answer using Matlab:
>> ilaplace((s+1)/(s^2))
ans =
t+1
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(h) Use entry #6 of Table A.2,

F (s) =
1

s6
;

f(t) = L�1
�
1

s6

�
=
t5

5!
=

t5

120
:

We can verify the answer using Matlab:
>> ilaplace(1/s^6)
ans =
1/120*t^5

(i) Re-write as,

F (s) =
4

s4 + 4
;

=
1
2s+ 1

s2 + 2s+ 2
+
� 12s+ 1
s2 � 2s+ 2 ;

=
(s+ 1)� 1

2s

(s+ 1)2 + 1
�
(s� 1)� 1

2s

(s� 1)2 + 1 :

Use Table A.2 entry #19 and Table A.1 entry #5,

f(t) = L�1fF (s)g = e�t cos(t)� 1
2

d

dt

�
e�t sin(t)

	
� et cos(t);

�1
2

d

dt
fet sin(t)g;

= e�t cos(t)� 1
2
f�e�t sin(t) + cos(t)e�tg

�et cos(t) + 1
2
fet sin(t) + cos(t)etg;

= � cos(t)
�
�e�t + et

2

�
+ sin(t)

�
�e�t + et

2

�
;

f(t) = � cos(t) sinh(t) + sin(t) cosh(t):

We can verify the answer using Matlab:
>> ilaplace(4/(s^4+4))
ans =
cosh(t)*sin(t)-sinh(t)*cos(t)

(j) Using entry #2 of Table A.1,

F (s) =
e�s

s2
:

f(t) = L�1fF (s)g = (t� 1)1(t� 1):
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We can verify the answer using Matlab:
>> ilaplace(exp(-s)/(s^2))
ans =
heaviside(t-1)*(t-1)

8. Find the time function corresponding to each of the following Laplace
transforms:

(a) F (s) = 1
s(s+2)2

(b) F (s) = 2s2+s+1
s3�1

(c) F (s) = 2(s2+s+1)
s(s+1)2

(d) F (s) = s3+2s+4
s4�16

(e) F (s) = 2(s+2)(s+5)2

(s+1)(s2+4)2

(f) F (s) = (s2�1)
(s2+1)2

(g) F (s) = tan�1( 1s )

Solution:

(a) Perform partial fraction expansion,

F (s) =
1

s(s+ 2)2
;

=
C1
s
+

C2
(s+ 2)

+
C3

(s+ 2)2
:

C1 = sF (s)js=0 =
1

(s+ 2)2
js=0 =

1

4
;

C3 = (s+ 2)2F (s)js=�2 =
1

s
js=�2 = �

1

2
;

C2 =
d

ds
[(s+ 2)2F (s)]s=�2;

=
d

ds
[s�1]s=�2;

= � 1
s2
js=�2;

= �1
4
;

F (s) =

1

4
s
+
�1
4

(s+ 2)
+

�1
2

(s+ 2)2
:

f(t) = L�1fF (s)g =
�
1

4
� 1
4
e�2t � 1

2
te�2t

�
1(t):
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We can verify the answer using Matlab:
>> ilaplace(1/(s*(s+2)^2))
ans =
1/4-1/4*exp(-2*t)*(1+2*t)

(b) Perform partial fraction expansion,

F (s) =
2s2 + s+ 1

s3 � 1 ;

=
2s2 + s+ 1

(s� 1)(s2 + s+ 1) ;

=
C1
s� 1 +

C2s+ C3
s2 + s+ 1

:

C1 = (s� 1)F (s)js=1 =
2s2 + s+ 1

s2 + s+ 1
js=1 =

4

3
:

Equate numerators and match the coe¢ cients of like powers of s:

4

3
s� 1 +

C2s+ C3
s2 + s+ 1

=
2s2 + s+ 1

(s� 1)(s2 + s+ 1) ;

s2(
4

3
+ C2) + s(

4

3
� C2 + C3) + (

4

3
� C3) = 2s2 + s+ 1;

4

3
+ C2 = 2 ) C2 =

2

3
;

4

3
� C3 = 1 ) C3 =

1

3
:

F (s) =

4

3
s� 1 +

2

3
s+

1

3
s2 + s+ 1

;

=

4

3
s� 1 +

2

3

s+
1

2�
s+

1

2

�2
+

 p
3

2

!2 ;

f(t) = L�1fF (s)g = 4

3
et +

2

3
e�

t
2 cos

p
3

2
t;

=
2

3

(
2et + e�

t
2 cos

p
3

2
t

)
1(t):

We can verify the answer using Matlab:
>> ilaplace((2*s^2+s+1)/(s^3-1))
ans =
4/3*exp(t)+2/3*exp(-1/2*t)*cos(1/2*3^(1/2)*t)
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(c) Carry out partial fraction expansion,

F (s) =
2(s2 + s+ 1)

s (s+ 1)
2 ;

=
C1
s
+

C2
(s+ 1)

+
C3

(s+ 1)2
:

C1 = sF (s)js=0 =
2(s2 + s+ 1)

(s+ 1)
2 js=0 = 2;

C3 = (s+ 1)2F (s)js=�1 =
2(s2 + s+ 1)

s
js=�1 = �2;

C2 =
d

ds
[(s+ 1)2F (s)]s=�1;

=
d

ds
[
2(s2 + s+ 1)

s
]s=�1;

=
2(2s+ 1)s� 2(s2 + s+ 1)

s2
js=�1;

= 0:

F (s) =
2

s
+

0

(s+ 1)
+

�2
(s+ 1)2

:

f(t) = L�1fF (s)g = 2f1� te�tg1(t):

We can verify the answer using Matlab:

>> ilaplace((2*s^2+2*s+2)/(s*(s+1)^2))

ans =

2-2*t*exp(-t)

(d) Carry out partial fraction expansion,

F (s) =
s3 + 2s+ 4

s4 � 16 =
As+B

s2 � 4 +
Cs+D

s2 + 4
=

3
4s+

1
2

s2 � 4 +
1
4s�

1
2

s2 + 4
;

=
1

4
sinh(2t) +

3

4

d

dt

�
1

2
sinh(2t)

�
� 1
4
sin(2t)� 1

4

d

dt

�
1

2
sin(2t)

�
;

=
1

4
sinh(2t) +

3

4
cosh(2t)� 1

4
sin(2t) +

1

4
cos(2t):

We can verify the answer using Matlab:

>> ilaplace((s^3+2*s+4)/(s^4-16))

ans =

-1/4*sin(2*t)+1/2*exp(2*t)+1/4*exp(-2*t)+1/4*cos(2*t)

(e) Expand in partial fraction expansion and compute the residues using
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the results from Appendix A,

F (s) =
2(s+ 2)(s+ 5)2

(s+ 1)(s2 + 4)2
;

=
C1
s+ 1

+
C2
s� 2j +

C3
s+ 2j

+
C4

(s� 2j)2 +
C5

(s+ 2j)2
:

C1 = (s+ 1)F (s)js=�1 =
32

25
= 1:280;

C4 = (s� 2j)2F (s)js=2j =
�83� 39j

20
= �4:150� j1:950;

C5 = C�4 = �4:150 + j1:950;

C2 =
d

ds

�
(s� 2j)2F (s)

�
s=2j

=
�128� 579j

200
;

= �0:64� j2:895;
C3 = C�2 = �0:64 + j2:895:

These results can also be veri�ed with the Matlab residue command,
a =[1 1 8 8 16 16];
b =[2 24 90 100];
[r,p,k]=residue(b,a)
r =
-0.64000000000000 - 2.89500000000002i
-4.15000000000002 - 1.95000000000000i
-0.64000000000000 + 2.89500000000002i
-4.15000000000002 + 1.95000000000000i
1.28000000000001
p =
0.00000000000000 + 2.00000000000000i
0.00000000000000 + 2.00000000000000i
0.00000000000000 - 2.00000000000000i
0.00000000000000 - 2.00000000000000i
-1.00000000000000
k =
[]
We then have,

f(t) = 1:28e�t + 2jC2j cos(2t+ argC2) + 2jC4jt cos(2t+ argC4);
= 1:28e�t + 5:92979 cos(2t� 1:788) + 9:1706t cos(2t� 2:702):

where

jC2j = 2:96489; jC4j = 4:5853; argC2 = tan
�1
�
�2:895
�0:64

�
= �1:788;
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using the atan2 command in Matlab, and

argC4 = tan
�1
�
�1:950
�4:150

�
= �2:702;

also using the atan2 command in Matlab.

(f)

F (s) =
(s2 � 1)
(s2 + 1)2

:

Using the multiplication by time Laplace transform property (Table
A.1 entry #11):

� d
ds
G(s) = Lftg(t)g:

We can see that

� d
ds

�
s

(s2 + 1)

�
=

s2 � 1
(s2 + 1)2

:

So the inverse Laplace transform of F (s) is:

L�1fF (s)g = t cos t:

We can verify the answer using Matlab:
>> ilaplace((s^2-1)/(s^2+1)^2)
ans =
t*cos(t)

(g) Follows from Problem 5 (c), or expand in series,

tan�1(
1

s
) =

1

s
� 1

3s3
+

1

5s5
� :::

Then,

L�1
�
tan�1(

1

s
)

�
= 1� t

2

3!
+
t4

5!
� ::::: = sin(t)

t
:

Alternatively, let us assume

L�1
�
tan�1(

1

s
)

�
= f(t):

We use the identity

d

ds

�
tan�1 s

�
=

1

1 + s2
;

which means that

L�1
�
� 1

s2 + 1

�
= �tf(t) = � sin(t):
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Therefore,

f(t) =
sin(t)

t
:

We can verify the answer using Matlab:
>> ilaplace(atan(1/s))
ans =
1/t*sin(t)

9. Solve the following ordinary di¤erential equations using Laplace trans-
forms:

(a) �y(t) + _y(t) + 3y(t) = 0; y(0) = 1; _y(0) = 2

(b) �y(t)� 2 _y(t) + 4y(t) = 0; y(0) = 1; _y(0) = 2
(c) �y(t) + _y(t) = sin t; y(0) = 1; _y(0) = 2

(d) �y(t) + 3y(t) = sin t; y(0) = 1; _y(0) = 2

(e) �y(t) + 2 _y(t) = et; y(0) = 1; _y(0) = 2

(f) �y(t) + y(t) = t; y(0) = 1; _y(0) = �1

Solution:

(a)
�y(t) + _y(t) + 3y(t) = 0; y (0) = 1; _y (0) = 2

Using Table A.1 entry #5, the di¤erentiation Laplace transform prop-
erty,

s2Y (s)� sy (0)� _y (0) + sY (s)� y (0) + 3Y (s) = 0

Y (s) =
s+ 3

s2 + s+ 3
;

=

�
s+ 1

2

�
+ 5

2�
s+ 1

2

�2
+ 11

4

;

=

�
s+ 1

2

��
s+ 1

2

�2
+ 11

4

+
5
p
11

11

q
11
4�

s+ 1
2

�2
+ 11

4

:

Using Table A.2 entries #19 and #20,

y(t) = e�
1
2 t cos

p
11

2
t+

5
p
11

11
e�

1
2 t sin

p
11

2
t:

We can verify the answer using Matlab:
>> dsolve(�D2y+Dy+3*y=0�,�y(0)=1�,�Dy(0)=2�,�t�)
ans =
5/11*11^(1/2)*exp(-1/2*t)*sin(1/2*11^(1/2)*t)+exp(-1/2*t)*cos(1/2*11^(1/2)*t)
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(b)
�y(t)� 2 _y(t) + 4y (t) = 0; y (0) = 1; _y (0) = 2:

s2Y (s)� sy (0)� _y (0)� 2sY (s) + 2y (0) + 4Y (s) = 0:

Y (s) =
s

s2 � 2s+ 4 ;

=
s

(s� 1)2 + 3
;

Using Table A.1 entry #5 and Table A.2 entry #20,

y(t) =
d

dt

h
et sin

p
3t
i

y(t) =
1p
3
et sin

p
3t+ et cos

p
3t

We can verify the answer using Matlab:
>> dsolve(�D2y-2*Dy+4*y=0�,�y(0)=1�,�Dy(0)=2�,�t�)
ans =
1/3*3^(1/2)*exp(t)*sin(3^(1/2)*t)+exp(t)*cos(3^(1/2)*t)

(c)
�y(t) + _y(t) = sin t; y (0) = 1; _y (0) = 2

s2Y (s)� sy (0)� _y (0) + sY (s)� y (0) = 1

s2 + 1

Y (s) =
s3 + 3s2 + s+ 4

s (s+ 1) (s2 + 1)
;

=
C1
s
+

C2
s+ 1

+
C3s+ C4
s2 + 1

:

C1 =
s3 + 3s2 + s+ 4

(s+ 1) (s2 + 1)
js=0 = 4;

C2 =
s3 + 3s2 + s+ 4

s (s2 + 1)
js=�1 = �

5

2
:

4

s
+
� 52
s+ 1

+
C3s+ C4
s2 + 1

=
s3 + 3s2 + s+ 4

s (s+ 1) (s2 + 1)

s3
�
3

2
+ C3

�
+ s2 (4 + C3 + C4) + s

�
3

2
+ C4

�
+ 4 = s3 + 3s2 + s+ 4:

Match coe¢ cients of like powers of s

C4 +
3

2
= 1 =) C4 = �

1

2
;

C3 +
3

2
= 1 =) C3 = �

1

2
:
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4

s
+
� 52
s+ 1

+
� 12s�

1
2

s2 + 1
=
4

s
+
� 52
s+ 1

� 1
2

s

s2 + 1
� 1
2

1

s2 + 1
:

Using Table A.2 entries #2, #7, #17, and #18

y (t) = 4� 5
2
e�t � 1

2
cos t� 1

2
sin t:

We can verify the answer using Matlab:
>> dsolve(�D2y+Dy-sin(t)=0�,�y(0)=1�,�Dy(0)=2�,�t�)
ans =
-1/2*sin(t)-1/2*cos(t)-5/2*exp(-t)+4

(d)
�y (t) + 3y (t) = sin t; y (0) = 1; _y (0) = 2;

s2Y (s)� sy (0)� _y (0) + 3Y (s) = 1

s2 + 1
;

Y (s) =
s3 + 2s2 + s+ 3

(s2 + 3) (s2 + 1)
;

=
C1s+ C2
s2 + 3

+
C3s+ C4
s2 + 1

:

(C1s+ C2)
�
s2 + 1

�
+ (C3s+ C4)

�
s2 + 3

�
(s2 + 3) (s2 + 1)

=
s3 + 2s2 + s+ 3

(s2 + 3) (s2 + 1)
:

Match coe¢ cients of like powers of s:

s3 (C1 + C3)+s
2 (C2 + C4)+s (C1 + 3C3)+(C2 + 3C4) = s

3+2s2+s+3;

C1 + C3 = 1 =) C1 = �C3 + 1;
C2 + C4 = 2 =) C2 = 2� C4;
C1 + 3C3 = 1 =) �C3 + 1 + 3C3 = 1 =) C3 = 0;

=) C1 = 1;

C2 + 3C4 = 3 =) (2� C4) + 3C4 = 3 =) C4 =
1

2
;

=) C2 =
3

2
;

Y (s) =
1
2s+

3
2

s2 + 3
+

1
2

s2 + 1
;

=
1
2

s2 + 3
+

p
3

2

p
3

s2 + 3
+
1

2

1

s2 + 1
:

y (t) =
1

2
cos
p
3t+

p
3

2
sin
p
3t+

1

2
sin t:
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We can verify the answer using Matlab:

>> dsolve(�D2y+3*y-sin(t)=0�,�y(0)=1�,�Dy(0)=2�,�t�)

ans =

1/2*sin(3^(1/2)*t)*3^(1/2)+cos(3^(1/2)*t)+1/2*sin(t)

(e)
�y(t) + 2 _y (t) = et; y (0) = 1; _y (0) = 2

s2Y (s)� sy (0)� _y (0) + 2sY (s)� 2y (0) = 1

s� 1

Y (s) =
s2 + 3s� 3

s (s� 1) (s+ 2) ;

=
C1
s
+

C2
s� 1 +

C3
s+ 2

:

C1 =
s2 + 3s� 3
(s� 1) (s+ 2) js=0 =

3

2
;

C2 =
s2 + 3s� 3
s (s+ 2)

js=1 =
1

3
;

C3 =
s2 + 3s� 3
s (s� 1) js=�2 = �

5

6
;

Y (s) =
3
2

s
+
1

3

1

s� 1 �
5

6

1

s+ 2
:

y (t) =
3

2
+
1

3
et � 5

6
e�2t:

We can verify the answer using Matlab:

>> dsolve(�D2y+2*Dy-exp(t)=0�,�y(0)=1�,�Dy(0)=2�,�t�)

ans =

1/3*exp(t)-5/6*exp(-2*t)+3/2

(f) Using the results from Appendix A,

�y (t) + y (t) = t; y (0) = 1; _y (0) = �1;

s2Y (s)� sy (0)� _y (0) + Y (s) = 1

s2
;

Y (s) =
s3 � s2 + 1
s2 (s2 + 1)

;

=
C1
s
+
C2
s2
+
C3s+ C4
s2 + 1

:
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C1 =
d

ds

�
s3 � s2 + 1

�
(s2 + 1)

js=0 = 0;

C2 =

�
s3 � s2 + 1

�
(s2 + 1)

js=0 = 1:

1

s2
+
C3s+ C4
s2 + 1

=
s3 � s2 + 1
s2 (s2 + 1)

;�
s2 + 1

�
+ (C3s+ C4) s

2

s2 (s2 + 1)
=

s3 � s2 + 1
s2 (s2 + 1)

:

Match coe¢ cients of like powers of s:

C3 = 1

C4 + 1 = �1 =) C4 = �2

Y (s) =
1

s2
+

s

s2 + 1
� 2 1

s2 + 1

y (t) = t+ cos t� 2 sin t:

We can verify the answer using Matlab:
>> dsolve(�D2y+y-t=0�,�y(0)=1�,�Dy(0)=-1�,�t�)
ans =
-2*sin(t)+cos(t)+t

10. Using the convolution integral, �nd the step response of the system whose
impulse response is given below and shown in Figure 3.47:

h(t) =

�
te�t t � 0
0 t < 0:

Solution: There are only two cases to consider.

Case (a): For the case t � 0, the situation is illustrated in the following
Figure part (c). There is no overlap between the two functions (u(t � �)
and h(�)) and the output is zero

y1(t) = 0:

Case (b): For the case t � 0, the situation is displayed in the following
Figure part (d). The output of the system is given by

y2(t) =

tZ
0

h(�)u(t� �)d� =
tZ
0

(�e�� )(1)d� = 1� (t+ 1)e�t:
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Figure 3.47: Impulse response for Problem 3.10.

Illustration of convolution.

The output of the system is the composite of the two segments computed
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Figure 3.48: Impulse response for Problem 3.11.

above as shown in the following Figure.

System output response.

11. Using the convolution integral, �nd the step response of the system whose
impulse response is given below and shown in Figure 3.48:

h(t) =

�
1 0 � t � 2
0 t < 0 and t > 2

Solution: There are three cases to consider as shown in the following
�gure.

Case (a): For the case t � 0, the situation is illustrated in the following
Figure part (c). There is no overlap between the two functions (u(t � �)
and h(�)) and the output is zero

y1(t) = 0

Case (b): For the case 0 > t � 2, the situation is displayed in the following
Figure part (d) and shows partial overlap. The output of the system is
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given by

y2(t) =

tZ
0

h(�)u(t� �)d� =
tZ
0

(1)(1)d� = t:

Case (c): For the case t � 2, the situation is displayed in the following
Figure part (e) and shows total overlap. The output of the system is given
by

y3(t) =

tZ
0

h(�)u(t� �)d� =
2Z
0

(1)(1)d� = 2:
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Illustration of convolution.

The output of the system is the composite of the three segments computed
above as shown in the following �gure.
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System output response.

12. Consider the standard second-order system

G(s) =
!2n

s2 + 2�!ns+ !2n
:

a) Write the Laplace transform of the signal in Fig. 3.49. b). What is
the transform of the output if this signal is applied to G(s). c) Find the
output of the system for the input shown in Fig. 3.49.

u ( t )

1

1 2 3
T i m e ( s e c )

Figure 3.49: Plot of input for Problem 3.12

Solution:

(a) The input signal in Figure 3.40 may be written as:

u(t) = t� t[1(t� 1)]� t[1((t� 2)] + t[1(t� 3)];

where 1(t� �) denotes a delayed unit step.
The Laplace transform of the input signal is:

U(s) =
1

s2
�
1� e�s � e�2s � e�3s

�
:

(b) The Laplace transform of the output if this signal is applied is:

Y (s) = G(s)U(s) =
!2n

s2 + 2�!ns+ !2n

�
1

s2

��
1� e�s � e�2s � e�3s

�
:
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(c) However to make the mathematical manipulation easier, consider
only the response of the system to a ramp input:

Y1(s) =
!2n

s2 + 2�!ns+ !2n

�
1

s2

�
:

Partial fractions yields the following:

Y1(s) =
1

s2
�

2�
!n

s
+

2�
!n

�
s+ 2�!n � !n

2�

�
(s+ !n�)2 +

�
!n
p
1� �2

�2 :
Use the following Laplace transform pairs for the case 0 � � < 1 :

L�1
(

s+ z1

(s+ a)
2
+ !2

)
=

s
(z1 � a)2 + !2

!2
e�at sin(!t+ �);

where

� � tan�1
�

!

z1 � a

�
:

L�1
�
1

s2

�
= t ramp

L�1
�
1

s

�
= 1(t) unit step

and the following Laplace transform pairs for the case � = 1 :

L�1
(

1

(s+ a)
2

)
= te�at:

L�1
(

s

(s+ a)
2

)
= (1� at)e�at:

L�1
�
1

s2

�
= t ramp,

L�1
�
1

s

�
= 1(t) unit step,

the following is derived:

y1(t) =

8>><>>:
t� 2�

!n
+ e��!nt

!n
p
1��2

sin

�
!n
p
1� �2t+ tan�1 2�

p
1��2

2�2�1

�
0 � � < 1
t � 0

t� 2
!n
+ 2

!n
e�!nt

�
!n
2 t+ 1

� � = 1
t � 0
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Since u(t) consists of a ramp and three delayed ramp signals, using
superposition (the system is linear), then:

y(t) = y1(t)� y1(t� 1)� y1(t� 2) + y1(t� 3) t � 0:

13. A rotating load is connected to a �eld-controlled DC motor with negligible
�eld inductance. A test results in the output load reaching a speed of
1 rad/sec within 1/2 sec when a constant input of 100 V is applied to
the motor terminals. The output steady-state speed from the same test is
found to be 2 rad/sec. Determine the transfer function �(s)=Vf (s) of the
motor.

Solution:

Equations of motion for a DC motor:

Jm��m + b _�m = Kmia;

Ke
_�m + La

dia
dt
+Raia = va;

but since there�s negligible �eld inductance La = 0.

Combining the above equations yields:

RaJm��m +Rab _�m = Ktva �KtKe
_�m:

Applying Laplace transforms yields the following transfer function:

�(s)

Vf (s)
=

Kt

JmRa

s(s+ KtKe

RaJm
+ b

Jm
)
=

K

s(s+ a)
;

where K = Kt

JmRa
and a = KtKe

RaJm
+ b

Jm
.

K and a are found using the given information:

Vf (s) =
100

s
since Vf (t) = 100V;

_�

�
1

2

�
= 2 rad/sec.

For the given information we need to utilize _�m(t) instead of �m(t):

s�(s) =
100K

s(s+ a)
:
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Using the Final Value Theorem and assuming that the system is stable:

lim
s!0

100K

s+ a
= lim

s!0

_�

�
1

2

�
= 2 =

100K

a
:

Take the inverse Laplace transform:

L�1
�
100K

a

a

s(s+ a)

�
=

100K

a
(1� e�at) = 2(1� e�at) = 1;

0:5 = e�
a
2 yields a = 1:39;

K =
2

100
a yields K = 0:0278;

�(s)

Vf (s)
=

0:0278

s(s+ 1:39)
:

14. A simpli�ed sketch of a computer tape drive is given in Fig. 3.50

(a) Write the equations of motion in terms of the parameters listed below.
K and B represent the spring constant and the damping of tape
stretch, respectively, and !1 and !2 are angular velocities. A positive
current applied to the DC motor will provide a torque on the capstan
in the clockwise direction as shown by the arrow. Find the value
of current that just cancels the force, F , then eliminate the constant
current and its balancing force, F; from your equations. Assume
positive angular velocities of the two wheels are in the directions
shown by the arrows.

J1 = 5� 10�5 kg �m2; motor and capstan inertia
B1 = 1� 10�2 N �m � sec; motor damping
r1 = 2� 10�2 m
Kt = 3� 10�2 N �m=A; motor� torque constant
K = 2� 104 N=m
B = 20 N=m � sec
r2 = 2� 10�2 m
J2 = 2� 10�5 kg �m2

B2 = 2� 10�2 N �m � sec; viscous damping; idler
F = 6 N; constant force

_x1 = tape velocity m= sec (variable to be controlled)

(b) Find the transfer function from the motor current to the tape posi-
tion;
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x 1 x 2

F

V a c u u m
c o l u m n

r 1

r 2

H e a dv 1

v 2

T a k e ­ u p
c a p s t a n

i a 5 u

J 1 , B 1

N o f r i c t i o n

B

K

I d l e r
w h e e l
J 2 , B 2

d c m o to r

Figure 3.50: Tape drive schematic

(c) Find the poles and zeros for the transfer function in part (a).

(d) Use MATLAB to �nd the response of x1 to a step input in ia.

Solution:

(a) Because of the force F from the vacuum column, the spring will be
stretched in the steady-state by and the motor torque will have a
constant component

Tmss = �Fr1;

and thus the steady-state current to provide the torque will be

iass =
Tmss

Kt
:

We can then assume F = 0 in the equations from now on.

Fig
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17

9:pdf

Free body diagram for Problem 3.14.

On the capstan side:

Ktia|{z}
Motor Torque

= J1 _!1| {z }
Wheel Inertia

+ B1!1| {z }
Wheel Damping

+r1[B( _x1 � _x2) + r1(x1 � x2)]| {z }
Spring and damper

;

On the idler side:

Fr2|{z}
Vac uum Col

= J2 _!2| {z }
Wheel Inertia

+ B2!2| {z }
Wheel Damping

+r2[�B( _x1 � _x2)�K(x1 � x2)]| {z }
Spring and damper

:

We also have:

_x1 = r1!1;

_x2 = r2!2;

x1 = r1�1:

(b) From part (a):

J1 _!1 = �B1!1 +Ktia +Br1( _x2 � _x1) +Kr1(x2 � x1);
J2 _!2 = �B2!2 +Br2( _x1 � _x2) +Kr2(x1 � x2);
_x1 = r1!1;

_x2 = r2!2:

2664
J1s+B1 0 (Bs+K)r1 �(Bs+K)r1

0 J2s+B2 �(Bs+K)r2 (Bs+K)r2
�r1 0 s 0
0 �r2 0 s

3775
2664
!1
!2
x1
x2

3775 =
2664
KtIa
0
0
0

3775 ;
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X1(s)

Ia(s)
=

Ktr1[J2s
2 + (B2 + r

2
2B)s+ r

2
2K]

s

24 J1J2s
3 + (J1B2 +B1J2 + r

2
2J1B + r

2
1J2B)s

2+
(B1B2 + r

2
2J1K + r22B1B + r

2
1J2K + r21B2B)s

+r22B1K + r21B2K

35 ;

X1(s) =
12(s+ 400)(s+ 1000)

s(s+ 380� j309)(s+ 1000)Ia(s) =
num(s)

den(s)
Ia(s):

(c)

Poles are at : 0; �380� j309; �1000;
Zeros are at : � 400; �1000:

(d) The step response [step(num,den)] is shown in the �gure below.

0 0.005 0.01 0.015 0.02 0.025 0.03
0

1

2

3

4

5

6
x 10 ­4

Time (sec)

Ta
pe

 p
os

iti
on

0 0.005 0.01 0.015 0.02 0.025 0.03
0

1

2

3

4

5

6
x 10 ­4

Time (sec)

Ta
pe

 p
os

iti
on

Tape position response to a step in current.

15. For the system in Fig. 2.51, compute the transfer function from the motor
voltage to position �2.
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Solution:

From Problem 2.19:

L
dia
dt
+Raia + ke _�1 = va

ktia = J1��1 + b( _�1 � _�2) + k(�1 � �2) +B _�1
J2��2 + b( _�2 � _�1) + k(�2 � �1) = 0

So we have:

LsIa(s) +RaIa(s) + ske�1(s) = Va(s);

ktIa(s) = s
2J1�1(s) + b[�1(s)��2(s)]s+ k[�1(s)��2(s)] +Bs�1(s);

s2J2�2(s) + b[�2(s)��1(s)]s+ k[�2(s)��1(s)] = 0;

we have:

�2(s)

Va(s)
=

kt(bs+ k)

det

24 ske 0 Ls+Ra
J1s

2 +Bs+ bs+ k �bs� k �kt
�bs� k J2s

2 + bs+ k 0

35 ;

=
kt(bs+ k)

(Ls+Ra)[J1J2s
4 + (J1b+BJ2 + bJ2)s

3 + (J1k +Bb+KJ2)s
2 +Bks]

+kektJ2s
3 + kektbs

2 + kkekts

;

=
kt(bs+ k)

J1J2s
5 + J2[J1Ra + L(b+B)]s

4

+[J2kektJ1L(b+ k) + LJ2k +Ra(b+B)J2 � Lb2]s3
+[L(b+B)(b+ k)� 2bkL+ J1Ra(b+ k) +RaJ2k � b2Ra]s2

+[kekt(b+ k) + kL(b+ k)� bk2 +Ra(b+B)(b+ k)� 2bkRa]s+ kRab

:

16. Compute the transfer function for the two-tank system in Fig. 2.55 with
holes at A and C.

Solution:

From Problem 2.23 but with s = a tank area we have:

�
�_h1
�_h2

�
=
1

6a

�
�1 0
1 �1

� �
�h1
�h2

�
+
!in
a

�
1
0

�
+

� �10
3a
0

�
;
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�_h1 =
��h1 + 6!in � 20

6a
;

�_h2 =
1

6a
(�h1 ��h2);

s�h1(s) =
��h1(s) + 6!in(s)

6a
;

s�h2(s) =
1

6a
[�h1(s)��h2(s)];

�h2(s) =
!in(s)

6a[a( 16a + s)]
2
;

�h2(s)

!in(s)
=

1

6[a( 16a + s)]
2
:

17. For a second-order system with transfer function

G(s) =
3

s2 + 2s� 3 ;

determine the following:

(a) The DC gain;

(b) The �nal value to a step input.

Solution:

(a) DC gain G(0) = 3
�3 = �1

(b) lim
t!1

y(t) =?

s2 + 2s+ 3 = 0 =) s = 1;�3
Since the system has an unstable pole, the Final Value Theorem is
not applicable. The output is unbounded.

18. Consider the continuous rolling mill depicted in Fig. 3.51. Suppose that
the motion of the adjustable roller has a damping coe¢ cient b, and that the
force exerted by the rolled material on the adjustable roller is proportional
to the material�s change in thickness: Fs = c(T �x). Suppose further that
the DC motor has a torque constant Kt and a back-emf constant Ke, and
that the rack-and-pinion has e¤ective radius of R.

(a) What are the inputs to this system? The output?

(b) Without neglecting the e¤ects of gravity on the adjustable roller,
draw a block diagram of the system that explicitly shows the follow-
ing quantities: Vs(s), I0(s); F (s) (the force the motor exerts on the
adjustable roller), and X(s).
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1

2

i o ( t )

2

1

v a ( t ) v s ( t )

1 : N
G e a r r a t i o

R a c k a n d
P i n i o n

M o t io n o f
m a t e r i a l
o u t o f r o l l e r s

T h i c k n e s s T
T h i c k n e s s x

V e r t i c a l l y
a d j u s t a b l e
r o l l e r

F ix e d
r o l l e r

L a R a

F m

Figure 3.51: Continuous rolling mill

(c) Simplify your block diagram as much as possible while still identifying
output and each input separately.

Solution:

(a)

Inputs: input voltage �! vs(t)

thickness �! T

gravity �! mg

Output: thickness �! x

(b) Dynamic analysis of adjustable roller:

m�x = c(T � x)�mg � b _x� Fm;

=) (s2m+ sb+ c)X(s) + Fm(s) +
mg � cT

s
= 0: (1)

Torque in rack and pinion:

TRP = RFm = NTmotor;

but Tmotor = KtIf io;

Fm =
NKtIf
R

io (2)
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DC motor circuit analysis:

vs(t) = Raio + La
dio
dt
+ va(t);

va(t) = ue _�;

�R

N
= x;

Io(s) =
Vs(s)� KeN

R sX(s)

Ra + sLa
(3)

Combining (1), (2), and (3):

0 = (s2m+ sb+ c)X(s)+
mg � cT

s
+
NKtIf
R

"
Vs(s)� KeN

R sX(s)

sLa +Ra

#
:

Block diagrams for rolling mill.
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Problems and Solutions for Section 3.2: Sys-
tem Modeling Diagrams

19. Consider the block diagram shown in Fig. 3.52. Note that ai and bi are
constants. Compute the transfer function for this system. This spe-
cial structure is called the �control canonical form�and will be discussed
further in Chapter 7.)

S
1

11

S

1

1 1
1

U ( s )

2 a 1

X 1

b 1

2 a 2

2 a 3

b 2

b 3

Y ( s )

1
s

1
s

X 2 X 31
s

Figure 3.52: Block diagram for Problem 3.19

Solution:

We move the picko¤ point at X1 to the right past the second integrator
to get b1s+ b2 as shown in the �gure on the next page.
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Block diagram reduction for Problem 3.19.

We then move the picko¤ point at X2 past the third integrator to get
s(b1s+b2)+b3. We have a block with the transfer function b1s2+b2s+b3
at the output. Meanwhile we apply the feedback rule to the �rst inner
loop to get 1

s+a1
as shown in the �gure and repeat for the second and third

loops. We �nally have:

Y

U
=

b1s
2 + b2s+ b3

s3 + a1s2 + a2s+ a3
:

Example on the web in Chapter 3 shows that we can obtain the same
answer using Mason�s rule.

20. Find the transfer functions for the block diagrams in Fig. 3.53.

Solution:

(a)
Block diagram for Fig. 3.53 (a)

Y

R
=

G1
1 +G1

+G2:
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G 1S

2

G 2

S YR

( a )

G 1S

2

G 7

S YR

( b )

G 3

G 2

G 4S

2

G 6

G 5

G 1G 1 S

2 2

1

G 6

1

S YR

G 7

G 2 G 3 S

1
1

1
1

G 4 G 5

( c )

1

1 1
1

1
1

Figure 3.53: Block diagrams for Problem 3.20

(b)

Block diagram for Fig. 3.53 (b)

Block diagram for Fig. 3.53 (b): reduced
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Y

R
= G7 +

G1G3G4G6
(1 +G1G2)(1 +G4G5)

:

(c)

Top: Block diagram for Fig. 3.53 (c) ; Bottom: Block diagram for
Fig 3.43 (c) reduced.

Y

R
= G7 +

G6G4G5
1 +G4

+
G1G2G3
1 +G2

� G4G5
1 +G4

:

21. Find the transfer functions for the block diagrams in Fig. 3.54, using the
ideas of block diagram simpli�cation. The special; structure in Fig. 3.54
(b) is called the �observer canonical form�and will be discussed in Chap-
ter 7.

Solution:

Part (a): Transfer functions found using the ideas of Figs. 3.8 and 3.9:

(a)
(a) Block diagram for Fig. 3.54 (a).
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Figure 3.54: Block diagrams for Problem 3.21

G�2 =
G2

1�G2H2
;

G�3 =
G3

1�G3H3
;

Y

R
=

G1(1 +G
�
2)

1 +G1(1 +G�2)G
�
3

=
G1(1�G2H2)(1�G3H3) +G1G2(1�G3H3)

1 + (1�G2H2)(1�G3H3) +G1G3(1�G2H2) +G1G2G3
:

(b) We move the summer on the right past the integrator to get b1s and
repeat to get (b2 + b1s)s. Meanwhile we apply the feedback rule to
the �rst inner loop to get 1

s+a1
as shown in the �gure and repeat for

the second and third loops to get:
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(b) Block diagram for Fig. 3.54(b).

Y

R
=

b1s
2 + b2s+ b3

s3 + a1s2 + a2s+ a3
:

(c) Applying block diagram reduction: reduce innermost loop, shift b2 to
the b3 node, reduce next innermost loop and continue systematically
to obtain:

(c) Block diagram for Fig. 3.54(c).
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(c) Block diagram for Fig. 3.54(c).

Y

R
=
b1s

2 + (a1b1 + b2)s+ a1b2 + a2b1 + b3
s3 + a1s2 + a2s+ a3

:

(d)

(d) Block diagram for Fig. 3.54(d).

Y

R
=

D +AB�

1 +G(D +AB�)
=

D +DBH +AB

1 +BH +GD +GBDH +GAB
:

22. Use block-diagram algebra to determine the transfer function between
R(s) and Y(s) in Fig. 3.55.

Solution:
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S

2

2

1

S

1

1

R ( s ) G 1

H 1

H 2

G 3

H 3

S

2

1

Y ( s )G 2

Figure 3.55: Block diagram for Problem 3.22

Block diagram for Fig. 3.55.

Move node A and close the loop:

Block diagram for Fig. 3.55: reduced.
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Add signal B, close loop and multiply before signal C:

Block diagram for Fig. 3.55: reduced.

Move middle block N past summer:

Block diagram for Fig. 3.55: reduced.

Now reverse order of summers and close each block separately:

Block diagram for Fig. 3.55: reduced.

Y

R
=

feedforwardz }| {
(N +G3) (

1

1 +NH3
)| {z }

feedback

:
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Y

R
=
G1G2 +G3(1 +G1H1 +G1H2)

1 +G1H1 +G1H2 +G1G2H3
:

Problems and Solutions for Section 3.3: E¤ect
of Pole Locations

23. For the electric circuit shown in Fig. 3.56, �nd the following:

(a) The time-domain equation relating i(t) and v1(t);

(b) The time-domain equation relating i(t) and v2(t);

(c) Assuming all initial conditions are zero, the transfer function V2(s)=V1(s)
and the damping ratio � and undamped natural frequency !n of the
system;

(d) The values of R that will result in v2(t) having an overshoot of no
more than 25%, assuming v1(t) is a unit step, L = 10 mH, and
C = 4 �F.

L R

C v 2 ( t )v 1 ( t ) i ( t )

1

2

1

2

Figure 3.56: Circuit for Problem 3.23

Solution:

(a)

v1(t) = L
di

dt
+Ri+

1

C

Z
i(t)dt:

(b)

v2(t) =
1

C

Z
i(t)dt:

(c)

v2(s)

v1(s)
=

1
sC

sL+R+ 1
sC

=
1

s2LC + sRC + 1
:

(d) For 25% overshoot � t 0:4,
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0:4 t � =
R

2
q

L
C

R = 2�

r
L

C
= (2)(0:4)

r
10� 10�3
4� 10�6 = 40 
:

24. For the unity feedback system shown in Fig. 3.57, specify the gain K of
the proportional controller so that the output y(t) has an overshoot of no
more than 10% in response to a unit step.

KS

1

2

s ( s 1 2 )
1R ( s ) Y ( s )

Figure 3.57: Unity feedback system for Problem 3.24

Solution:

Y (s)

R(s)
=

K

s2 + 2s+K
=

!2n
s2 + 2�!ns+ !2n

;

!n =
p
K;

� =
2

2!n
=

1p
K
: (1)

In order to have an overshoot of no more than 10%:

Mp = e
���=
p
1��2 � 0:10:

Solving for � :

� =

s
(lnMp)2

�2 + (lnMp)2
� 0:591:

Using (1) and the solution for �:

K =
1

�2
� 2:86;

) 0 < K � 2:86:
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25. For the unity feedback system shown in Fig. 3.58, specify the gain and
pole location of the compensator so that the overall closed-loop response
to a unit-step input has an overshoot of no more than 25%, and a 1%
settling time of no more than 0.1 sec. Verify your design using Matlab.

S

1

2

s 1 2 5
1 0 0R ( s ) Y ( s )s 1 a

K
C o m p e n s a t o r P l a n t

Figure 3.58: Unity feedback system for Problem 3.25

Solution:
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Y (s)

R(s)
=

100K

s2 + (25 + a)s+ 25a+ 100K
=

100K

s2 + 2�!ns+ !2n
:

Using the given information:

R(s) =
1

s
unit step,

Mp � 25%;

ts � 0:1 sec :

Solve for � :

Mp = e���=
p
1��2 ;

� =

s
(lnMp)2

�2 + (lnMp)2
� 0:4037:

Solve for !n:

e��!nts = 0:01 For a 1% settling time.

ts �
4:605

�!n
= 0:1;

=) !n t 114:07:

Now �nd a and K :

2�!n = (25 + a);

a = 2�!n � 25 = 92:10� 25 = 67:10;
!2n = (25a+ 100K);

K =
!2n � 25a
100

t 113:34:

The step response of the system using Matlab is shown below.
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Step response for Problem 3.25.

Problems and Solutions for Section 3.4: Time-
Domain Speci�cations

26. Suppose you desire the peak time of a given second-order system to be
less than t0p. Draw the region in the s-plane that corresponds to values of
the poles that meet the speci�cation tp < t0p.

Solution:



3055

s-plane region to meet peak time constraint: shaded.

!dtp = � =) tp =
�

!d
< t

0

p;

�

t0p
< !d:

27. A certain servomechanism system has dynamics dominated by a pair of
complex poles and no �nite zeros. The time-domain speci�cations on the
rise time (tr), percent overshoot

(Mp), and settling time (ts) are given by,

tr � 0:6 sec ,

Mp � 17%,

ts � 9:2 sec .

(a) Sketch the region in the s-plane where the poles could be placed
so that the system will meet all three speci�cations.

(b) Indicate on your sketch the speci�c locations (denoted by �) that
will have the smallest rise-time and also meet the settling time speci�cation
exactly.

Solution:

(a)-(b)
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s-plane region to meet the speci�cations.

28. Suppose you are to design a unity feedback controller for a �rst-order plant
depicted in Fig. 3.59. (As you will learn in Chapter 4, the con�guration
shown is referred to as a proportional-integral controller.) You are to
design the controller so that the closed-loop poles lie within the shaded
regions shown in Fig. 3.60.

KS

1

2

s
K I

R YS

1

1

s 1 a
K a

e ( t )

Figure 3.59: Unity feedback system for Problem 3.28
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R e ( s )

I m ( s )

2 22 4

2

4
u 1

u 2

2 2

Figure 3.60: Desired closed-loop pole locations for Problem 3.28

(a) What values of !n and � correspond to the shaded regions in Fig. 3.60?
(A simple estimate from the �gure is su¢ cient.)

(b) Let K� = � = 2. Find values for K and KI so that the poles of the
closed-loop system lie within the shaded regions.

(c) Prove that no matter what the values of K� and � are, the controller
provides enough �exibility to place the poles anywhere in the complex
(left-half) plane.

Solution:

(a) The values could be worked out mathematically but working from
the diagram:

p
32 + 22 = 3:6 =) 2:6 � !n � 4:6;

� = sin�1 �;

� = sin �:

From the �gure:

� t 34 � �1 = 0:554;

� t 70 � �2 = 0:939;

=) 0:6 � � � 0:9 (approximately)

(b) Closed-loop pole positions:

s(s+ �) + (Ks+KKI)K� = 0;

s2 + (�+KK�)s+KKIK� = 0:
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For this case:

s2 + (2 + 2K)s+ 2KKI = 0 (�)

Choose roots that lie in the center of the shaded region,

(s+ (3 + j2))(s+ (3� j2)) = s2 + 6s+ 13 = 0;
s2 + (2 + 2K)s+ 2KKI = s

2 + 6s+ 13;

2 + 2K = 6 =) K = 2;

13 = 4KI =) KI =
13

4
:

(c) For the closed-loop pole positions found in part (b), in the (*) equa-
tion the value of K can be chosen to make the coe¢ cient of s take
on any value. For this value of K a value of KI can be chosen so
that the quantity KKIK� takes on any value desired. This implies
that the poles can be placed anywhere in the complex plane.

29. The open-loop transfer function of a unity feedback system is

G(s) =
K

s(s+ 2)
:

The desired system response to a step input is speci�ed as peak time
tp = 1 sec and overshoot Mp = 5%.

(a) Determine whether both speci�cations can be met simultaneously by
selecting the right value of K.

(b) Sketch the associated region in the s-plane where both speci�cations
are met, and indicate what root locations are possible for some likely
values of K.

(c) Pick a suitable value for K, and use Matlab to verify that the spec-
i�cations are satis�ed.

Solution:

(a)

T (s) =
Y (s)

R(s)
=

G(s)

1 +G(s)
=

K

s2 + 2s+K
=

!2n
s2 + 2�!ns+ !2n

:

Equate the coe¢ cients of like powers of s:

2 = 2�!n
K = !2n

(*)

=) !n =
p
K � =

1p
K
:
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We would need:

Mp%

100
= 0:05 = e

���p
1��2 =) � = 0:69;

tp = 1 sec =
�

!d
=

�

!n
p
1� �2

=) !n = 4:34:

But the combination (� = 0:69 , !n = 4:34) that we need is not
possible by varying K alone. Observe that from equations (*) �!n =
1 6= 0:69� 4:34:

(b) Now we wish to have:

M�
p = r � 0:05 = e

���p
1��2

t�p = r � 1 sec = �
!d

(**)

where r � relaxation factor.
Recall the conditions of our system:

!n =
p
K;

� =
1p
K
;

replace !n and � in the system (**):

=)
� �p

K�1 = r � 0:05
1 sec = �p

K�1

=) r � 0:05 = e�r =) r �= 2:21:

K = 1 +
�2

r2
=) K = 3:02:

then with K = 3:02 we will have:

M�
p = rMp = 2:21� 0:05 = 0:11:
t�p = rtp = 2:21� 1 sec = 2:21 sec :

Note: * denotes actual location of closed-loop roots.
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s-plane regions.

% Problem 3.29 FPE6e
K=3.02;
num=[K];
den=[1, 2, K];
sys=tf(num,den);
t=0:.01:7;
y=step(sys,t);
plot(t,y);
yss = dcgain(sys);
Mp = (max(y) - yss)*100;
% Finding maximum overshoot
msg_overshoot = sprintf(�Max overshoot = %3.2f%%�, Mp);
% Finding peak time
idx = max(�nd(y==(max(y))));
tp = t(idx);
msg_peaktime = sprintf(�Peak time = %3.2f�, tp);
xlabel(�Time (sec)�);
ylabel(�y(t)�);
msg_title = sprintf(�Step Response with K=%3.2f�,K);
title(msg_title);
text(1.1, 0.3, msg_overshoot);
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text(1.1, 0.1, msg_peaktime);
grid on;
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Max overshoot = 10.97%

Peak time = 2.21

Problem 3.29: Closed-loop step response.

30. NThe equations of motion for the DC motor shown in Fig. 2.32 were given
in Eqs. (2.52-53) as

Jm��m +

�
b+

KtKe

Ra

�
_�m =

Kt

Ra
va:

Assume that

Jm = 0:01 kg �m2;
b = 0:001 N �m � sec;

Ke = 0:02 V � sec;
Kt = 0:02 N �m=A;
Ra = 10 
:
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(a) Find the transfer function between the applied voltage va and the
motor speed _�m.

(b) What is the steady-state speed of the motor after a voltage va = 10 V
has been applied?

(c) Find the transfer function between the applied voltage va and the
shaft angle �m.

(d) Suppose feedback is added to the system in part (c) so that it becomes
a position servo device such that the applied voltage is given by

va = K(�r � �m);

where K is the feedback gain. Find the transfer function between �r
and �m.

(e) What is the maximum value of K that can be used if an overshoot
Mp < 20% is desired?

(f) What values of K will provide a rise time of less than 4 sec? (Ignore
the Mp constraint.)

(g) Use Matlab to plot the step response of the position servo system
for values of the gain K = 0:5, 1, and 2. Find the overshoot and rise
time for each of the three step responses by examining your plots.
Are the plots consistent with your calculations in parts (e) and (f)?

Solution:

Jm��m +

�
b+

KtKe

Ra

�
_�m =

Kt

Ra
va:

(a)

Jm�ms
2 +

�
b+

KtKe

Ra

�
�ms =

Kt

Ra
Va(s)

s�m(s)

Va(s)
=

Kt

RaJm

s+ b
Jm
+ KtKe

RaJm

:

Jm = 0:01 kg �m2;
b = 0:001 N �m� sec;

Ke = 0:02 V� sec;
Kt = 0:02 N �m=A;
Ra = 10 
:

s�m(s)

Va(s)
=

0:2

s+ 0:104
:
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(b) Final Value Theorem

_�(1) = s(10)(0:2)

s(s+ 0:104)
js=0 =

2

0:104
= 19:23:

(c)
�m(s)

Va(s)
=

0:2

s(s+ 0:104)
:

(d)

�m(s) =
0:2K(�r ��m)
s(s+ 0:104)

:

�m(s)

�r(s)
=

0:2K

s2 + 0:104s+ 0:2K
:

(e)

Mp = e���=
p
1��2 = 0:2 (20%);

� = 0:4559:

Y (s) =
!2n

s2 + 2�!ns+ !2n
:

2�!n = 0:104;

!n =
0:104

2(0:4559)
= 0:114 rad= sec;

!2n = 0:2K;

K < 6:50� 10�2:

(f)

!n � 1:8

tr

!2n = 0:2K

K � 1:01:

(g) Matlab
% Problem 3.30 FPE6e
clear all
close all
K1=[0.5 1.0 2.0 6.5e-2];
t=0:0.01:150;
for i=1:1:length(K1)
K = K1(i);
titleText = sprintf(�K= %1.4f �, K);
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wn = sqrt(0.2*K);
num=wn^2;
den=[1 0.104 wn^2];
zeta=0.104/2/wn;
sys = tf(num, den);
y= step(sys, t);
% Finding maximum overshoot
if zeta < 1
Mp = (max(y) - 1)*100;
overshootText = sprintf(�Max overshoot = %3.2f %�, Mp);
else
overshootText = sprintf(�No overshoot�);
end
% Finding rise time
idx_01 = max(�nd(y<0.1));
idx_09 = min(�nd(y>0.9));
t_r = t(idx_09) - t(idx_01);
risetimeText = sprintf(�Rise time = %3.2f sec�, t_r);
% Plotting
subplot(3,2,i);
plot(t,y);
grid on;
title(titleText);
text( 0.5, 0.3, overshootText);
text( 0.5, 0.1, risetimeText);
end
%%%%%%%%%%%%%%%%
% Function for computing rise time
function tr = risetime(t,y)
% A. Emami 2006
% normalize y to 1:
y = y/y(length(y));
idx1 = min(�nd(y>=0.1))
idx2 = min(�nd(y>=0.9))
if ~isempty(idx1) & ~isempty(idx2)
tr = t(idx2) - t(idx1);
else
tr = 0
end
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Problem 3.30: Closed-loop step responses for several values of K.

For part (e) we concluded that K < 6:50 � 10�2 in order for Mp <
20%: This is consistent with the above plots. For part (f) we found
that K � 1:01 in order to have a rise time of less than 4 seconds.
We actually see that our calculations is slightly o¤ and that K can
be K � 0:5, but since K � 1:01 is included in K � 0:5, our answer
in part (f) is consistent with the above plots.

31. You wish to control the elevation of the satellite-tracking antenna shown
in Figs. 3.61 and 3.62. The antenna and drive parts have a moment of
inertia J and a damping B; these arise to some extent from bearing and
aerodynamic friction, but mostly from the back emf of the DC drive motor.
The equations of motion are

J�� +B _� = Tc;

where Tc is the torque from the drive motor. Assume that

J = 600; 000 kg�m2 B = 20; 000 N�m�sec:
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Figure 3.61: Satellite Antenna (Courtesy Space Systems/Loral)

(a) Find the transfer function between the applied torque Tc and the
antenna angle �.

(b) Suppose the applied torque is computed so that � tracks a reference
command �r according to the feedback law

Tc = K(�r � �);

where K is the feedback gain. Find the transfer function between �r
and �.

(c) What is the maximum value of K that can be used if you wish to
have an overshoot Mp < 10%?

(d) What values of K will provide a rise time of less than 80 sec? (Ignore
the Mp constraint.)

(e) NUse Matlab to plot the step response of the antenna system for
K = 200, 400, 1000, and 2000. Find the overshoot and rise time
of the four step responses by examining your plots. Do the plots
con�rm your calculations in parts (c) and (d)?

Solution:

J�� +B _� = Tc
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u

Figure 3.62: Schematic of antenna for Problem 3.31

(a)

J�s2 +B�s = Tc(s);

�(s)

Tc(s)
=

1

s(Js+B)
;

J = 600; 000 kg �m2;
B = 20; 000 N �m� sec;

�(s)

Tc(s)
=

1:667� 10�6

s(s+ 1
30 )

:

(b)

�(s) =
1:667� 10�6K(�r ��)

s(s+ 1
30 )

;

�(s)

�r(s)
=

1:667K � 10�6

s2 + 1
30s+ 1:667K � 10�6

:
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(c)

Mp = e���=
p
1��2 = 0:1 (10%);

� = 0:591:

Y (s) =
!2n

s2 + 2�!ns+ !2n
;

2�!n =
1

30
;

!n =
1
30

2(0:591)
= 0:0282 rad= sec;

!2n = 1:667K � 10�6;
K < 477:

(d)

!n � 1:8

tr
;

!2n = 1:667K � 10�6;
K � 304:
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(e) Problem 3.31: Step responses for several values of K.

(e) The results compare favorably with the predictions made in parts
(c) and (d). For K < 477 the overshoot was less than 10, the rise-
time was less than 80 seconds.

32. (a) Show that the second-order system

�y + 2�!n _y + !
2
ny = 0; y(0) = yo; _y(0) = 0;

has the response

y(t) = yo
e��tp
1� �2

sin(!dt+ cos
�1 �):

(b) Prove that, for the underdamped case (� < 1), the response oscilla-
tions decay at a predictable rate (see Fig. 3.63) called the logarith-
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Figure 3.63: De�nition of logarithmic decrement

mic decrement

� = ln
yo
y1
= ��d

= ln
�y1
y1
�= ln

�yi
yi
;

where
�d =

2�

!d

is the damped natural period of vibration.

Solution:

(a) The system is second order =) Q(s) = s2+2�!ns+!
2
n. The initial

condition response can be obtained by plugging a dirac delta at the
input at the time 0 (this �charges� the system immediately to its
initial condition and after that the system evolves by itself).

Inputeffective = y0�(t)

L
�
Inputeffective

�
= y0

We do not know whether the transfer function has �nite zeros or not,
but further thought will reveal the presence of at least one �nite zero
in the H(s).

lim
s!1

sH(s)y0 = y(t)j0+

where

H(s) =
P (s)

Q(s)
=

P (s)

s2 + 2�!ns+ !2n
:
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If P (s) were a constant (no zeros in the H(s)), then the limit in the
initial value theorem would give always zero (which is wrong because
we know that the initial value must be y0.) So we need a zero. We
suggest using the following H(s):

H(s) =
�s

s2 + 2�!ns+ !2n
;

Y (s) = H(s)y0 =
�sy0

s2 + 2�!ns+ !2n
;

=
R+

s� P+
+

R�
s� P�

:

where

P+ = ��!n + j!n
q
1� �2;

P� = ��!n � j!n
q
1� �2;

R+ =
�!nej(�=cos

�1 �)

2!n
p
1� �2ej�=s

;

R� = R�+:

Note: The residues can be calculated graphically.

R+ = lim
s!P+

[(s� P+)Y (s)];

=) y(t) = R+e
P+t +R�e

P�t

y(t) =
�e��!nt

2
p
1� �2

h
e+j(!n

p
1��2t+�=2�cos�1 �) + e�j(!n

p
1��2t+�=2�cos�1 �)

i
;

=) y(t) = y0
e��tp
1� �2

sin(!dt� cos�1 �):

(b)

dy(t)

dt
= 0 =) t =

n�

!d
(n is any integer)

tMax =
2�

!d
n

y(t)jtMax
� yn = y0

e��n�dp
1� �2

sin(cos�1 �):

Note:

sin(� cos�1 �) =
q
1� �2
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yn =
y0
p
1� �2p
1� �2

e��n�d (�)

(Proof of the �rst line)

� = ln
y0
yn
= ��d;

From (*)

y1 = y0e
���d =) ln

y0
yn
= ��d:

(Proof of the second line)

�yn = yn�1 � yn;
�yn = y0e

��n�d � y0e�(n�1)��d = y0e��n�d(1� e��d);

=) �yn
yn

=
y0e

��n�d

y0e��n�d
(1� e��d);

=) �yn
yn

=
�yi
yi

for all i; n:

Problems and Solutions for Section 3.5: Ef-
fects of Zeros and Additional Poles

33. In aircraft control systems, an ideal pitch response (qo) versus a pitch
command (qc) is described by the transfer function

Qo(s)

Qc(s)
=

�!2n(s+ 1=�)

s2 + 2�!ns+ !2n
:

The actual aircraft response is more complicated than this ideal transfer
function; nevertheless, the ideal model is used as a guide for autopilot
design. Assume that tr is the desired rise time and that

!n =
1:789

tr
,

1

�
=
1:6

tr
,

� = 0:89.

Show that this ideal response possesses a fast settling time and minimal
overshoot by plotting the step response for tr = 0:8, 1.0, 1.2, and 1.5 sec.

Solution:

The following program statements in Matlab produce the following plots:

% Problem 3.33 FPE6e
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tr = [0.8 1.0 1.2 1.5];

t=[1:240]/30;

tback=�iplr(t);

clf;

for I=1:4,

wn=(1.789)/tr(I); %Rads/second

tau=tr(I)/(1.6); %tau

zeta=0.89; %

b=tau*(wn^2)*[1 1/tau];

a=[1 2*zeta*wn (wn^2)];

y=step(b,a,t);

subplot(2,2,I);

plot(t,y);

titletext=sprintf(�tr=%3.1f seconds�,tr(I));

title(titletext);

xlabel(�t (seconds)�);

ylabel(�Qo/Qc�);

ymax=(max(y)-1)*100;

msg=sprintf(�Max overshoot=%3.1f%%�,ymax);

text(.50,.30,msg);

yback=�ipud(y);

yind=�nd(abs(yback-1)>0.01);

ts=tback(min(yind));

msg=sprintf(�Settling time =%3.1f sec�,ts);

text(.50,.10,msg);

grid;

end
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Problem 3.33: Ideal pitch response.

34. Consider the system shown in Fig. 3.64, where

G(s) =
1

s(s+ 3)
and D(s) =

K(s+ z)

s+ p
: (1)

Find K, z, and p so that the closed-loop system has a 10% overshoot to a
step input and a settling time of 1.5 sec (1% criterion).

D ( s )R ( s ) Y ( s )S

2

1

G ( s )

Figure 3.64: Unity feedback system for Problem 3.34

Solution:

For the 10% overshoot:
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Mp = e���=
p
1��2 = 10%

=) � =

s
(lnMp)2

�2 + (lnMp)2
= 0:

For the 1:5sec (1% criterion):

!n =
4:6

�ts
=

4:6

(0:6)(1:5)
= 5:11:

The closed-loop transfer function is:

Y (s)

R(s)
=

K s+z
s+p �

1
s(s+3)

1 +K s+z
s+p �

1
s(s+3)

=
K(s+ z)

s(s+ 3)(s+ p) +K(s+ z)
:

Method I.

From inspection, if z = 3, (s + 3) will cancel out and we will have a
standard form transfer function. As perfect cancellation is impossible,
assign z a value that is very close to 3, say 3:1. But in determining the K
and p, assume that (s+ 3) and(s+ 3:1) cancelled out each other. Then:

Y (s)

R(s)
=

K

s2 + ps+K

As the additional pole and zero will a¤ect the system response, pick some
larger damping ratio.

Let � = 0:7

!n =
4:6

�ts
=

4:6

(0:7)(1:5)
= 4:38; so let !n = 4:5;

p = 2�!n = 2� 0:7� 4:5 = 6:3;
K = !2n = 20:25:



3076 CHAPTER 3. DYNAMIC RESPONSE

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

Am
pl

itu
de

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

System: sy s
Time (sec): 0.955
Amplitude: 1.05

Step response: Method I.

Method II.

There are 3 unknowns (z; p; K) and only 2 speci�ed conditions. We can
arbitrarily choose p large such that complex poles will dominate in the
system response.

Try p = 10z

Choose a damping ratio corresponding to an overshoot of 5% (instead of
10%, just to be safe).

� = 0:707:

From the formula for settling time (with a 1% criterion)

!n =
4:6

�ts
=

4:6

0:707� 1:5 = 4:34;

adding some margin, let !n = 4:88: The characteristic equation is
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Q(s) = s3 + (3 + p) s2 + (3p+K)s+Kz = (s+ a)(s2 + 2�!ns+ !
2
n):

We want the characteristic equation to be the product of two factors, a
couple of conjugated poles (dominant) and a non-dominant real pole far
form the dominant poles.

Equate the coe¢ cients of like powers of s in the expressions of the char-
acteristic equation.

!2na = Kz;

2�!na+ !
2
n = 30z +K;

2�!n + a = 3 + 10z:

Solving the three equations we get

z = 5:77;

p = 57:7;

K = 222:45;

a = 53:79:
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Step response: Method II.

35. NSketch the step response of a system with the transfer function

G(s) =
s=2 + 1

(s=40 + 1)[(s=4)2 + s=4 + 1]
:

Justify your answer on the basis of the locations of the poles and zeros.
(Do not �nd inverse Laplace transform.) Then compare your answer with
the step response computed using Matlab.

Solution:

From the location of the poles, we notice that the real pole is a factor of
20 away from the complex pair of poles. Therefore, the response of the
system is dominated by the complex pair of poles.

G(s) � (s=2 + 1)

[(s=4)2 + s=4 + 1]
:

This is now in the same form as equation (3.72) where � = 1, � = 0:5 and
!n = 4: Therefore, Fig. 3.27 suggests an overshoot of over 70%. The step
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response is the same as shown in Fig. 3.26, for � = 1, with more than
70% overshoot and settling time of 3 seconds. The Matlab plots below
con�rm this.

% Problem 3.35 FPE 6e

num=[1/2, 1];

den1=[1/16, 1/4, 1];

sys1=tf(num,den1);

t=0:.01:3;

y1=step(sys1,t);

den=conv([1/40, 1],den1);

sys=tf(num,den);

y=step(sys,t);

plot(t,y1,t,y);

xlabel(�Time (sec)�);

ylabel(�y(t)�);

title(�Step Response�);

grid on;
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Problem 3.35: Comparison of step responses: third-order system (green),
second-order approximation (blue).

36. Consider the two nonminimum phase systems,

G1(s) = �
2(s� 1)

(s+ 1)(s+ 2)
; (2)

G2(s) =
3(s� 1)(s� 2)

(s+ 1)(s+ 2)(s+ 3)
: (3)

(a) Sketch the unit step responses for G1(s) and G2(s), paying close
attention to the transient part of the response.

(b) Explain the di¤erence in the behavior of the two responses as it relates
to the zero locations.

(c) Consider a stable, strictly proper system (that is,m zeros and n poles,
where m < n). Let y(t) denote the step response of the system. The
step response is said to have an undershoot if it initially starts o¤ in
the �wrong�direction. Prove that a stable, strictly proper system has
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an undershoot if and only if its transfer function has an odd number
of real RHP zeros.

Solution:

(a) For G1(s) :

Y1(s) =
1

s
G1(s) =

�2(s� 1)
s(s+ 1)(s+ 2)

;

H(s) = k

Qj
(s� zj)Ql
(s� pl)

;

Rpi = lim
s!pi

[(s� pi)H(s)] = lim
s!pi

k

Qj
(s� zj)Ql

l 6=i(s� pl)
= k

Qj
(pi � zj)Ql

l 6=i(pi � pl)
:

Each factor (pi � zj) or (pi � pl) can be thought of as a complex
number (a magnitude and a phase) whose pictorial representation is
a vector pointing to pi and coming from zj or pl respectively.
The method for calculating the residue at a pole pi is:
(1) Draw vectors from the rest of the poles and from all the zeros to
the pole pi.
(2) Measure magnitude and phase of these vectors.
(3) The residue will be equal to the gain, multiplied by the product
of the vectors coming from the zeros and divided by the product of
the vectors coming from the poles.
In our problem:

Y1(s) =
�2(s� 1)

s(s+ 1)(s+ 2)
=
R0
s
+

R�1
(s+ 1)

+
R�2
(s+ 2)

=
1

s
� 4

s+ 1
+

3

s+ 2
;

y1(t) = 1� 4e�t + 3e�2t:

For G2(s) :

Y2(s) =
3(s� 1)(s� 2)

s(s+ 1)(s+ 2)(s+ 3)
=
1

s
+
�9

(s+ 1)
+

18

(s+ 2)
+
�10
(s+ 3)

;

y2(t) = 1� 9e�t + 18e�2t � 10e�3t:

(b) The �rst system presents an �undershoot�. The second system, on
the other hand, starts o¤ in the right direction.
The reasons for this initial behavior of the step response will be an-
alyzed in part c.

In y1(t): dominant at t = 0 the term �4e�t
In y2(t): dominant at t = 0 the term 18e�2t



3082 CHAPTER 3. DYNAMIC RESPONSE

0 1 2 3 4 5 6 7 8 9 10
­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

Step Response

Time (sec)

y1
(t)

0 1 2 3 4 5 6 7 8 9 10
­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.65: Problem 3.36: Step response for a non-minimum phase system with
one real RHP zero.
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Figure 3.66: Problem 3.36: Step response of a non-minimum phase system with
two real zeros in the RHP.
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(c) The following concise proof is from Reference [1] (see also References
[2]-[3]).
Without loss of generality assume the system has unity DC gain
(G(0) = 1) Since the system is stable, y(1) = G(0) = 1; and it is
reasonable to assume y(1) 6= 0: Let us denote the pole-zero excess as
r = n�m: Then, y(t) and its r� 1 derivatives are zero at t = 0, and
yr(0) is the �rst non-zero derivative. The system has an undershoot
if yr(0)y(1) < 0: The transfer function may be re-written as

G(s) =

Qm
i=1(1� s

zi
)Qm+r

i=1 (1� s
pi
)

The numerator terms can be classi�ed into three types of terms:
(1). The �rst group of terms are of the form (1� �is) with �i > 0.
(2). The second group of terms are of the form (1+�is) with �i > 0.
(3). Finally, the third group of terms are of the form, (1+�is+�is

2)
with �i > 0; and �i could be negative.
However, �2i < 4�i; so that the corresponding zeros are complex.
All the denominator terms are of the form (2), (3), above. Since,

yr(0) = lim
s!1

srG(s)

it is seen that the sign of yr(0) is determined entirely by the number
of terms of group 3 above. In particular, if the number is odd, then
yr(0) is negative and if it is even, then yr(0) is positive. Since
y(1) = G(0) = 1; then we have the desired result.
References
[1] Vidyasagar, M., �On Undershoot and Nonminimum Phase Zeros,�
IEEE Trans. Automat. Contr., Vol. AC-31, p. 440, May 1986.
[2] Clark, R., N., Introduction to Automatic Control Systems, John
Wiley, 1962.
[3] Mita, T. and H. Yoshida, �Undershooting phenomenon and its
control in linear multivariable servomechanisms, �IEEE Trans. Au-
tomat. Contr., Vol. AC-26, pp. 402-407, 1981.

37. Find the relationships for the impulse response and the step response
corresponding to Equation (3.57) for the cases where,

(a) the roots are repeated.

(b) the roots are both real. Express your answers in terms of hyperbolic
functions (sinh, cosh) to best show the properties of the system response.

(c) the value of the damping coe¢ cient, �, is negative.

Solution:
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(a) In this case we have � = 1

H(s) =
Y (s)

U(s)
=

!2n
(s+ !n)2

:

For the impulse response,U(s) = 1, and using Item #8 from Table A.2 we
�nd

h(t) = !2nte
�!nt:

We can then integrate the impulse response to obtain the step response.
Alternatively, for a unit step input, U(s) = 1

s and

Y (s) =
!2n

(s+ !n)2
1

s
:

Using Item #15 from Table A.2 we �nd

y(t) = 1� e�!nt (1 + !nt) :

(b) We re-write H(s) as follows

H(s) =
Y (s)

U(s)
=

!2n

(s+ �!n + !n
p
�2 � 1)(s+ �!n � !n

p
�2 � 1)

;

where j�j > 1. For the impulse response,U(s) = 1 and using Item #13
from Table A.2,

h(t) = � !2n

2!n
p
�2 � 1

�
e�(�!n+!n

p
�2�1)t � e�(�!n�!n

p
�2�1)t

�
;

=
!n

2
p
�2 � 1

e��!nt
�
e+(!n

p
�2�1)t � e�(!n

p
�2�1)t

�
;

=
!np
�2 � 1

e��!nt sinh(!n

q
�2 � 1t):

We can then integrate the impulse response to obtain the unit step re-
sponse. Alternatively, for a unit step input, U(s) = 1

s and using partial
fraction expansion

Y (s) =
1

s
+

1

2
p
�2�1

�
�+
p
�2�1

�
s+ �!n + !n

p
�2 � 1

�

1

2
p
�2�1

�
��
p
�2�1

�
s+ �!n � !n

p
�2 � 1

;
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and using Item #7 from Table A.2

y(t) = 1 +
1

2
p
�2 � 1

�
� +

p
�2 � 1

�e�(�!n+!np�2�1)t
� 1

2
p
�2 � 1

�
� �

p
�2 � 1

�e�(�!n�!np�2�1)t;
= 1 +

1

2
p
�2 � 1

e��!nt

0@ 1�
� +

p
�2 � 1

�e�!np�2�1t � 1�
� �

p
�2 � 1

�e+!np�2�1t
1A ;

= 1 +
1

2
p
�2 � 1

e��!nt
��
� �

q
�2 � 1

�
e�!n

p
�2�1t �

�
� +

q
�2 � 1

�
e+!n

p
�2�1t

�
;

y(t) = 1� e��!nt
 
cosh

�
�!n

q
�2 � 1t

�
+

�p
�2 � 1

sinh

�
!n

q
�2 � 1t

�!
:

Notice that unlike the expression for the impulse response on FPE 6e
page 112 (Eq. 3.58) and the step response on FPE 6e page 117 (Eq.
3.61), these responses do not oscillate due to the behavior of the cosh and
sinh functions.

(c) Now we have the remaining case where � is negative and j�j < 1 , since
we already dealt with the case of j�j > 1 in the previous part (b). The
impulse response and the step responses are exactly the same as given in
on pages 112 (Eq. 3.58) and 117 (Eq. 3.61)

h(t) =
!np
1� �2

e��t sin(!dt)

y(t) = 1� e��t
�
cos(!dt) +

�

!d
sin(!dt)

�

except now � is negative and the exponential terms become unbounded
and the system is unstable.

38. Consider the following second-order system with an extra pole:

H(s) =
!2np

(s+ p)(s2 + 2�!ns+ !2n)
:

Show that the unit step response is

y(t) = 1 +Ae�pt +Be��t sin(!dt� �);
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where

A =
�!2n

!2n � 2�!np+ p2
;

B =
pq

(p2 � 2�!np+ !2n)(1� �2)
;

� = tan�1
p
1� �2

�� + tan�1
!n
p
1� �2

p� �!n
:

(a) Which term dominates y(t) as p gets large?

(b) Give approximate values for A and B for small values of p.

(c) Which term dominates as p gets small? (Small with respect to what?)

(d) Using the preceding explicit expression for y(t) or the step command
in Matlab, and assuming that !n = 1 and � = 0:7, plot the step
response of the preceding system for several values of p ranging from
very small to very large. At what point does the extra pole cease to
have much e¤ect on the system response?

Solution:

Second-order system:

H(s) =
!2np

(s+ p)(s2 + 2�!ns+ !2n)
:

Unit step response:

Y (s) =
1

s
H(s); y(t) = L�1fY (s)g;

s2 + 2�!ns+ !
2
n = (s+ � + j!d)(s+ � � j!d);

where

� = �!n; !d = !n

q
1� �2:

Thus from partial fraction expansion:

Y (s) =
k1
s
+

k2
s+ p

+
k3

s+ � + j!d
+

k4
s+ � � j!d

;
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solving for k1; k2; k3; and k4:

k1 = H(0) =) k1 = 1;

k2 =
!2np

s(s+ � + j!d)(s+ � � j!d)
js=�p =) k2 =

�!2n
!2n � 2p�!n + p2

;

k3 = (s+ � + j!d)Y (s)js=���j!d
=) k3 =

p

2
q
(1� �2) (p2 � 2p�!n + !2n)

e�i� = jk3j e�i�

k4 = k�3

where

� = tan�1

 p
1� �2

��

!
+ tan�1

 
!n
p
1� �2

p� �!n

!
:

Thus

Y (s) =
1

s
+

k2
s+ p

+ jk3j
�

e�i�

s+ � + j!d
+

e+i�

s+ � � j!d

�
:

Inverse Laplace:

y(t) = 1 + k2e
�pt + jk3j

�
e�i�e�(�+j!d)t + e+i�e�(��j!d)t

�
;

or

y(t) = 1+
�!2n

!2n � 2p�!n + p2| {z }
A

e�pt+
pq

(1� �2) (p2 � 2p�!n + !2n)| {z }
B

e��t cos(!dt+�):

(a) As p gets large the B term dominates.

(b) For small p: A t �1; B t 0:

(c) As p gets small A dominates.

(d) The e¤ect of a change in p is not noticeable above p t 10:
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Problem 3.38: Step responses for several values of p.

39. Consider the second order unity DC gain system with one �nite zero,

H(s) =
!2n(s+ z)

z(s2 + 2�!ns+ !2n)
:

(a) Show that the unit-step response is

y(t) = 1 +
1

z

e��tp
1� �2

p
!2n + z

2 � 2�!n cos(!dt� �1);

where

�1 = tan
�1 �z � !np

1� �2z
:

(b) Derive an expression for the overshoot, Mp, for this system.

(c) For a given value of overshoot, Mp, how do we solve for � and !n?

Solution:
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(a). We write the transfer function in partial fraction form,

H(s) =
!2n

(s2 + 2�!ns+ !2n)
+
1

z

!2ns

(s2 + 2�!ns+ !2n)
:

The step response of the �rst term is as given in Chapter 3, and that
of the second term is simply the derivative of that (i.e., the impulse
response) scaled by 1=z:

y(t) = y1 +
1

z

dy1
dt
;

y(t) = 1� e��tp
1� �2

cos(!dt� �) +
1

z

"
�e��tp
1� �2

cos(!dt� �) +
!de

��tp
1� �2

sin(!dt� �)
#
;

y(t) = 1� e��tp
1� �2

�
�1 + �

z

�
cos(!dt� �) +

e��tp
1� �2

!d
z
sin(!dt� �)

where � = tan�1
�p
1� �2

:

Now as in Chapter 3 we combine the last two terms to yield,

y(t) = 1 +
1

z

e��tp
1� �2

�p
!2n + z

2 � 2�!n
�
cos(!dt� (� + �2));

where �2 = tan�1
!n
p
1� �2

�!n � z
:

Using the trigonometric identity,

tan�1A+ tan�1B = tan�1
A+B

1�AB ;

we combine the last two terms in the argument of the cosine term,

�1 = � + �2 = tan
�1

0BB@
�p
1��2

+
!n
p
1��2

�!n�z

1� �p
1��2

!n
p
1��2

�!n�z

1CCA = tan�1
�z � !np
1� �2z

:

Hence we have the �nal desired result,

y(t) = 1 +
1

z

e��tp
1� �2

�p
!2n + z

2 � 2�!n
�
cos(!dt� �1):

Alternative Solution for (a):
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y(t) = y1 +
1

z

dy1
dt
;

= 1� e��tp
1� �2

cos(!dt� �) +
1

z

"
!ne

��tp
1� �2

sin(!dt)

#
;

= 1� e��tp
1� �2

�
(
�!n
z

+ sin(�)) sin(!dt) + cos(!dt) cos(�)

�
;

where � = tan�1
�p
1� �2

:

cos(�) = cos

 
tan�1

�p
1� �2

!
=

1s
1 +

�
�p
1��2

�2 =
q
1� �2;

sin(�) = sin

 
tan�1

�p
1� �2

!
=

�p
1��2s

1 +

�
�p
1��2

�2 = �;

y(t) = 1� e��tp
1� �2

�
(
�!n
z

+ �) sin(!dt) +

q
1� �2 cos(!dt)

�
;

y(t) = 1� e��tp
1� �2

24s(�!n
z

+ �)2 +

�q
1� �2

�2
cos(!dt� �1)

35 ;
y(t) = 1� e��tp

1� �2

"r
(
�!n
z

+ �)2 + 1� �2 cos(!dt� �1)
#
;

y(t) = 1 +
1

z

e��tp
1� �2

p
!2n + z

2 � 2�!n cos(!dt� �1);

where �1 = tan�1
�z � !np
1� �2z

:

(b) At peak time tp, we have that

dy(tp)

dt
= 0;

��
z

e��tp
1� �2

�p
!2n + z

2 � 2�!n
�
cos(!dt� �1)�

!d
z

e��tp
1� �2

�p
!2n + z

2 � 2�!n
�
sin(!dt� �1) = 0;
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cos(!dt� �1 � �3) = 0;

�3 = tan�1
p
1� �2

�
;

�1 + �3 = tan�1

�z�!np
1��2z

+

p
1��2
�

1� �z�!np
1��2z

p
1��2
�

= tan�1
�
z � !n
!n

�
;

tp =
1

!d

"
tan�1

 
z � �!n
!n
p
1� �2

!
+
3

2
�

#
;

Mp = y(tp)� 1;

Mp =
1

z

p
z2 � z�!n + !2ne��tp :

(c) For a given overshoot Mp, the values of !n and � have to be
found by trial and error. In general, they will be di¤erent than the
standard second order system values unless z is large that is the zero
is far away.

40. The block diagram of an autopilot designed to maintain the pitch attitude
� of an aircraft is shown in Fig. 3.67. The transfer function relating the
elevator angle �e and the pitch attitude � is

�(s)

�e(s)
= G(s) =

50(s+ 1)(s+ 2)

(s2 + 5s+ 40)(s2 + 0:03s+ 0:06)
;

where � is the pitch attitude in degrees and �e is the elevator angle in
degrees. The autopilot controller uses the pitch attitude error e to adjust
the elevator according to the transfer function

�e(s)

e(s)
= D(s) =

K(s+ 3)

s+ 10
:

Using Matlab, �nd a value of K that will provide an overshoot of less
than 10% and a rise time faster than 0:5 sec for a unit-step change in �r.
After examining the step response of the system for various values of K,
comment on the di¢ culty associated with making rise-time and overshoot
measurements for complicated systems.

Solution:

G(s) =
�(s)

�e(s)
=

50 (s+ 1) (s+ 2)

(s2 + 5s+ 40) (s2 + 0:03s+ 0:06)
;

D(s) =
�e(s)

e(s)
=
K(s+ 3)

(s+ 10)
;
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Figure 3.67: Block diagram of autopilot

where

e(s) = �r ��;
�(s)

�r(s)
=

G(s)D(s)

1 +G(s)D(s)
;

=
50K (s+ 1) (s+ 2) (s+ 3)

(s2 + 5s+ 40) (s2 + 0:03s+ 0:06) (s+ 10) +K (s+ 3)
;

=
50K

�
s3 + 6s2 + 11s+ 6

�
s5 + 15:03s4 + (50K + 90:51)s3 + (300K + 403:6)s2 + (17:4 + 550K) s+ (24 + 300K)

:

Output must be normalized to the �nal value of �(s)
�r(s)

for easy computa-
tion of the overshoot and rise-time. In this case the design criterion for
overshoot cannot be met easily which is indicated in the sample plots.
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Problem 3.40: Step responses for an autopilot for various values of K.

Problems and Solutions for Section 3.7: Sta-
bility

41. A measure of the degree of instability in an unstable aircraft response
is the amount of time it takes for the amplitude of the time response to
double (see Fig. 3.68), given some nonzero initial condition.

(a) For a �rst-order system, show that the time to double is

�2 =
ln 2

p
;

where p is the pole location in the RHP.

(b) For a second-order system (with two complex poles in the RHP),
show that

�2 =
ln 2

��!n
:
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Figure 3.68: Time to double

Solution:

(a) First-order system, H(s) could be:

H(s) =
k

(s� p) ;

h(t) = L�1 [H(s)] = kept;
h(�0) = kep�0 ;

h (�0 + �2) = 2h (�0) = ke
p(�0+�2);

=) 2kep�0 = kep�0ep�2 ;

=) �2 =
ln 2

p
:

(b) Second-order system:

y (t) = y0
e!nj�jtq
1�

���2�� sin
�
!n

q
1�

���2��t+ cos�1 �� ;
where

cos�1 � = cos�1 j�j+ �

=) y (t) = y0
e!nj�jtq
1�

���2�� (�1) sin
�
!n

q
1�

���2��t+ cos�1 j�j�

Note: Instead of working with a negative �; everything is changed to
j�j.
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jt0j = �y0
e!nj�jtq
1�

���2�� ;
j�0j = �y0

e!nj�j�0q
1�

���2�� ;
j�0 + �2j = �y0

e!nj�j(�0+�2)q
1�

���2�� = 2 j�0j

=) e!nj�j�2 = 2

=) �2 =
ln 2

!n j�j
=

ln 2

�!n�
(� � 0)

Note: This problem shows that � = !n j�j (the real part of the poles)
is inversely proportional to the time to double.

The further away from the imaginary axis the poles lie, the faster
the response is (either increasing faster for RHP poles or decreasing
faster for LHP poles).

42. Suppose that unity feedback is to be applied around the listed open-loop
systems. Use Routh�s stability criterion to determine whether the resulting
closed-loop systems will be stable.

(a) KG(s) = 4(s+2)
s(s3+2s2+3s+4)

(b) KG(s) = 2(s+4)
s2(s+1)

(c) KG(s) = 4(s3+2s2+s+1)
s2(s3+2s2�s�1)

Solution:

(a)
1 +KG = s4 + 2s3 + 3s2 + 8s+ 8 = 0:

The Rouh array is,

s4 : 1 3 8

s3 : 2 8

s2 : a b

s1 : c

s0 : d
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where

a =
2� 3� 8� 1

2
= �1 b =

2� 8� 1� 0
2

= 8;

c =
3a� 2b
a

=
�8� 16
�1 = 24;

d = b = 8:

2 sign changes in the �rst column =) 2 roots not in the LHP=)
unstable.

(b)
1 +KG = s3 + s2 + 2s+ 8 = 0:

The Routh�s array is,

s3 : 1 2

s2 : 1 8

s1 : �6
s0 : 8

There are two sign changes in the �rst column of the Routh array.
Therefore, there are two roots not in the LHP.

(c)
1 +KG = s5 + 2s4 + 3s3 + 7s2 + 4s+ 4 = 0:

The Routh array is,

s5 : 1 3 4

s4 : 2 7 4

s3 : a1 a2

s2 : b1 b2

s1 : c1

s0 : d1

where

a1 =
6� 7
2

=
�1
2

a2 =
8� 4
2

= 2

b1 =
�7=2� 4
�1=2 = 15 b2 =

�4=2� 0
�1=2 = 4

c1 =
30 + 2

15
=
32

15
d1 = 4

2 sign changes in the �rst column =) 2 roots not in the LHP =)
unstable.
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43. Use Routh�s stability criterion to determine how many roots with positive
real parts the following equations have:

(a) s4 + 8s3 + 32s2 + 80s+ 100 = 0.

(b) s5 + 10s4 + 30s3 + 80s2 + 344s+ 480 = 0.

(c) s4 + 2s3 + 7s2 � 2s+ 8 = 0.
(d) s3 + s2 + 20s+ 78 = 0.

(e) s4 + 6s2 + 25 = 0.

Solution:

(a)
s4 + 8s3 + 32s2 + 80s+ 100 = 0

The Routh array is,

s4 : 1 32 100

s3 : 8 80

s2 : 22 100

s1 : 80� 800
22

= 43:6

s0 : 100

=) No roots not in the LHP

(b)
s5 + 10s4 + 30s3 + 80s2 + 344s+ 480 = 0

s5 : 1 30 344

s4 : 10 80 480

s3 : 22 296

s2 : �545 480

s1 : 490

s0 : 480

=) 2 roots not in the LHP.

(c)
s4 + 2s3 + 7s2 � 2s+ 8 = 0

There are roots in the RHP (not all coe¢ cients are >0). The Routh
array is,
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s4 : 1 7 8

s3 : 2 � 2
s2 : 8 8

s1 : �4
s0 : 8

=) 2 roots not in the LHP.

(d) The Routh array is,

s3 : 1 20

s2 : 1 78

s1 : �58
s0 : 78

There are two sign changes in the �rst column of the Routh array.
Therefore, there are two roots not in the LHP.

(e)

a (s) = s4 + 6s2 + 25 = 0

Two coe¢ cients are missing so there are roots outside the LHP.

Create a new row by da(s)
ds :

The Routh array with the new row is,

s4 : 1 6 25

s3 : 4 12  � new row
s2 : 3 25

s1 : 12� 100
3
= �21:3

s0 : 25

=) 2 roots not in the LHP

check:

a (s) = 0 =) s2 = �3� 4j = 5ej(��0:92)

s =
p
5ej(

�
2�0:46)+n�j n = 0; 1
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Problem 3.43: s-plane pole locations.

44. Find the range of K for which all the roots of the following polynomial
are in the LHP:

s5 + 5s4 + 10s3 + 10s2 + 5s+K = 0:

Use Matlab to verify your answer by plotting the roots of the polynomial
in the s-plane for various values of K.

Solution:
s5 + 5s4 + 10s3 + 10s2 + 5s+K = 0:

The Routh array is,

s5 : 1 10 5

s4 : 5 10 K

s3 : a1 a2

s2 : b1 K

s1 : c1

s0 : K

where

a1 =
5 (10)� 1 (10)

5
= 8 a2 =

5 (5)� 1 (K)
5

=
25�K
8

b1 =
(a1) (10)� (5) (a2)

a1
=
55 +K

8

c1 =
(b1) (a2)� (a1) (K)

b1
=
�
�
K2 + 350K � 1375

�
5 (55 +K)
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For stability: all elements in �rst the �rst column must be positive that
results in the following set of constraints:

(1) b1 =
55 +K

8
> 0 =) K > �55

(2) c1 =
�
�
K2 + 350K � 1375

�
5 (55 +K)

> 0;
� (K � 3:88) (K + 354)

5 (55 +K)
> 0 =) �55 < K < 3:88

(3) d1 = K > 0

Combining (1), (2), and (3) =) 0 < K < 3:88: If we plot the roots of
the polynomial for various values of K we obtain the following root locus
plot (see Chapter 5),

Root Locus
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Im
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K=3.88

K=3.88

Problem 3.44: Roots of the polynomial in the s-plane for various values
of K.

45. The transfer function of a typical tape-drive system is given by

G(s) =
K(s+ 4)

s[(s+ 0:5)(s+ 1)(s2 + 0:4s+ 4)]
;

where time is measured in milliseconds. Using Routh�s stability crite-
rion, determine the range of K for which this system is stable when the
characteristic equation is 1 +G(s) = 0.

Solution:

1 +G (s) = s5 + 1:9s4 + 5:1s3 + 6:2s2 + (2 +K) s+ 4K = 0:
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The Routh array is,

s5 : 1:0 5:1 2 +K

s4 : 1:9 6:2 4K

s3 : a1 a2

s2 : b1 4K

s1 : c1

s0 : 4K

where

a1 =
(1:9) (5:1)� (1) (6:2)

1:9
= 1:837 a2 =

(1:9) (2 +K)� (1) (4K)
1:9

= 2� 1:1K

b1 =
(a1) (6:2)� (a2) (1:9)

a1
= 1:138 (K + 3:63)

c1 =
(b1) (a2)� (4K) (a1)

b1
=
�
�
1:25K2 + 9:61K � 8:26

�
1:138 (K + 363)

=
� (K + 8:47) (K � 0:78)

0:91 (K + 3:63)

For stability we must have all the elements in the �rst column to be positive
and that results in the following set of constraints:

(1) b1 = K + 3:63 > 0 =) K > �3:63;
(2) c1 > 0 =) �8:43 < K < 0:78;

(3) d1 > 0 =) K > 0:

Intersection of (1), (2), and (3) =) 0 < K < 0:78.

46. Consider the closed-loop magnetic levitation system shown in Figure 3.69.

(a) Compute the transfer function from the input (R) to the output
(Y ).

(b) Assume Ko = 1. Determine the conditions on the system parame-
ters (a;K; z; p), to guarantee closed-loop system stability.

Solution:

(a) The transfer function is

Y

R
=

K(s+z)
s+p

K�
s2�a2

1 + K(s+z)
s+p

K�
s2�a2

=
KK�(s+ z)

s3 + ps2 + (KK� � a2)s+KK�z � pa2

(b) With K� = 1 we have Denominator (s) = s3 + ps2 + (K � a2)s +
Kz � pa2;constructing the Routh array we obtain
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Figure 3.69: Magnetic levitation system

s3 : 1 K � a2
s2 : p Kz � pa2

s1 : �Kz+pa2+Kp�pa2
p = �Kz+Kp

p

s0 : Kz � pa2

Therefore, for stability, all the elements in the �rst column to be positive
and we obtain the following set of constraints:

p > 0;

Kp�Kz > 0 if K > 0) p > z;

Kz � pa2 > 0 if K > 0) z >
pa2

K
:

47. Consider the system shown in Fig. 3.70.

S

1

2

e2 s TR Ys ( s 1 1 )
A

Figure 3.70: Control system for Problem 3.47

(a) Compute the closed-loop characteristic equation.

(b) For what values of (T;A) is the system stable? Hint : An approximate
answer may be found using

e�Ts �= 1� Ts

or

e�Ts �=
1� T

2 s

1 + T
2 s

for the pure delay. As an alternative, you could use the computer
Matlab (Simulink) to simulate the system or to �nd the roots of the
system�s characteristic equation for various values of T and A.
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Solution:

(a) The characteristic equation is,

s(s+ 1) +Ae�Ts = 0

(b) Using e�Ts �= 1� Ts; the characteristic equation is,

s2 + (1� TA)s+A = 0

The Routh�s array is,

s2 : 1 A

s1 : 1� TA 0

s0 : A

For stability we must have A > 0 and TA < 1:

Using e�Ts �= (1�T
2 s)

(1+T
2 s)
; the characteristic equation is,

s3 +

�
1 +

2

T

�
s2 +

�
2

T
�A

�
s+

2

T
A = 0

The Routh�s array is,

s3 : 1

�
2

T
�A

�
s2 :

�
1 +

2

T

�
2A

T

s1 :

�
1 + 2

T

� �
2
T �A

�
� 2A

T�
1 + 2

T

� 0

s0 :
2A

T

For stability we must have all the coe¢ cients in the �rst column be
positive. The following Simulink diagram simulates the closed-loop
system.

Problem 3.47: Simulink simulation diagram.
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48. Modify the Routh criterion so that it applies to the case in which all the
poles are to be to the left of �� when � > 0. Apply the modi�ed test to
the polynomial

s3 + (6 +K)s2 + (5 + 6K)s+ 5K = 0;

�nding those values of K for which all poles have a real part less than �1.
Solution:

Let p = s+� and substitute s = p�� to obtain a polynomial in terms of
p. Apply the standard Routh test to the polynomial in p.

For the example p = s+1 or s = p�1. Substitute this in the polynomial,

(p� 1)3 + (6 +K) (p� 1)2 + (5 + 6K) (p� 1) + 5K = 0

or

p3 + (3 +K) p2 + (4K � 4) p+ 1 = 0:

The Routh�s array is,

p3 : 1 4K � 4
p2 : 3 +K 1

p1 :
(3 +K) (4K � 4)� 1

3 +K
0

p0 : 1

For stability, all the elements in the �rst column must be positive We
must have K > �3 and 4K2 + 8K � 13 > 0. The roots of the second-
order polynomial in K are K = 1:06 and K = �3:061. The second-order
polynomial remains positive if K > 1:06 or K < �3:061. Therefore, we
must have K > 1:06.

49. Suppose the characteristic polynomial of a given closed-loop system is
computed to be

s4+(11+K2)s
3+(121+K1)s

2+(K1+K1K2+110K2+210)s+11K1+100 = 0:

Find constraints on the two gains K1 and K2 that guarantee a stable
closed-loop system, and plot the allowable region(s) in the (K1;K2) plane.
You may wish to use the computer to help solve this problem.

Solution: The Routh array is,
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s4 : 1 121 +K1 11K1 + 100

s3 : 11 +K2 K1 +K1K2 + 110K2 + 210 0

s2 :
(11K2 + 10K1 + 1121)

K2 + 11
11K1 + 100

s1 :
10
�
111K2

2 +K
2
1K2 + 199K1K2 + 12342K2 +K

2
1 + 189K1 + 22331

�
(11K2 + 10K1 + 1121)

s0 : 11K1 + 100

For stability, the elements in the �rst column must all be positive. This
means that K2 > �11 and K1 > � 10011 . The region of stability is shown
in the following �gure.

Problem 3.49: s-plane region for stability.

50. Overhead electric power lines sometimes experience a low-frequency, high-
amplitude vertical oscillation, or gallop, during winter storms when the
line conductors become covered with ice. In the presence of wind, this ice
can assume aerodynamic lift and drag forces that result in a gallop up to
several meters in amplitude. Large-amplitude gallop can cause clashing
conductors and structural damage to the line support structures caused by
the large dynamic loads. These e¤ects in turn can lead to power outages.
Assume that the line conductor is a rigid rod, constrained to vertical
motion only, and suspended by springs and dampers as shown in Fig. 3.71.
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A simple model of this conductor galloping is

m�y +
D(�) _y � L(�)v
( _y2 + v2)1=2

+ T
�n�
`

�
y = 0;

where

m = mass of conductor;

y = conductor0s vertical displacement;

D = aerodynamic drag force;

L = aerodynamic lift force;

v = wind velocity;

� = aerodynamic angle of attack = � tan�1( _y=v);
T = conductor tension;

n = number of harmonic frequencies;

` = length of conductor:

y

x

a

a

n p 2

,( )T

S p r i n g
c o n s t a n tI c ea

W i n d v

R e l a t i v e w i n d 5 Ï y 2 1 v 2

C o n d u c t o r

y

­ L
­ a

1 D 0 , 0

Figure 3.71: Electric power-line conductor

Assume that L(0) = 0 and D(0) = D0 (a constant), and linearize the
equation around the value y = _y = 0. Use Routh�s stability criterion to
show that galloping can occur whenever

@L

@�
+D0 < 0:

Solution:

m�y +

"
D (�) _y � L (�) vp

_y2 + v2

#
+ T

�n�
l

�2
y = 0;
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Let x1 = y and x2 = _y = _x1

_x1 = x2

_x2 = � 1
m

"
D (�)x2 � L (�) vp

x22 + v
2

#
� T

m

�n�
l

�2
x1 = 0

� = � tan�1
�x2
v

�
_x1 = f1 (x1; x2)

_x2 = f2 (x1; x2)

_x1 = _x2 = 0 implies x2 = 0

x2 = 0 implies � = 0

� = 0 implies � T

m

�n�
l

�2
x1 = 0 implies x1 = 0:

@f1
@x1

= 0;
@f2
@x2

= 1;
@f2
@x1

= � T
m

�n�
l

�2
@f2
@x

=
@

@x2

(
� 1
m

"
D (�)x2 � L (�) vp

x22 + v
2

#)

= � 1
m
f 1p

x22 + v
2

�
@D

@�

@�

@x2
x2 +D (�)�

@L

@�

@�

@x2

�
�

�
"
D (�)x2 � L (�) vp

x22 + v
2

#"
�x2

(x22 + v
2)

3
2

#
g

Now,

@�

x2
=

@

@x2

�
� tan�1

�x2
v

��
=
�1

1 +
x22
v2

�
1

v

�
so,

@f2
@x2

=
�1
m
f 1p

x22 + v
2

24 �@D� x2
v
�
1 +

x22
v2

� +D (�) + @L
@�v

v
�
1 +

x22
v2

�
35

�
"
D (�)x2 � L (�) vp

x22 + v
2

#"
�x2

(x22 + v
2)

3
2

#
g

@f2
@x2
jx2=0 = �

1

m

�
1

v

�
D0 +

@L

@�

��
= � 1

mv

�
D0 +

@L

@�

�
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For no damping (or negative damping) �x2 term must be � 0 so this
implies D0 + @L

@� < 0.

Problems and Solutions for .Mason�s rule and
the Signal-Flow Graph On the Web

51. NFind the transfer functions for the block diagrams in Fig. 3.54, using
Mason�s rule.

Solution: Transfer functions are found using Mason�s rule,

Block diagram for Fig. 3.54 (a).

G�2 =
G2

1�G2H2
G�3 =

G3
1�G3H3

Flow graph for Fig. 3.54(a).

(a) Mason�s rule for Fig. 3.54(a):
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Forward Path Gains
1 2 4 5 6 p1 = G1G

�
2

1 2 4 3 6 p2 = G1
Loop Path Gains
2 4 3 7 2 `1 = �G1G�3
2 4 5 7 2 `2 = �G1G�2G�3

Y

R
=

p1 + p2
1� `1 � `2

=
G1(1 +G

�
2)

1 +G1G�3(1 +G
�
2)

=
G1(1�G2H2)(1�G3H3) +G1G2(1�G3H3)

1 + (1�G2H2)(1�G3H3) +G1G3(1�G2H2) +G1G2G3
:

This is the same answer as in Problem 3.21(a).

(b) Mason�s rule for Fig. 3.54(b):

Flow graph for Fig. 3.54(b).

Forward path gains:

p1 =
b3
s3
; p2 =

b2
s2
; p3 =

b1
s

Loop path gains:

`1 = �
a3
s3
; `2 = �

a2
s2
; `3 = �

a1
s

Y

R
=

p1 + p2 + p3
1� `1 � `2 � `3

=
b3
s3 +

b2
s2 +

b1
s

1 + a3
s3 +

a2
s2 +

a1
s

=
b1s

2 + b2s+ b3
s3 + a1s2 + a2s+ a3

This is the same answer as in Problem 3.21(b).
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(c) Mason�s Rule for Fig. 3.54(c):

Flow graph for Fig. 3.54(c).

Forward path gains:

p1 =
b3
s3
; p2 =

b2
s2
[1 +

a1
s
]; p3 =

b1
s
[1 +

a1
s
+
a2
s2
]

Loop path gains:

`1 = �
a3
s3
; `2 = �

a2
s2
; `3 = �

a1
s

Y

R
=

p1 + p2 + p3
1� `1 � `2 � `3

=
b1s

2 + (a1b1 + b2)s+ a1b2 + a2b1 + b3
s3 + a1s2 + a2s+ a3

This is the same answer as in Problem 3.21(c).

(d) Mason�s rule for Fig. 3.54(d): The system is tightly connected, easy
to apply Mason�s rule.

Block diagram for Fig. 3.54(d).
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Flow graph for Fig. 3.54(d).

Forward path gains:

p1 = D; p2 = AB
�

Loop path gains:

`1 = �GD; `2 = �AB�G

Y

R
=

p1 + p2
1� `1 � `2

=
D +AB�

1 +G(D +AB�)
=

D +DBH +AB

1 +BH +GD +GBDH +GAB

This is the same answer as in Problem 3.21(d).

52. NUse block-diagram algebra or Mason�s rule to determine the transfer
function between R(s) and Y (s) in Fig. 3.55.

S

2

2

1

S

1
2

S

1

1

Y ( s )R ( s )

G 2

G 3

G 1

S

1

2

G 4

H 2

G 5

H 4

H 3

G 6

Text Fig. 3.55 Block diagram for Problem 3.52

Solution:
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Block diagram for Fig. 3.55.

Block diagram algebra:

Block diagram for Fig. 3.55: reduced.

Q = R� PH3 � PH4
= R� P (H3 �H4)

P = G1NG6 = Y

So:

Y

R
=

G1NG6
1 + (H3 +H4)G1NG6

Now, what is N?
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Block diagrams for Fig. 3.55.

Move G4 and G3 :

Block diagram for Fig. 3.55: reduced.

Combine symmetric loops as in the �rst step:

Block diagram for Fig. 3.55: reduced.

Which is:

N =
O

I
=

G4G2 +G5G3
1 +H2(G4 +G5)

Y (s)

R(s)
=

G1(G4G2 +G5G3)G6
1 +H2(G4 +G5) + (H3 +H4)G1(G4G2 +G5G3)G6
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Mason�s Rule:

The signal �ow graph is:

Flow graph for Fig. 3.55.

Forward Path Gain
1 2 3 4 5 p1 = G1G2G4G6
1 2 6 4 5 p2 = G1G3G5G6
Loop Path Gain
1 2 3 4 5 1 `1 = �G1G2G4G6H3
1 2 3 4 5 1 `2 = �G1G2G4G6H4
1 2 6 4 5 1 `3 = �G1G3G5G6H3
1 2 6 4 5 1 `4 = �G1G3G5G6H4
3 4 3 `5 = �G4H2
3 4 3 `6 = �G5H2

and the determinants are

� = 1 + [(H3 +H4)G1(G2G4 +G3G5)G6 +H2(G4 +G5)]

�1 = 1� (0)
�2 = 1� (0)
�3 = 1� (0)
�4 = 1� (0):

Applying the rule, the transfer function is

Y (s)

R(s)
=

1

�

X
Gi�i =

p1 + p2
1� `1 � `2 � `3 � `4 � `5 � `6

=
G1(G4G2 +G5G3)G6

1 +H2(G4 +G5) + (H3 +H4)G1(G4G2 +G5G3)G6
:
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Chapter 4: A First Analysis of Feedback
Problems and Solutions for Section 4.1: The Basic Equations of

Control

1. If S is the sensitivity of the unity feedback system to changes in the plant
transfer function and T is the transfer function from reference to output,
show that S + T = 1:

Solution:

S + T =
1

1 +DG
+

DG

1 +DG
= 1

OK, this one was free!

2. We de�ne the sensitivity of a transfer function G to one of its parameters
k as the ratio of percent change in G to percent change in k.

SGK =
dG=G

dK=K
=
d lnG

d lnK
=
K

G

dG

dK
:

The purpose of this problem is to examine the e¤ect of feedback on sen-
sitivity. In particular, we would like to compare the topologies shown in
Fig. 4.23 for connecting three ampli�er stages with a gain of �K into a
single ampli�er with a gain of �10.

(a) For each topology in Fig. 4.23, compute �i so that if K = 10, Y =
�10R.

(b) For each topology, compute SGk when G = Y=R. [Use the respective
�i values found in part (a).] Which case is the least sensitive?

(c) Compute the sensitivities of the systems in Fig. 4.23(b, c) to �2 and
�3. Using your results, comment on the relative need for precision in
sensors and actuators.
Solution:

(a) For K = 10 and y = �10r; we have:
Case a:

Y

R
= ��1K3 =) �1 = 0:01

Case b:
Y

R
= (

�K
1 + �2K

)3 =) �2 = 0:364



4001

Figure 4.23: Three-ampli�er topologies for Problem 2

Case c:
Y

R
=

�K3

1 + �3K
3
=) �3 = 0:099

(b) Sensitivity SGK ; G =
Y

R
Case a:

dG

dK
= �3�1K2

SGK =
K

G

dG

dK
=

K

��1K3
(�3�1K2) = 3

Similarly:
Case b: SGK = 0:646
Case c: SGK = 0:03
Case c is the least sensitive.

(c) Sensitivities w.r.t. feedback gains:
Case b:

SG�2 = �2:354
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Figure 4.24: Block diagrams for Problem 3

Case c:
SG�3 = �0:99

The results indicate that the closed-loop system is much more sensi-
tive to errors in the feedback path than in the forward path. It is 33
times as sensitive in case c. We conclude that sensors need to have
much higher precision than actuators.

3. Compare the two structures shown in Fig. 4.24 with respect to sensitivity
to changes in the overall gain due to changes in the ampli�er gain. Use
the relation

S =
d lnF

d lnK
=
K

F

dF

dK
:

as the measure. Select H1 and H2 so that the nominal system outputs
satisfy F1 = F2, and assume KH1 > 0.

Solution:

F1 = (
K

1 +KH1
)2; F2 =

K2

1 +K2H2

SF1K =
2

1 +KH1
; SF2K =

2

1 +K2H2

F1 = F2 =) H2 = H
2
1 +

2H1
K

SF2K =
2

(1 +KH1)2
=

SF1K
1 +KH1

System 2 is less sensitive. The conclusion is to put as much gain in the
feedback loop as you can.

4. A unity feedback control system has the open-loop transfer function

G(s) =
A

s(s+ a)
:

(a) Compute the sensitivity of the closed-loop transfer function to changes
in the parameter A.
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(b) Compute the sensitivity of the closed-loop transfer function to changes
in the parameter a.

(c) If the unity gain in the feedback changes to a value of � 6= 1, compute
the sensitivity of the closed-loop transfer function with respect to �.
Solution:

(a)

T (s) =
G(s)

1 +G(s)
=

A

s(s+ a)

1 +
A

s(s+ a)

=
A

s2 + as+A

dT

dA
=
(s2 + as+A)�A
(s2 + as+A)

2

STA =
A

T

dT

dA
=
A(s2 + as+A)

A

s2 + as

(s2 + as+A)2
=

s(s+ a)

s(s+ a) +A

(b)
dT

da
=

�sA
(s2 + as+A)2

a

T

dT

da
=
a(s2 + as+A)

A

�sA
(s2 + as+A)2

STa =
�as

s(s+ a) +A

(c) In this case,

T (s) =
G(s)

1 + �G(s)

dT

d�
=

�G(s)2
(1 + �G(s))2

�

T

dT

d�
=
�(1 + �G)

G

�G2
(1 + �G)2

=
��G
1 + �G

ST� =

��A
s(s+A)

1 +
�A

s(s+ a)

=
��A

s(s+ a) + �A

� If a = A = 1;the transfer function is most sensitive to variations
in a and A near ! = 1 rad/sec .

� The steady-state response is not a¤ected by variations in A and
a (STA(0) and STa (0) are both zero).
� The steady-state response is heavily dependent on � since jST� (0)j
= 1.0
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See attached plots of sensitivities versus radian frequency for a =
A = 1:0:

0 1 2 3 4 5 6 7 8 9 1010­3

10­2

10­1

100

101

sensitivity to A

sensitivity to a

sensitivity to beta

5. Compute the equation for the system error for the �ltered feedback system
shown in Fig. 4.4.

Solution:

For this �gure, the equation for the output is:

Y =
FDG

1 +DGH
R+

G

1 +DGH
W � DGH

1 +DGH
V

And the resulting equation for the error is:

E = R� Y

=
1 +DG(H � F )
1 +DGH

R� G

1 +DGH
W +

DGH

1 +DGH
V

Therefore, as we have seen, increasing the loop gain does not necessarily
reduce the error as the result depends on the structure of the system..

6. If S is the sensitivity of the �ltered feedback system to changes in the
plant transfer function and T is the transfer function from reference to
output, compute the sum of S + T . Show that S + T = 1 if F = H:

(a) Compute the sensitivity of the �ltered feedback system shown in Fig
4.4 with respect to changes in the plant transfer function, G:

(b) Compute the sensitivity of the �ltered feedback system shown in Fig
4.4 with respect to changes in the controller transfer function, Dcl:

(c) Compute the sensitivity of the �ltered feedback system shown in Fig
4.4 with respect to changes in the �lter transfer function, F:
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(d) Compute the sensitivity of the �ltered feedback system shown in Fig
4.4 with respect to changes in the sensor transfer function, H:
Solution:
To answer the �rst question, we need the answer to part a) so let�s
start there.
a.
Applying the formula for sensitivity of T to changes in G:

T =
FDG

1 +DGH

S = G
1 +DGH

FDG

(1 +DGH)FD � (FDG)(DH
(1 +DGH)2

=
1

1 +DGH

Now we can do

S + T =
1

1 +DGH
+

FDG

1 +DGH

=
1 + FDG

1 +DGH
= 1 if F = H (4.1)

b. Applying the formula for sensitivity of T to changes in D:

SDT = D
1 +DGH

FDG

(1 +DGH)FG� FDG(GH)
(1 +DGH)2

=
1

1 +DGH

This is not surprising as D and G are in series.
c. Applying the formula for sensitivity of T to changes in F:

SFT = F
1 +DGH

FDG

(1 +DGH)(DG)

(1 +DGH)2

1 +DGH

1 +DGH
= 1

In this case, the F term is in the open loop so it has sensitivity of
unity.
d. Applying the formula for sensitivity of T to changes in H:

SHT = H
1 +DGH

FDG

(1 +DGH)0� FDG(DG)
(1 +DGH)2

= � DGH

(1 +DGH)
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Figure 4.25: Control system for Problem 7

Figure 4.26: Control system for Problem 8

Problems and Solutions for Section 4.2: Control of Steady-State

Error

7. Consider the DC-motor control system with rate (tachometer) feedback
shown in Fig. 4.25(a).

(a) Find values for K 0 and k0t so that the system of Fig. 4.25(b) has the
same transfer function as the system of Fig. 4.25(a).

(b) Determine the system type with respect to tracking �r and compute
the system Kv in terms of parameters K 0 and k0t.

(c) Does the addition of tachometer feedback with positive kt increase
or decrease Kv?

Solution:

(a) Using block diagram reduction techniques:

- Move the picko¤ point from the input of the
1

k
to its output.

- Eliminate the second summer by absorbing Kp:

This will result in Figure 4.25(b) where

K 0 =
KpKKm

k

k0t =
kkt
Kp
:
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(b) The inner-loop in Fig. 4.25(a) may be reduced to

kKm

s(1 + �ms+ kKmkt)

which means that the unity feedback system has a pure integrator
in the forward loop and hence it is Type 1 with respect to reference

input (�r) and Kv =
kKm

(1 + kKmkt)

(c) We conclude that the introduction of kt reduces the velocity constant
and therefore makes the error to a ramp larger

8. Consider the system shown in Fig. 4.26, where

D(s) = K
(s+ �)2

s2 + !2o
:

(a) Prove that if the system is stable, it is capable of tracking a sinusoidal
reference input r = sin!ot with zero steady-state error. (Look at the
transfer function from R to E and consider the gain at !o:)

(b) Use Routh�s criterion to �nd the range of K such that the closed-loop
system remains stable if !o = 1 and � = 0:25:
Solution:

(a)

D(s)G(s) =
K(s+ �)2

(s2 + !2o)s(s+ 1)

E(s)

R(s)
=

1

1 +DG

=
s(s+ 1)(s

2
+ !2o)

(s2 + !2o)s(s+ 1) +K(s+ �)
2

The gain of this transfer function is zero at s = �j!o and we expect
the error to be zero if R is a sinusoid at that frequency. More formally,
let R(s) =

!n
s2 + !2n

then

E(s) =
s(s+ 1)(s

2
+ !2o)

(s2 + !2o)s(s+ 1) +K(s+ �)
2

!n
s2 + !2n

Assuming the (closed-loop) system is stable, then if !n : !o Then
E(s) has a pole on the imaginary axis and the FVT does not apply.
The �nal error will NOT be zero in this case. However, if !n = !o
we can use the FVT and

ess = lim
s!0

sE(s) = 0
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Figure 4.27: Control system for problem 9

(b) To test for stability, the characteristic equation is,

s4 + (K + !2o)s
2 + s3 + (!2o + 2�K)s+K�

2 = 0

Using the Routh array

s4 : 1 !2o +K K�2

s3 : 1 (!2o + 2�K)
s2 : K(1� 2�) K�2

s1 : !2o + 2�K +
�2

(1� 2�)
s0 : K�2

If � = 0:25; we must have K > 0, and K > 0:25� 2!2o.

9. Consider the system shown in Fig. 4.27 which represents control of the
angle of a pendulum that has no damping.

(a) What condition must D(s) satisfy so that the system can track a
ramp reference input with constant steady-state error?

(b) For a transfer function D(s) that stabilizes the system and satis�es
the condition in part (a), �nd the class of disturbances w(t) that the
system can reject with zero steady-state error.
Solution:

(a) For a unity feedback system to be Type 1 the open loop transfer
function must have a pole at s = 0: Thus in this case, since G has no
such pole, it is necessary for D to have a pole at s = 0:

(b)

Y (s) =
1

s2 +D(s) +K
W (s)

lim
s!0

s(
1

s2 +D(s) +K
)
1

s`
= 0
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i¤
lim
s!0

s`�1D(s) =1

i¤ ` = 1 since D(s) has a pole at the origin. Therefore system will
reject step disturbanceswith zero error.

10. A unity feedback system has the overall transfer function

Y (s)

R(s)
= T (s) = !2n

s2 + 2�!ns+ !2n
:

Give the system type and corresponding error constant for tracking poly-
nomial reference inputs in terms of � and !n.

Solution:
E(s)

R(s)
=

s2 + 2�!ns

s2 + 2�!ns+ !2n

Therefore the system is Type 1 and the velocity constant is Kv =
!n
2�

11. Consider the second-order system

G(s) =
1

s2 + 2�s+ 1
:

We would like to add a transfer function of the formD(s) = K(s+a)=(s+b)
in series with G(s) in a unity-feedback structure.

(a) Ignoring stability for the moment, what are the constraints on K; a,
and b so that the system is Type 1?

(b) What are the constraints placed on K, a, and b so that the system
is both stable and Type 1?

(c) What are the constraints on a and b so that the system is both Type
1 and remains stable for every positive value for K?

Solution:

(a) In a unity feedback structure, the error is 1=(1+GD) and, as we saw,
to be Type 1, there needs to be a pole at s = 0 in the product GD:
Since there is no such pole in G; it must be supplied by D; thus, the
answer is

b = 0

(b) To assure stability, all poles of the closed loop must be in the left half
plane, for which the criterion is by Routh. Thus the characteristic
equation is

s(s2 + 2�s+ 1) +K(s+ a) = 0
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and the Routh array is

1 1 +K

2� aK

2�(1 +K)� aK
2�

aK

Thus the requirements are

2�(1 +K)� aK > 0

aK > 0

(c) If we assume that � > 0 and, for this part, that a > 0 also, the
requirements can be reduced to

K > 0

2� +K(2� � a) > 0

If a < 2�; inspection of these conditions shows that the system will
be stable for all positive values of K: On the other hand, if a > 2�;
then the requirement is

0 < K <
2�

a� 2�

Extra credit: work out the case for � < 0: Note to the Instructor:
you might come back to this problem in chapter 5 and verify this
point using the rule of asymptotes.

12. Consider the system shown in Fig. 4.28(a).

(a) What is the system type? Compute the steady-state tracking error
due to a ramp input r(t) = rot1(t).

(b) For the modi�ed system with a feed forward path shown in Fig. 4.28(b),
give the value of Hf so the system is Type 2 for reference inputs and
compute the Ka in this case.

(c) Is the resulting Type 2 property of this system robust with respect
to changes in Hf? i.e., will the system remain Type 2 if Hf changes
slightly?
Solution:
(a) System is Type 1 since it is unity feedback and has a pole at
s = 0in the forward path. Also,.

E(s) = [1� T (s)]R(s)
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Figure 4.28: Control system for Problem 12

=

�
1

1 +G(s)

�
R(s)

=
s(�s+ 1)

s(�s+ 1) +A

ro
s2

The steady-state tracking error using the FVT (assuming stability)
is

ess = lim
s!0

sE(s) =
ro
A
:

(b)

Y (s) =
A

s(�s+ 1)
U(s)

U(s) = HfsR(s) +HrR(s)� Y (s)

Y (s) =
A(Hfs+Hr)

s(�s+ 1) +A
R(s)

The tracking error is,

E(s) = R(s)� Y (s)

=
s(�s+ 1) +A�A(Hfs+Hr)

s(�s+ 1) +K
R(s)

=
�s2 + (1�AHf )s+A(1�Hr)

s(�s+ 1) +A

To get zero steady-state error with respect to a ramp, the numerator
in the above equation must have a factor s2. For this to happen, let

Hr = 1

AHf = 1:
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Then

E(s) =
�s2

s(�s+ 1) +A
R(s)

and, with R(s) =
ro
s2
, apply the FVT (assuming stability) to obtain

ess = 0:

Thus the system will be Type 2 with Ka =
�

A
.

(c) No, the system is not robust Type 2 because the property is lost
if either Hr or Hf changes slightly.

13. A controller for a satellite attitude control with transfer function G = 1=s2

has been designed with a unity feedback structure and has the transfer

function D(s) =
10(s+ 2)

s+ 5

(a) Find the system type for reference tracking and the corresponding
error constant for this system.

(b) If a disturbance torque adds to the control so that the input to the
process is u + w; what is the system type and corresponding error
constant with respect to disturbance rejection?
Solution:

(a) There are two poles at s = 0 so the system is Type 2 and the error
constsnts are:

Kp = lim
s!0

D(s)G(s) =1

ess =
1

1 +Kp
= 0:

Kv = lim
s!0

sD(s)G(s) =1

ess =
1

Kv
= 0:

Ka = lim
s!0

s2D(s)G(s) = 4

ess =
1

Ka
= 0:25:

(b) For the disturbance input, the poles at s = 0 are after the input and
therefore the system is Type 0. The error is

E(s)

W (s)
= � G

1 +GD

= � s+ 5

s2(s+ 5) + 10(s+ 2)
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Figure 4.29: Control system for Problem 14

The steady-state error to a step is thus ess = 0:25 =
1

1 +Kp
: There-

fore,
Kp = 3

14. A compensated motor position control system is shown in Fig. 4.29. As-
sume that the sensor dynamics are H(s) = 1.

(a) Can the system track a step reference input r with zero steady-state
error? If yes, give the value of the velocity constant.

(b) Can the system reject a step disturbance w with zero steady-state
error? If yes, give the value of the velocity constant.

(c) Compute the sensitivity of the closed-loop transfer function to changes
in the plant pole at �2.

(d) In some instances there are dynamics in the sensor. Repeat parts (a)
to (c) for H(s) = 20=(s+20) and compare the corresponding velocity
constants.
Solution:

(a) The system is Type 1 with H(s) = 1.

E(s) = R(s)� Y (s) = s(s+ 2)(s+ 30)

s(s+ 2)(s+ 3) + 160(s+ 4)

ess = lim
s!0

sE(s) = 0:

So the system can track a step input in the steady-state. The velocity

constant is Kv =
4� 160
2� 30 = 10:67

(b) The system is Type 0 with respect to the disturbance and has the
steady-state error.

yss = � lim
s!0

sY (s) = � s+ 30

s(s+ 2)(s+ 30) + (s+ 4)
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= �30
4
= �7:5:

So the system cannot reject a constant disturbance.

(c)

T (s) =
160(s+ 4)

s(s+A)(s+ 30) + 160(s+ 4)

where A was inserted for the pole at the nominal value of 2.

STA =
A

T

@T

@A

But,

@T

@A
= � 160(s+ 4)(s)(s+ 30))

[s(s+ 30)(s+A) + 160(s+ 4)]2
=
160(s+ 4)(s)(s+ 30))

[�]2

therefore,

STA = �A[�]160(s+ 4)(s)(s+ 30)
160(s+ 4)[�]2

=
2s(s+ 30)

s(s+ 30)(s+ 2) + 160(s+ 4)

At s = 0 the sensitivity is zero.

(d) Because the system type is computed at s = 0 and at that value
H = 1; then the system remains Type 1.with respect to the reference
input. However, theKv is changed becauseH = 1� s

s+ 20
, providing

negative velocity feedback. The new expression for the error is

E(s) =
s(s+ 2)(s+ 30(s+ 20)� s(160)(s+ 4)
s(s+ 2)(s+ 30(s+ 20) + 20(160)(s+ 4)

R(s)

from which Kv = 22:86: The system remains Type 0 with respect
to the disturbance input with the same position error constant Kp =
21:33:

15. The general unity feedback system shown in Fig. 4.30 has disturbance
inputs w1, w2 and w3 and is asymptotically stable. Also,

G1(s) =
K1

Qm1

i=1(s+ z1i)

sl1
Qm1

i=1(s+ p1i)
; G2(s) =

K2

Qm1

i=1(s+ z2i)

sl2
Qm1

i=1(s+ p2i)
:

(a) Show that the system is of Type 0, Type l1, and Type (l1 + l2) with
respect to disturbance inputs w1, w2, and w3 respectively.
Solution:
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Figure 4.30: Single input-single output unity feedback system with disturbance
inputs

(a)

Y (s) =
G1(s)G2(s)

1 +G1(s)G2(s)
W1(s) =

K1K2[
Q
i(s+ zi)]W1(s)

sl1+l2
Q
i(s+ pi) +K1K2

Q
i(s+ zi)

(i)

(pi; zi are the poles and zeros of G1 ; G2 not at the origin).

�ess = yss = lim
s!0

[sY (s)] = lim
s!0

[sW1(s)] Type 0

Y (s) =
G2(s)

1 +G1(s)G2(s)
W2(s) =

K2[
Q
i(s+ z2i)]s

l1
Q
i(s+ p1i)

�(s)
W2(s) (ii)

�(s) is the characteristic polynomial, same as in (i) (denominator in
(i)).

yss = [lim
s!0

s:W2(s):s
l1 ]

Q
i p1iQ
i z1i

Type `1

Y (s) =
W3(s)

1 +G1(s)G2(s)
=
sl1+l2

Q
i(s+ pi)

�(s)
W3(s) (iii)

yss = [lim
s!0

s:W3(s):s
l1+l2 ]

Q
i piQ
i zi

Type `1 + `2

Y1 =
1

s2 + s+ 1
R1 +

s

s2 + s+ 1
W1 +

s(s+ 1)

s2 + s+ 1
W2

For constant disturbances, R1 = 0; W1(s) =
W10

s
; W2(s) =

W20

s

Y1 =
W10 + (s+ 1)W20

s2 + s+ 1

Let u2 be the signal coupling systems 1 and 2:

U2 =
(s+ 1)(R1 �W2) + s(s+ 1)W1

s2 + s+ 1

Y2 =
R2

s2 + 3s+ 2
+
(s+ 1)U2
s2 + 3s+ 2

=
(s+ 1)2(�W2) + s(s+ 1)

2W2

(s2 + 3s+ 2)(s2 + s+ 1)
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Figure 4.31: System using integral control

The system Type w.r.t. disturbances:

y1 w:r:t: W1 Type 1

y1 w:r:t: W2 Type 1

y2 w:r:t: W1 Type 1

y2 w:r:t: W2 Type 0

can be determined by applying FVT to Y1 and Y2 or by inspection follow-
ing the rule of part (a).

16. One possible representation of an automobile speed-control system with
integral control is shown in Fig. 4.31.

(a) With a zero reference velocity input (vc = 0), �nd the transfer func-
tion relating the output speed v to the wind disturbance w.

(b) What is the steady-state response of v if w is a unit ramp function?

(c) What type is this system in relation to reference inputs? What is the
value of the corresponding error constant?

(d) What is the type and corresponding error constant of this system in
relation to tracking the disturbance w?
Solution:

(a)
V (s)

W (s)
=

ms

s2 +mk3s+mk1k2

(b)

vss = lim
s!0

s
V (s)

W (s)

W0

s2
=
W0

k1k2

where W (s) =
W0

s2
:
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Figure 4.32: Control system for Problem 17

(c)

E = Vc � V = [1�

k1k2m

s(s+mk3)

1 +
k1k2m

s(s+mk3)

]Vc =
1

1 +
mk1k2

s(s+mk3)| {z }
G(s)

Vc

ess = lim
s!0

sVc
1 +G(s)

Kp = lim
s!0

G(s) =1 =) e1(step input) = 0

Kv = lim
s!0

sG(s) =
k1k2
k3

=) e1(ramp input) =
1

Kv
=

k3
k1k2

System is Type 1.

(d) For disturbances: If the disturbance is a ramp, the result of part (a)

shows that the steady state error, which is V; will be ess =
1

k1k2
:

Therefore, the system is Type 1 and the velocity constant is Kv =
k1k2:

17. For the feedback system shown in Fig. 4.32, �nd the value of � that will
make the system Type 1 for K = 5. Give the corresponding velocity
constant. Show that the system is not robust by using this value of � and
computing the tracking error e = r � y to a step reference for K = 4 and
K = 6.

Solution:

Y =
�KR

s+ 2 +K
E = R�Y = s+ 2 +K(1� �)

s+ 2 +K
RjK=5 =

s+ 7� 5�
s+ 7

R

For � =
7

5
we have:

E =
s

s+ 7
R

ess(step input) = lim
s!0

s
s

s+ 7

r0
s
= 0
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Figure 4.33: Control system for Problem 18

ess(ramp input) = lim
s!0

s
s

s+ 7

v0
s2
=
v0
7

So the system is Type 1.The system is not robust:

ess(step)jK=4 = lim
s!0

s
s+ 2 + 4(�25 )

s+ 6

r0
s
=
�r0
15

ess(step)jK=6 =
�r0
20

So the system is Type 0 if K 6= 5:

18. Suppose you are given the system depicted in Fig. 4.33(a), where the plant
parameter a is subject to variations.

(a) Find G(s) so that the system shown in Fig. 4.33(b) has the same
transfer function from r to y as the system in Fig. 4.33(a).

(b) Assume that a = 1 is the nominal value of the plant parameter.
What is the system type and the error constant in this case?

(c) Now assume that a = 1 + �a, where �a is some perturbation to the
plant parameter. What is the system type and the error constant for
the perturbed system?

Solution:

(a)

Y (s) =
1

s
(1 +

1

s+ a
)U(s)

=
1

s
(1 +

1

s+ a
)4(R(s)� Y (s) + 1

4(s+ a)
U(s)) (1)
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U(s) = 4R(s)� 4Y (s) + 1

s+ a
U(s)

(1� 1

s+ a
)U(s) = 4R(s)� 4Y (s)

U(s) =
4(s+ a)

s+ a� 1 [R(s)� Y (s)] (2)

Combining Eqs. (1) and (2) gives

Y (s) =
1

s
(
s+ a+ 1

s+ a
)(
4(s+ a)

s+ a� 1)(R(s)� Y (s))

=
4(s+ a� 1)
s(s+ a� 1) [R(s)� Y (s)]

which means

G(s) =
4(s+ a+ 1)

s(s+ a� 1)

(b) a = 1 therefore G(s) =
4(s+ 2)

s2

E(s)

R(s)
=

1

1 +G(s)
=

s2

s2 + 4s+ 8

roots are in LHP so we can use the FVT,

ess;step = lim!0
s(
1

s
)

s2

s2 + 4s+ 8
= 0

therefore Kp =1

ess;ramp = lim
s!0

s(
1

s2
)

s2

s2 + 4s+ 8
= 0

and Kv =1. The error to acceleration is

ess;parabola = lim!0
s(
1

s3
)

s2

s2 + 4s+ 8
=
1

8

therefore Ka =
1
8 and the system is Type 2

(c)
E(s)

R(s)
=

s(s+ �a)

s2 + (4 + �a)s+ 4(2 + �a)

for small �a, roots remain in LHP.

ess;step = lim
s!0

s(
1

s
)

s(s+ �a)

s2 + (4 + �a)s+ 4(2 + �a)
= 0
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Figure 4.34: Two feedback systems for Problem 19

therefore Kp =1.

ess;ramp = lim
s!0

s(
1

s2
)

s(s+ �a)

s2 + (4 + �a)s+ 4(2 + �a)
=

�a

4(2 + �a)
:

Therefore,Kv =
4(2 + �a)

�a
: For parabolic input, e(t)!1, therefore;Ka =

0: The system is now Type 1. Plant error (parameter variation)
caused the change in system type.

19. Two feedback systems are shown in Fig. 4.34.

(a) Determine values for K1, K2, and K3 so that both systems:

i. exhibit zero steady-state error to step inputs (that is, both are
Type 1), and

ii. whose static velocity error constant Kv = 1 when K0 = 1.

(b) Suppose K0 undergoes a small perturbation: K0 ! K0+�K0. What
e¤ect does this have on the system type in each case? Which system
has a type which is robust? Which system do you think would be
preferred?

Solution:

(a) System (a):

E = R� Y = R(s)

1 +G(s)

E(s) =
s(4s+ 1)

4s2 + s+K0K1
R(s)

Applying FTV:

ess;ramp =
1

K1
=

1

Kv
=) K1 = Kv = 1

System (b):
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E = R� Y = 1 +G�K2G

1 +G
R

E(s) =
4s+ 1 +K3K0(1�K2)

4s+ 1 +K3K0
R(s)

Applying FVT:

ess;step =
1 +K3K0(1�K2)

1 +K3K0
= 0

for K0 = 1 =) 1 +K3(1�K2) = 0

ess;ramp =
4

1 +K3
=

1

Kv

for Kv = 1 =) K3 = 3

=) K2 =
4

3
; K3 = 3

(b) Let K0 = K0 + �K0 In System (a):

ess;step = lim
s!0

s
s(4s+ 1)

(4s2 + s+K0 + �K0)

1

s
= 0

regardless of K0 value. In System (b):

ess;step =
1 +K3(K0 + �K0)(1�K2)

1 +K3(K0 + �K0)
jK0=1 =

��K0

1 + 3(1 + �K0
6= 0

Thus the system type of System (b) is not robust (it is a �calibrated�
system type.) Control engineers prefer system (a) over (b) because
it is more robust to parameter changes. (This can be expected for
a closed-loop with feedback to the input while (b) has an open-loop
stage to entering the feedback loop.)

20. You are given the system shown in Fig. 4.35, where the feedback gain �
is subject to variations. You are to design a controller for this system so
that the output y(t) accurately tracks the reference input r(t).

(a) Let � = 1. You are given the following three options for the controller
Di(s):

D1(s) = kp; D2(s) =
kps+ kI

s
; D3(s) =

kps
2 + kIs+ k2
s2

:

Choose the controller (including particular values for the controller
constants) that will result in a Type 1 system with a steady-state
error to a unit reference ramp of less than 1

10 .
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Figure 4.35: Control system for Problem 20

(b) Next, suppose that there is some attenuation in the feedback path
that is modeled by � = 0:9. Find the steady-state error due to a
ramp input for your choice of Di(s) in part (a).

(c) If � = 0:9, what is the system type for part (b)? What are the values
of the appropriate error constant?
Solution:

(a) Need an integrator in the loop - choose D2(s)

T (s) =
Y (s)

R(s)
=

10(kps+ kI)

s(s+ 1)(s+ 10)

1 + �
10(kps+ kI)

s(s+ 1)(s+ 10)

E(s) = (1�T (s))R(s) = [s(s+ 1)(s+ 10) + 10(kps+ kI)� � 10(kps+ kI)
s(s+ 1)(s+ 10) + 10(kps+ kI)�

]
1

s2

For � = 1,

ess = lim
s!0

s[
s(s+ 1)(s+ 10)

s(s+ 1)(s+ 10) + 10(kps+ kI)
]
1

s2

=
10

10kI
=
1

kI
Therefore kI � 10 will meet the steady-state speci�cations The
closed-loop poles are the roots of s3+11s2+10s+10(kps+ kI) = 0.
The Routh�s array is,

s3 : 1 10(1 + kp)
s2 : 11 10kI

s1 :
110(1+kp)�10kI

11
s0 : 10kI

which requires kI > 0 and 11(1 + kp)� kI > 0 for stability.
(b) From above, with � = 0:9

E(s) = [
s(s+ 1)(s+ 10) + 9(kps+ kI)� 10(kps+ kI)

s(s+ 1)(s+ 10) + 9(kps+ kI)
]R(s)

=
s(s+ 1)(s+ 10)� kp�kI

s(s+ 1)(s+ 10) + 9(kps+ kI)
R(s)
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Figure 4.36: Control system for Problem 21

If kp and kI are chosen so that the system is stable, applying the

FVT for R(s) =
1

s2
results in ess ! 1: The system is no longer

Type 1.

(c) Try R(s) =
1

s

lim
s!0

sE(s) = lim
s!0

s(s+ 1)(s+ 10)� kps�kI
s(s+ 1)(s+ 10) + 9(kps+ kI)

= � kI
9kI

= �1
9

and the system is Type 0. Kp is de�ned such that jessj =
1

1 +Kp
.

Thus, Kp = 8: Without the magnitude an equivalent result is that
Kp = �10:

21. Consider the system shown in Fig. 4.36.

(a) Find the transfer function from the reference input to the tracking
error.

(b) For this system to respond to inputs of the form r(t) = tn1(t) (where
n < q) with zero steady-state error, what constraint is placed on the
open-loop poles p1; p2; � � � ; pq?
Solution:

(a)
E(s)

R(s)
=

1

1 +G(s)
=

Qq
i=1(s+ pi)Qq

i=1(s+ pi) + 1

(b)

r(t) = tn =) R(s) =
n!

sn+1

ess = lim
s!0

s
n!

sn+1

Qq
i=1(s+ pi)Qq

i=1(s+ pi) + 1

If ess is to be zero the system must have at least n + 1 poles at
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the origin:

ess = lim
s!0

s
n!

sn+1
sn+1

Qq
i=1(s+ pi)

sn+1
Qq
i=1(s+ pi) + 1

= 0

22. A linear ODE model of the DC motor with negligible armature inductance
(La = 0) and with a disturbance torque w was given earlier in the chapter;
it is restated here, in slightly di¤erent form, as

JRa
Kt

��m +Ke
_�m = �a +

Ra
Kt
w;

where �m is measured in radians. Dividing through by the coe¢ cient of
��m, we obtain

��m + a1 _�m = b0�a + c0w;

where

a1 =
KtKe

JRa
; b0 =

Kt

JRa
; c0 =

1

J
:

With rotating potentiometers, it is possible to measure the positioning
error between � and the reference angle �r or e = �ref � �m. With a
tachometer we can measure the motor speed _�m. Consider using feedback
of the error e and the motor speed _�m in the form

�a = K(e� TD _�m);

where K and TD are controller gains to be determined.

(a) Draw a block diagram of the resulting feedback system showing both
�m and _�m as variables in the diagram representing the motor.

(b) Suppose the numbers work out so that a1 = 65, b0 = 200, and
c0 = 10. If there is no load torque (w = 0), what speed (in rpm)
results from va = 100 V?

(c) Using the parameter values given in part (b), let the control be D =
kp + kDs and �nd kp and kD so that, using the results of Chapter
3, a step change in �ref with zero load torque results in a transient
that has an approximately 17% overshoot and that settles to within
5% of steady-state in less than 0:05 sec.

(d) Derive an expression for the steady-state error to a reference angle
input, and compute its value for your design in part (c) assuming
�ref = 1 rad.

(e) Derive an expression for the steady-state error to a constant distur-
bance torque when �ref = 0, and compute its value for your design
in part (c) assuming w = 1:0.
Solution:

(a) Block diagram:
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Block diagram for Problem 4.22

(b) If Va=constant the system is in steady state:

_� =
b0
a1
Va =

200� 100
65

60

2�

rad:sec�1

rpm
= 2938 rpm

(c)
�

�r
=

Kb0
s2 + s(a1 + TDKb0) +Kb0

=
!2n

s2 + 2�!ns+ !2n

Mp = 17%; =): � = 0:5 ts = 0:05 sec. to 5% :

=) e��!nts = 0:05 =) �!n = 60 =) !n = 120

Comparing coe¢ cients:

K = 72 ; TD = 3:8� 10�3

(d) Steady-state error:

E(s) = �r � � =
s(s+ a1 + TDKb0)

s2 + s(a1 + TDKb0) +Kb0
�r

For �r =
1

s
:

ess = lim
s!0

sE(s) = 0 (Type 1)

(e) Response to torque:

�

QL
=

c0
s2 + s(a1 + TDKb0) +Kb0

�ss = lim
s!0

s:�(s) = lim
s!0

s
c0

s2 + : : :

1

s
=

c0
Kb0

=
1

1440
rad
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23. We wish to design an automatic speed control for an automobile. Assume
that (1) the car has a mass m of 1000 kg, (2) the accelerator is the control
U and supplies a force on the automobile of 10 N per degree of accelerator
motion, and (3) air drag provides a friction force proportional to velocity
of 10 N � sec=m.

(a) Obtain the transfer function from control input U to the velocity of
the automobile.

(b) Assume the velocity changes are given by

V (s) =
1

s+ 0:02
U(s) +

0:05

s+ 0:02
W (s);

where V is given in meters per second, U is in degrees, and W is
the percent grade of the road. Design a proportional control law
U = �kpV that will maintain a velocity error of less than 1 m/sec in
the presence of a constant 2% grade.

(c) Discuss what advantage (if any) integral control would have for this
problem.

(d) Assuming that pure integral control (that is, no proportional term) is
advantageous, select the feedback gain so that the roots have critical
damping (� = 1).
Solution:
a.

m�x =
X

F = Kau�D _x
Lfm _v = Kau�Dvg

V

U
=

Ka

ms+D
=

0:01

s+ 0:01

b. Error:

E(s) = Vd � V = Vd �

kp
s+ 0:02

1 +
kp

s+ 0:02

Vd +
0:05

1

s+ 0:02

1 +
kp

s+ 0:02

G(s)

=
(s+ 0:02)Vd � 0:05G

s+ 0:02 + kp

If we want error < 1 m/sec in presence of grade, we in fact need
jess(step)j < 1. Assume no input : (Vd = 0)

ess(step) = lim
s!0

s(
�0:05

s+ 0:02 + kp
)
2

s
=

�0:1
0:02 + kp

j �0:1
0:02 + kp

j < 1
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Figure 4.37: Automobile speed-control system

While solving the inequality apply (or check) restriction that poles
are in LHP.

=) kp > 0:08

c. The obvious advantage of integral control would be zero s.s. error
for step input (Type 1 system would result).

d. Pure integral control: kp !
kI
s

E(s) =
s(s+ 0:02)Vd � 0:05sG(s)

s2 + 0:02s+ kI

� = 1 =) !n = 0:01 =) kI = 0:0001

24. Consider the automobile speed control system depicted in Fig. 4.37.

(a) Find the transfer functions from W (s) and from R(s) to Y (s).

(b) Assume that the desired speed is a constant reference r, so that
R(s) = ro=s. Assume that the road is level, so w(t) = 0. Compute
values of the gains K, Hr, and Hf to guarantee that

lim
t!1

y(t) = ro:

Include both the open-loop (assuming Hy = 0) and feedback cases
(Hy 6= 0) in your discussion.

(c) Repeat part (b) assuming that a constant grade disturbance W (s) =
wo=s is present in addition to the reference input. In particular,
�nd the variation in speed due to the grade change for both the
feed forward and feedback cases. Use your results to explain (1) why
feedback control is necessary and (2) how the gain kp should be chosen
to reduce steady-state error.
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(d) Assume that w(t) = 0 and that the gain A undergoes the perturba-
tion A + �A. Determine the error in speed due to the gain change
for both the feed forward and feedback cases. How should the gains
be chosen in this case to reduce the e¤ects of �A?
Solution:

(a)

Y (s) =
B

s+ a+ kpAHy
W (s) +

kpAHr
s+ a+ kpAHy

R(s)

(b) Feedforward:(Hy = 0)

lim
s!0

sY (s) = lim
s!0

kpAHr
s+ a+ 0

r = r

therefore,
kp =

a

AHr
:

Feedback:
lim
t!1

y(t) = r

results in
kpAHr

a+ kpAHy
r = r

Choose kp for performance and Hy for sensor characteristics, and set

Hr =
a+AkpHy

kpA

(c) Feedforward:

lim
t!1

y(t) =
Bw

a
+
ar

a

= r +
Bw

a
Therefore,

�yff (1) =
Bw

a
;

all quantities are �xed- no way to reduce e¤ect of disturbance.
Feedback:

lim
t!1

y(t) =
B

a+ kpAHy
w +

kpAHr
a+ kpAHy

r

=
B

a+ kpAHy
w + r

(if Hr is chosen as in part (b)). Therefore,

�yfb(1) =
B

a+ kpAHy
w

E¤ect of disturbance can be made small by choosing kp large.
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(d) Feedforward: using kp =
a

AHr
as derived in part (b),

yff (1) = (1 +
�A

A
)r

therefore,

�yff (1) =
�A

A
r

or
�yff (1)

r
=
�A

A

which means that 5% error in A results in 5% error in tracking.
Feedback:

yfb(1) =
(A+ �A)kpHr

a+ (A+ �A)kpHy
r

using value for Hr chosen in part (b) gives

yfb(1) = [
(A+ �A)

a+ (A+ �A)kpHy

a+ kpAHy
A

]r

= r +
a�A

aA+ (A+ �A)kpAHy
r

�= r +
a

a+ kpAHy

�A

A

�yfb(1)
r

=
a

a+ kpAHy

�A

A

Tracking error due to parameter variation can be reduced by choosing
kp large.

25. Consider the multivariable system shown in Fig. 4.38. Assume that the
system is stable. Find the transfer functions from each disturbance input
to each output and determine the steady-state values of y1 and y2 for
constant disturbances. We de�ne a multivariable system to be Type k
with respect to polynomial inputs at wi if the steady-state value of every
output is zero for any combination of inputs of degree less than k and at
least one input is a non-zero constant for an input of degree k: What is
the system type with respect to disturbance rejection at w1? At w2?

Solution:

(a)

Y1 =
1

s2 + s+ 1
R1 +

s

s2 + s+ 1
W1 +

s(s+ 1)

s2 + s+ 1
W2

For constant disturbances, R1 = 0; W1(s) =
W10

s
; W2(s) =

W20

s

Y1 =
W10 + (s+ 1)W20

s2 + s+ 1
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Figure 4.38: Multivariable system

Let u2 be the signal coupling systems 1 and 2:

U2 =
(s+ 1)(R1 �W2) + s(s+ 1)W1

s2 + s+ 1

Y2 =
R2

s2 + 3s+ 2
+
(s+ 1)U2
s2 + 3s+ 2

=
(s+ 1)2(�W2) + s(s+ 1)

2W2

(s2 + 3s+ 2)(s2 + s+ 1)

The system type w.r.t. disturbances:

y1 w:r:t: W1 Type 1

y1 w:r:t: W2 Type 1

y2 w:r:t: W1 Type 1

y2 w:r:t: W2 Type 0

can be determined by applying FVT to Y1 and Y2 or by inspection.

Problems and Solutions for Section 4.3: The Three Term con-
troller: PID control

26. The transfer functions of speed control for a magnetic tape-drive system
are shown in Fig. 4.39. The speed sensor is fast enough that its dynamics
can be neglected and the diagram shows the equivalent unity feedback
system.

(a) Assuming the reference is zero, what is the steady-state error due to
a step disturbance torque of 1 N �m? What must the ampli�er gain
K be in order to make the steady-state error ess � 0:001 rad/sec.?

(b) Plot the roots of the closed-loop system in the complex plane, and
accurately sketch the time response of the output for a step reference
input using the gain K computed in part (a).
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Figure 4.39: Speed-control system for a magnetic tape drive

(c) Plot the region in the complex plane of acceptable closed-loop poles
corresponding to the speci�cations of a 1% settling time of ts �
0:1 sec. and an overshoot Mp � 5%.

(d) Give values for kp and kD for a PD controller which will meet the
speci�cations.

(e) How would the disturbance-induced steady-state error change with
the new control scheme in part (d)? How could the steady-state error
to a disturbance torque be eliminated entirely?

Solution:

(a) TF for disturbance:

Y

W
=

1

Js+ b

1 +
1

Js+ b
:
10kp
0:5s+ 1

b = 1 ; J = 0:1

ess(step in W) = lim
s!0

s
1

s

Y

W
=

1

1 + 10kp

ess � 0:01 ; kp � 9:9 pick kp = 10:

(b)

Y (s)


r(s)
=

10kp
0:5s+ 1

:
1

Js+ b

1 +
1

Js+ b
:
10kp
0:5s+ 1

=
2000

s2 + 12s+ 2020

!n =
p
2020 ' 45 ; � = 12

2
p
2020

�= 0:13

The roots are undesirable (damping too low, high overshoot).
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(a) d. We know that larger !n and � are needed. This can be achieved
by increasing kp and adding derivative feedback as in Fig. 4.12 (

Y (s)


r(s)
=

10kp
0:5s+ 1

:
1

Js+ b

1 +
10kp(kDs+ 1)

(0:5s+ 1)(Js+ b)

=
200kp

s2 + (12 + 200kp:kD)s+ 20(1 + 10kp)

By choosing kp and kD any � and !n may be achieved.
e. The TF to disturbance with new control:

Y

W
=

1

Js+ b

1 +
1

Js+ b
:
10kp(kDs+ 1)

(0:5s+ 1)

=
20(0:5s+ 1)

s2 + (12 + 200kpkD)s+ 20(1 + 10kp)

ess(step in W) =
1

1 + 10kp
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Figure 4.40: Control system for Problem 27

As before derivative feedback a¤ects transient response only. To elim-
inate steady-state error we can add an integrator to the loop. This

can be represented by replacing kp with kp +
kI
s
in the forward loop

and still keeping PD control in the feedback loop to obtain

Y

W
=

20(0:5s+ 1)s

s3 + (12 + 200kpkD)s2 + (20 + 200kp + 200kIkD)s+ 200kI

ess(step in W) = 0:

27. Consider the system shown in Fig. 4.40 with PI control.

(a) Determine the transfer function from R to Y .

(b) Determine the transfer function from W to Y .

(c) What is the system type and error constant with respect to reference
tracking?

(d) What is the system type and error constant with respect to distur-
bance rejection?
Solution:

(a)
Y (s)

R(s)
=

10(kI + kps)

s[s(s+ 1) + 20] + 10(kI + kps)
:

(b)
Y (s)

W (s)
=

10s

s[s(s+ 1) + 20] + 10(kI + kps)
:

(c) The characteristic equation is s3+ s2+(10kp+20)s+10kI = 0. The
Routh�s array is

s3 : 1 10kp + 20
s2 : 1 10kI
s1 : 10kp + 20� 10kI
s0 : 10kI

For stability we must have kI > 0 and kp > kI � 2.
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(d) System is Type 1 with respect to both r and w. The velocity constant
with respect to reference tracking is Kv = kI=2 and with respect to
disturbance rejection is kI :

28. Consider the second-order plant with transfer function

G(s) =
1

(s+ 1)(5s+ 1)
:

and in a unity feedback structure.

(a) Determine the system type and error constant with respect to track-
ing polynomial reference inputs of the system for P [D = kp], PD

[D = kp + kDs], and PID [D = kp +
kI
s
+ kDs] controllers. Let

kp = 19, kI = 0:5, and kD =
4

19
:

(b) Determine the system type and error constant of the system with
respect to disturbance inputs for each of the three regulators in part
(a) with respect to rejecting polynomial disturbances w(t) at the
input to the plant.

(c) Is this system better at tracking references or rejecting disturbances?
Explain your response brie�y.

(d) Verify your results for parts (a) and (b) using Matlab by plot-
ting unit step and ramp responses for both tracking and disturbance
rejection.

Solution:

a. This plant has no pole at the origin and DC gain of 1 so, unless
the controller has such a pole, the system will be Type 0.

Thus, we have: P and PD are Type 0, Kp = kp = 19;PID is Type 1,
Kv = kI = 0:5

b. Again, P and PD are Type 0, Kp = kp = 19;PID is Type 1,
Kv = kI = 0:5:

c. Because the Types and error constants are the same, this system
does the same with references as with disturbances.

d. We expect the steady state error to steps to be 0 and to unit
ramps to be 1=kp = 1=0:5 = 2:0: Note that steady-state is after a
long time!
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Notice that these transients are very slow. They are the consequence
of a pole at s = �0:0252: A good rule of thumb is that a tran-
sient is over in 5 time constants. In this case the time constant
is 1=0:0252 = 39:68: Therefore we�d expect the transient to go on
for about 200 seconds! The responses to disturbances are similar:.
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this case, the disturbance ramp does not excite the fast roots very
much at all.

29. The DC-motor speed control shown in Fig. 4.41 is described by the dif-
ferential equation

_y + 60y = 600va � 1500w;
where y is the motor speed, va is the armature voltage, and w is the load
torque. Assume the armature voltage is computed using the PI control law

va = �
�
kpe+ kI

Z t

0

edt

�
:

where e = r � y:
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Figure 4.41: D.C. Motor speed control block diagram for Problems 29 and 30

(a) Compute the transfer function from W to Y as a function of kp and
kI .

(b) Compute values for kp and kI so that the characteristic equation of
the closed-loop system will have roots at �60� 60j.
Solution:

(a) Transfer function: Set R = 0; then E = �Y

(s+ 60)Y (s) = �600[kpY (s) +
kI
s
Y (s)]� 1500W (s)

Y (s)

W (s)
=

�1500s
s2 + 60(1 + 10kp)s+ 600kI

(b) For roots at �60� j60 : comparing to the standard form:

s2 + 2�!ns+ !
2
n = 0 =) s = ��!n � j!n

q
1� �2

!n = 60
p
2 ; � = 0:707

600kI = (60
p
2)2 =) kI = 12

60(1 + 10kp) = 2� 0:707� 60
p
2 =) kp = 0:1

30. For the system in Problem 29, compute the following steady-state errors:

(a) to a unit-step reference input;

(b) to a unit-ramp reference input;

(c) to a unit-step disturbance input;

(d) for a unit-ramp disturbance input.

(e) Verify your answers to (a) and (d) usingMatlab. Note that a ramp
response can be generated as a step response of a system modi�ed
by an added integrator at the reference input.
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Solution:
a. From Problem 21, kp = 0:1 and kI = 12: The DC gain of the plant
is 10 so the Kv = 10kI : The system is Type 1 so the error to a step
is 0.

b. To a unit ramp, the error is
1

Kv
=

1

10kI
=

1

120
:

c. For a disturbance input, the system is also Type 1. The error to
a step will be 0.
d. For a unit ramp disturbance input the error equals the output and
is given by

E = � 1500

s+ 60 + 600D
W

= � 1500s

s2 + 60s+ 600(kP s+ kI)
W

ess = � 5
24

for W = 1=s2

e.
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As
these �gures show, the error to a step goes to zero and that to a ramp
goes to 1=kI = 1=120:
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Figure 4.42: Satellite attitude control

And in this case, the error to a disturbance step goes to zero and the
error to a disturbance ramp goes to ess = 1=kI = �0:208:

31. Consider the satellite-attitude control problem shown in Fig. 4.42 where
the normalized parameters are

J = 10 spacecraft inertia; N-m-sec2=rad

�r = reference satellite attitude; rad.

� = actual satellite attitude; rad.

Hy = 1 sensor scale; factor volts/rad.

Hr = 1 reference sensor scale factor; volts/rad.

w = disturbance torque: N-m

(a) Use proportional control, P, with D(s) = kp, and give the range of
values for kp for which the system will be stable.

(b) Use PD control and let D(s) = (kp+kDs) and determine the system
type and error constant with respect to reference inputs.

(c) Use PD control, let D(s) = (kp + kDs) and determine the system
type and error constant with respect to disturbance inputs.

(d) Use PI control, let D(s) = (kp + kI=s), and determine the system
type and error constant with respect to reference inputs.

(e) Use PI control, let D(s) = (kp + kI=s), and determine the system
type and error constant with respect to disturbance inputs.

(f) Use PID control, let D(s) = (kp + kI=s + kDs) and determine the
system type and error constant with respect to reference inputs.

(g) Use PID control, let D(s) = (kp + kI=s + kDs) and determine the
system type and error constant with respect to disturbance inputs.

Solution:

(a) D(s) = kp; The characteristic equation is

1 +HyD(s)
1

Js2
= 0



4039

Js2 +Hykp = 0

or s = �j
r
Hykp
J

so that no additional damping is provided. The

system cannot be made stable with proportional control alone.

(b) Steady-state error to reference steps.

�(s)

�r(s)
= Hr

D(s)
1

Js2

1 +D(s)Hy
1

Js2

= Hr
(kp + kDs)

Js2 + (kp + kDs)Hy

The parameters can be selected to make the (closed-loop) system

stable. If �r(s) =
1

s
then using the FVT (assuming the system is

stable)

�ss =
Hr
Hy

and there is zero steady-state error if Hr = Hy (i.e., unity feedback).

(c) Steady-state error to disturbance steps

�(s)

W (s)
=

1

Js2 + (kp + kDs)Hy

If W (s) =
1

s
then using the FVT (assuming system is stable), the

error is �ss = �
1

kpHy
.

(d) The characteristic equation is

1 +HyD(s)
1

Js2
= 0

With PI control,
Js3 +Hykps+HykI = 0

From the Hurwitz�s test, with the s2 term missing the system will
always have (at least) one pole not in the LHP. Hence, this is not a
good control strategy.

(e) See d above.

(f) The characteristic equation with PID control is

1 +Hy(kp +
kI
s
+ kDs)

1

Js2
= 0

or
Js3 +HykDs

2 +Hykps+HykI = 0
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There is now control over all the three poles and the system can be
made stable.

�(s)

�r(s)
= Hr

D(s)
1

Js2

1 +D(s)Hy
1

Js2

=
Hr(kp+

kI
s
+ kDs)

Js2 + (kp+
kI
s
+ kDs)Hy

=
Hr(kDs

2 + kps+ kI)

Js3 + (kDs2 + kps+ kI)Hy

If �r(s) =
1

s
then using the FVT (assuming system is stable)

�ss =
Hr
Hy

and there is zero steady-state error if Hr = Hy (i.e., unity feedback).
In that case, the system is Type 3 and the (Jerk!) error constant is

KJ =
kI
J
:

(g) The error to a disturbance is found from

�(s)

W (s)
=

s

Js3 +Hy(kDs2 + kps+ kI)

If W (s) =
1

s
then using the FVT (assuming the system is stable),

�ss = 0; the system is Type 1 and the error constant is Kv = Hykp:

32. The unit-step response of a paper machine is shown in Fig. 4.43(a) where
the input into the system is stock �ow onto the wire and the output is basis
weight (thickness). The time delay and slope of the transient response may
be determined from the �gure.

(a) Find the proportional, PI, and PID-controller parameters using the
Zeigler�Nichols transient-response method.

(b) Using proportional feedback control, control designers have obtained
a closed-loop system with the unit impulse response shown in Fig. 4.43(b).
When the gain Ku = 8:556, the system is on the verge of instabil-
ity. Determine the proportional-, PI-, and PID-controller parameters
according to the Zeigler�Nichols ultimate sensitivity method.
Solution:
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Figure 4.43: Paper-machine response data for problem 32

(a) From step response: L = �d ' 0:65 sec

R =
1

�
' 0:2

1:25� 0:65 = 0:33 sec�1

From Table 4.1:

Controller Gain P K = 1
RL = 4:62

PI K = 0:9
RL = 4:15 TI =

L

0:3
= 2:17

PID K = 1:2
RL = 5:54 TI = 2L = 1:3TD = 0:5L = 0:33

(b) From the impulse response: Pu ' 2:33 sec. and from Table 4.2:

Controller Gain P K = 0:5Ku = 4:28

PI K = 0:45Ku = 3:85 TI =
1

1:2
Pu = 1:86

PID K = 0:6Ku = 5:13 TI =
1

2
Pu = 1:12TD =

1

8
Pu = 0:28

For the unity feedback system with proportional control D = kp and

process transfer function G(s) =
A

s(�s+ 1)
;

33. A paper machine has the transfer function

G(s) =
e�2s

3s+ 1
;

where the input is stock �ow onto the wire and the output is basis weight
or thickness.
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Figure 4.44: Unit impulse response for paper-machine in Problem 33

(a) Find the PID-controller parameters using the Zeigler�Nichols tuning
rules.

(b) The system becomes marginally stable for a proportional gain of
Ku = 3:044 as shown by the unit impulse response in Fig. 4.44.
Find the optimal PID-controller parameters according to the Zeigler�
Nichols tuning rules.

Solution:

(a) From the transfer function: L = �d ' 2 sec

R =
1

3
' 0:33 sec�1

From Table 4.1:

Controller Gain P K =
1

RL
1:5

PI K = 0:9
RL = 1:35 TI =

L

0:3
= 6:66

PID K = 1:2
RL = 1:8 TI = 2L = 4 TD = 0:5L = 1:0

(b) From the impulse response: Pu ' 7 sec From Table 4.2:

Controller Gain P K = 0:5Ku = 1:52

PI K = 0:45Ku = 1:37 TI =
1

1:2
Pu = 5:83

PID K = 0:6Ku = 1:82 TI =
1

2
Pu = 3:5TD =

1

8
Pu = 0:875



4043

Problems and Solutions for Section 4.4: Introduction to Digital
Control

34. Compute the discrete equivalents for the following possible controllers us-
ing the trapezoid rule of Eq. (4.98). Let Ts = 0:05 in each case.

(a) D1(s) = (s+ 2)=2,

(b) D2(s) = 2
s+ 2

s+ 4
,

(c) D3(s) = 5
(s+ 2)

s+ 10
,

(d) D4(s) = 5
(s+ 2)(s+ 0:1)

(s+ 10)(s+ 0:01)

Solution:

(a) Using the formula s 2

Ts

z � 1
z + 1

we �nd D1(z) =
21z � 19
z + 1

(b) D2(z) =
1:909z � 1:727
z � 0:8182

(c) D3(z) =
4:2z � 3:8
z � 0:6

(d) D4(z) =
4:209z2 � 7:997z + 3:79
z2 � 1:6z + 0:5997

35. Give the di¤erence equations corresponding to the discrete controllers
found in Problem 34 respectively

(a) part 1.

(b) part 2.

(c) part 3.

(d) part 4.

Solution:

(a) Reduce the z� transforms to be in terms of z�1 if you want the equa-
tions in terms of past values. We have divided by the coe¢ cient of the
highest power if z in the denominator to get the coe¢ cient of u(k) to

be 1:0 in each case. For part (a),
U

E
=
21z � 19
z + 1

=
21� 19z�1
1 + z�1

and

thus [1 + z�1]U(z) = [21 � 19z�1]E(z) from which, as z�1U(z) =)
u(k � 1) we get
u(k) = �u(k � 1) + 21e(k)� 19e(k � 1): We have suppressed the Ts
in these equations. It should properly be u(kTs); u([k � 1]Ts); etc.

(b) u(k) = 0:8182u(k � 1) + 1:909e(k)� 1:727e(k � 1):
(c) u(k) = 0:6u(k � 1) + 4:2e(k)� 3:8e(k � 1)
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(d) u(k) = 1:6u(k � 1) � 0:5997u(k � 2) + 4:209e(k) � 7:997e(k � 1) +
3:79e(k � 2)



Chapter 5

The Root-Locus Design
Method

Problems and solutions for Section 5.1

1. Set up the following characteristic equations in the form suited to Evans�s
root-locus method. Give L(s); a(s); and b(s) and the parameter, K; in
terms of the original parameters in each case. Be sure to select K so that
a(s) and b(s) are monic in each case and the degree of b(s) is not greater
than that of a(s):

(a) s+ (1=�) = 0 versus parameter �

(b) s2 + cs+ c+ 1 = 0 versus parameter c

(c) (s+ c)3 +A(Ts+ 1) = 0

i. versus parameter A,
ii. versus parameter T ,
iii. versus the parameter c, if possible. Say why you can or can not.

Can a plot of the roots be drawn versus c for given constant
values of A and T by any means at all

(d) 1 + [kp +
kI
s
+

kDs

�s+ 1
]G(s) = 0: Assume that G(s) = A

c(s)

d(s)
where

c(s) and d(s) are monic polynomials with the degree of d(s) greater
than that of c(s).

i. versus kp
ii. versus kI
iii. versus kD
iv. versus �

5001
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Solution:

(a) K = 1=� ; a = s; b = 1

(b) K = c; a = s2 + 1; b = s+ 1

(c) Part (c)

i. K = AT ; a = (s+ c)3; b = s+ 1=T

ii. K = AT ; a = (s+ c)3 +A; b = s

iii. The parameter c enters the equation in a nonlinear way and a
standard root locus does not apply. However, using a polynomial
solver, the roots can be plotted versus c:

(d) Part (d)

i. K = kpA� ; a = s(s+ 1=�)d(s) + kI(s+ 1=�)c(s) +
kD
�
s2Ac(s);

b = s(s+ 1=�)c(s)

ii. K = AkI ; a = s(s + 1=�)d(s) + Akps(s + 1=�) +
kD
�
s2Ac(s);

b = s(s+ 1=�)c(s)

iii. K =
AkD
�
; a = s(s + 1=�)d(s) + Akps(s + 1=�)c(s) + AkI(s +

1=�)c(s); b = s2c(s)

iv. K = 1=� ; a = s2d(s) + kpAs
2c(s) + kIAsc(s); b = sd(s) +

kpsAc(s) + kIAc(s) + kDs
2Ac(s)
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Problems and solutions for Section 5.2

2. Roughly sketch the root loci for the pole-zero maps as shown in Fig. 5.51.
Show your estimates of the center and angles of the asymptotes, a rough
evaluation of arrival and departure angles for complex poles and zeros,
and the loci for positive values of the parameter K. Each pole-zero map
is from a characteristic equation of the form

1 +K
b(s)

a(s)
= 0;

where the roots of the numerator b(s) are shown as small circles o and the
roots of the denominator a(s) are shown as �0s on the s-plane. Note that
in Fig. 5.51(c), there are two poles at the origin and there are two poles
on the imaginary axis in (f), slightly o¤ the real axis.

Solution:
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We had to make up some numbers to do it on Matlab, so the results
partly depend on what was dreamed up, but the idea here is just get the
basic rules right.

(a)a(s) = s2 + s; b(s) = s+ 1

Breakin(s) -3.43; Breakaway(s) -0.586

(b) a(s) = s2 + 0:2s+ 1; b(s) = s+ 1

Angle of departure: 135.7

Breakin(s) -4.97

(c) a(s) = s2; b(s) = (s+ 1)

Breakin(s) -2

(d) a(s) = s2 + 5s+ 6; b(s) = s2 + s

Breakin(s) -2.37

Breakaway(s) -0.634

(e) a(s) = s3 + 3s2 + 4s� 8

Center of asymptotes -1

Angles of asymptotes �60; 180

Angle of departure: -56.3

(f) a(s) = s3 + 3s2 + s� 5; b(s) = s+ 1

Center of asymptotes -.667

Angles of asymptotes �60; �180

Angle of departure: -90

Breakin(s) -2.06

Breakaway(s) 0:503

But, to get this one right, all you have to do is get the real axis segments
and the 4 asymptotes going out at the right angles. You don�t know,
really, where it breaks away from the real axis nor where the center of
asymptotes are.
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3. For the characteristic equation

1 +
K

s(s+ 1)(s+ 5)
= 0 :

(a) Draw the real-axis segments of the corresponding root locus.

(b) Sketch the asymptotes of the locus for K !1.

(c) For what value of K are the roots on the imaginary axis?

(d) Verify your sketch with a MATLAB plot.

Solution:

(a) The real axis segments are 0 > � > �1; �5 > �

(b) � = �6=3 = �2; �i = �60; 180

(c) Ko = 30

Roo t Loc us

Rea l  Ax i s

Im
a

g
 A

xi
s

­15 ­10 ­5 0 5

­10

­5

0

5

10

Solution for Problem 5.3
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4. Real poles and zeros. Sketch the root locus with respect to K for the
equation 1 + KL(s) = 0 and the following choices for L(s). Be sure to
give the asymptotes, arrival and departure angles at any complex zero or
pole, and the frequency of any imaginary-axis crossing. After completing
each hand sketch verify your results using MATLAB. Turn in your hand
sketches and the MATLAB results on the same scales.

(a) L(s) =
(s+ 2)

s(s+ 1)(s+ 5)(s+ 10)

(b) L(s) =
1

s(s+ 1)(s+ 5)(s+ 10)

(c) L(s) =
(s+ 2)(s+ 6)

s(s+ 1)(s+ 5)(s+ 10)

(d) L(s) =
(s+ 2)(s+ 4)

s(s+ 1)(s+ 5)(s+ 10)

Solution:

All the root locus plots are displayed at the end of the solution set
for this problem.

(a) � = �4:67; �i = �60; �180; !o = 5:98

(b) � = �4; �i = �45; �135; !o = 1:77

(c) � = �4; �i = �90; !o� > none

(d) � = �5; �i = �90; !o� > none
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5. Complex poles and zeros Sketch the root locus with respect to K for the
equation 1 + KL(s) = 0 and the following choices for L(s). Be sure to
give the asymptotes, arrival and departure angles at any complex zero or
pole, and the frequency of any imaginary-axis crossing. After completing
each hand sketch verify your results using MATLAB. Turn in your hand
sketches and the MATLAB results on the same scales.

(a) L(s) =
1

s2 + 3s+ 10

(b) L(s) =
1

s(s2 + 3s+ 10)

(c) L(s) =
(s2 + 2s+ 8)

s(s2 + 2s+ 10)

(d) L(s) =
(s2 + 2s+ 12)

s(s2 + 2s+ 10)

(e) L(s) =
(s2 + 1)

s(s2 + 4)

(f) L(s) =
(s2 + 4)

s(s2 + 1)

Solution:

All the root locus plots are displayed at the end of the solution set
for this problem.

(a) � = �3; �i = �90; �d = �90 !o� > none

(b) � = �3; �i = �60;�180; �d = �28:3 !o = 3:16

(c) � = �2; �i = �180; �d = �161:6; �a = �200:7; !o� > none

(d) � = �2; �i = �180; �d = �18:4; �a = �16:8; !o� > none

(e) � = 0; �i = �180; �d = �180; �a = �180; !o� > none

(f) � = 0; �i = �180; �d = 0; �a = 0; !o� > none
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6. Multiple poles at the origin Sketch the root locus with respect to K for
the equation 1+KL(s) = 0 and the following choices for L(s). Be sure to
give the asymptotes, arrival and departure angles at any complex zero or
pole, and the frequency of any imaginary-axis crossing. After completing
each hand sketch verify your results using MATLAB. Turn in your hand
sketches and the MATLAB results on the same scales.

(a) L(s) =
1

s2(s+ 8)

(b) L(s) =
1

s3(s+ 8)

(c) L(s) =
1

s4(s+ 8)

(d) L(s) =
(s+ 3)

s2(s+ 8)

(e) L(s) =
(s+ 3)

s3(s+ 4)

(f) L(s) =
(s+ 1)2

s3(s+ 4)

(g) L(s) =
(s+ 1)2

s3(s+ 10)2

Solution:

All the root locus plots are displayed at the end of the solution set
for this problem.

(a) � = �2:67; �i = �60; �180; w0� > none

(b) � = �2; �i = �45; �135; w0� > none

(c) � = �1:6; �i = �36; �108; w0� > none

(d) � = �2:5; �i = �90; w0� > none

(e) � = �0:33; �i = �60; �180; w0� > none

(f) � = �3; �i = �90; w0 = �1:414

(g) � = �6; �i = �60; 180; w0 = �1:31;�7:63
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7. Mixed real and complex poles Sketch the root locus with respect to K for
the equation 1+KL(s) = 0 and the following choices for L(s). Be sure to
give the asymptotes, arrival and departure angles at any complex zero or
pole, and the frequency of any imaginary-axis crossing. After completing
each hand sketch verify your results using MATLAB. Turn in your hand
sketches and the MATLAB results on the same scales.

(a) L(s) =
(s+ 2)

s(s+ 10)(s2 + 2s+ 2)

(b) L(s) =
(s+ 2)

s2(s+ 10)(s2 + 6s+ 25)

(c) L(s) =
(s+ 2)2

s2(s+ 10)(s2 + 6s+ 25)

(d) L(s) =
(s+ 2)(s2 + 4s+ 68)

s2(s+ 10)(s2 + 4s+ 85)

(e) L(s) =
[(s+ 1)2 + 1]

s2(s+ 2)(s+ 3)

Solution:

All the plots are attached at the end of the solution set.

(a) � = �3:33; �i = �60; �180; w0 = �2:32; �d = �6:34

(b) � = �3:5; �i = �45; �135; w0� > none; �d = �103:5

(c) � = �4; �i = �60; �180; w0 = �6:41; �d = �14:6

(d) � = �4; �i = �90; w0� > none; �d = �106; �a = �253:4

(e) � = �1:5; �i = �90; w0� > none; �a = �71:6
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8. Right half plane poles and zeros Sketch the root locus with respect toK for
the equation 1+KL(s) = 0 and the following choices for L(s). Be sure to
give the asymptotes, arrival and departure angles at any complex zero or
pole, and the frequency of any imaginary-axis crossing. After completing
each hand sketch verify your results using MATLAB. Turn in your hand
sketches and the MATLAB results on the same scales.

(a) L(s) =
s+ 2

s+ 10

1

s2 � 1 ; The model for a case of magnetic levitation
with lead compensation.

(b) L(s) =
s+ 2

s(s+ 10)

1

(s2 � 1) ; The magnetic levitation system with in-

tegral control and lead compensation.

(c) L(s) =
s� 1
s2

(d) L(s) =
s2 + 2s+ 1

s(s+ 20)2(s2 � 2s+ 2) : What is the largest value that can
be obtained for the damping ratio of the stable complex roots on this
locus?

(e) L(s) =
(s+ 2)

s(s� 1)(s+ 6)2 ;

(f) L(s) =
1

(s� 1)[(s+ 2)2 + 3]
Solution:

(a) � = �4; �i = �90; w0� > none

(b) � = �4; �i = �60; 180; w0� > none

(c) � = �1; �i = �180; w0� > none

(d) � = �12; �i = �60; 180; w0 = �3:24;�15:37; �d = �92:4

(e) � = �3; �i = �60; 180; w0� > none

(f) � = �1; �i = �60; 180; w0 = �1:732; �d = �40:9
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9. Put the characteristic equation of the system shown in Fig. 5.52 in root
locus form with respect to the parameter � and identify the corresponding
L(s); a(s); and b(s): Sketch the root locus with respect to the parameter �,
estimate the closed-loop pole locations and sketch the corresponding step
responses when � = 0; 0:5, and 2. Use MATLAB to check the accuracy
of your approximate step responses.

Figure 5.52: Control system for problem 9

Solution:

The characteristic equation is s2+2s+5+5�s = 0 and L(s) =
s

s2 + 2s+ 5
:

the root locus and step responses are plotted below.
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10. Use the MATLAB function rltool to study the behavior of the root locus
of 1 +KL(s) for

L(s) =
(s+ a)

s(s+ 1)(s2 + 8s+ 52)

as the parameter a is varied from 0 to 10, paying particular attention to
the region between 2:5 and 3:5. Verify that a multiple root occurs at a
complex value of s for some value of a in this range.

Solution:

For small values of �; the locus branch from 0;�1 makes a circular path
around the zero and the branches from the complex roots curve o¤ toward
the asymptotes. For large values of � the branches from the complex
roots break into the real axis and those from 0; �1 curve o¤ toward the
asymptotes. At about � = 3:11 these loci touch corresponding to complex
multiple roots.
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11. Use the Routh criterion to �nd the range of the gain K for which the
systems in Fig. 5.53 are stable and use the root locus to con�rm your
calculations.

Figure 5.53: Feedback systems for problem 11

Solution:

(a) The system is stable for 0 � K � 478:226 The root locus of
the system and the location of the roots at the crossover points are
shown in the plots

(b) There is a pole in the right hand plane thus the system is unstable
for all values of K as shown in the last plot.
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12. Sketch the root locus for the characteristic equation of the system for
which

L(s) =
(s+ 2)

s(s+ 1)(s+ 5)
;

and determine the value of the root-locus gain for which the complex
conjugate poles have a damping ratio of 0.5.

Solution:

Plot the system on Matlab using rlocus(sys), and use [K]= rloc�nd(sys)
to pick the gain where the damping ratio = 0.5. Find that K = 14
(approximately).
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13. For the system in Fig. 5.54:

Figure 5.54: Feedback system for problem 13

(a) Find the locus of closed-loop roots with respect to K.

(b) Is there a value of K that will cause all roots to have a damping ratio
greater than 0:5?

(c) Find the values of K that yield closed-loop poles with the damping
ratio � = 0:707.

(d) Use MATLAB to plot the response of the resulting design to a refer-
ence step.
Solution:

(a) The locus is plotted below

(b) There is a K which will make the �dominant�poles have damping
0.5 but none that will make the poles from the resonance have that
much damping.

(c) Using rloc�nd, the gain is about 35.

(d) The step response shows the basic form of a well damped response
with the vibration of the response element added.
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14. For the feedback system shown in Fig. 5.55, �nd the value of the gain K
that results in dominant closed-loop poles with a damping ratio � = 0:5.

Figure 5.55: Feedback system for Problem 14

Solution:

Use block diagram reduction to �nd the characteristic equation of the
closed loop system, then divide that up into terms with and without K to

�nd the root locus form, where L(s) =
10s

s2 + s+ 10
: Plugging into Matlab

and using rloc�nd produces the required gain to be K = 0:22:The locus is
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Problems and solutions for Section 5.3

15. A simpli�ed model of the longitudinal motion of a certain helicopter near
hover has the transfer function

G(s) =
9:8(s2 � 0:5s+ 6:3)

(s+ 0:66)(s2 � 0:24s+ 0:15) :

and the characteristic equation 1 +D(s)G(s) = 0. Let D(s) = kp at �rst.

(a) Compute the departure and arrival angles at the complex poles and
zeros.

(b) Sketch the root locus for this system for parameter K = 9:8kp:Use
axes -4 � x � 4. �3 � y � 3;

(c) Verify your answer using MATLAB. Use the command axis([-4 4 -3
3]) to get the right scales.

(d) Suggest a practical (at least as many poles as zeros) alternative com-
pensation D(s) which will at least result in a stable system.

Solution:

(a) � = :92; � = 180; ' = 63:83;  = �26:11

(b)
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(c) For this problem a double lead is needed to bring the roots into the
left half-plane. The plot shows the rootlocus for control for. Let

D =
(s+ :66)(s+ :33)

(s+ 5)2
:
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(d)
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Figure 5.56: Control system for problem 5.16

16. For the system given in Fig. 5.56,

(a) plot the root locus of the characteristic equation as the parameter
K1 is varied from 0 to 1 with � = 2. Give the corresponding L(s);
a(s); and b(s):

(b) Repeat part (a) with � = 5. Is there anything special about this
value?

(c) Repeat part (a) for �xed K1 = 2 with the parameter K = � varying
from 0 to 1.

Solution:

The root locus for each part is attached at the end.

(a) L(s) = 0:75
S(0:1S2+1:1S+1:8) =

a(s)
b(s)

(b) L(s)= 0:75
S(0:1S2+1:4S+4:5) =

a(s)
b(s)

(c) L(s)= S(0:1S+0:9)
0:1S^3+0:9S+1:5 =

a(s)
b(s)



5027

Root Locus

Real Axis

Im
ag

 A
xi

s

­30 ­20 ­10 0 10

­20

­10

0

10

20 plot a

Root Locus

Real Axis

Im
ag

 A
xi

s

­25 ­20 ­15 ­10 ­5 0 5
­20

­10

0

10

20
plot b

Root Locus

Real Axis

Im
ag

 A
xi

s

­15 ­10 ­5 0

­1

­0.5

0

0.5

1 plot c

Solution for problem 5.16



5028 CHAPTER 5. THE ROOT-LOCUS DESIGN METHOD

Figure 5.57: Control system for problem 17

17. For the system shown in Fig. 5.57, determine the characteristic equation
and sketch the root locus of it with respect to positive values of the pa-
rameter c. Give L(s), a(s); and b(s) and be sure to show with arrows the
direction in which c increases on the locus.

(a) Solution:

L(s) =
s2 + 9

s3 + 144s
=
a(s)

b(s)

Root Locus

Real Axis

Im
ag

 A
xi

s

­18 ­16 ­14 ­12 ­10 ­8 ­6 ­4 ­2 0

­10

­5

0

5

10

Solution for problem 5.17



5029

18. Suppose you are given a system with the transfer function

L(s) =
(s+ z)

(s+ p)2
;

where z and p are real and z > p. Show that the root-locus for 1+KL(s) =
0 with respect to K is a circle centered at z with radius given by

r = (z � p)

Hint. Assume s + z = rej� and show that L(s) is real and negative for
real � under this assumption.

Solution:

s+ z = (z � p)ej�

G=
(z � p)ej�

((z � p)ej� + p� z)2 =
(z � p)ej�

(z � p)2(ej� � 1)2 =
1

(z � p)(�4)( ej�=2�e�j�=22j )2

=
1

�4(z � p)
1

(sin(�=2))2
Because z > p; this function is real and negative

for real � and therefore these points are on the locus.
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19. The loop transmission of a system has two poles at s = �1 and a zero
at s = �2. There is a third real-axis pole p located somewhere to the
left of the zero. Several di¤erent root loci are possible, depending on the
exact location of the third pole. The extreme cases occur when the pole
is located at in�nity or when it is located at s = �2. Give values for p
and sketch the three distinct types of loci.
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20. For the feedback con�guration of Fig. 5.58, use asymptotes, center of
asymptotes, angles of departure and arrival, and the Routh array to sketch
root loci for the characteristic equations of the following feedback control
systems versus the parameter K: Use MATLAB to verify your results.

(a) G(s) =
1

s(s+ 1 + 3j)(s+ 1� 3j) ; H(s) =
s+ 2

s+ 8

(b) G(s) =
1

s2
; H(s) =

s+ 1

s+ 3

(c) G(s) =
(s+ 5)

(s+ 1)
; H(s) =

s+ 7

s+ 3

(d) G(s) =
(s+ 3 + 4j)(s+ 3� 4j)
s(s+ 1 + 2j)(s+ 1� 2j) ; H(s) = 1 + 3s

Figure 5.58: Feedback system for problem 20

Solution:
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21. Consider the system in Fig. 5.59.

Figure 5.59: Feedback system for problem 5.21

(a) Using Routh�s stability criterion, determine all values of K for which
the system is stable.

(b) Use Matlab to �nd the root locus versus K. Find the values for K
at imaginary-axis crossings.

Solution:

(a) a. 0� K � 40

(b) �d = �161:6� �a = 0
�

At imaginary axis crossing s=�j1:8186 k = 6:2758

Root locus is attached for reference.

Root Locus

Real Axis

Im
ag

 A
xi

s

­7 ­6 ­5 ­4 ­3 ­2 ­1 0 1 2 3

­6

­4

­2

0

2

4

6

Root locus for problem 21



5034 CHAPTER 5. THE ROOT-LOCUS DESIGN METHOD

Problems and solutions for Section 5.4

22. Let

G(s) =
1

(s+ 2)(s+ 3)
and D(s) = K

s+ a

s+ b
:

Using root-locus techniques, �nd values for the parameters a; b, and K of
the compensation D(s) that will produce closed-loop poles at s = �1� j
for the system shown in Fig. 5.60.

Figure 5.60: Unity feedback system for Problems 5.22 to 5.28 and 5.33

Solution:

Since the desired poles are slower than he plant, we will use PI control.
The solution is to cancel the pole at -3 with the zero and set the gain to
K = 2: Thus, p = 0; z = �3; K = 2:
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23. Suppose that in Fig. 5.60,

G(s) =
1

s(s2 + 2s+ 2)
and D(s) =

K

s+ 2
:

Sketch the root-locus with respect to K of the characteristic equation for
the closed-loop system, paying particular attention to points that generate
multiple roots if KL(s) = D(s)G(s).

Solution:

The locus is plotted below. The roots all come together at s = �1 at
K = 1:
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24. Suppose the unity feedback system of Fig. 5.60 has an open-loop plant

given by G(s) = 1=s2. Design a lead compensation D(s) = K
s+ z

s+ p
to be

added in series with the plant so that the dominant poles of the closed-loop
system are located at s = �2� 2j.

Solution:

Setting the pole of the lead to be at p = �20; the zero is at z = �1:78
with a gain of K = 72: The locus is plotted below.
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25. Assume that the unity feedback system of Fig. 5.60 has the open-loop
plant

G(s) =
1

s(s+ 3)(s+ 6)
:

Design a lag compensation to meet the following speci�cations:

� The step response settling time is to be less than 5 sec.

� The step response overshoot is to be less than 17%.

� The steady-state error to a unit ramp input must not exceed 10%.

Solution:

The overshoot speci�cation requires that damping be 0:5 and the
settling time requires that !n > 1:8: From the root locus plotted
below, these can be met at K = 28 where the !n = 2: With this
gain, the Kv = 28=18 = 1:56: To get a Kv = 10; we need a lag gain
of about 6:5: Selecting the lag zero to be at 0:1 requires the pole
to be at 0:1=6:5 = 0:015: To meet the overshoot speci�cations, it is
necessary to select a smaller K and set p = 0:01: Other choices are
of course possible. The step response of this design is plotted below.
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26. A numerically controlled machine tool positioning servomechanism has a
normalized and scaled transfer function given by

G(s) =
1

s(s+ 1)
:

Performance speci�cations of the system in the unity feedback con�gu-
ration of Fig. 5.60 are satis�ed if the closed-loop poles are located at
s = �1� j

p
3.

(a) Show that this speci�cation cannot be achieved by choosing propor-
tional control alone, D(s) = kp.

(b) Design a lead compensator D(s) = K
s+ z

s+ p
that will meet the speci-

�cation.

Solution:

(a) With proportional control, the poles have real part at s = �:5:

(b) To design a lead, we select the pole to be at p = �10 and �nd the
zero and gain to be z = �3; k = 12:
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27. A servomechanism position control has the plant transfer function

G(s) =
10

s(s+ 1)(s+ 10)
:

You are to design a series compensation transfer functionD(s) in the unity
feedback con�guration to meet the following closed-loop speci�cations:

� The response to a reference step input is to have no more than 16%
overshoot.

� The response to a reference step input is to have a rise time of no
more than 0.4 sec.

� The steady-state error to a unit ramp at the reference input must be
less than 0.02

(a) Design a lead compensation that will cause the system to meet the
dynamic response speci�cations.

(b) If D(s) is proportional control, D(s) = kp; what is the velocity con-
stant Kv?

(c) Design a lag compensation to be used in series with the lead you
have designed to cause the system to meet the steady-state error
speci�cation.

(d) Give the MATLAB plot of the root locus of your �nal design.

(e) Give the MATLAB response of your �nal design to a reference step .

Solution:

(a) Setting the lead pole at p = �60 and the zero at z = �1; the dynamic
speci�cations are met with a gain of 245 resulting in a Kv = 4:

(b) Proportional control will not meet the dynamic spec. The Kv of the
lead is given above.

(c) To meet the steady-state requirement, we need a new Kv = 50; which
is an increase of 12:5: If we set the lag zero at z = �:4; the pole needs
to be at p = �0:032:

(d) The root locus is plotted below.

(e) The step response is plotted below.
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28. Assume the closed-loop system of Fig. 5.60 has a feed forward transfer
function G(s) given by

G(s) =
1

s(s+ 2)
:

Design a lag compensation so that the dominant poles of the closed-loop
system are located at s = �1�j and the steady-state error to a unit ramp
input is less than 0.2.

Solution:

The poles can be put in the desired location with proportional control
alone, with a gain of kp = 2 resulting in a Kv = 1: To get a Kv = 5; we

add a compensation with zero at 0:1 and a pole at 0:02: D(s) = 2
s+ 0:1

s+ 0:02
:
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29. An elementary magnetic suspension scheme is depicted in Fig. 5.61. For
small motions near the reference position, the voltage e on the photo
detector is related to the ball displacement x (in meters) by e = 100x.
The upward force (in newtons) on the ball caused by the current i (in
amperes) may be approximated by f = 0:5i + 20x. The mass of the ball
is 20 g, and the gravitational force is 9.8 N/kg. The power ampli�er is a
voltage-to-current device with an output (in amperes) of i = u+ V0.

Figure 5.61: Elementary magnetic suspension

(a) Write the equations of motion for this setup.

(b) Give the value of the bias V0 that results in the ball being in equilib-
rium at x = 0.

(c) What is the transfer function from u to e?

(d) Suppose the control input u is given by u = �Ke. Sketch the root
locus of the closed-loop system as a function of K.

(e) Assume that a lead compensation is available in the form
U

E
=

D(s) = K
s+ z

s+ p
: Give values of K; z; and p that yields improved

performance over the one proposed in part (d).

Solution:

(a) m�x = 20x+0:5i�mg: Substituting numbers, 0:02�x = 20x+0:5(u+
Vo)� 0:196:

(b) To have the bias cancel gravity, the last two terms must add to zero.
Thus Vo = 0:392:



5043

(c) Taking transforms of the equation and substituting e = 100x;

E

U
=

2500

s2 � 1000

(d) The locus starts at the two poles symmetric to the imaginary axis,
meet at the origin and cover the imaginary axis. The locus is plotted
below.

(e) The lead can be used to cancel the left-hand-plane zero and the pole
at m�150 which will bring the locus into the left-hand plane where
K can be selected to give a damping of, for example 0.7. See the plot
below.
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n

30. A certain plant with the non minimum phase transfer function

G(s) =
4� 2s

s2 + s+ 9
;

is in a unity positive feedback system with the controller transfer function
D(s):

(a) Use MATLAB to determine a (negative) value for D(s) = K so that
the closed-loop system with negative feedback has a damping ratio
� = 0:707.

(b) Use MATLAB to plot the system�s response to a reference step.

Solution:

(a) With all the negatives, the problem statement might be confusing.
With the G(s) as given, MATLAB needs to plot the negative locus,
which is the regular positive locus for �G: The locus is plotted below.
The value of gain for closed loop roots at damping of 0:7 is k = �1:04

(b) The �nal value of the step response plotted below is �0:887. To get
a positive output we would use a positive gain in positive feedback.
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31. Consider the rocket-positioning system shown in Fig. 5.62.

Figure 5.62: Block diagram for rocket-positioning control system

(a) Show that if the sensor that measures x has a unity transfer function,
the lead compensator

H(s) = K
s+ 2

s+ 4

stabilizes the system.

(b) Assume that the sensor transfer function is modeled by a single pole
with a 0:1 sec time constant and unity DC gain. Using the root-locus
procedure, �nd a value for the gain K that will provide the maximum
damping ratio.
Solution:

(a) The root locus is plotted below and lies entirely in the left-half plane.
However the maximum damping is 0:2:

(b) At maximum damping, the gain is K = 6:25 but the damping of the
complex poles is only 0:073: A practical design would require much
more lead.
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32. For the system in Fig. 5.63:
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Figure 5.63: Control system for Problem 32

(a) Sketch the locus of closed-loop roots with respect to K.

(b) Find the maximum value ofK for which the system is stable. Assume
K = 2 for the remaining parts of this problem.

(c) What is the steady-state error (e = r � y) for a step change in r?
(d) What is the steady-state error in y for a constant disturbance w1?

(e) What is the steady-state error in y for a constant disturbance w2?

(f) If you wished to have more damping, what changes would you make
to the system?
Solution:

(a) For the locus, L(s) =
100(s+ 1)

s2(s2 + 12s+ 40)
: The locus is plotted below.
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(b) The maximum value of K for stability is K = 3:35:



5047

(c) The equivalent plant with unity feedback isG0 =
200

s2(s2 + 12 + 40) + 200s
:

Thus the system is type 1 with Kv = 1: If the velocity feedback

were zero, the system would be type 2 with Ka =
200

40
= 5:

(d) The transfer function
Y

W1
=

100s2

s2(s2 + 12s+ 40) + 200(s+ 1)
: The

system is thus type 2 with Ka = 100:

(e) The transfer function
Y

W2
=

100

s2(s2 + 12s+ 40) + 200(s+ 1)
: The

system here is type 0 with Kp = 1:

(f) To get more damping in the closed-loop response, the controller needs
to have a lead compensation.

33. Consider the plant transfer function

G(s) =
bs+ k

s2[mMs2 + (M +m)bs+ (M +m)k]

to be put in the unity feedback loop of Fig. 5.60. This is the transfer
function relating the input force u(t) and the position y(t) of mass M in
the non-collocated sensor and actuator problem. In this problem we will
use root-locus techniques to design a controller D(s) so that the closed-
loop step response has a rise time of less than 0.1 sec and an overshoot of
less than 10%. You may use MATLAB for any of the following questions.

(a) Approximate G(s) by assuming that m �= 0, and let M = 1, k = 1,
b = 0:1, and D(s) = K. Can K be chosen to satisfy the performance
speci�cations? Why or why not?

(b) Repeat part (a) assuming D(s) = K(s+ z), and show that K and z
can be chosen to meet the speci�cations.

(c) Repeat part (b) but with a practical controller given by the transfer
function

D(s) = K
p(s+ z)

s+ p
;

and pick p so that the values forK and z computed in part (b) remain
more or less valid.

(d) Now suppose that the small mass m is not negligible, but is given by
m = M=10. Check to see if the controller you designed in part (c)
still meets the given speci�cations. If not, adjust the controller pa-
rameters so that the speci�cations are met.
Solution:

(a) The locus in this case is the imaginary axis and cannot meet the
specs for any K:
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(b) The specs require that � > 0:6; !n > 18: Select z = 15 for a
start. The locus will be a circle with radius 15: Because of the zero,
the overshoot will be increased and Figure 3.32 indicates that we�d
better make the damping greater than 0.7. As a matter of fact,
experimentation shows that we can lower the overshoot of less than
10% only by setting the zero at a low value and putting the poles on
the real axis. The plot shows the result if D = 25(s+ 4):

(c) In this case, we take D(s) = 20
s+ 4

:01s+ 1
:

(d) With the resonance present, the only chance we have is to introduce
a notch as well as a lead. The compensation resulting in the plots

shown is D(s) = 11
s+ 4

(:01s+ 1)

s2=9:25 + s=9:25 + 1

s2=3600 + s=30 + 1
: The design gain

was obtained by a cycle of repeated loci, root location �nding, and
step responses. Refer to the �le ch5p35.m for the design aid.
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Root loci and step responses for Problem 33

34. Consider the type 1 system drawn in Fig. 5.64. We would like to design the
compensation D(s) to meet the following requirements: (1) The steady-
state value of y due to a constant unit disturbance w should be less than
4
5 , and (2) the damping ratio � = 0:7. Using root-locus techniques:

(a) Show that proportional control alone is not adequate.
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Figure 5.64: Control system for problem 34

(b) Show that proportional-derivative control will work.

(c) Find values of the gains kp and kD for D(s) = kp + kD s that meet
the design speci�cations.

Solution:

(a) To meet the error requirements, the input to D(s) is -0:8 and the
output must be 1:0 to cacel the disturbance. Thus the controller dc
gain must be at least 1:25: With proportional control and a closed
loop damping of 0:70, the gain is 0:5 which is too low.

(b) With PD control, the characteristic equation is s2 + (1 + kD)s+ kp:
Setting kp = 1:25 and damping 0:7; we get kD = 0:57: The root loci
and disturbance step response are plotted below.

(c) The gains are kp = 1:25; kD = 0:57:
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Problems and solutions for Section 5.5
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35. Consider the positioning servomechanism system shown in Fig. 5.65, where

ei = Kpot�i; eo = Kpot�o; Kpot = 10V=rad;

T = motor torque = Ktia;

Kt = torque constant = 0:1 N �m=A;= Ke

Ra = armature resistance = 10
;

Gear ratio = 1 : 1;

JL + Jm = total inertia = 10
�3 kg �m2;

C = 200�F;

va = KA(ei � ef ):

Figure 5.65: Positioning servomechanism

(a) What is the range of the ampli�er gain KA for which the system is
stable? Estimate the upper limit graphically using a root-locus plot.

(b) Choose a gain KA that gives roots at � = 0:7. Where are all three
closed-loop root locations for this value of KA?

Solution:

(a) 0 < K < 110
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 Root locus for problem 5.37
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K = 10:; poles are at s = �10:05; �0:475� j0:475:

36. We wish to design a velocity control for a tape-drive servomechanism. The
transfer function from current I(s) to tape velocity 
(s) (in millimeters
per millisecond per ampere) is


(s)

I(s)
=

15(s2 + 0:9s+ 0:8)

(s+ 1)(s2 + 1:1s+ 1)
:

We wish to design a type 1 feedback system so that the response to a
reference step satis�es

tr � 4msec; ts � 15msec; Mp � 0:05

(a) Use the integral compensator kI=s to achieve type 1 behavior, and
sketch the root-locus with respect to kI . Show on the same plot the
region of acceptable pole locations corresponding to the speci�ca-
tions.

(b) Assume a proportional-integral compensator of the form kp(s+�)=s,
and select the best possible values of kp and � you can �nd. Sketch
the root-locus plot of your design, giving values for kp and �, and
the velocity constant Kv your design achieves. On your plot, indicate
the closed-loop poles with a dot �, and include the boundary of the
region of acceptable root locations.
Solution:

(a) The root locus is plotted with the step response below in the �rst
row.

(b) The zero was put at s = �1:7 and the locus and step response are
plotted in the second row below
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Solution for problem 36

37. The normalized, scaled equations of a cart as drawn in Fig. 5.66 of mass
mc holding an inverted uniform pendulum of mass mp and length ` with
no friction are

�� � � = �v
�y + �� = v

(5.1)

where � =
3mp

4(mc +mp)
is a mass ratio bounded by 0 < � < 0:75. Time is

measured in terms of � = !ot where !2o =
3g(mc +mp)

`(4mc +mp)
: The cart motion,

y; is measured in units of pendulum length as y =
3x

4`
and the input is

force normalized by the system weight, v =
u

g(mc +mp)
: These equations

can be used to compute the transfer functions

�

V
= � 1

s2 � 1 (5.2)

Y

V
=
s2 � 1 + �
s2(s2 � 1) (5.3)

In this problem you are to design a control for this system by �rst closing
a loop around the pendulum, Eq.(5.2) and then, with this loop closed,



5053

Figure 5.66: Figure of cart-pendulum for Problem 37

closing a second loop around the cart plus pendulum Eq.(5.3). For this
problem, let the mass ratio be mc = 5mp:

(a) Draw a block diagram for the system with V input and both Y and
� as outputs.

(b) Design a lead compensation Dp(s) = Kp
s+ z

s+ p
for the � loop to

cancel the pole at s = �1 and place the two remaining poles at
�4� j4: The new control is U(s) where the force is V (s) = U(s) +
D(s)�(s): Draw the root locus of the angle loop.

(c) Compute the transfer function of the new plant from U to Y with
D(s) in place.

(d) Design a controller Dc(s) for the cart position with the pendulum
loop closed. Draw the root locus with respect to the gain of Dc(s)

(e) Use MATLAB to plot the control, cart position, and pendulum po-
sition for a unit step change in cart position.
Solution:

(a)

2

2 875.0
s

s −

1
1

2 −s

U Θ Y
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(b) Dp(s) = 41
s+ 1

s+ 9
The root locus is shown below.

(c) G1 =
�41

s2 + 8s+ 32

s2 � 0:875
s2

(d) Dc = kc
s2 + 0:2s+ 0:01

s2 + 2s+ 1
: The root locus is shown below.

(e) The step responses are shown below. The pendulum position control
is rather fast for this problem. A more reasonable alternative choice
would be to place the pendulum roots at s = �0:5� j0:5:
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Root loci and step responses for Problem 37

38. Consider the 270-ft U.S. Coast Guard cutter Tampa (902) shown in Fig. 5.67.
Parameter identi�cation based on sea-trials data (Trankle, 1987) was used
to estimate the hydrodynamic coe¢ cients in the equations of motion. The
result is that the response of the heading angle of the ship  to rudder
angle � and wind changes w can be described by the second-order transfer
functions

G�(s) =
 (s)

�(s)
=

�0:0184(s+ 0:0068)
s(s+ 0:2647)(s+ 0:0063)

;

Gw(s) =
 (s)

w(s)
=

0:0000064

s(s+ 0:2647)(s+ 0:0063)
;
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where

 = heading angle, rad

 r = reference heading angle; rad:

r = _ yaw rate; rad=sec;

� = rudder angle; rad;

w = wind speed;m=sec:

Figure 5.67: USCG cutter Tampa (902)

(a) Determine the open-loop settling time of r for a step change in �.

(b) In order to regulate the heading angle  , design a compensator that
uses  and the measurement provided by a yaw-rate gyroscope (that
is, by _ = r). The settling time of  to a step change in  r is speci�ed
to be less than 50 sec, and, for a 5� change in heading the maximum
allowable rudder angle de�ection is speci�ed to be less than 10�.

(c) Check the response of the closed-loop system you designed in part (b)
to a wind gust disturbance of 10 m=sec (model the disturbance as
a step input). If the steady-state value of the heading due to this
wind gust is more than 0:5�, modify your design so that it meets this
speci�cation as well.
Solution:



5056 CHAPTER 5. THE ROOT-LOCUS DESIGN METHOD

(a) From the transfer function �nal value theorem, the �nal value is
0.075. Using the step function in MATLAB, the settling time to 1%
of the �nal value is ts = 316:11 sec.

(b) The maximum de�ection of the rudder is almost surely at the initial
instant, when it is �(0) = K	r(0): Thus to keep � below 10� for a
step of 5�; we need K < 2:and for a settling time less than 50 sec : we
need � > 4:6=50 = 0:092: Drawing the root locus versus K and using
the function rloc�nd we �nd that K = 1:56 gives roots with real
parts less than 0:13: The step response shows that this proportional
control is adequate for the problem.

(c) The steady-state error to a disturbance of 10m= sec is less than 0.35.
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39. Golden Nugget Airlines has opened a free bar in the tail of their airplanes
in an attempt to lure customers. In order to automatically adjust for the
sudden weight shift due to passengers rushing to the bar when it �rst
opens, the airline is mechanizing a pitch-attitude auto pilot. Figure 5.68
shows the block diagram of the proposed arrangement. We will model the
passenger moment as a step disturbanceMp(s) =M0=s, with a maximum
expected value for M0 of 0.6.

(a) What value of K is required to keep the steady-state error in � to
less than 0.02 rad(�= 1�)? (Assume the system is stable.)

(b) Draw a root locus with respect to K.
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Figure 5.68: Golden Nugget Airlines Autopilot

(c) Based on your root locus, what is the value of K when the system
becomes unstable?

(d) Suppose the value of K required for acceptable steady-state behavior
is 600. Show that this value yields an unstable system with roots at

s = �2:9;�13:5;+1:2� 6:6j:

(e) You are given a black box with rate gyro written on the side and told
that when installed, it provides a perfect measure of _�, with output
KT

_�. Assume K = 600 as in part (d) and draw a block diagram
indicating how you would incorporate the rate gyro into the auto
pilot. (Include transfer functions in boxes.)

(f) For the rate gyro in part (e), sketch a root locus with respect to KT .

(g) What is the maximum damping factor of the complex roots obtain-
able with the con�guration in part (e)?

(h) What is the value of KT for part (g)?

(i) Suppose you are not satis�ed with the steady-state errors and damp-
ing ratio of the system with a rate gyro in parts (e) through (h).
Discuss the advantages and disadvantages of adding an integral term
and extra lead networks in the control law. Support your comments
using MATLAB or with rough root-locus sketches.

Solution:

(a) K = 300:

(b) K = 144
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Root locus for problem 5.41
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(c) The characteristic equation is s4 + 14s3 + 45s2 + 650s + 1800: The
exact roots are �13:5;�2:94;�1:22� 6:63:

(d) The output of the rate gyro box would be added at the same spot as
the attitude sensor output.

(e) � = 0:28

(f) KT = 185=600 = 0:31
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Root locus for problem 39f

(g) Integral (PI) control would reduce the steady-state error to the mo-
ment to zero but would make the damping less and the settling time
longer. A lead network could improve the damping of the response.

40. Consider the instrument servomechanism with the parameters given in
Fig. 5.69. For each of the following cases, draw a root locus with respect
to the parameter K, and indicate the location of the roots corresponding
to your �nal design.

(a) Lead network : Let

H(s) = 1; D(s) = K
s+ z

s+ p
;

p

z
= 6:
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Figure 5.69: Control system for problem 40

Select z and K so that the roots nearest the origin (the dominant
roots) yield

� � 0:4; �� � �7; Kv � 16
2

3
sec�1:

(b) Output-velocity (tachometer) feedback : Let

H(s) = 1 +KT s and D(s) = K:

Select KT and K so that the dominant roots are in the same location
as those of part (a). Compute Kv. If you can, give a physical rea-
son explaining the reduction in Kv when output derivative feedback
is used.

(c) Lag network : Let

H(s) = 1 and D(s) = K
s+ 1

s+ p
:

Using proportional control, it is possible to obtain a Kv = 12 at
� = 0:4. Select K and p so that the dominant roots correspond to the
proportional-control case but with Kv = 100 rather than Kv = 12.

Solution:

(a) The Kv requirement leads to K � 55000: With this value, a root
locus can be drawn with the parameter z by setting p = 6z:

1 + z

�
6s(s2 + 51s+ 550) +K

�
s2(s2 + 51s+ 550) +Ks

= 0
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Root locus for Problem 5.40(a)

At the point of maximum damping, the values are z = 17 and the
dominant roots are at about �13� j17:

(b) To �nd the values of K and Kv; we compute a polynomial with
roots at �13 � j17 and a third pole such that the coe¢ cient of s2

is 51;which is at s = �25:15 This calculation leads to K = 11785,
KT = 0:0483 and Kv = 20:81:

(c) The Kv needs to be increased by a factor of 100/12. Thus, we have
p = 0:12: The step responses of these designs are given in the plots
below.
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Step responses for problem 5.42
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Problems and solutions for Section 5.6

41. Plot the loci for the 0� locus or negative K for

(a) The examples given in Problem 3

(b) The examples given in Problem 4

(c) The examples given in Problem 5

(d) The examples given in Problem 6

(e) The examples given in Problem 7

(f) The examples given in Problem 8
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Problem 41(f)

42. Suppose you are given the plant

L(s) =
1

s2 + (1 + �)s+ (1 + �)
;

where � is a system parameter that is subject to variations. Use both
positive and negative root-locus methods to determine what variations in
� can be tolerated before instability occurs.

Solution:

L(s) =
s+ 1

s2 + s+ 1
: the system is stable for all � > �1: The complete

locus is a circle of radius 1 centered on s = �1:

43. Consider the system in Fig. 5.70.

(a) Use Routh�s criterion to determine the regions in the (K1;K2) plane
for which the system is stable.

(b) Use rltool to verify your answer to part (a).
Solution:

(a) De�ne kp = K1 and kI = K1K2 and the characteristic equation is

s4 + 1:5s3 + 0:5s2 + kps+ kI = 0
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Figure 5.70: Feedback system for Problem 43

For this equation, Routh�s criterion requires kI > 0; kp < 0:75; and
4k2p � 3kp + 9kI < 0: The third of these represents a parabola in the
[kp; kI ] plane plotted below. The region of stability is the area under
the parabola and above the kp axis.
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(b) When kI = 0; there is obviously a pole at the origin. For points on
the parabola, consider kp = 3=8 and kI = 1=16: The roots of the
characteristic equation are �1:309; �0:191; and �j0:5:

44. The block diagram of a positioning servomechanism is shown in Fig. 5.71.

(a) Sketch the root locus with respect toK when no tachometer feedback
is present (KT = 0).

(b) Indicate the root locations corresponding to K = 16 on the locus
of part (a). For these locations, estimate the transient-response pa-
rameters tr, Mp, and ts. Compare your estimates to measurements
obtained using the step command in MATLAB.

(c) For K = 16, draw the root locus with respect to KT .
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Figure 5.71: Control system for problem 44

(d) For K = 16 and with KT set so that Mp = 0:05(� = 0:707), estimate
tr and ts. Compare your estimates to the actual values of tr and ts
obtained using MATLAB.

(e) For the values of K and KT in part (d), what is the velocity constant
Kv of this system?

Solution:

(a) The locus is the cross centered at s = �0:5

(b) The roots have a damping of 0.25 and natural frequency of 4. We�d
estimate the overshoot to be Mp = 45% and a rise time of less than
0.45 sec. and settling time more than 4.6 sec. The values from the
plot are approximately: tr = 0:4; Mp = 45%; and ts = 5 sec : Not too
bad.

(c) See below.

(d) Use rloc�nd on the locus vs Kt to �nd the Kt value that yields 0.7
damping. This shows that KT = 3:66: Using the formulas inside the
back cover yields Mp = 0:05; tr = 0:45; and ts = 1:6:
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(e) Applying Eq. (4.33), we see that Kv = K=(Kt + 2) = 2:83:

45. Consider the mechanical system shown in Fig. 5.72, where g and a0 are
gains. The feedback path containing gs controls the amount of rate feed-
back. For a �xed value of a0, adjusting g corresponds to varying the
location of a zero in the s-plane.

(a) With g = 0 and � = 1, �nd a value for a0 such that the poles are
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Figure 5.72: Control system for problem 5.46

complex.

(b) Fix a0 at this value, and construct a root locus that demonstrates
the e¤ect of varying g.
Solution:

(a) The roots are complex for a0 > 0:25: We select a0 = 1 and the roots
are at s = �0:5� 0:866

(b) With respect to g, the root locus equation is s2+ s+1+ gs = 0: The
locus is a circle, plotted below.
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46. Sketch the root locus with respect to K for the system in Fig. 5.73. What
is the range of values of K for which the system is unstable?

Solution:

MATLAB cannot directly plot a root locus for a transcendental function.
However, with the Pade�approximation, a locus valid for small values of
s can be plotted, as shown below.
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Figure 5.73: Control system for problem 5.46
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47. Prove that the plant G(s) = 1=s3 cannot be made unconditionally stable
if pole cancellation is forbidden.

Solution:

The angles of departure from a triple pole are 180 and �60 for the negative
locus and 0 and �120 for the positive locus. In either case, at least one pole
starts out into the right-half plane. Such a system must be conditionally
stable for it will be unstable if the gain is small enough.
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48. For the equation 1 +KG(s) where

G(s) =
1

s(s+ p)[(s+ 1)2 + 4]
;

use MATLAB to examine the root locus as a function of K for p in the
range from p = 1 to p = 10, making sure to include the point p = 2.

Solution:

The root loci for four values are given in the �gure. The point is that the
locus for p = 2 has multiple roots at a complex value of s:
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Chapter 6

The Frequency-response
Design Method

Problems and Solutions for Section 6.1

1. (a) Show that �0 in Eq. (6.2) is given by

�0 =

�
G(s)

U0!

s� j!

�
s=�j!

= �U0G(�j!)
1

2j

and

��0 =

�
G(s)

U0!

s+ j!

�
s=+j!

= U0G(j!)
1

2j
:

(b) By assuming the output can be written as

y(t) = �0e
�j!t + ��0e

j!t;

derive Eqs. (6.4) - (6.6).

Solution:

(a) Eq. (6.2):

Y (s) =
�1

s� p1
+

�2
s� p2

+ � � �+ �n
s� pn

+
�o

s+ j!o
+

��o
s� j!o

Multiplying this by (s+ j!) :

Y (s)(s+j!) =
�1

s+ a1
(s+j!)+:::+

�n
s+ an

(s+j!)+�o+
��o

s� j! (s+j!)

6001
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) �o = Y (s)(s+ j!)�
�1

s+ a1
(s+ j!)� :::� �n

s+ an
(s+ j!)� ��o

s� j! (s+ j!)

�o = �ojs=�j! =
�
Y (s)(s+ j!)� �1

s+ a1
(s+ j!)� :::� ��o

s� j! (s+ j!)
�
s=�j!

= Y (s)(s+ j!)js=�j! = G(s)
Uo!

s2 + !2
(s+ j!)js=�j!

= G(s)
Uo!

s� j! js=�j! = �UoG(�j!)
1

2j

Similarly, multiplying Eq. (6.2) by (s� j!) :

Y (s)(s� j!) =
�1

s+ a1
(s� j!) + :::+ �n

s+ an
(s� j!) + �o

s+ j!
(s� j!) + ��o

��o = ��ojs=j! = Y (s)(s� j!)js=j! = G(s)
Uo!

s2 + !2
(s� j!)js=j!

= G(s)
Uo!

s+ j!
js=j! = UoG(j!)

1

2j

(b)

y(t) = �oe
�j!t + ��oe

j!t

y(t) = �UoG(�j!)
1

2j
e�j!t + UoG(j!)

1

2j
ej!t

= Uo

�
G(j!)ej!t �G(�j!)e�j!t

2j

�
jG(j!)j =

n
Re [G(j!)]

2
+ Im [G(j!)]

2
o 1

2

= A

\G(j!) = tan�1
Im [G(j!)]

Re [G(j!)]
= �

jG(�j!)j =
n
Re [G(�j!)]2 + Im [G(�j!)]2

o 1
2

= jG(j!)j

=
n
Re [G(j!)]

2
+ Im [G(j!)]

2
o 1

2

= A

\G(�j!) = tan�1
Im [G(�j!)]
Re [G(�j!)] = tan

�1 � Im [G(j!)]
Re [G(j!)]

= ��

) G(j!) = Aej�; G(�j!) = Ae�j�

Thus,

y(t) = Uo

�
Aej�ej!t �Ae�j�e�j!t

2j

�
= UoA

�
ej(!t+�) � e�j(!t+�)

2j

�
y(t) = UoA sin(!t+ �)
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where

A = jG(j!)j ; � = tan�1 Im [G(j!)]
Re [G(j!)]

= \G(j!)

2. (a) Calculate the magnitude and phase of

G(s) =
1

s+ 10

by hand for ! = 1, 2, 5, 10, 20, 50, and 100 rad/sec.

(b) sketch the asymptotes for G(s) according to the Bode plot rules, and
compare these with your computed results from part (a).

Solution:

(a)

G(s) =
1

s+ 10
; G(j!) =

1

10 + j!
=
10� j!
100 + !2

jG(j!)j =
1p

100 + !2
; \G(j!) = � tan�1 !

10

! jG(j!)j \G(j!)
1
2
5
10
20
50
100

0:0995
0:0981
0:0894
0:0707
0:0447
0:0196
0:00995

�5:71
�11:3
�26:6
�45:0
�63:4
�78:7
�84:3

(b) The Bode plot is :
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3. Sketch the asymptotes of the Bode plot magnitude and phase for each
of the following open-loop transfer functions. After completing the hand
sketches verify your result using MATLAB. Turn in your hand sketches
and the MATLAB results on the same scales.

(a) L(s) =
2000

s(s+ 200)

(b) L(s) =
100

s(0:1s+ 1)(0:5s+ 1)

(c) L(s) =
1

s(s+ 1)(0:02s+ 1)

(d) L(s) =
1

(s+ 1)2(s2 + 2s+ 4)

(e) L(s) =
10(s+ 4)

s(s+ 1)(s2 + 2s+ 5)

(f) L(s) =
1000(s+ 0:1)

s(s+ 1)(s2 + 8s+ 64)
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(g) L(s) =
(s+ 5)(s+ 3)

s(s+ 1)(s2 + s+ 4)

(h) L(s) =
4s(s+ 10)

(s+ 100)(4s2 + 5s+ 4)

(i) L(s) =
s

(s+ 1)(s+ 10)(s2 + 2s+ 2500)

Solution:

(a) L(s) =
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s
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s
200 + 1

�

101 102 103 104
10­5

100

ω (rad/sec)

M
ag

ni
tu

de

Bode plot for Prob. 6.3 (a)

101 102 103 104
10­5

100

ω (rad/sec)

M
ag

ni
tu

de

Bode plot for Prob. 6.3 (a)

101 102 103 104
­200

­180

­160

­140

­120

­100

­80

ω (rad/sec)

P
ha

se
 (d

eg
)

101 102 103 104
10­5

100

ω (rad/sec)

M
ag

ni
tu

de

Bode plot for Prob. 6.3 (a)

101 102 103 104
10­5

100

ω (rad/sec)

M
ag

ni
tu

de

Bode plot for Prob. 6.3 (a)

101 102 103 104
­200

­180

­160

­140

­120

­100

­80

ω (rad/sec)

P
ha

se
 (d

eg
)

(b) L(s) =
100

s
�
s
10 + 1

� �
s
2 + 1

�
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(c) L(s) = 1
s(s+1)(0:02s+1)
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(s+ 1)2
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2 + 1
i
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4. Real poles and zeros. Sketch the asymptotes of the Bode plot magnitude
and phase for each of the following open-loop transfer functions. After
completing the hand sketches verify your result using MATLAB. Turn in
your hand sketches and the MATLAB results on the same scales.

(a) L(s) =
1

s(s+ 1)(s+ 5)(s+ 10)

(b) L(s) =
(s+ 2)

s(s+ 1)(s+ 5)(s+ 10)

(c) L(s) =
(s+ 2)(s+ 6)

s(s+ 1)(s+ 5)(s+ 10)
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5. Complex poles and zeros Sketch the asymptotes of the Bode plot mag-
nitude and phase for each of the following open-loop transfer functions
and approximate the transition at the second order break point based
on the value of the damping ratio. After completing the hand sketches
verify your result using MATLAB. Turn in your hand sketches and the
MATLAB results on the same scales.

(a) L(s) =
1

s2 + 3s+ 10

(b) L(s) =
1

s(s2 + 3s+ 10)

(c) L(s) =
(s2 + 2s+ 8)

s(s2 + 2s+ 10)

(d) L(s) =
(s2 + 2s+ 12)

s(s2 + 2s+ 10)

(e) L(s) =
(s2 + 1)

s(s2 + 4)
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(f) L(s) =
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6. Multiple poles at the origin Sketch the asymptotes of the Bode plot mag-
nitude and phase for each of the following open-loop transfer functions.
After completing the hand sketches verify your result using MATLAB.
Turn in your hand sketches and the MATLAB results on the same scales.

(a) L(s) =
1

s2(s+ 8)

(b) L(s) =
1

s3(s+ 8)

(c) L(s) =
1

s4(s+ 8)

(d) L(s) =
(s+ 3)

s2(s+ 8)

(e) L(s) =
(s+ 3)

s3(s+ 4)

(f) L(s) =
(s+ 1)2

s3(s+ 4)
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7. Mixed real and complex poles Sketch the asymptotes of the Bode plot mag-
nitude and phase for each of the following open-loop transfer functions. Af-
ter completing the hand sketches verify your result using Matlab. Turn
in your hand sketches and the Matlab results on the same scales.

(a) L(s) =
(s+ 2)

s(s+ 10)(s2 + 2s+ 2)

(b) L(s) =
(s+ 2)

s2(s+ 10)(s2 + 6s+ 25)

(c) L(s) =
(s+ 2)2

s2(s+ 10)(s2 + 6s+ 25)

(d) L(s) =
(s+ 2)(s2 + 4s+ 68)

s2(s+ 10)(s2 + 4s+ 85)

(e) L(s) =
[(s+ 1)2 + 1]

s2(s+ 2)(s+ 3)

Solution:
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8. Right half plane poles and zeros Sketch the asymptotes of the Bode plot
magnitude and phase for each of the following open-loop transfer functions.
Make sure the phase asymptotes properly take the RHP singularity into
account by sketching the complex plane to see how the \L(s) changes as
s goes from 0 to +j1: After completing the hand sketches verify your
result using MATLAB. Turn in your hand sketches and the MATLAB
results on the same scales.

(a) L(s) =
s+ 2

s+ 10

1

s2 � 1 ; The model for a case of magnetic levitation
with lead compensation.

(b) L(s) =
s+ 2

s(s+ 10)

1

(s2 � 1) ; The magnetic levitation system with in-

tegral control and lead compensation.

(c) L(s) =
s� 1
s2

(d) L(s) =
s2 + 2s+ 1

s(s+ 20)2(s2 � 2s+ 2)
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(e) L(s) =
(s+ 2)

s(s� 1)(s+ 6)2

(f) L(s) =
1

(s� 1)[(s+ 2)2 + 3]

Solution:

(a) L(s) =
1
5

�
s
2 + 1

�
s+ 10

1

s2 � 1
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Figure 6.87: Magnitude portion of Bode plot for Problem 9
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9. A certain system is represented by the asymptotic Bode diagram shown
in Fig. 6.88. Find and sketch the response of this system to a unit step
input (assuming zero initial conditions).

Solution:

By inspection, the given asymptotic Bode plot is from
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Therefore,

G(s) =
10(s=10 + 1)

s
=
s+ 10

s

The response to a unit step input is :

Y (s) = G(s)U(s)

=
s+ 10

s
� 1
s
=
1

s
+
10

s2

y(t) = $�1 [Y (s)]

= 1(t) + 10t (t � 0)
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Prob. 6.9: Unit Step Response
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Prob. 6.9: Unit Step Response

10. Prove that a magnitude slope of �1 in a Bode plot corresponds to �20 db
per decade or -6 db per octave.

Solution:

The de�nition of db is db = 20 log jGj (1)

Assume slope = d(logjGj)
d(log!) = �1 (2)
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(2) =) log jGj = � log! + c (c is a constant.) (3)

(1) and (3) =) db = �20 log! + 20c

Di¤erentiating this,
d (db)
d (log!)

= �20

Thus, a magnitude slope of -1 corresponds to -20 db per decade.

Similarly,
d (db)
d (log2 !)

=
d (db)

d
�
log!
log 2

� + �6
Thus, a magnitude slope of -1 corresponds to -6 db per octave.

11. A normalized second-order system with a damping ratio � = 0:5 and an
additional zero is given by

G(s) =
s=a+ 1

s2 + s+ 1
:

Use MATLAB to compare the Mp from the step response of the system
for a = 0:01; 0:1, 1, 10, and 100 with the Mr from the frequency response
of each case. Is there a correlation between Mr and Mp?

Solution:

� Resonant peak, Mr Overshoot, Mp

0:01
0:1
1
10
100

98:8
9:93
1:46
1:16
1:15

54:1
4:94
0:30
0:16
0:16

As � is reduced, the resonant peak in frequency response increases.
This leads us to expect extra peak overshoot in transient response. This
e¤ect is signi�cant in case of � = 0:01; 0:1; 1, while the resonant peak in
frequency response is hardly changed in case of � = 10. Thus, we do
not have considerable change in peak overshoot in transient response for
� � 10.

The response peak in frequency response and the peak overshoot in
transient response are correlated.
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12. A normalized second-order system with � = 0:5 and an additional pole is
given by.

G(s) =
1

[(s=p) + 1](s2 + s+ 1)

Draw Bode plots with p = 0:01; 0:1, 1, 10 and 100. What conclusions can
you draw about the e¤ect of an extra pole on the bandwidth compared to
the bandwidth for the second-order system with no extra pole?

Solution:

p Additional pole (�p) Bandwidth, !Bw
0:01
0:1
1
10
100

�0:01
�0:1
�1
�10
�100

0:013
0:11
1:0
1:5
1:7

As p is reduced, the bandwidth decreases. This leads us to expect
slower time response and additional rise time. This e¤ect is signi�cant in
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case of p = 0:01; 0:1; 1, while the bandwidth is hardly changed in case of
p = 10. Thus, we do not have considerable change in rise time for p � 10.

Bandwidth is a measure of the speed of response of a system, such as
rise time.
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13. For the closed-loop transfer function

T (s) =
!2n

s2 + 2�!ns+ !2n
;

derive the following expression for the bandwidth !BW of T (s) in terms
of !n and �:

!BW = !n

r
1� 2�2 +

q
2 + 4�4 � 4�2:

Assuming !n = 1, plot !BW for 0 � � � 1.

Solution :

The closed-loop transfer function :

T (s) =
!2n

s2 + 2�!ns+ !2n
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s = j!;

T (j!) =
1

1�
�
!
!n

�2
+ 2�

�
!
!n

�
j

jT (j!)j = fT (j!)T �(j!)g
1
2 =

264 1

1�
�
!
!n

�2
�2 +

n
2�
�
!
!n

�o2
375

1
2

Let x =
!BW
!n

:

jT (j!)j!=!BW =

"
1

(1� x2)2 + (2�x)2

# 1
2

= 0:707 =
1p
2

=) x4 + (4�2 � 2)x2 � 1 = 0

=) x =
!BW
!n

=

�
(1� 2�2) +

q
(1� 2�2)2 + 1

� 1
2

=) !BW = !n

r
1� 2�2 +

q
2 + 4�4 � 4�2

� x

�
=
!BW
!n

�
!BW
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14. Consider the system whose transfer function is

G(s) =
A0!0s

Qs2 + !0s+ !20Q
:

This is a model of a tuned circuit with quality factor Q. (a) Compute the
magnitude and phase of the transfer function analytically, and plot them
for Q = 0:5, 1, 2, and 5 as a function of the normalized frequency !=!0.
(b) De�ne the bandwidth as the distance between the frequencies on either
side of !0 where the magnitude drops to 3 db below its value at !0 and
show that the bandwidth is given by

BW =
1

2�

�
!0
Q

�
:

(c) What is the relation between Q and �?

Solution :

(a) Let s = j!;

G(j!) =
Ao!oj!

�Q!2 + !oj! + !2oQ

=
Ao

1 +
Q!2o�Q!2
j!o!

jG(j!)j =
Aor

1 +Q2
�
!
!o
� !o

!

�2
� = � tan�1

�
!

!o
� !o
!

�

The normalized magnitude
�
QG(j!)
Ao

�
and phase are plotted against

normalized frequency
�
!
!o

�
for di¤erent values of Q.
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(b) There is symmetry around !o. For every frequency !1 < !o, there
exists a frequency !2 > !o which has the same magnitude

jG(j!1)j = jG(j!2)j

We have that,
!1
!o
� !o
!1

= �
�
!2
!o
� !o
!2

�
which implies !2o = !1!2. Let !1 < !o and !2 > !o be the two
frequencies on either side of !o for which the gain drops by 3db from
its value of Ao at !o.

BW =
!2 � !1
2�

=
1

2�

�
!2 �

!2o
!2

�
(1)

Now !2 is found from, ����G(j!)Ao

���� = 1p
2
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or

1 +Q2
�
!2
!o
� !o
!2

�2
= 2

which yields

Q

�
!2
!o
� !o
!2

�
= 1 =

Q

!o

�
!2 �

!2o
!2

�
(2)

Comparing (1) and (2) we �nd,

BW =
1p
2

�
Q

!o

�
(c)

G(s) =
A0!0s

Qs2 + !0s+ !20Q

=
A0!0s

Q
�
s2 + !0

Q s+ !
2
0

�
=

A0!0s

Q (s2 + 2�!0s+ !20)

Therefore
1

Q
= 2�

15. A DC voltmeter schematic is shown in Fig. 6.88. The pointer is damped
so that its maximum overshoot to a step input is 10%.

(a) What is the undamped natural frequency of the system?

(b) What is the damped natural frequency of the system?

(c) Plot the frequency response using MATLAB to determine what input
frequency will produce the largest magnitude output?

(d) Suppose this meter is now used to measure a 1-V AC input with a
frequency of 2 rad/sec. What amplitude will the meter indicate after
initial transients have died out? What is the phase lag of the output
with respect to the input? Use a Bode plot analysis to answer these
questions. Use the lsim command in MATLAB to verify your answer
in part (d).

Solution :

The equation of motion : I��+ b _�+ k� = T = Kmv, where b is a damping
coe¢ cient.
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Figure 6.88: Voltmeter schematic

Taking the Laplace transform with zero initial conditions:

�(s) =
Km

Is2 + bs+ k
V (s) =

Km

I

s2 + 2�!ns+ !2n
V (s)

Use I = 40� 10�6Kg�m2, k = 4� 10�6Kg�m2/s2, Km=4�10�6N�m/v

(a) Undamped natural frequency:

!2n =
k

I
=) !n =

r
k

I
= 0:316 rad/sec

(b) Since Mp = 0:1 and Mp = e
���p
1��2 ;

log 0:1 =
���p
1� �2

=) � = 0:5911 (' 0:6 from Figure 2.44)

Damped natural frequency:

!d = !n

q
1� �2 = 0:255 rad/sec
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(c)

T (j!) =
�(j!)

V (j!)
=

Km=I

(j!)2 + 2�!nj! + !2n

jT (j!)j =
Km=I

[(!2n � !2)2 + (2�!n!)2]
1
2

d jT (j!)j
d!

=

�
Km

I

�
2!
�
!2n � !2 � 2�2!2n

	
[(!2n � !2)2 + (2�!n!)2]

3
2

When djT (j!)j
d! = 0;

!2 � (1� 2�2)!2n = 0

! = 0:549!n = 0:173

Alternatively, the peak frequency can be found from the Bode plot:

! = 0:173 rad/sec

(d) With ! = 2 rad/sec from the Bode plot:

Amplitude = 0:0252 rad

Phase = �169:1�
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Problems and Solutions for Section 6.2

16. Determine the range ofK for which the closed-loop systems (see Fig. 6.18)
are stable for each of the cases below by making a Bode plot for K = 1 and
imagining the magnitude plot sliding up or down until instability results.
Verify your answers using a very rough sketch of a root-locus plot.

(a) KG(s) =
K(s+ 2)

s+ 20

(b) KG(s) =
K

(s+ 10)(s+ 1)2

(c) KG(s) =
K(s+ 10)(s+ 1)

(s+ 100)(s+ 5)3

Solution :

(a)

KG(s) =
K(s+ 2)

s+ 20
=
K

10

�
s
2 + 1

��
s
20 + 1

�
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The gain can be raised or lowered on the Bode gain plot and the
phase will never be less than -180o, so the system is stable for any
K > 0:

(b)

KG(s) =
K

(s+ 10)(s+ 1)2
=
K

10

1�
s
10 + 1

�
(s+ 1)2
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The bode plots show that the gain, K, would equal 242 when the
phase crosses 180o: So, K < 242 is Stable and K > 242 is Unstable.
The phase crosses the 180o at ! = 4:58 rad/sec. The root locus
below veri�es the situation.
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(c)

KG(s) =
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K

1250

�
s
10 + 1

�
(s+ 1)�

s
100 + 1

� �
s
5 + 1

�3



6059

10­1 100 101 102 103
10­6

10­4

10­2

ω (rad/sec)

M
ag

ni
tu

de

Bode plot for Prob. 6.16 (c)

10­1 100 101 102 103
10­6

10­4

10­2

ω (rad/sec)

M
ag

ni
tu

de

Bode plot for Prob. 6.16 (c)

10­1 100 101 102 103
­200

­150

­100

­50

0

50

ω (rad/sec)

P
ha

se
 (d

eg
)

10­1 100 101 102 103
10­6

10­4

10­2

ω (rad/sec)

M
ag

ni
tu

de

Bode plot for Prob. 6.16 (c)

10­1 100 101 102 103
10­6

10­4

10­2

ω (rad/sec)

M
ag

ni
tu

de

Bode plot for Prob. 6.16 (c)

10­1 100 101 102 103
­200

­150

­100

­50

0

50

ω (rad/sec)

P
ha

se
 (d

eg
)

The phase never crosses -180o so it is stable for all K > 0; as con-
�rmed by the root locus.

17. Determine the range of K for which each of the following systems is stable
by making a Bode plot for K = 1 and imagining the magnitude plot
sliding up or down until instability results. Verify your answers using a
very rough sketch of a root-locus plot.

(a) KG(s) =
K(s+ 1)

s(s+ 5)

(b) KG(s) =
K(s+ 1)

s2(s+ 10)

(c) KG(s) =
K

(s+ 2)(s2 + 9)

(d) KG(s) =
K(s+ 1)2

s3(s+ 10)

Solution :
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The phase never crosses -180o so it is stable for all K > 0; as con-
�rmed by the root locus.
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The phase never crosses -180o so it is stable for all K > 0; as con-
�rmed by the root locus. The system is stable for any K > 0:

(c)

KG(s) =
K

(s+ 2)(s2 + 9)
=
K

18

1�
s
2 + 1

� �
s2

9 + 1
�
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The bode is di¢ cult to read, but the phase really dropped by 180o

at the resonance. (It appears to rise because of the quadrant action
in Matlab) Furthermore, there is an in�nite magnitude peak of the
gain at the resonance because there is zero damping. That means
that no matter how much the gain is lowered, the gain will never
cross magnitude one when the phase is -180o. So it can not be made
stable for any K. This is much clearer and easier to see in the root
locus below.



6066 CHAPTER 6. THE FREQUENCY-RESPONSE DESIGN METHOD

­20 ­15 ­10 ­5 0 5 10
­15

­10

­5

0

5

10

15

Root Locus

Real Axis

Im
ag

in
ar

y 
A

xi
s

(d)

KG(s) =
K(s+ 1)2

s3(s+ 10)
=
K

10

(s+ 1)2

s3
�
s
10 + 1

�



6067

10­1 100 101 102
10­5

100

105

ω (rad/sec)

M
ag

ni
tu

de

Bode plot for Prob. 6.17 (d)

Gain=1/6.17

10­1 100 101 102
10­5

100

105

ω (rad/sec)

M
ag

ni
tu

de

Bode plot for Prob. 6.17 (d)

Gain=1/6.17

10­1 100 101 102
­400

­200

0

200

400

ω (rad/sec)

P
ha

se
 (d

eg
)

10­1 100 101 102
10­5

100

105

ω (rad/sec)

M
ag

ni
tu

de

Bode plot for Prob. 6.17 (d)

Gain=1/6.17

10­1 100 101 102
10­5

100

105

ω (rad/sec)

M
ag

ni
tu

de

Bode plot for Prob. 6.17 (d)

Gain=1/6.17

10­1 100 101 102
­400

­200

0

200

400

ω (rad/sec)

P
ha

se
 (d

eg
)

This is not the normal situation discussed in Section 6.2 where in-
creasing gain leads to instability. Here we see from the root locus
that K must be � 6.17 in order for stability. Note that the phase
is increasing with frequency here rather than the normal decrease we
saw on the previous problems. It�s also interesting to note that the
margin command in Matlab indicates instability! (which is false.)
This problem illustrates that a sketch of the root locus really helps
understand what�s going on... and that you can�t always trust Mat-
lab, or at least that you need good understanding to interpret what
Matlab is telling you.
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K < 6:25 : Unstable

K > 6:25 : Stable

! = 1:12 rad/sec for K = 6:17.
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Problems and Solutions for Section 6.3

18. (a) Sketch the Nyquist plot for an open-loop system with transfer func-
tion 1=s2; that is, sketch

1

s2
js=C1 ;

where C1 is a contour enclosing the entire RHP, as shown in Fig. 6.17.
(Hint : Assume C1 takes a small detour around the poles at s = 0, as
shown in Fig. 6.27.)

(b) Repeat part (a) for an open-loop system whose transfer function is
G(s) = 1=(s2 + !20).

Solution :

(a)

G(s) =
1

s2

Note that the portion of the Nyquist diagram on the right side below
that corresponds to the bode plot is from B�to C�. The large loop
from F�to A�to B�arises from the detour around the 2 poles at the
origin.

(b)

G(s) =
1

s2 + !20

Note here that the portion of the Nyquist plot coming directly from
a Bode plot is the portion from A�to E�. That portion includes a
180o arc that arose because of the detour around the pole on the
imaginary axis.
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19. Sketch the Nyquist plot based on the Bode plots for each of the following
systems, then compare your result with that obtained using the MATLAB
command nyquist:

(a) KG(s) =
K(s+ 2)

s+ 10

(b) KG(s) =
K

(s+ 10)(s+ 2)2

(c) KG(s) =
K(s+ 10)(s+ 1)

(s+ 100)(s+ 2)3

(d) Using your plots, estimate the range of K for which each system is
stable, and qualitatively verify your result using a rough sketch of a
root-locus plot.

Solution :

(a)
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N = 0; P = 0 =) Z = N + P = 0

The closed-loop system is stable for any K > 0:

(b) The Bode plot shows an initial phase of 0o hence the Nyquist starts
on the positive real axis at A�. The Bode ends with a phase of -
270o hence the Nyquist ends the bottom loop by approaching the
origin from the positive imaginary axis (or an angle of -270o ).
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The magnitude of the Nyquist plot as it crosses the negative real axis
is 0.00174. It will not encircle the �1=K point until K = 1/0.00174
= 576.

i. 0 < K < 576
N = 0; P = 0 =) Z = N + P = 0
The closed-loop system is stable.

ii. K > 576
N = 2; P = 0 =) Z = N + P = 2
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The closed-loop system has two unstable roots as veri�ed by the
root locus.

(c) The Bode plot shows an initial phase of 0o hence the Nyquist starts
on the positive real axis at A�. The Bode ends with a phase of -
180o hence the Nyquist ends the bottom loop by approaching the
origin from the negative real axis (or an angle of -180o ).

It will never encircle the -1/K point, hence it is always stable. The
root locus below con�rms that.
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N = 0; P = 0 =) Z = N + P = 0

The closed-loop system is stable for any K > 0:

20. Draw a Nyquist plot for

KG(s) =
K(s+ 1)

s(s+ 3)
(1)

choosing the contour to be to the right of the singularity on the j!-axis.
and determine the range of K for which the system is stable using the
Nyquist Criterion. Then redo the Nyquist plot, this time choosing the
contour to be to the left of the singularity on the imaginary axis and again
check the range of K for which the system is stable using the Nyquist
Criterion. Are the answers the same? Should they be?

Solution :

If you choose the contour to the right of the singularity on the origin, the
Nyquist plot looks like this :

From the Nyquist plot, the range of K for stability is � 1
K < 0 (N =

0; P = 0 =) Z = N + P = 0): So the system is stable for K > 0:

Similarly, in the case with the contour to the left of the singularity on the
origin, the Nyquist plot is:
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Figure 6.89: Control system for Problem 21

From the Nyquist plot, the range of K for stability is � 1
K < 0 (N =

�1; P = 1 =) Z = N + P = 0): So the system is stable for K > 0:

The way of choosing the contour around singularity on the j!-axis does
not a¤ect its stability criterion. The results should be the same in either
way. However, it is somewhat less cumbersome to pick the contour to the
right of a pole on the imaginary axis so that there are no unstable poles
within the contour, hence P=0.

21. Draw the Nyquist plot for the system in Fig. 6.89. Using the Nyquist
stability criterion, determine the range ofK for which the system is stable.
Consider both positive and negative values of K.

Solution :

The characteristic equation:

1 +K
1

(s2 + 2s+ 2)

1

(s+ 1)
= 0

G(s) =
1

(s+ 1)(s2 + 2s+ 2)
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For positive K, note that the magnitude of the Nyquist plot as it crosses
the negative real axis is 0.1, hence K < 10 for stability. For negative
K, the entire Nyquist plot is essentially �ipped about the imaginary axis,
thus the magnitude where it crosses the negative real axis will be 0.5 and
the stability limit is that jKj < 2 Therefore, the range of K for stability
is �2 < K < 10:

22. (a) For ! = 0:1 to 100 rad/sec, sketch the phase of the minimum-phase
system ����G(s) = s+ 1

s+ 10

����
s=j!

and the nonminimum-phase system����G(s) = � s� 1
s+ 10

����
s=j!

;

noting that \(j! � 1) decreases with ! rather than increasing.
(b) Does a RHP zero a¤ect the relationship between the�1 encirclements

on a polar plot and the number of unstable closed-loop roots in
Eq. (6.28)?

(c) Sketch the phase of the following unstable system for ! = 0:1 to
100 rad/sec:

G(s) =

���� s+ 1s� 10

����
s=j!

:

(d) Check the stability of the systems in (a) and (c) using the Nyquist
criterion on KG(s). Determine the range of K for which the closed-
loop system is stable, and check your results qualitatively using a
rough root-locus sketch.
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Solution :

(a) Minimum phase system,

G1(j!) =
s+ 1

s+ 10
js=j!
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Non-minimum phase system,

G2(j!) = �
s� 1
s+ 10

js=j!
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(b) No, a RHP zero doesn�t a¤ect the relationship between the �1 encir-
clements on the Nyquist plot and the number of unstable closed-loop
roots in Eq. (6.28).

(c) Unstable system:

G3(j!) =
s+ 1

s� 10 js=j!
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i. Minimum phase system G1(j!):
For any K > 0; N = 0; P = 0 =) Z = 0 =) The system is
stable, as veri�ed by the root locus being entirely in the LHP.
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ii. Non-minimum phase system G2(j!): the �1=K point will not
be encircled if K < 1:

0 < K < 1 N = 0; P = 0 =) Z = 0 =) Stable
1 < K N = 1; P = 0 =) Z = 1 =) Unstable

This is veri�ed by the Root Locus shown below where the branch

of the locus to the left of the pole is fromK < 1:
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iii. Unstable system G3(j!): The �1=K point will be encircled if
K > 10; however, P = 1, so

0 < K < 10 : N = 0; P = 1 =) Z = 1 =) Unstable
10 < K : N = �1; P = 1 =) Z = 0 =) Stable

This is veri�ed by the Root Locus shown below right, where the
locus crosses the imaginary axis when K = 10, and stays in the
LHP for K > 10:

23. Nyquist plots and their classical plane curves: Determine the Nyquist plot
using Matlab for the systems given below with K = 1 and verify that
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the beginning point and end point for the j! > 0 portion have the correct
magnitude and phase:

(a) the classical curve called Cayley�s Sextic, discovered by Maclaurin in
1718

KG(s) = K
1

(s+ 1)3

(b) the classical curve called the Cissoid, meaning ivy-shaped

KG(s) = K
1

s(s+ 1)

(c) the classical curve called the Folium of Kepler, studied by Kepler in
1609.

KG(s) = K
1

(s� 1)(s+ 1)2

(d) the classical curve called the Folium (not Kepler�s)

KG(s) = K
1

(s� 1)(s+ 2)

(e) the classical curve called the Nephroid, meaning kidney-shaped.

KG(s) = K
2(s+ 1)(s2 � 4s+ 1)

(s� 1)3

(f) the classical curve called Nephroid of Freeth, named after the English
mathematician T. J. Freeth.

KG(s) = K
(s+ 1)(s2 + 3)

4(s� 1)3

(g) a shifted Nephroid of Freeth

KG(s) = K
(s2 + 1)

(s� 1)3

Solution :
These are all accomplished by using Matlab�s Nyquist function. All
interesting shapes. To check the magnitude and phase for each,
plug in s = 0 and s = inf and then compare those values with the
beginning and end points on the Nyquist diagrams.

(a)
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Figure 6.90: Nyquist plot for Problem 24

(a) Problems and Solutions for Section 6.4

24. The Nyquist plot for some actual control systems resembles the one shown
in Fig.6.90. What are the gain and phase margin(s) for the system of
Fig. 6.90 given that � = 0:4; � = 1:3; and � = 40o: Describe what
happens to the stability of the system as the gain goes from zero to a very
large value. Sketch what the corresponding root locus must look like for
such a system. Also sketch what the corresponding Bode plots would look
like for the system.

Solution :

The phase margin is de�ned as in Figure 6.34, PM = � (! = !�),
but now there are several gain margins! If the system gain is increased
(multiplied) by 1

j�j or decreased (divided) by j�j, then the system will go
unstable. This is a conditionally stable system. See Figure 6.40 for a
typical root locus of a conditionally stable system.

gain margin = -20 log j�jdB (! = !H)
gain margin = +20 log j�jdB (! = !L)

For a conditionally stable type of system as in Fig. 6.40, the Bode
phase plot crosses -180� twice; however, for this problem we see from the
Nyquist plot that it crosses 3 times! For very low values of gain, the entire
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Nyquist plot would be shrunk, and the -1 point would occur to the left of
the negative real axis crossing at !o, so there would be no encirclements
and the system would be stable. As the gain increases, the -1 point occurs
between !o and !L so there is an encirclement and the system is unstable.
Further increase of the gain causes the -1 point to occur between !L and
!H (as shown in Fig. 6.90) so there is no encirclement and the system is
stable. Even more increase in the gain would cause the -1 point to occur
between !H and the origin where there is an encirclement and the system
is unstable. The root locus would look like Fig. 6.40 except that the very
low gain portion of the loci would start in the LHP before they loop out
into the RHP as in Fig. 6.40. The Bode plot would be vaguely like that
drawn below:

25. The Bode plot for

G(s) =
100[(s=10) + 1]

s[(s=1)� 1][(s=100) + 1]

is shown in Fig. 6.91.

(a) Why does the phase start at -270o at the low frequencies?

(b) Sketch the Nyquist plot for G(s).

(c) Is the closed-loop system shown in Fig. 6.92 stable?
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Figure 6.91: Bode plot for Problem 25

(d) Will the system be stable if the gain is lowered by a factor of 100?
Make a rough sketch of a root locus for the system and qualitatively
con�rm your answer

Solution :

(a) From the root locus, the phase at the low frequencies (! = 0+) is
calculated as :

The phase at the point fs = j!(! = 0+)g
= �180�(pole : s = 1)� 90�(pole : s = 0) + 0�(zero : s = �10) + 0�(pole : s = �100)
= �270�

Or, more simply, the RHP pole at s = +1 causes a �180o shift from
the �90o that you would expect from a normal system with all the
singularities in the LHP.
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Figure 6.92: Control system for Problem 26

(b) The Nyquist plot for G(s) :

(c) As the Nyquist shows, there is one counter-clockwise encirclement of
-1.

=) N = �1

We have one pole in RHP =) P = 1

Z = N + P = �1 + 1 = 0 =) The closed-loop system is stable.

(d) The system goes unstable if the gain is lowered by a factor of 100.

26. Suppose that in Fig. 6.92,

G(s) =
25(s+ 1)

s(s+ 2)(s2 + 2s+ 16)
:

Use MATLAB�s margin to calculate the PM and GM for G(s) and, based
on the Bode plots, conclude which margin would provide more useful in-
formation to the control designer for this system.

Solution :
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From the Bode plot,

PM = 101 deg; GM = 3:9db = 1:57

Since both PM and GM are positive, we can say that the closed-loop of
this system is stable. But GM is so small that we must be careful not to
increase the gain much, which leads the closed-loop system to be unstable.
Clearly, the GM is the more important margin for this example.

27. Consider the system given in Fig. 6.93.

(a) Use MATLAB to obtain Bode plots for K = 1 and use the plots to
estimate the range of K for which the system will be stable.

(b) Verify the stable range of K by using margin to determine PM for
selected values of K.

(c) Use rlocus and rloc�nd to determine the values of K at the stability
boundaries.
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Figure 6.93: Control system for Problem 27

(d) Sketch the Nyquist plot of the system, and use it to verify the number
of unstable roots for the unstable ranges of K.

(e) Using Routh�s criterion, determine the ranges of K for closed-loop
stability of this system.

Solution :

(a) The Bode plot for K = 1 is :
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From the Bode plot, the closed-loop system is unstable for K =
1. But we can make the closed-system stable with positive GM by
increasing the gain K up to the crossover frequency reaches at ! =
1:414 rad/sec (K = 2), where the phase plot crosses the �180� line.
Therefore :

1 < K < 2 =) The closed-loop system is stable.

(b) For example, PM = 6:66 deg for K = 1:5.
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(c) Root locus is :
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j!-crossing :

1 +K
j! + 2

(j!)3 + (j!)2 � 2 = 0

!2 � 2K + 2 = 0

!(!2 �K) = 0

K = 2; ! = �
p
2; or K = 1; ! = 0

Therefore,

1 < K < 2 =) The closed-loop system is stable.
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(d)

i. 0 < K < 1
N = 0; P = 1 =) Z = 1
One unstable closed-loop root.

ii. 1 < K < 2
N = �1; P = 1 =) Z = 0
Stable.

iii. 2 < K
N = 1; P = 1 =) Z = 2
Two unstable closed-loop roots.

(e) The closed-loop transfer function of this system is :

y(s)

r(s)
=

k
1

s� 1
1 + k

1

s� 1 �
s+ 2

(s+ 1)2 + 1

=
K(s2 + 2s+ 2)

s3 + s2 +Ks+ 2K � 2

So the characteristic equation is :

=) s3 + s2 +Ks+ 2K � 2 = 0

Using the Routh�s criterion,

s3 : 1 K
s2 : 1 2K � 2
s1 : 2�K 0
s0 : 2k = 2

For stability,
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2�K > 0

2K � 2 > 0

=) 2 > K > 1

0 < K < 1 Unstable
1 < K < 2 Stable
2 < K Unstable

28. Suppose that in Fig. 6.92,

G(s) =
3:2(s+ 1)

s(s+ 2)(s2 + 0:2s+ 16)
:

Use MATLAB�smargin to calculate the PM and GM forG(s) and comment
on whether you think this system will have well damped closed-loop roots.

Solution :

MATLAB�s margin plot for the given system is :
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From the MATLAB margin routine, PM = 92:8o . Based on this result,
Fig. 6.36 suggests that the damping will be = 1; that is, the roots will be
real. However, closer inspection shows that a very small increase in gain
would result in an instability from the resonance leading one to believe
that the damping of these roots is very small. Use of MATLAB�s damp
routine on the closed loop system con�rms this where we see that there are
two real poles (� = 1) and two very lightly damped poles with � = 0:0027:
This is a good example where one needs to be careful to not use Matlab
without thinking.

29. For a given system, show that the ultimate period Pu and the correspond-
ing ultimate gain Ku for the Zeigler-Nichols method can be found using
the following:

(a) Nyquist diagram

(b) Bode plot

(c) root locus.

Solution :

(a) See sketch below.

Pu =
2�

!u

(b) See sketch below.
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Pu =
2�

!u

(c)

1 +KuG(j!u) = 0

1 +KuRe[G(j!u)] +Kuj Im[G(j!u)] = 0

Ku = �
1

Re[G(j!u)]

Im[G(j!u)] = 0; or Pu =
2�

!u
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30. If a system has the open-loop transfer function

G(s) =
!2n

s(s+ 2�!n)

with unity feedback, then the closed-loop transfer function is given by

T (s) =
!2n

s2 + 2�!ns+ !2n
:

Verify the values of the PM shown in Fig. 6.36 for � = 0:1, 0.4, and 0.7.

Solution :

G(s) =
!2n

s(s+ 2�!n)
; T (s) =

G(s)

1 +G(s)
=

!2n
s2 + 2�!ns+ !2n

� PM from Eq. 6.32 PM from Fig. 6.36 PM from Bode plot
0.1 10� 10� 11.4� (! = 0:99 rad/sec)
0.4 40� 44� 43.1� (! = 0:85 rad/sec)
0.7 70� 65� 65.2� (! = 0:65 rad/sec)

31. Consider the unity feedback system with the open-loop transfer function

G(s) =
K

s(s+ 1)[(s2=25) + 0:4(s=5) + 1]
:

(a) Use MATLAB to draw the Bode plots for G(j!) assuming K = 1.
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(b) What gain K is required for a PM of 45�? What is the GM for this
value of K?

(c) What is Kv when the gain K is set for PM = 45�?

(d) Create a root locus with respect to K, and indicate the roots for a
PM of 45�.

Solution :

(a) The Bode plot for K = 1 is shown below and we can see from margin
that it results in a PM = 48o.
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(b) Although di¢ cult to read the plot above, it is clear that a very slight
increase in gain will lower the PM to 45o, so try K = 1:1: The margin
routine shows that this yields PM = 45o and GM = 15 db.

(c) Kv = lims!0fsKG(s)g = K = 1:1 when K is set for PM=45�

Kv = 1:1



6101

(d) The characteristic equation for PM of 45� :

1 +
1:1

s(s+ 1)
h�

s
5

�2
+ 0:4

�
s
5

�
+ 1
i = 0

=) s4 + 3s3 + 27s2 + 25s+ 27:88 = 0

=) s = �1:03� j4:78; �0:47� j0:97

32. For the system depicted in Fig. 6.94(a), the transfer-function blocks are
de�ned by

G(s) =
1

(s+ 2)2(s+ 4)
and H(s) =

1

s+ 1
:

(a) Using rlocus and rloc�nd, determine the value of K at the stability
boundary.

(b) Using rlocus and rloc�nd, determine the value of K that will produce
roots with damping corresponding to � = 0:707.

(c) What is the gain margin of the system if the gain is set to the value
determined in part (b)? Answer this question without using any
frequency response methods.

(d) Create the Bode plots for the system, and determine the gain margin
that results for PM = 65�. What damping ratio would you expect
for this PM?
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Figure 6.94: Block diagram for Problem 32: (a) unity feedback; (b) H(s) in
feedback

(e) Sketch a root locus for the system shown in Fig. 6.94(b).. How does
it di¤er from the one in part (a)?

(f) For the systems in Figs. 6.94(a) and (b), how does the transfer func-
tion Y2(s)=R(s) di¤er from Y1(s)=R(s)? Would you expect the step
response to r(t) be di¤erent for the two cases?

Solution :

(a) The root locus crosses j! axis at s0 = j2.

K =
1

jH(s0)G(s0)j
js0=j2

= jj2 + 1j jj2 + 4j jj2 + 2j2

=) K = 80
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(b)
� = 0:707 =) 0:707 = sin � =) � = 45�

From the root locus given,

s1 = �0:91 + j0:91

K =
1

jH(s1)G(s1)j
js1=�0:91+j0:91

= j0:01 + j0:91j j3:09 + j0:91j j1:09 + j0:91j2

=) K = 5:9

(c)

GM =
Ka

Kb
=
80

5:9
= 13:5

(d) From the Root Locus :

G(s)H(s) =
1

(s+ 1)(s+ 2)2(s+ 4)

PM=65� when K = 30. Instability occurs when K = 80:0.

=) GM = 2:67

We approximate the damping ratio by � ' PM
100

� ' 65

100
= 0:65
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(e) The root locus for Fig.6.94(a) is the same as that of Fig.6.94(b).

(f)

Y1(s)

R(s)
=

KG(s)H(s)

1 +KG(s)H(s)
=

K

(s+ 1)(s+ 2)2(s+ 4) +K

Y2(s)

R(s)
=

KG(s)

1 +KG(s)H(s)
=

K(s+ 1)

(s+ 1)(s+ 2)2(s+ 4) +K

Y1(s)
R(s) and

Y2(s)
R(s) have the same closed-loop poles. However,

Y2(s)
R(s) has

a zero, while Y1(s)
R(s) doesn�t have a zero. We would therefore expect

more overshoot from system (b).

33. For the system shown in Fig. 6.95, use Bode and root-locus plots to deter-
mine the gain and frequency at which instability occurs. What gain (or
gains) gives a PM of 20�? What is the gain margin when PM = 20�?

Solution :
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Figure 6.95: Control system for Problem 33
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The system with K = 1 gives,

GM = 52 (! = 5 rad/sec)

PM = 10� (! = 0:165 rad/sec)

Therefore, instability occurs at K0 = 52 and ! = 5 rad/sec.

From the Bode plot, a PM of 20� is given by,

K1 = 3:9 (! = 0:33 rad/sec); GM =
52

3:9
= 13

K2 = 49 (! = 4:6 rad/sec); GM =
52

49
= 1:06

34. A magnetic tape-drive speed-control system is shown in Fig. 6.96. The
speed sensor is slow enough that its dynamics must be included. The
speed-measurement time constant is �m = 0:5 sec; the reel time constant
is � r = J=b = 4 sec, where b = the output shaft damping constant =
1 N �m � sec; and the motor time constant is �1 = 1 sec.

(a) Determine the gain K required to keep the steady-state speed error
to less than 7% of the reference-speed setting.

(b) Determine the gain and phase margins of the system. Is this a good
system design?

Solution :



6107

Figure 6.96: Magnetic tape-drive speed control

(a) From Table 4.1, the error for this Type 1 system is

ess =
1

1 +K
j
cj

Since the steady-state speed error is to be less than 7% of the refer-
ence speed,

1

1 +Kp
� 0:07

and for the system in Fig. 6.96 with the numbers plugged in, we see
that Kp = K: Therefore, K � 13:

(b)

jG(s)j = 0:79 at \GH = �180� =) GM =
1

jGHj = 1:3

\GH = �173� at jG(s)j = 1 =) PM = \G+ 180� = 7�

GM is low =) The system is very close to instability.

PM is low =) The damping ratio is low. =) High overshoot.

We see that to have a more stable system we have to lower the gain.
With small gain, ess will be higher. Therefore, this is not a good
design, and needs compensation.

35. For the system in Fig. 6.97, determine the Nyquist plot and apply the
Nyquist criterion

(a) to determine the range of values of K (positive and negative) for
which the system will be stable, and

(b) to determine the number of roots in the RHP for those values of K
for which the system is unstable. Check your answer using a rough
root-locus sketch.
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Figure 6.97: Control system for Problems 35, 69, and 70

Solution :

(a) & b.

KG(s) = K
3

s(s+ 1)(s+ 3)

From the Nyquist plot above, we see that:

i.

�1 < � 1
K
< �1

4
=) 0 < K < 4

There are no RHP open loop roots, hence P = 0 for all cases.
For 0 < K < 4; no encirclements of -1 so N = 0,

N = 0; P = 0 =) Z = 0

The closed-loop system is stable. No roots in RHP.

ii.

�1
4
< � 1

K
< 0 =) 4 < K <1
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Two encirclements of the -1 point, hence

N = 2; P = 0 =) Z = 2

Two closed-loop roots in RHP.

iii.

0 < � 1
K

=) K < 0

N = 1; P = 0 =) Z = 1

One closed-loop root in RHP.

The root loci below show the same results.

36. For the system shown in Fig. 6.98, determine the Nyquist plot and apply
the Nyquist criterion.

(a) to determine the range of values of K (positive and negative) for
which the system will be stable, and

(b) to determine the number of roots in the RHP for those values of K
for which the system is unstable. Check your answer using a rough
root-locus sketch.

Solution :

(a) & b.

KG(s) = K
s+ 1

(s� 1)2
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Figure 6.98: Control system for Problem 36

From the Nyquist plot we see that:

i.

�1 < � 1
K
< �1

2
=) 0 < K < 2

N = 0; P = 2 =) Z = 2

Two closed-loop roots in RHP.

ii.

�1
2
< � 1

K
< 0 =) 2 < K

N = �2; P = 2 =) Z = 0

The closed-loop system is stable.

iii.

0 < � 1
K
< 1 =) K < �1

N = �1; P = 2 =) Z = 1

One closed-loop root in RHP.
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Figure 6.99: Control system for Problem 37

iv.

1 < � 1
K
<1 =) �1 < K < 0

N = 0; P = 2 =) Z = 2

Two closed-loop roots in RHP.

These results are con�rmed by looking at the root loci below:

37. For the system shown in Fig. 6.99, determine the Nyquist plot and apply
the Nyquist criterion.

(a) to determine the range of values of K (positive and negative) for
which the system will be stable, and

(b) to determine the number of roots in the RHP for those values of K
for which the system is unstable. Check your answer using a rough
root-locus sketch.

Solution :
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(a) & b.

KG(s) = K
s� 1
(s+ 1)2

From the Nyquist plot we see that:

i.
�1 < � 1

K
< �1 =) 0 < K < 1

N = 0; P = 0 =) Z = 0

The closed-loop system is stable.

ii.
�1 < � 1

K
< 0 =) 1 < K

N = 1; P = 0 =) Z = 1

One closed-loop root in RHP.

iii.
0 < � 1

K
<
1

2
=) K < �2

N = 2; P = 0 =) Z = 2

Two closed-loop roots in RHP.

iv.
1

2
< � 1

K
=) �2 < K < 0

N = 0; P = 0 =) Z = 0

The closed-loop system is stable.

These results are con�rmed by looking at the root loci below:
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38. The Nyquist diagrams for two stable, open-loop systems are sketched in
Fig. 6.100. The proposed operating gain is indicated as K0, and arrows
indicate increasing frequency. In each case give a rough estimate of the
following quantities for the closed-loop (unity feedback) system:

(a) phase margin

(b) damping ratio

(c) range of gain for stability (if any)

(d) system type (0, 1, or 2).

Solution :
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Figure 6.100: Nyquist plots for Problem 38

For both, with K = K0:

N = 0; P = 0 =) Z = 0

Therefore, the closed-loop system is stable.

Fig.6.102(a) Fig.6.102(b)
a. PM '17� '45�
b. Damping ratio 0.17(' 17

100 ) 0.45(' 45
100 )

c. To determine the range of gain for stability, call the value of K where
the plots cross the negative real axis as K1: For case (a), K > K1 for
stability because gains lower than this amount will cause the -1 point to
be encircled. For case (b), K < K1 for stability because gains greater
than this amount will cause the -1 point to be encircled.

d. For case (a), the 360o loop indicates two poles at the origin, hence the
system is Type 2. For case (b), the 180o loop indicates one pole at the
origin, hence the system is Type 1.

39. The steering dynamics of a ship are represented by the transfer function

V (s)

�r(s)
= G(s) =

K[�(s=0:142) + 1]
s(s=0:325 + 1)(s=0:0362) + 1)

;

where v is the ship�s lateral velocity in meters per second, and �r is the
rudder angle in radians.

(a) Use the MATLAB command bode to plot the log magnitude and
phase of G(j!) for K = 0:2

(b) On your plot, indicate the crossover frequency, PM, and GM,
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(c) Is the ship steering system stable with K = 0:2?

(d) What value of K would yield a PM of 30o and what would the
crossover frequency be?

Solution :

(a) The Bode plot for K = 0:2 is :
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­180 deg PM=­23.7 deg

(b) From the Bode plot above :

!c = 0:0867 rad/sec

PM = �23:7 deg
GM = 1:95

(c) Since PM < 0, the closed-loop system with K = 0:2 is unstable.

(d) From the Bode plot above, we can get better PM by decreasing the
gain K. Then we will �nd that K = 0:0421 yields PM = 30� at
the crossover frequency !c = 0:032 rad/sec. The Bode plot with
K = 0:0421 is :
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40. For the open-loop system

KG(s) =
K(s+ 1)

s2(s+ 10)2
:

Determine the value for K at the stability boundary and the values of K
at the points where PM = 30�.

Solution :

The bode plot of this system with K = 1 is :
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Since GM = 64:1 db (' 1600), the range of K for stability is :

K < 1600

From the Bode plot, the magnitude at the frequency with �150� phase
is 0:0188 (�34:5 dB) at 0:8282 rad/sec and 0:00198 (�54:1 db) at 4:44
rad/sec. Therefore, the values of K at the points where PM = 30� is :

K =
1

0:0188
= 53:2;

K =
1

0:00198
= 505
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Figure 6.101: Magnitude frequency response for Problem 41

(a) Problems and Solutions for Section 6.5

41. The frequency response of a plant in a unity feedback con�guration is
sketched in Fig. 6.101. Assume the plant is open-loop stable and minimum
phase.

(a) What is the velocity constant Kv for the system as drawn?

(b) What is the damping ratio of the complex poles at ! = 100?

(c) What is the PM of the system as drawn? (Estimate to within �10o.)

Solution :

(a) From Fig. 6.101,

Kv = lim
s!0

sG = jLow frequency asymptote of G(j!)j!=1 = 100)

(b) Let

G1(s) =
1�

s
!n

�2
+ 2�

�
s
!n

�
+ 1

For the second order system G1(s),

jG1(j!)j!=1 =
1

2�
(1)
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From Fig. 6.101 :

jG1(j!)j!=100 =
jG(j!)j!=100

jAsymptote of G(j!)j!=100
�=
0:4

0:2
= 2 (2)

From (1) and (2) we have :

1

2�
= 2 =) � = 0:25

(c) Since the plant is a minimum phase system, we can apply the Bode�s
approximate gain-phase relationship.

When jGj = 1, the slope of jGj curve is �= -2.

=) \G(j!) �= �2� 90� = �180�

PM �= \G(j!) + 180� = 0�

Note : Actual PM by Matlab calculation is 6.4�; so this approxima-
tion is within the desired accuracy.

42. For the system

G(s) =
100(s=a+ 1)

s(s+ 1)(s=b+ 1)
;

where b = 10a, �nd the approximate value of a that will yield the best PM
by sketching only candidate values of the frequency response magnitude.

Solution :
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Without the zero and pole that contain the a & b terms, the plot
of jGj shows a slope of �2 at the jGj = 1 crossover at 10 rad/sec. We
clearly need to install the zero and pole with the a & b terms somewhere
at frequencies greater 1 rad/sec. This will increase the slope from -2 to
-1 between the zero and pole. So the problem simpli�es to selecting a so
that the -1 slope region between the zero and pole brackets the crossover
frequency. That scenario will maximize the PM. Referring to the plots
above, we see that 3:16 < a < 10, makes the slope of the asymptote of jGj
be �1 at the crossover and represent the two extremes of possibilities for a
-1 slope. The maximum PM will occur half way between these extremes
on a log scale, or

=) a =
p
3:16� 10 = 5:6
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Note : Actual PM is as follows :

PM = 46:8� for a = 3:16 (!c = 25:0 rad/sec)

PM = 58:1� for a = 5:6 (!c = 17:8 rad/sec)

PM = 49:0� for a = 10 (!c = 12:6 rad/sec)
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Problem and Solution for Section 6.6

43. For the open-loop system

KG(s) =
K(s+ 1)

s2(s+ 10)2
:

Determine the value for K that will yield PM � 30� and the maximum
possible closed-loop bandwidth. Use MATLAB to �nd the bandwidth.

Solution :

From the result of Problem 6.39., the value of K that will yield PM � 30�
is :

53:2 � K � 505

The maximum closed-loop bandwidth will occur with the maximum gain
K within the allowable region; therefore, the maximum bandwidth will
occur with K = 505: The Bode plot of the closed loop system with K =
505 is :
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Looking at the point with Magnitude 0.707(-3 db), the maximum possible
closed-loop bandwidth is :

!BW; max ' 7:7 rad/sec.

Problems and Solutions for Section 6.7
44. For the lead compensator

D(s) =
Ts+ 1

�Ts+ 1
;

where � < 1.

(a) Show that the phase of the lead compensator is given by

� = tan�1(T!)� tan�1(�T!):

(b) Show that the frequency where the phase is maximum is given by

!max =
1

T
p
�
;

and that the maximum phase corresponds to

sin�max =
1� �
1 + �

:

(c) Rewrite your expression for !max to show that the maximum-phase
frequency occurs at the geometric mean of the two corner frequencies
on a logarithmic scale:

log!max =
1

2

�
log

1

T
+ log

1

�T

�
:

(d) To derive the same results in terms of the pole-zero locations, rewrite
D(s) as

D(s) =
s+ z

s+ p
;

and then show that the phase is given by

� = tan�1
�
!

jzj

�
� tan�1

�
!

jpj

�
;

such that
!max =

p
jzjjpj:

Hence the frequency at which the phase is maximum is the square
root of the product of the pole and zero locations.
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Solution :

(a) The frequency response is obtained by letting s = j!,

D(j!) = K
Tj! + 1

�Tj! + 1

The phase is given by,� = tan�1(T!)� tan�1(�T!)
(b) Using the trigonometric relationship,

tan(A�B) = tan(A)� tan(B)
1 + tan(A) tan(B)

then

tan(�) =
T! � �T!
1� �T 2!2

and since,

sin2(�) =
tan2(�)

1 + tan2(�)

then

sin(�) =

s
!2T 2(1� �)2

1 + �2!4T 4 + (1 + �2)!2T 2

To determine the frequency at which the phase is a maximum, let us
set the derivative with respect to ! equal to zero,

d sin(�)

d!
= 0

which leads to
2!T 2(1� �)2(1� �!4T 4) = 0

The value ! = 0 gives the maximum of the function and setting the
second part of the above equation to zero then,

!4 =
1

�2T 4

or
!max =

1p
�T

The maximum phase contribution, that is, the peak of the \D(s)
curve corresponds to,

sin�max =
1� �
1 + �

or

� =
1� sin�max
1 + sin�max

tan�max =
!maxT � �!maxT
1 + !2maxT

2
=
1� �
2
p
�
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(c) The maximum frequency occurs midway between the two break fre-
quencies on a logarithmic scale,

log!max = log

1p
Tp
�T

= log
1p
T
+ log

1p
�T

=
1

2

�
log

1

T
+ log

1

�T

�
as shown in Fig. 6.53.

(d) Alternatively, we may state these results in terms of the pole-zero
locations. Rewrite D(s) as,

D(s) = K
(s+ z)

(s+ p)

then

D(j!) = K
(j! + z)

(j! + p)

and

� = tan�1
�
!

jzj

�
� tan�1

�
!

jpj

�
or

tan� =

!
jzj �

!
jpj

1 + !
jzj

!
jpj

Setting the derivative of the above equation to zero we �nd,�
!

jzj �
!

jpj

��
1 +

!2

jzj jpj

�
� 2!

jzj jpj

�
!

jzj �
!

jpj

�
= 0

and
!max =

p
jzj jpj

and

log!max =
1

2
(log jzj+ log jpj)

Hence the frequency at which the phase is maximum is the square
root of the product of the pole and zero locations.

45. For the third-order servo system

G(s) =
50; 000

s(s+ 10)(s+ 50)
:
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Design a lead compensator so that PM �50� and !BW � 20 rad/sec using
Bode plot sketches, then verify and re�ne your design using Matlab.

Solution :

Let�s design the lead compensator so that the system has PM � 50� &
!WB ' !c � 20 rad/sec.
The Bode plot of the given system is :
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Start with a lead compensator design with :

D(s) =
Ts+ 1

�Ts+ 1
(� < 1)

Since the open-loop crossover frequency !c(' !BW ) is already above 20
rad/sec, we are going to just add extra phase around ! = !c in order to
satisfy PM = 50�.

Let�s add phase lead � 60�. From Fig. 6.54,

1

�
' 20 =) choose � = 0:05
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To apply maximum phase lead at ! = 20 rad/sec;

! =
1p
�T

= 20 =) 1

T
= 4:48;

1

�T
= 89:4

Therefore by applying the lead compensator with some gain adjustments
:

D(s) = 0:12�
s

4:5
+ 1

s

90
+ 1

we get the compensated system with :

PM = 65�; !c = 22 rad/sec, so that !BW & 25 rad/sec.

The Bode plot with designed compensator is :
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Figure 6.102: Control system for Problem 46

46. For the system shown in Fig. 6.102, suppose that

G(s) =
5

s(s+ 1)(s=5 + 1)
:

Design a lead compensation D(s) with unity DC gain so that PM � 40�
using Bode plot sketches, then verify and re�ne your design using Matlab.
What is the approximate bandwidth of the system?

Solution :

Start with a lead compensator design with :

D(s) =
Ts+ 1

�Ts+ 1

which has unity DC gain with � < 1.

The Bode plot of the given system is :
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Bode Diagram
Gm = 1.58 dB (at 2.24 rad/sec) ,  Pm = 3.94 deg (at 2.04 rad/sec)
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Since PM = 3:9�, let�s add phase lead � 60�. From Fig. 6.53,

1

�
' 20 =) choose � = 0:05

To apply maximum phase lead at ! = 10 rad/sec;

! =
1p
�T

= 10 =) 1

T
= 2:2;

1

�T
= 45

Therefore by applying the lead compensator :

D(s) =

s

2:2
+ 1

s

45
+ 1

we get the compensated system with :

PM = 40�; !c = 2:5

The Bode plot with designed compensator is :
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Bode Diagram
Gm = 24.1 dB (at 12.8 rad/sec) ,  Pm = 40.2 deg (at 2.49 rad/sec)
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From Fig. 6.51, we see that !BW ' 2� !c ' 5 rad/sec.

47. Derive the transfer function from Td to � for the system in Fig. 6.70. Then
apply the Final Value Theorem (assuming Td = constant) to determine
whether �(1) is nonzero for the following two cases:

(a) When D(s) has no integral term: lims!0D(s) = constant;

(b) When D(s) has an integral term:

D(s) =
D0(s)

s
;

where lims!0D
0(s) = constant.

Solution :

The transfer function from Td to � :

�(s)

Td(s)
=

0:9
s2

1 + 0:9
s2

2
s+2D(s)
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where Td(s) = jTdj =s.

(a) Using the �nal value theorem :

�(1) = lim
t!1

�(t) = lim
s!0

s�(t) = lim
s!0

0:9
s2

s2(s+2)+1:8D(s)
s2(s+2)

jTdj
s

=
jTdj

lim
s!0

D(s)
=

jTdj
constant

6= 0

Therefore, there will be a steady state error in � for a constant Td
input if there is no integral term in D(s).

(b)

�(1) = lim
t!1

�(t) = lim
s!0

s�(t) = lim
s!0

0:9
s2

s3(s+2)+1:8D0(s)
s3(s+2)

jTdj
s

=
0

1:8lim
s!0

D0(s)
= 0

So when D(s) contains an integral term, a constant Td input will
result in a zero steady state error in �.

48. The inverted pendulum has a transfer function given by Eq. (2.31), which
is similar to

G(s) =
1

s2 � 1 :

(a) Design a lead compensator to achieve a PM of 30� using Bode plot
sketches, then verify and re�ne your design using MATLAB.

(b) Sketch a root locus and correlate it with the Bode plot of the system.

(c) Could you obtain the frequency response of this system experimen-
tally?

Solution :

(a) Design the lead compensator :

D(s) = K
Ts+ 1

�Ts+ 1

such that the compensated system has PM ' 30� & !c ' 1 rad/sec.
(Actually, the bandwidth or speed of response was not speci�ed, so
any crossover frequency would satisfy the problem statement.)

� =
1� sin(30�)
1 + sin(30�)

= 0:32
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To apply maximum phase lead at ! = 1 rad/sec;

! =
1p
�T

= 1 =) 1

T
= 0:57;

1

�T
= 1:77

Therefore by applying the lead compensator :

D(s) = K

s

0:57
+ 1

s

1:77
+ 1

By adjusting the gain K so that the crossover frequency is around 1
rad/sec, K = 1:13 results in :

PM = 30:8�

The Bode plot of compensated system is :
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(b) Root Locus of the compensated system is :
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and con�rms that the system yields all stable roots with reasonable
damping. However, it would be a better design if the gain was raised
some in order to increase the speed of response of the slow real root.
A small decrease in the damping of the complex roots will result.

(c) No, because the sinusoid input will cause the system to blow up be-
cause the open loop system is unstable. In fact, the system will
�blow up�even without the sinusoid applied. Or, a better descrip-
tion would be that the pendulum will fall over until it hits the table.

49. The open-loop transfer function of a unity feedback system is

G(s) =
K

s(s=5 + 1)(s=50 + 1)
:

(a) Design a lag compensator for G(s) using Bode plot sketches so that
the closed-loop system satis�es the following speci�cations:

i. The steady-state error to a unit ramp reference input is less than
0.01.

ii. PM � = 40�

(b) Verify and re�ne your design using Matlab.

Solution :

Let�s design the lag compensator :

D(s) =
Ts+ 1

�Ts+ 1
; � > 1
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From the �rst speci�cation,

Steady-state error to unit ramp = lim
s!0

s

���� D(s)G(s)

1 +D(s)G(s)

1

s2
� 1

s2

���� < 0:01
=) 1

K
< 0:01

=) Choose K = 150

Uncompensated, the crossover frequency with K = 150 is too high for a
good PM . With some trial and error, we �nd that the lag compensator,

D(s) =

s

0:2
+ 1

s

0:01
+ 1

will lower the crossover frequency to !c ' 4:46 rad/sec where the PM =
40:7�.
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50. The open-loop transfer function of a unity feedback system is

G(s) =
K

s(s=5 + 1)(s=200 + 1)
:

(a) Design a lead compensator for G(s) using Bode plot sketches so that
the closed-loop system satis�es the following speci�cations:

i. The steady-state error to a unit ramp reference input is less than
0.01.

ii. For the dominant closed-loop poles the damping ratio � � 0:4.

(b) Verify and re�ne your design using Matlab including a direct com-
putation of the damping of the dominant closed-loop poles.

Solution :

Let�s design the lead compensator :

D(s) =
Ts+ 1

�Ts+ 1
; � < 1

From the �rst speci�cation,

Steady-state error to unit ramp = lim
s!0

s

���� D(s)G(s)

1 +D(s)G(s)

1

s2
� 1

s2

���� < 0:01
=) 1

K
< 0:01

=) Choose K = 150

From the approximation � ' PM

100
, the second speci�cation implies PM �

40. After trial and error, we �nd that the compensator,

D(s) =

s

10
+ 1

s

100
+ 1

results in a PM = 42:5� and a crossover frequency !c ' 51:2 rad/sec as
shown by the margin output:



6136 CHAPTER 6. THE FREQUENCY-RESPONSE DESIGN METHOD

­150

­100

­50

0

50

100

M
ag

ni
tu

de
 (d

B)

10
­1

10
0

10
1

10
2

10
3

10
4

­270

­225

­180

­135

­90

Ph
as

e 
(d

eg
)

Bode Diagram
Gm = 13.3 dB (at 136 rad/sec) ,  Pm = 42.5 deg (at 52.2 rad/sec)
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and the use of damp veri�es the damping to be � = 0:42 for the complex
closed-loop roots which exceeds the requirement.

51. A DC motor with negligible armature inductance is to be used in a position
control system. Its open-loop transfer function is given by

G(s) =
50

s(s=5 + 1)
:

(a) Design a compensator for the motor using Bode plot sketches so that
the closed-loop system satis�es the following speci�cations:

i. The steady-state error to a unit ramp input is less than 1/200.

ii. The unit step response has an overshoot of less than 20%.

iii. The bandwidth of the compensated system is no less than that
of the uncompensated system.

(b) Verify and/or re�ne your design using Matlab including a direct
computation of the step response overshoot.
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Solution :

The �rst speci�cation implies that a loop gain greater than 200 is required.
Since the open loop gain of the plant is 50, a gain from the compensator,
K; is required where

K > 4 =) so choose K = 5

From Figure 3.23, we see that the second speci�cation implies that :

Overshoot < 20% =) � > 0:5 =) PM > 50�

A sketch of the Bode asymptotes of the open loop system with the required
loop gain shows a crossover frequency of about 30 rad/sec at a slope of -2;
hence, the PM will be quite low. To add phase with no decrease in the
crossover frequency, a lead compensator is required. Figure 6.53 shows
that a lead ratio of 10:1 will provide about 55o of phase increase and the
asymptote sketch shows that this increase will be centered at the crossover
frequency if we select the break points at

D(s) =

s

20
+ 1

s

200
+ 1

:

Use of Matlab�s margin routine shows that this compensation results in a
PM = 59� and a crossover frequency !c ' 60 rad/sec.
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Gm = Inf  dB (at Inf  rad/sec) ,  Pm = 59.5 deg (at 62.4 rad/sec)
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and using the step routine on the closed loop system shows the step re-
sponse to be less than the maximum allowed 20%.

52. The open-loop transfer function of a unity feedback system is

G(s) =
K

s(1 + s=5)(1 + s=20)
:

(a) Sketch the system block diagram including input reference commands
and sensor noise.

(b) Design a compensator for G(s) using Bode plot sketches so that the
closed-loop system satis�es the following speci�cations:

i. The steady-state error to a unit ramp input is less than 0.01.
ii. PM �45�
iii. The steady-state error for sinusoidal inputs with ! < 0:2 rad/sec

is less than 1/250.
iv. Noise components introduced with the sensor signal at frequen-

cies greater than 200 rad/sec are to be attenuated at the output
by at least a factor of 100,.
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(c) Verify and/or re�ne your design using Matlab including a compu-
tation of the closed-loop frequency response to verify (iv).

Solution :

a. The block diagram shows the noise, v, entering where the sensor would
be:

b. The �rst speci�cation implies Kv � 100 and thus K � 100: The bode
plot with K = 1 and D = 1 below shows that there is a negative PM but
all the other specs are met. The easiest way to see this is to hand plot
the asymptotes and mark the constraints that the gain must be � 250 at
! � 0:2 rad/sec and the gain must be � 0:01 for ! � 200 rad/sec.
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In fact, the specs are exceeded at the low frequency side, and slightly
exceeded on the high frequency side. But it will be di¢ cult to increase
the phase at crossover without violating the specs. From a hand plot
of the asymptotes, we see that a combination of lead and lag will do the
trick. Placing the lag according to

Dlag(s) =
(s=2 + 1)

(s=0:2 + 1)

will lower the gain curve at frequencies just prior to crossover so that a
-1 slope is more easily achieved at crossover without violating the high
frequency constraint. In addition, in order to obtain as much phase at
crossover as possible, a lead according to

Dlead(s) =
(s=5 + 1)

(s=50 + 1)

will preserve the -1 slope from ! = 5 rad/sec to ! = 20 rad/sec which
will bracket the crossover frequency and should result in a healthy PM: A
look at the Bode plot shows that all specs are met except the PM = 44:
Perhaps close enough, but a slight increase in lead should do the trick. So
our �nal compensation is

D(s) =
(s=2 + 1)

(s=0:2 + 1)

(s=4 + 1)

(s=50 + 1)

with K = 100: This does meet all specs with PM = 45o exactly, as can
be seen by examining the Bode plot below.
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53. Consider a type I unity feedback system with

G(s) =
K

s(s+ 1)
:

Design a lead compensator using Bode plot sketches so that Kv = 20 sec
�1

and PM > 40�. Use Matlab to verify and/or re�ne your design so that
it meets the speci�cations.

Solution :

Use a lead compensation :

D(s) =
Ts+ 1

�Ts+ 1
; � > 1

From the speci�cation, Kv = 20 sec�1;

=) Kv = lim
s!0

sD(s)G(s) = K = 20

=) K = 20
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From a hand sketch of the uncompensated Bode plot asymptotes, we see
that the slope at crossover is -2, hence the PM will be poor. In fact, an
exact computation shows that

PM = 12:75 (at !c = 4:42 rad/sec)

Adding a lead compensation

D(s) =

s

3
+ 1

s

30
+ 1

will provide a -1 slope in the vicinity of crossover and should provide plenty
of PM. The Bode plot below veri�es that indeed it did and shows that the
PM = 62� at a crossover frequency �= 7 rad/sec thus meeting all specs.
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54. Consider a satellite-attitude control system with the transfer function

G(s) =
0:05(s+ 25)

s2(s2 + 0:1s+ 4)
:
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Amplitude-stabilize the system using lead compensation so that GM �
2 (6 db), and PM � 45�, keeping the bandwidth as high as possible with
a single lead.

Solution :

The sketch of the uncompensated Bode plot asymptotes shows that the
slope at crossover is -2; therefore, a lead compensator will be required
in order to have a hope of meeting the PM requirement. Furthermore,
the resonant peak needs to be kept below magnitude 1 so that it has no
chance of causing an instability (this is amplitude stabilization). This
latter requirement means we must lower gain at the resonance. Using the
single lead compensator,

D(s) =
(s+ 0:06)

(s+ 6)

will lower the low frequency gain by a factor of 100, provide a -1 slope
at crossover, and will lower the gain some at the resonance. Thus it is
a good �rst cut at a compensation. The Matlab Bode plot shows the
uncompensated and compensated and veri�es our intent. Note especially
that the resonant peak never crosses magnitude 1 for the compensated
(dashed) case.
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The Matlab margin routine shows a GM = 6:3 db and PM = 48� thus
meeting all specs.

55. In one mode of operation the autopilot of a jet transport is used to con-
trol altitude. For the purpose of designing the altitude portion of the au-
topilot loop, only the long-period airplane dynamics are important. The
linearized relationship between altitude and elevator angle for the long-
period dynamics is

G(s) =
h(s)

�(s)
=

20(s+ 0:01)

s(s2 + 0:01s+ 0:0025)

ft

deg
:

The autopilot receives from the altimeter an electrical signal proportional
to altitude. This signal is compared with a command signal (proportional
to the altitude selected by the pilot), and the di¤erence provides an error
signal. The error signal is processed through compensation, and the result
is used to command the elevator actuators. A block diagram of this system
is shown in Fig. 6.103. You have been given the task of designing the
compensation. Begin by considering a proportional control law D(s) = K.
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Figure 6.103: Control system for Problem 55

(a) Use Matlab to draw a Bode plot of the open-loop system for D(s) =
K = 1.

(b) What value of K would provide a crossover frequency (i.e., where
jGj = 1) of 0.16 rad/sec?

(c) For this value of K, would the system be stable if the loop were
closed?

(d) What is the PM for this value of K?

(e) Sketch the Nyquist plot of the system, and locate carefully any points
where the phase angle is 180� or the magnitude is unity.

(f) Use Matlab to plot the root locus with respect to K, and locate the
roots for your value of K from part (b).

(g) What steady-state error would result if the command was a step
change in altitude of 1000 ft?
For parts (h)and (i), assume a compensator of the form

D(s) = K
Ts+ 1

�Ts+ 1
:

(h) Choose the parameters K, T , and � so that the crossover frequency
is 0.16 rad/sec and the PM is greater that 50�. Verify your design by
superimposing a Bode plot of D(s)G(s)=K on top of the Bode plot
you obtained for part (a), and measure the PM directly.

(i) Use Matlab to plot the root locus with respect to K for the system
including the compensator you designed in part (h). Locate the roots
for your value of K from part (h).

(j) Altitude autopilots also have a mode where the rate of climb is sensed
directly and commanded by the pilot.

i. Sketch the block diagram for this mode,
ii. de�ne the pertinent G(s);
iii. design D(s) so that the system has the same crossover frequency

as the altitude hold mode and the PM is greater than 50�

Solution :
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The plant transfer function :

h(s)

�(s)
=

80
� s

0:01
+ 1
�

s

�� s

0:05

�2
+ 2

0:1

0:05
s+ 1

�
(a) See the Bode plot :
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(b) Since jGj = 865 at ! = 0:16,

K =
1

jGj j!=0:16 = 0:0012

(c) The system would be stable, but poorly damped.

(d) PM = 0:39�

(e) The Nyquist plot for D(j!)G(j!) :
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The phase angle never quite reaches �180�.

(f) See the Root locus :

The closed-loop roots for K = 0:0012 are :

s = �0:009; �0:005� j0:16
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(g) The steady-state error e1 :

ess = lim
s!0

s
1

1 +K
h(s)

�(s)

1000

s

= 0

as it should be for this Type 1 system.

(h) Phase margin of the plant :

PM = 0:39� (!c = 0:16 rad/sec)

Necessary phase lead and
1

�
:

necessary phase lead = 50� � 0:39� ' 50�

From Fig. 6.54 :

=) 1

�
= 8

Set the maximum phase lead frequency at !c :

! =
1p
�T

= !c = 0:16 =) T = 18

so the compensation is

D(s) = K
18s+ 1

2:2s+ 1

For a gain K, we want jD(j!c)G(j!c)j = 1 at ! = !c = 0:16: So
evaluate via Matlab����D(j!c)G(j!c)K

����
!c=0:16

and �nd it = 2:5� 103

=) K =
1

2:5� 103 = 4:0� 10
�4

Therefore the compensation is :

D(s) = 4:0� 10�4 18s+ 1
2:2s+ 1

which results in the Phase margin :

PM = 52� (!c = 0:16 rad/sec)
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(i) See the Root locus :
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The closed-loop roots for K = 4:0� 10�4 are :

s = �0:27; �0:0074; �0:095� j0:099

(j) In this case, the reference input and the feedback parameter are the
rate of climb.

i. The block diagram for this mode is :

ii. De�ne G(s) as :

G(s) =
_h(s)

�(s)
=

80
� s

0:01
+ 1
�

s
� s

0:05

�2
+ 2

0:1

0:05
s+ 1

iii. By evaluating the gain of G(s) at ! = !c = 0:16; and setting K
equal to its inverse, we see that proportional feedback :

D(s) = K = 0:0072

satis�es the given speci�cations by providing:

PM = 90� (!c = 0:16 rad/sec)

The Bode plot of the compensated system is :
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56. For a system with open-loop transfer function c

G(s) =
10

s[(s=1:4) + 1][(s=3) + 1]
;

design a lag compensator with unity DC gain so that PM �40�. What is
the approximate bandwidth of this system?

Solution :
Lag compensation design :

Use

D(s) =
Ts+ 1

�Ts+ 1

K=1 so that DC gain of D(s) = 1.

(a) Find the stability margins of the plant without compensation by
plotting the Bode, �nd that:

PM = �20� (!c = 3:0 rad/sec)
GM = 0:44 (! = 2:05 rad/sec)
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(b) The lag compensation needs to lower the crossover frequency so that
a PM ' 40� will result, so we see from the uncompensated Bode
that we need the crossover at about

=) !c;new = 0:81

where

jG(j!c)j = 10:4

so the lag needs to lower the gain at !c;new from 10.4 to 1.

(c) Pick the zero breakpoint of the lag to avoid in�uencing the phase at
! = !c;new by picking it a factor of 20 below the crossover, so

1

T
=
!c;new
20

=) T = 25

(d) Choose � :

Since D(j!) �= 1
� for ! >>

1
T , let

1

�
=

1

jG(j!c;new)j

� = jG(j!c;new)j = 10:4

(e) Compensation :

D(s) =
s

0:04 + 1
s

0:0038 + 1

(f) Stability margins of the compensated system :

PM = 42� (!c = 0:8 rad/sec)

GM = 4:4 (! = 2:0 rad/sec)

Approximate bandwidth !BW :

PM �= 42� =) !BW �= 2!c = 1:6 (rad/sec)
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57. For the ship-steering system in Problem 39,

(a) Design a compensator that meets the following speci�cations:

i. velocity constant Kv = 2,
ii. PM � 50�,
iii. unconditional stability (PM > 0 for all ! � !c, the crossover

frequency).

(b) For your �nal design, draw a root locus with respect to K, and indi-
cate the location of the closed-loop poles.

Solution :

The transfer function of the ship steering is

V (s)

�r(s)
= G(s) =

K[�(s=0:142) + 1]
s(s=0:325 + 1)(s=0:0362) + 1)

:

(a) Since the velocity constant, Kv must be 2, we require that K = 2:
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i. The phase margin of the uncompensated ship is

PM = �111� (!c = 0:363 rad/sec)

which means it would be impossible to stabilize this system with
one lead compensation, since the maximum phase increase would
be 90o: There is no speci�cation leading to maintaining a high
bandwidth, so the use of lag compensation appears to be the
best choice. So we use a lag compensation:

D(s) =
Ts+ 1

�Ts+ 1

ii. The crossover frequency which provides PM ' 50� is obtained
by looking at the uncompensated Bode plot below, where we see
that the crossover frequency needs to be lowered to

!c;new = 0:017;

where the uncompensated gain is

jG(j!c;new)j = 107

iii. Keep the zero of the lag a factor of 20 below the crossover to
keep the phase lag from the compensation from fouling up the
PM, so we �nd:

1

T
=

!c;new
20

=) T = 1:2� 103

iv. Choose � so that the gain reduction is achieved at crossover :

� = jG(j!c;new)j = 107

(D(j!) ' 1

�
for ! � 1

T
)

v. So the compensation is :

D(s) =
1200s+ 1

12:6s+ 1
=

s
0:0008 + 1
s

0:08 + 1

vi. Stability margins of the compensated system :

PM = 52:1� (!c = 0:017 rad/sec)

GM = 5:32 (! = 0:057 rad/sec)

and the system is unconditionally stable since the phase > 0 for
all ! < !c:as can be seen by the plot below.
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(b) See the root locus. (Note that this is a zero degree root locus.)

The closed-loop roots for K = 2 are :

s = �0:33; �0:0009; �0:014� j0:021
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58. For a unity feedback system with

G(s) =
1

s( s20 + 1)(
s2

1002 + 0:5
s
100 + 1)

(2)

(a) A lead compensator is introduced with � = 1=5 and a zero at 1=T =
20. How must the gain be changed to obtain crossover at !c =
31:6 rad/sec, and what is the resulting value of Kv?

(b) With the lead compensator in place, what is the required value of K
for a lag compensator that will readjust the gain to a Kv value of
100?

(c) Place the pole of the lag compensator at 3.16 rad/sec, and determine
the zero location that will maintain the crossover frequency at !c =
31:6 rad/sec. Plot the compensated frequency response on the same
graph.

(d) Determine the PM of the compensated design.

Solution :

(a) From a sketch of the asymptotes with the lead compensation (with
K1 = 1) :

D1(s) = K1

s
20 + 1
s
100 + 1

in place, we see that the slope is -1 from zero frequency to ! = 100
rad/sec. Therefore, to obtain crossover at !c = 31:6 rad/sec, the
gain K1 = 31:6 is required. Therefore,

Kv = 31:6
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(b) To increase Kv to be 100, we need an additional gain of 3.16 from
the lag compensator at very low frequencies to yield Kv = 100:

(c) For a low frequency gain increase of 3.16, and the pole at 3.16 rad/sec,
the zero needs to be at 10 in order to maintain the crossover at
!c = 31:6 rad/sec. So the lag compensator is

D2(s) = 3:16

s

10
+ 1

s

3:16
+ 1

and

D1(s)D2(s) = 100
s
20 + 1
s
100 + 1

s

10
+ 1

s

3:16
+ 1

The Bode plots of the system before and after adding the lag com-
pensation are
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(d) By using the margin routine from Matlab, we see that

PM = 49� (!c = 34:5 deg/sec)

59. Golden Nugget Airlines had great success with their free bar near the tail
of the airplane. (See Problem 5.39) However, when they purchased a much
larger airplane to handle the passenger demand, they discovered that there
was some �exibility in the fuselage that caused a lot of unpleasant yawing
motion at the rear of the airplane when in turbulence and was causing the
revelers to spill their drinks. The approximate transfer function for the
dutch roll mode (See Section 10.3.1) is

r(s)

�r(s)
=

8:75(4s2 + 0:4s+ 1)

(s=0:01 + 1)(s2 + 0:24s+ 1)

where r is the airplane�s yaw rate and �r is the rudder angle. In performing
a Finite Element Analysis (FEA) of the fuselage structure and adding
those dynamics to the dutch roll motion, they found that the transfer
function needed additional terms that re�ected the fuselage lateral bending
that occurred due to excitation from the rudder and turbulence. The
revised transfer function is

r(s)

�r(s)
=

8:75(4s2 + 0:4s+ 1)

(s=0:01 + 1)(s2 + 0:24s+ 1)
� 1

( s
2

!2b
+ 2� s

!b
+ 1)

where !b is the frequency of the bending mode (= 10 rad/sec) and � is the
bending mode damping ratio (= 0:02). Most swept wing airplanes have
a �yaw damper�which essentially feeds back yaw rate measured by a rate
gyro to the rudder with a simple proportional control law. For the new
Golden Nugget airplane, the proportional feedback gain, K = 1; where

�r(s) = �Kr(s): (3)

(a) Make a Bode plot of the open-loop system, determine the PM and
GM for the nominal design, and plot the step response and Bode
magnitude of the closed-loop system. What is the frequency of the
lightly damped mode that is causing the di¢ culty?

(b) Investigate remedies to quiet down the oscillations, but maintain the
same low frequency gain in order not to a¤ect the quality of the
dutch roll damping provided by the yaw rate feedback. Speci�cally,
investigate one at a time:

i. increasing the damping of the bending mode from � = 0:02 to
� = 0:04: (Would require adding energy absorbing material in
the fuselage structure)

ii. increasing the frequency of the bending mode from !b = 10
rad/sec to !b = 20 rad/sec. (Would require stronger and heavier
structural elements)
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iii. adding a low pass �lter in the feedback, that is, replace K in Eq.
(3) with KD(s) where

D(s) =
1

s=�p + 1
: (4)

Pick �p so that the objectionable features of the bending mode
are reduced while maintaining the PM � 60o:

iv. adding a notch �lter as described in Section 5.4.3. Pick the
frequency of the notch zero to be at !b with a damping of � =
0:04 and pick the denominator poles to be (s=100 + 1)2 keeping
the DC gain of the �lter = 1.

(c) Investigate the sensitivity of the two compensated designs above (iii
and iv) by determining the e¤ect of a reduction in the bending mode
frequency of -10%. Speci�cally, re-examine the two designs by tab-
ulating the GM, PM, closed loop bending mode damping ratio and
resonant peak amplitude, and qualitatively describe the di¤erences
in the step response.

(d) What do you recommend to Golden Nugget to help their customers
quit spilling their drinks? (Telling them to get back in their seats is
not an acceptable answer for this problem! Make the recommenda-
tion in terms of improvements to the yaw damper.)

Solution :

(a) The Bode plot of the open-loop system is :
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PM = 97:6� (! = 0:0833 rad/sec)

GM = 1:28 (! = 10:0 rad/sec)

The low GM is caused by the resonance being close to instability.

The closed-loop system unit step response is :
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The Bode plot of the closed-loop system is :
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From the Bode plot of the closed -loop system, the frequency of the
lightly damped mode is :

! ' 10 rad/sec

and this is borne out by the step response that shows a lightly damped
oscillation at 1.6 Hz or 10 rad/sec.

i. The Bode plot of the system with the bending mode damping
increased from � = 0:02 to � = 0:04 is :
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PM = 97:6� (! = 0:0833 rad/sec)

GM = 7:31 (! = 10:0 rad/sec)

and we see that the GM has increased considerably because the
resonant peak is well below magnitude 1; thus the system will
be much better behaved.

ii. The Bode plot of this system (!b = 10 rad/sec =) !b = 20
rad/sec) is :
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PM = 97:6� (! = 0:0833 rad/sec)

GM = 7:34 (! = 20:0 rad/sec)

and again, the GM is much improved and the resonant peak is
signi�cantly reduced from magnitude 1.

iii. By picking up �p = 1; the Bode plot of the system with the low
pass �lter is :
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PM = 92:9� (! = 0:0831 rad/sec)

GM = 34:97 (! = 8:62 rad/sec)

which are healthy margins and the resonant peak is, again, well
below magnitude 1.

iv. The Bode plot of the system with the given notch �lter is :

PM = 97:6� (! = 0:0833 rad/sec)

GM = 55:3 (! = 99:7 rad/sec)

which are the healthiest margins of all the designs since the notch
�lter has essentially canceled the bending mode resonant peak.

(b) Generally, the notch �lter is very sensitive to where to place the notch
zeros in order to reduce the lightly damped resonant peak. So if you
want to use the notch �lter, you must have a good estimation of
the location of the bending mode poles and the poles must remain
at that location for all aircraft conditions. On the other hand, the
low pass �lter is relatively robust to where to place its break point.
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Evaluation of the margins with the bending mode frequency lowered
by 10% will show a drastic reduction in the margins for the notch
�lter and very little reduction for the low pass �lter.

Low Pass Filter Notch Filter

GM 34:97 (! = 8:62 rad/sec) 55:3 (! = 99:7 rad/sec)
PM 92:9� (! = 0:0831 rad/sec) 97:6� (! = 0:0833 rad/sec)

Closed-loop bending
mode damping ratio

' 0:02 ' 0:04

Resonant peak 0.087 0.068

The magnitude plots of the closed-loop systems are :
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The closed-loop step responses are :

(c) While increasing the natural damping of the system would be the
best solution, it might be di¢ cult and expensive to carry out. Like-
wise, increasing the frequency typically is expensive and makes the
structure heavier, not a good idea in an aircraft. Of the remaining
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two options, it is a better design to use a low pass �lter because of
its reduced sensitivity to mismatches in the bending mode frequency.
Therefore, the best recommendation would be to use the low pass
�lter.

60. Consider a system with the open-loop transfer function (loop gain)

G(s) =
1

s(s+ 1)(s=10 + 1)
:

(a) Create the Bode plot for the system, and �nd GM and PM.

(b) Compute the sensitivity function and plot its magnitude frequency
response.

(c) Compute the Vector Margin (VM).

Solution :

(a) The Bode plot is :
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(b) Sensitivity function is :

S(s) =
1

1 +G(s)

=
1

1 +
1

s(s+ 1)(
s

10
+ 1)

The magnitude frequency response of this sensitivity function is :
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(c) Vector Margin is de�ned as :

VM = min
!

1

js(j!)j

=
1

1:61
= 0:62

61. Prove that the sensitivity function S(s) has magnitude greater than 1
inside a circle with a radius of 1 centered at the �1 point. What does



6171

this imply about the shape of the Nyquist plot if closed-loop control is to
outperform open-loop control at all frequencies?

Solution :
S(s) =

1

1 +G(s)

Inside the unit circle, j1 +G(s)j < 1 which implies jS(s)j > 1.
Outside the unit circle, j1 +G(s)j > 1 which implies jS(s)j < 1.
On the unit circle, j1 +G(s)j = 1 which means jS(s)j = 1.
If the closed-loop control is going to outperform open-loop control then
jS(s)j � 1 for all s. This means that the Nyquist plot must lie outside the
circle of radius one centered at �1.

62. Consider the system in Fig. 6.102 with the plant transfer function

G(s) =
10

s(s=10 + 1)
:

We wish to design a compensator D(s) that satis�es the following design
speci�cations:

(a) i. Kv = 100,
ii. PM � 45�,
iii. sinusoidal inputs of up to 1 rad/sec to be reproduced with � 2%

error,
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Figure 6.104: Control system constraints for Problem 62

iv. sinusoidal inputs with a frequency of greater than 100 rad/sec to
be attenuated at the output to � 5% of their input value.

(b) Create the Bode plot of G(s), choosing the open-loop gain so that
Kv = 100.

(c) Show that a su¢ cient condition for meeting the speci�cation on si-
nusoidal inputs is that the magnitude plot lies outside the shaded
regions in Fig. 6.104. Recall that

Y

R
=

KG

1 +KG
and

E

R
=

1

1 +KG
:

(d) Explain why introducing a lead network alone cannot meet the design
speci�cations.

(e) Explain why a lag network alone cannot meet the design speci�ca-
tions.

(f) Develop a full design using a lead-lag compensator that meets all
the design speci�cations, without altering the previously chosen low
frequency open-loop gain.

Solution :

(a) To satisfy the given velocity constant Kv,

Kv = lim
s!0

sKG(s) = 10K = 100

=) K = 10

(b) The Bode plot of G(s) with the open-loop gain K = 10 is :
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(c) From the 3rd speci�cation,����ER
���� =

���� 1

1 +KG

���� < 0:02 (2%)
=) jKGj > 49 (at ! < 1 rad/sec)

From the 4th speci�cation,����YR
���� =

���� KG

1 +KG

���� < 0:05 (5%)
=) jKGj < 0:0526 (at ! > 100 rad/sec)

which agree with the �gure.

(d) A lead compensator may provide a su¢ cient PM, but it increases the
gain at high frequency so that it violates the speci�cation above.

(e) A lag compensator could satisfy the PM speci�cation by lowering the
crossover frequency, but it would violate the low frequency speci�ca-
tion, W1:
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(f) One possible lead-lag compensator is :

D(s) = 100

s

8:52
+ 1

s

22:36
+ 1

s

4:47
+ 1

s

0:568
+ 1

which meets all the speci�cation :

Kv = 100

PM = 47:7� (at !c = 12:9 rad/sec)

jKGj = 50:45 (at ! = 1 rad/sec) > 49

jKGj = 0:032 (at ! = 100 rad/sec) < 0:0526

The Bode plot of the compensated open-loop system D(s)G(s) is :
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Problems and Solutions for Section 6.8
63. Assume that the system

G(s) =
e�Tds

s+ 10
;

has a 0.2-sec time delay (Td = 0:2 sec). While maintaining a phase margin
� 40�, �nd the maximum possible bandwidth using the following:

(a) One lead-compensator section

D(s) = K
s+ a

s+ b
;

where b=a = 100;

(b) Two lead-compensator sections

D(s) = K

�
s+ a

s+ b

�2
;

where b=a = 10.

(c) Comment on the statement in the text about the limitations on the
bandwidth imposed by a delay.

Solution :

(a) One lead section :

With b=a = 100, the lead compensator can add the maximum phase
lead :

�max = sin�1
1� a

b

1 + a
b

= 78:6 deg ( at ! = 10a rad/sec)

By trial and error, a good compensator is :

K = 1202; a = 15 =) Da(s) = 1202
s+ 15

s+ 1500
PM = 40� (at !c = 11:1 rad/sec)

The Bode plot is shown below. Note that the phase is adjusted for
the time delay by subtracting !Td at each frequency point while there
is no e¤ect on the magnitude. For reference, the �gures also include
the case of proportional control, which results in :

K = 13:3; PM = 40� (at !c = 8:6 rad/sec)
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(b) Two lead sections :

With b=a = 10, the lead compensator can add the maximum phase
lead :

�max = sin�1
1� a

b

1 + a
b

= 54:9 deg ( at ! =
p
10a rad/sec)

By trial and error, one of the possible compensators is :

K = 1359; a = 70 =) Db(s) = 1359
(s+ 70)2

(s+ 700)2

PM = 40� (at !c = 9:6 rad/sec)

The Bode plot is shown below.
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(c) The statement in the text is that it should be di¢ cult to stabilize
a system with time delay at crossover frequencies, !c & 3=Td: This
problem con�rms this limit, as the best crossover frequency achieved
was !c = 9:6 rad/sec whereas 3=Td = 15 rad/sec. Since the band-
width is approximately twice the crossover frequency, the limitations
imposed on the bandwidth by the time delay is veri�ed.

64. Determine the range of K for which the following systems are stable:

(a) G(s) = K e�4s

s

(b) G(s) = K e�s

s(s+2)

Solution :

(a) ����G(j!)K

���� = 2:54; when \G(j!)K
= �180�

range of stability : 0 < K <
1

2:54
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(b)

����G(j!)K

���� = 0:409 = 1

2:45
; when \G(j!)

K
= �180�

range of stability : 0 < K < 2:45
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65. In Chapter 5, we used various approximations for the time delay, one of
which is the �rst order Padé

e�Tds �= H1(s) =
1� Tds=2
1 + Tds=2

:

Using frequency response methods, the exact time delay

H2(s) = e
�Tds:

can be used. Plot the phase of H1(s) and H2(s) and discuss the impli-
cations.

Solution :

The approximation H1(j!) and the true phase H2(j!) are compared in
the plot below:
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H1(j!) closely approximates the correct phase of the delay (phase of

H2(s)) for !Td .
�

2
and progressively worsens above that frequency. The

implication is that the H1(s) approximation should not be trusted for

crossover frequencies !c &
�

2Td
. Instead, one should use the exact phase

for the time delay given by H2(s):

66. Consider the heat exchanger of Example 2.15 with the open-loop transfer
function

G(s) =
e�5s

(10s+ 1)(60s+ 1)
:

(a) Design a lead compensator that yields PM � 45� and the maximum
possible closed-loop bandwidth.

(b) Design a PI compensator that yields PM � 45� and the maximum
possible closed-loop bandwidth.

Solution :
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(a) First, make sure that the phase calculation includes the time delay
lag of -Td! = �5!: A convenient placement of the lead zero is at
! = 0:1 because that will preserve the -1 slope until the lead pole.
We then raise the gain until the speci�ed PM is obtained in order to
maximize the crossover frequency. The resulting lead compensator,

D(s) =
90(s+ 0:1)

(s+ 1)

yields PM = 46� as seen by the Bode below.Also note that the
crossover frequency, !c = 0:15 rad/sec, which can be read approxi-
mately from the plot above, and veri�ed by using the margin com-
mand in Matlab with the phase adjusted by the time delay lag.

(b) The brealpoint of the PI compensator needs to be kept well below 0.1
in order to maintain a positive phase margin at as high a crossover
frequency as possible. In Table 4.1, Zeigler-Nichols suggest a break-
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point at ! = 1=17, so we will select a PI of the form :

D(s) = K

�
1 +

1

20s

�

and select the gain so that the PM speci�cation is met. ForK = 0:55
the phase margin is 46� as shown by the Bode below:
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Note with this compensation that !c = 0:02 rad/sec, which is con-
siderably lower than that yielded by the lead compensation.
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Figure 6.105: Control system for Problem 67

Problems and Solutions for Section 6.9

67. A feedback control system is shown in Fig.6.105. The closed-loop system
is speci�ed to have an overshoot of less than 30% to a step input.

(a) Determine the corresponding PM speci�cation in the frequency do-
main and the corresponding closed-loop resonant peak valueMr. (See
Fig. 6.38)

(b) From Bode plots of the system, determine the maximum value of K
that satis�es the PM speci�cation.

(c) Plot the data from the Bode plots (adjusted by the K obtained in
part (b)) on a copy of the Nichols chart in Fig. 6.84 and determine the
resonant peak magnitude Mr. Compare that with the approximate
value obtained in part (a).

(d) Use the Nichols chart to determine the resonant peak frequency !r
and the closed-loop bandwidth.

Solution :

(a) From Fig. 6.38 :

Mp � 0:3 =) PM � 40o =)Mr � 1:5

resonant peak : Mr � 1:5

(b) A sketch of the asymptotes of the open loop Bode shows that a PM
of �= 40o is obtained when K = 8: A Matlab plot of the Bode can
be used to re�ne this and yields

K = 7:81

for PM = 40o:

(c) The Nichols chart below shows that Mr = 1:5 which agrees exactly
with the prediction from Fig. 6.38:
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(d) The corresponding frequency where the curve is tangent toMr = 1:5
is:

!r = 2:41 rad/sec

as can be determined by noting the frequency from the Bode plot
that corresponds to the point on the Nichols chart.
The bandwidth !BW is determined by where the curve crosses the
closed-loop magnitude of 0.7 and noting the frequency from the Bode
plot that corresponds to the point on the Nichols chart

!BW = 3:94 rad/sec

68. The Nichols plot of an uncompensated and a compensated system are
shown in Fig. 6.106.
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Figure 6.106: Nichols plot for Problem 68
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(a) What are the resonance peaks of each system?
(b) What are the PM and GM of each system?
(c) What are the bandwidths of each system?
(d) What type of compensation is used?

Solution :

(a) Resonant peak :

Uncompensated system : Resonant peak = 1:5 (!r = 50 rad/sec)

Compensated system : Resonant peak = 1::05 (!r = 20 rad/sec)

(b) PM, GM :

Uncompensated system : PM = 42�; GM =
1

0:2
= 5

Compensated system : PM = 64�; GM =
1

0:1
= 10

(c) Bandwidth :

Uncompensated system : Bandwidth = 70 rad/sec

Compensated system : Bandwidth = 30 rad/sec

(d) Lag compensation is used, since the bandwidth is reduced.
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69. Consider the system shown in Fig. 6.97.

(a) Construct an inverse Nyquist plot of [Y (j!)=E(j!)]�1.

(b) Show how the value of K for neutral stability can be read directly
from the inverse Nyquist plot.

(c) For K = 4, 2, and 1, determine the gain and phase margins.

(d) Construct a root-locus plot for the system, and identify corresponding
points in the two plots. To what damping ratios � do the GM and
PM of part (c) correspond?

Solution :

(a) See the inverse Nyquist plot.

(b) Let

G(j!) =
Y (j!)

E(j!)

The characteristic equation with s = j! :

1 +KuG(j!) = 0

=) G�1 = �Ku

From the inverse Nyquist plot,

�Ku = �4 =) Ku = 4

(c)
K GM PM
4 �4

�4 = 1 0�

2 �4
�2 = 2 18:3�

1 �4
�1 = 4 38:1�
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(d)
K closed-loop poles �

4
�4

�j1:73 0

2
�3:63

�0:19� j1:27 0:14

1
�3:37

�0:31� j0:89 0:33

70. An unstable plant has the transfer function

Y (s)

F (s)
=

s+ 1

(s� 1)2 :
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A simple control loop is to be closed around it, in the same manner as the
block diagram in Fig. 6.97.

(a) Construct an inverse Nyquist plot of Y=F .

(b) Choose a value of K to provide a PM of 45�. What is the corre-
sponding GM?

(c) What can you infer from your plot about the stability of the system
when K < 0?

(d) Construct a root-locus plot for the system, and identity correspond-
ing points in the two plots. In this case, to what value of � does
PM = 45� correspond?

Solution :

(a) The plots are :

(b) From the inverse Nyquist plot, K = 3:86 provides a phase margin of
45�.
Since K = 2 gives \G(j!)�1 = 180� ,

GM =
2

3:86
= 0:518

Note that GM is less than 1, but the system with K = 3:86 is stable.

K = 3:86; GM = 0:518

(c) We can apply stability criteria to the inverse Nyquist plot as follows
:
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Let

N = Net number of clockwise encirclement of �K
P = Number of poles of G�1 in RHP

( = Number of zeros of G in RHP)

Z = Number of closed-loop system roots in RHP

Then,

�K < �2 K > 2 =) N = 0; P = 0
=) Z = 0 =) Stable

�2 < �K < 1
�1 > K > 2 =) N = 2; P = 0

=) Z = 2 =) Two unstable closed-loop roots

�K > 1
K < �1 =) N = 1; P = 0

=) Z = 1 =) One unstable closed-loop root

Then, we can infer from the inverse Nyquist plot the stability situa-
tion when K is negative. In summary, when K is negative, there are
either one or two unstable roots, and the system is always unstable.

(d) The stability situation seen in the root locus plot agrees with that
obtained from the inverse Nyquist plot.
They show :

K > 2 Stable
�1 < K < 2 Two unstable closed-loop roots
K < �1 One unstable closed-loop root

For the phase margin 45�,

closed-loop roots = �0:932� 1:999j
� = 0:423
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Figure 6.107: Control system for Problem 71

71. Consider the system shown in Fig. 6.107(a).

(a) Construct a Bode plot for the system.

(b) Use your Bode plot to sketch an inverse Nyquist plot.

(c) Consider closing a control loop aroundG(s), as shown in Fig. 6.107(b).
Using the inverse Nyquist plot as a guide, read from your Bode plot
the values of GM and PM when K = 0:7, 1.0, 1.4, and 2. What value
of K yields PM = 30�?

(d) Construct a root-locus plot, and label the same values of K on the
locus. To what value of � does each pair of PM/GM values corre-
spond? Compare the � vs PM with the rough approximation in Fig.
6.37

Solution :

(a) The �gure follows :
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(b) The �gure follows :
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(c)

K GM PM

K = 0:7 5:71 (! = 2:00) 54:7� (!c = 0:64)
K = 1 4:00 (! = 2:00) 44:1� (!c = 0:85)
K = 1:4 2:86 (! = 2:00) 33:1� (!c = 1:08)
K = 2 2:00 (! = 2:00) 21:4� (!c = 1:36)
For PM = 30�

K = 1:54
2:60 (! = 2:00) 30:0� (!c = 1:15)
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(d)
K closed-loop roots �

K = 0:7
�2:97

�0:51� 0:82j 0:53

K = 1
�3:13

�0:43� 1:04j 0:38

K = 1:4
�3:30

�0:35� 1:25j 0:27

K = 2
�3:51

�0:25� 1:49j 0:16



Chapter 7

State-Space Design

Problems and Solutions for Section 7.3: Block diagrams and
State Space

1. Write the dynamic equations describing the circuit in Fig. 7.82. Write the equations as a second-
order di¤erential equation in y(t). Assuming a zero input, solve the di¤erential equation for y(t)
using Laplace-transform methods for the parameter values and initial conditions shown in the
�gure. Verify your answer using the initial command in Matlab.

Solution:

i = C
dy

dt
(1)

v = L
di

dt
(2)

u(t)� Ldi
dt
�Ri(t)� y(t) = 0

di

dt
=
u

L
� R

L
i� 1

C
y (3)

Figure 7.82: Circuit for Problem 7.1

7001
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Substituting the given values for L, R, and C we have for equation (3):

di

dt
= u� 2dy

dt
� y

�y + 2 _y + y = u

Characteristic equation:

s2 + 2s+ 1 = 0

(s+ 1)2 = 0

So:
y(t) = A1e

�t +A2te
�t

Solving for the coe¢ cients:

y(t) = A1e
�t +A2te

�t

y(t0) = A1e
�t0 +A2t0e

t0 = 1

_y(t) = �A1e�t +A2e�t �A2te�t

_y(t0) = �A1e�t0 +A2e�t0 �A2te�t0 = 0

) A2 = et0 and A1 = (1� t0)et0

y(t) = (1� t0)et0�t + tet0�t:

To verify the solution using Matlab, re-write the di¤erential equation in state space form,� :
y
::
y

�
=

�
0 1
�1 �2

� �
y
:
y

�
+

�
1
L
0

�
u = ax+ bu

y =
�
1 0

� � y
:
y

�
= cx,

where x = [y
:
y]T . Then the following Matlab statements,

a=[0,1;-1,-2];

b=[0;1];

c=[1,0];

d=[0];

sys=ss(a,b,c,d);

xo=[1;0];

[y,t,x]=initial(sys,xo);

plot(t,y);

grid;

xlabel(�Time (sec)�);

ylabel(�y(t)�);

title(�Initial condition response�);

generate the initial condition response shown below that agrees with the analytical solution
above.
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Problem 7.1: Initial condition response.

2. A schematic for the satellite and scienti�c probe for the Gravity Probe-B (GP-B) experiment
that was launched on April 30, 2004 is sketched in Fig. 7.83. Assume that the mass of the
spacecraft plus helium tank, m1, is 2000 kg and the mass of the probe, m2, is 1000 kg. A
rotor will �oat inside the probe and will be forced to follow the probe with a capacitive forcing
mechanism. The spring constant of the coupling, k, is 3:2 � 106. The viscous damping b is
4:6� 103:

(a) Write the equations of motion for the system consisting of masses m1 and m2 using the
inertial position variables, y1 and y2.

(b) The actual disturbance u is a micrometeorite, and the resulting motion is very small
Therefore, rewrite your equations with the scaled variables z1 = 106y1, z2 = 106y2, and
v = 1000u:

(c) Put the equations in state-variable form using the state x = [z1 _z1 z2 _z2]
T ; the output

y = z2; and the input an impulse, u = 10�3�(t) N� sec on mass m1:

(d) Using the numerical values, enter the equations of motion into Matlab in the form

_x = Fx+Gv (1)

y = Hx+ Jv (2)
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and de�ne the Matlab system: sysGPB = ss(F,G,H,J). Plot the response of y caused by
the impulse with the Matlab command impulse(sysGPB). This is the signal the rotor must
follow.

(e) Use the Matlab commands p = eig(F) to �nd the poles (or roots) of the system and z =
tzero(F,G,H, J) to �nd the zeros of the system.

m 1 m 2

y 1

y 2

R o t o rk

u

b

Figure 7.83: Schematic diagram of the GP-B satellite and probe.

Solution:
(a) The rotor is not part of the problem and can be ignored in writing the equations of
motion

m1�y1 = u� k (y1 � y2)� b ( _y1 � _y2)

m2�y2 = �k (y2 � y1)� b ( _y2 � _y1)

(b) Let�s put in the values for the parameters as well as scale the variables as requested.

2000
�
10�6�z1

�
=

1

1000
v � 10�6(3:2� 106) (z1 � z2)� 10�6(4:6� 103) ( _z1 � _z2)

1000
�
10�6�z2

�
= �10�6(3:2� 106) (z2 � z1)� 10�6(4:6� 103) ( _z2 � _z1)

which becomes

�z1 = �(1:6� 103) (z1 � z2)� (2:3) ( _z1 � _z2) +
1

2
v

�z2 = �(3:2� 103) (z2 � z1)� (4:6) ( _z2 � _z1)

(c) The state-variable form for x = [z1 _z1 z2 _z2]
T is

_x1 = x2

_x2 = �(1:6� 103) (x1 � x3)� (2:3) (x2 � x4) +
1

2
v

_x3 = x4

_x4 = �(3:2� 103) (x3 � x1)� (4:6) (x4 � x2)

or, in matrix form2664
_x1
_x2
_x3
_x4

3775 =
2664

0 1 0 0
�1:6� 103 �2:3 1:6� 103 2:3

0 0 0 1
3:2� 103 4:6 �3:2� 103 �4:6

3775
2664
x1
x2
x3
x4

3775+
2664
0
1
2
0
0

3775 v
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and the output equation is

y = [0 0 1 0]

2664
x1
x2
x3
x4

3775+ 0

(d) The system matrices

F =

2664
0 1 0 0

�1:6� 103 �2:3 1:6� 103 2:3
0 0 0 1

3:2� 103 4:6 �3:2� 103 �4:6

3775

G =

2664
0
1
2
0
0

3775 and H = [0 0 1 0] and J = 0

plus the Matlab statements:

sysGPB = ss(F,G,H,J);

t=0:0.001:1;

y=impulse(sysGPB,t); % u = 10�3 implies that v = 1

plot(t,y)

produce the plot below.
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Impulse response for Problem 7.2.

The micro meteorite hits the �rst mass and imparts a velocity of 0:33�m/sec to the two
mass system. It also excites the resonant mode of relative motion between the masses that
dies out in less than a second.
Problems and Solutions for Section 7.4: Analysis of the
State Equations

3. Give the state description matrices in control-canonical form for the following transfer functions:

(a)
1

4s+ 1

(b)
5(s=2 + 1)

(s=10 + 1)

(c)
2s+ 1

s2 + 3s+ 2

(d)
s+ 3

s(s2 + 2s+ 2)

(e)
(s+ 10)(s2 + s+ 25)

s2(s+ 3)(s2 + s+ 36)
Solution:
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(a) F = �0:25; G = 1; H = 0:25; J = 0.

(b) F = �10; G = 1; H = �200; J = 25:
Hint: Do a partial fraction expansion to �nd the J term �rst.

(c)

F =

�
�3 �2
1 0

�
; G =

�
1
0

�
; H =

�
2 1

�
; J = [0]:

(d)

F =

24 �2 �2 0
1 0 0
0 1 0

35 ; G =

24 1
0
0

35 ; H =
�
0 1 3

�
; J = [0]:

(e)

F =

266664
�4 �39 �108 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

377775 ; G =

266664
1
0
0
0
0

377775 ; H =
�
0 1 11 35 250

�
; J = [0]:

4. Use the Matlab function tf2ss to obtain the state matrices called for Problem 7.3.

Solution:

In all cases, simply form num and den given below and then use the Matlab command [F,G,H,J]
= tf2ss(num,den).

(a) num =
�
0 1

�
, den =

�
4 1

�
:

(b) num =
�
5=2 5

�
, den =

�
1=10 1

�
.

(c) num =
�
0 2 1

�
; den =

�
1 3 2

�
:

(d) num =
�
0 0 1 3

�
; den =

�
1 2 2 0

�
:

(e) num =
�
0 0 1 11 35 250

�
; den =

�
1 4 1 39 108 0 0

�
.

Note that the answers are the same as for Problem 7.2.

Hint: The Matlab function conv will save time when forming the numerator and denominator
for part (e).

5. Give the state description matrices in normal-mode form for the transfer functions of Prob-
lem 7.3. Make sure that all entries in the state matrices are realvalued by keeping any pairs of
complex conjugate poles together, and realize them as a separate subblock in control canoni-
cal form.

Solution:

(a) F = �0:25; G = 1; H = 0:25; J = 0:

(b) F = �10; G = 1; H = �200; J = 25:
(c)

2s+ 1

s2 + 3s+ 2
=

2s+ 1

(s+ 1)(s+ 2)
=

�1
s+ 1

+
3

s+ 2
;

The computation can also be done using the residue command in Matlab.
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Block diagram for Problem 7.5 (c).

F =

�
�1 0
0 �2

�
; G =

�
1
1

�
; H =

�
�1 3

�
; J = [0]:

(d)
s+ 3

s(s2 + 2s+ 2)
=
3=2

s
� 3=2s+ 2

s2 + 2s+ 2
;

The computation can also be done using the residue command in Matlab.

Block diagram for Problem 7.5 (d).

F =

24 0 0 0
0 �2 �2
0 1 0

35 ; G =

24 1
1
0

35 ; H =
�
3
2 � 3

2 �2
�
; J = [0]:

(e) The hard part is getting the expansion,

(s+ 10)(s2 + s+ 25)

s2(s+ 3)(s2 + s+ 36)
=
�0:5118s+ 2:3148

s2
+
0:57407

s+ 3
+
�0:0622s+ 0:3452

s2 + s+ 36

You can use the Matlab function residue to obtain this. From the �gure, we have,
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Block diagram for Problem 7.5 (e).

F =

266664
0 0 0 0 0
1 0 0 0 0
0 0 �3 0 0
0 0 0 �1 �36
0 0 0 1 0

377775 ; G =

266664
1
0
1
1
0

377775 ; H =
�
�0:5118 2:3148 0:57407 �0:0622 0:3452

�
; J = [0]:

6. A certain system with state x is described by the state matrices,

F =

�
�2 1
�2 0

�
; G =

�
1
3

�
;

H = [ 1 0 ]; J = 0:

Find the transformation T so that if x = Tz, the state matrices describing the dynamics of z
are in control canonical form. Compute the new matrices A, B, C, and D.

Solution:

Following the procedure outlined in the chapter, we have,

C =
�
G FG

�
=

�
1 1
3 �2

�
:

t2 =
�
0 1

�
C�1 = 1

5

�
3 �1

�
;

t1 = t2F =
1

5

�
�4 3

�
:
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Thus,

T�1 =

�
�4=5 3=5
3=5 �1=5

�
=) T =

�
1 3
3 4

�
;

A = T�1FT =

�
�2 �2
1 0

�
; B = T�1G =

�
1
0

�
;

C = HT =
�
1 3

�
; D = J = 0:

7. Show that the transfer function is not changed by a linear transformation of state.

Solution:

Assume the original system is,

_x = Fx+Gu;

y = Hx+ Ju;

G(s) = H(sI� F)�1G+ J:

Assume a change of state from x to z using the nonsingular transformation T;

x = Tz:

The new system matrices are,

A = T�1FT; B = T�1G; C = HT; D = J:

The transfer function is,

Gz(s) = C(sI�A)�1B+D
= HT(sI�T�1FT)�1T�1G+ J:

If we factor T on the left and T�1 on the right of the (sI�T�1FT)�1 term, we obtain,

Gz(s) = HT(sTT�1 �T�1FT)�1T�1G+ J

= HTT�1(sI� F)�1TT�1G+ J = H(sI� F)�1G+ J = G(s):

8. Use block-diagram reduction or Mason�s rule to �nd the transfer function for the system in
observer canonical form depicted by Fig. 7.31.

Solution:

(a) We will show the process for the general third-order case shown below. Combine the feed-
forward terms to produce the top �gure on the next page. Then, reduce the last loop to get
the �gure on the bottom.
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Problem 7.8: Observer canonical form.

Observer canonical form: feedforward terms combined.

Observer canonical form: one loop reduced.

(a) Using Mason�s rule:
Forward path gains:
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p1 =
b3
s3
; p2 =

b2
s2
; p3 =

b1
s

Loop path gains:
`1 = �

a3
s3
; `2 = �

a2
s2
; `3 = �

a1
s

Y

R
=

p1 + p2 + p3
1� `1 � `2 � `3

=
b3
s3 +

b2
s2 +

b1
s

1 + a3
s3 +

a2
s2 +

a1
s

=
b1s

2 + b2s+ b3
s3 + a1s2 + a2s+ a3

:

9. Suppose we are given a system with state matrices F;G; H (J = 0 in this case). Find the
transformation T so that, under Eqs. (7.24) and (7.25), the new state description matrices will
be in observer canonical form.

Solution:

Express the transformation matrix in terms of its column vectors,

T = [t1 t2 t3]

Then if A is in observer canonical form,

TAo = [� t1 t2] = FT = [Ft1 Ft2 Ft3]

Co =
�
1 0 0

�
= HT = [Ht1 Ht2 Ht3]:

From these,24 H
HF
HF2

35 t3 =
24 0
0
1

35 =) t3 = O�1
�
0 0 1

�T
; t2 = Ft3; t1 = Ft2:

10. Use the transformation matrix in Eq. (7.41) to explicitly multiply out the equations at the end
of Example 7.10.

Solution:

Am = T
�1AcT =

�
1 3
1 4

� �
�7 �12
1 0

� �
4 �3
�1 1

�
=

�
�4 0
0 �3

�
:

Bm = T�1Bc =

�
1 3
1 4

� �
1
0

�
=

�
1
1

�
:

Cm = CcT =
�
1 2

� � 4 �3
�1 1

�
=
�
2 �1

�
:

11. Find the state transformation that takes the observer canonical form of Eq. (7.35) to the modal
canonical form.

Solution:

We wish to �nd the transformation T such that,

Am = T
�1AoT = diag(�1; �2; :::; �n):
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Bm = T�1Bo;

Cm = CoT:

The columns of T are the eigenvectors of Ao. The eigenvectors of Ao are all of the form (which
can be proved by induction):

ti =

266666664

1
�i + a1

�2i + a1�i + a2
�3i + a1�

2
i + a2�i + a3
...

�n�1i + a1�
n�2
i + a2�

n�3
i + : : :+ an�1

377777775
; i = 1; 2; :::; n:

T =
�
t1 t2 ::: tn

�
:

For the cases where there are repeated eigenvalues, and a full set of linearly independent eigen-
vectors do not exist, then the generalized eigenvectors need to be computed to transform the
system to Jordan form (see Strang, 1988).

12. a) Find the transformation T that will keep the description of the tape-drive system of Ex-
ample 7.11 in modal canonical form but will convert each element of the input matrix Bm to
unity.

b) Use Matlab to verify that your transformation does the job.

Solution:

(a) We would like to �nd a transformation matrix T1such that,

Bm = T
�1
1 G =

�
1 1 1 1 1

�T
:

Since T1 is full rank, this is equivalent to solving G = T1Bm. Recall that the magnitude of
the eigenvectors are can be scaled by any arbitrary constant, so long as the direction in state
space is preserved. Thus we can scale each of the eigenvectors of T found in Example 7.3 and
keep the solution in modal form. Let,

T1 = TN = [n1t1 n2t2 � � �n5t5];

where ti are the eigenvectors, ni are scalars and N=diag(n1,� � � ,n5). Now,

G = T1Bm= TNBm= Tn;) n = T�1G;

and n = [n1 n2 � � �n5]T . Thus, to �nd the transformation T1, we compute n and multiply to
get T1= TN = Tdiag(n1 n2 � � �n5):
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(b) In Matlab,

T =

266664
1:4708 �0:17221 �1:4708 �1:5432 �3:3237
0:7377 2:8933 �0:7377 �2:9037 �0:1282
�0:7376 �5:4133 0:6767 �1:3533 �4:0599
0:9227 �6:5022 �0:9227 �2:7962 �9:9016
�0:0014 0:1663 0:0014 0:0449 3:9341

377775 ;
n = TnG;
N = diag(n);

T1 = T � N;

T1 =

266664
�0:3883 0:0247 2:8708 �4:8234 2:3162
�0:0897 �0:0129 0:0000 1:2239 �1:1214
2:9239 0:0000 2:8708 �8:2970 2:5023
�0:9314 0:0376 0:0000 2:1053 �1:2115
0:0133 0:0001 �0:0000 �0:0745 1:0612

377775 ;
Bm = T1nG =

�
1 1 1 1 1

�T
;

Am = T1nF � T1 =

266664
�0:6371 0:0257 �0:0000 0:0000 �0:0000
�17:2941 �0:6371 0:0000 �0:0000 �0:0000
�0:0000 0:0000 �0:0000 0:0000 �0:0000
�0:0000 0:0000 0:0000 �0:5075 �0:0000
�0:0000 0:0000 0:0000 0:0000 �0:9683

377775 :

13. a) Find the state transformation that will keep the description of the tape-drive system of
Example 7.11 in modal canonical form but will cause the poles to be displayed in Am in order
of increasing magnitude.
b) Use Matlab to verify your result in part (a), and give the complete new set of state matrices
as A, B, C, and D.

Solution:

(a) To change the order of the eigenvalues (poles), pi, in Am, all we need to do is re-order the
eigenvectors in T . In this case, jp5j > jp1j = jp2j > jp4j > jp3j: Thus, T2 = [t5 t1 t2 t4 t3].

(b) Our solution uses the Matlab sort command to re-order eigenvectors. Note that this
approach is independent of the size of the system matrix Am. T is the same as in Problem 7.10.
Because of the equality of the magnitudes of the complex eigenvectors, we can switch two of the
columns of the matrix T2. In Matlab,

p = eig(F);

[f, indices] = sort(abs(p));

T2 = T(:,indices);

n = T2nG;

T3 = T2*diag(n);
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Am2 = T3nF*T3;

Am2 =

266664
�0:0000 0:0000 �0:0000 0:0000 �0:0000
0:0000 �0:5075 �0:0000 0:0000 �0:0000
�0:0000 0:0000 �0:6371 0:0257 �0:0000
0:0000 0:0000 �17:2941 �0:6371 �0:0000
0:0000 0:0000 �0:0000 0:0000 �0:9683

377775 ;

Bm2 = T3nG;
Bm2 = [1 1 1 1 1]T

Cm2 = h3*T3;

Cm2 =
�
2:8708 �6:5602 1:2678 0:0123 2:4092

�
,

Dm2 = 0;

14. Find the characteristic equation for the modal-form matrix Am of Eq. (7.17a) using Eq. (7.58).

Solution:

det(sI� F) = det
�
s+ 4 0
0 s+ 3

�
= (s+ 4)(s+ 3)

Since Am was already in modal form, your solution is easily checked by inspection.

15. Given the system,

_x =

�
�4 1
�2 �1

�
x+

�
0
1

�
u;

with zero initial conditions, �nd the steady-state value of x for a step input u.

Solution:

We are given _x = Fx +Gu. Steady-state means that _x = 0 and a step input (or unit step)
means u = 1(t). Thus, assuming that F is invertible (which you can check), we have,

0 = Fxss +G =) xss = �F�1G =

�
�4 1
�2 �1

��1 �
0
1

�
=

�
1=6
2=3

�
:

This can be veri�ed in Matlab with step(F,G,H,J,1) where H=eye(size(F)) and J=[0;0].

16. Consider the system shown in Fig. 7.83.

U S

2

1

G 1 5s 1 4
1 G 2 52 s

1

H 2 5s
1 H 1 5s

1x 2x 3

x 4

S

1

1

S

1

1

Y
x 1

Figure 7.84: A block diagram for Problem 7.16.
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a) Find the transfer function from U to Y .
b) Write state equations for the system using the state variables indicated.

Solution:

(a) The system is equivalent to the block diagram shown. Following the block diagram back to
known state variables,

y = x1

�
1 + 2s+

1

s

�
;

and,

x1 =
1

2s(s+ 4)

�
u� 1

s

�
2s+

1

s

�
x1

�
;

resulting in,
Y (s)

U(s)
=

2s3 + s2 + s

2s4 + 8s3 + 2s2 + 1
:

Block diagram for solution of Problem 7.16 (a).

Another possible solution is in terms of Mason�s rule.

(b) 2664
_x1
_x2
_x3
_x4

3775 =

2664
0 0 0 1

2
1 0 0 0
0 1 0 0
0 0 �1 �4

3775
2664
x1
x2
x3
x4

3775+
2664
0
0
0
1

3775u;
y =

�
1 1 0 1

�
x:

With practice, you should be able to see quickly that _x3 is simply the input to block H2, which
is the sum of x2 and x4. But this is nothing more than the third row of the matrix equation
above. Your results can be checked for consistency using Matlab�s command ss2tf.

17. Using the indicated state variables, write the state equations for each of the systems shown in
Fig. 7.85. Find the transfer function for each system using both block-diagram manipulation
and matrix algebra [as in Eq. (7.48)].

Solution:

(a) Performing a partial fraction expansion on (s + 2)=(s + 4), Fig. 7.85(a) can be redrawn as
shown below.
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U s
1S

1

1

s 1 4
1

s 1 3
s 1 2

s 1 1 0
1

s 1 2
1

s
4

5

YS
x 1x 2

x 3

x 1

U S
1

1

YSx 3

x 4

s 1 3
1

1

1

x 1x 2

( a )

( b )

1

1
2

2

Figure 7.85: Block diagrams for Problem 7.17.

Redrawn block diagram for solution to Problem 7.17(a).

By inspection of the block diagram, the state equations are,

_x =

24 �5 1 1
0 �3 �2
0 0 �4

35x+
24 0
1
1

35u;
y =

�
1 0 1

�
x:

Computing G(s) = H(sI� F)�1G, the following transfer function is obtained:

Y (s)

U(s)
=

s2 + 10s+ 20

s3 + 12s2 + 47s+ 60
:

We can use the Matlab ss2tf command to verify this result.

(b) Using the second block diagram given in Fig. 7.85(b), we can write,

_x =

2664
�3 1 0 0
0 0 4 0
0 �1 �2 1
0 0 0 �10

3775x+
2664
0
0
1
1

3775u;
y =

�
1 0 1 0

�
x:
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Computing H(sI� F)�1G (using Matlab�s ss2tf), we obtain the following transfer function,

Y (s)

U(s)
=

s3 + 14s2 + 37s+ 44

s4 + 15s3 + 60s2 + 112s+ 120
:

18. For each of the listed transfer functions, write the state equations in both control and observer
canonical form. In each case draw a block diagram and give the appropriate expressions for F,
G, and H.

a)
s2 � 2

s2(s2 � 1) (control of an inverted pendulum by a force on the cart)

b)
3s+ 4

s2 + 2s+ 2

Solution:

(a)

Y (s)

U(s)
=

s2 � 2
s2(s2 � 1) :

This transfer function can be realized in controller canonical form as shown below. From the
�gure, we have,

2664
_x1
_x2
_x3
_x4

3775 =

2664
0 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0

3775
2664
x1
x2
x3
x4

3775+
2664
1
0
0
0

3775u;
y =

�
0 1 0 �2

�
x:

Controller canonical form for the transfer function of Problem 7.18(a).

The block diagram for observer canonical form is shown below. From the �gure, we have,2664
_x1
_x2
_x3
_x4

3775 =

2664
0 1 0 0
1 0 1 0
0 0 0 1
0 0 0 0

3775
2664
x1
x2
x3
x4

3775+
2664

0
1
0
�2

3775u;
y =

�
1 0 0 0

�
x:
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Observer canonical form for the transfer function of Problem 7.18(a).

(b)

Y (s)

U(s)
=

3s+ 4

s2 + 2s+ 2
:

This transfer function can be realized in Controller canonical form as shown below. From the
�gure, we have,

�
_x1
_x2

�
=

�
�2 �2
1 0

� �
x1
x2

�
+

�
1
0

�
u;

y =
�
3 4

�
x:

Controller canonical form for the transfer function of Problem 7.18(b).

The block diagram for observer canonical form is shown below. From the �gure, we have:

�
_x1
_x2

�
=

�
�2 1
�2 0

� �
x1
x2

�
+

�
3
4

�
u;

y =
�
1 0

�
x:
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18:pdf

Observer canonical form for the transfer function of Problem 7.18(b).

19. Consider the transfer function, G(s) = Y (s)
U(s) =

s+1
s2+5s+6 : (7.263)

a) By rewriting Eq. (7.263) in the form,

G(s) =
1

s+ 3

�
s+ 1

s+ 2

�
;

�nd a series realization of G(s) as a cascade of two �rst-order systems.
b) Using a partial-fraction expansion of G(s), �nd a parallel realization of G(s).
c) Realize G(s) in control canonical form.

Solution:

(a) The series realization shown below is given by:

G(s) =

�
1

s+ 3

��
s+ 1

s+ 2

�
= ĝ2(s)ĝ1(s):

Series connection of G(s) for Problem 7.19(a).

For ĝ1(s); _x1 = �2x1 + u1; y1 = �x1 + u1:
For ĝ2(s); _x2 = �3x2 + u2; y2 = x2:

The series interconnections result in u = u1; y = y2; u2 = y1. Therefore,�
_x1
_x2

�
=

�
�2 0
�1 �3

� �
x1
x2

�
+

�
1
1

�
u;

y =
�
0 1

�
x:
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The Matlab command series can also be used.

(b) The parallel realization, shown below, is given by:

G(s) =
2

s+ 3
+

�1
s+ 2

= ĝ1(s) + ĝ2(s):

Parallel connection of G(s) for Problem 7.19(b).

For ĝ1(s); _x1 = �3x1 + u1; y1 = 2x1:
For ĝ2(s); _x2 = �2x2 + u2; y2 = �x2:

The interconnections are u1 = u2 = u; y = y1 + y2. Therefore,�
_x1
_x2

�
=

�
�3 0
0 �2

� �
x1
x2

�
+

�
1
1

�
u;

y =
�
2 �1

�
x:

The Matlab command parallel can also be used.

(c) Control canonical form, shown in Fig. 7.17, is realized by simply picking o¤ the appropriate
coe¢ cients of the original (strictly proper) transfer function. If the original function is not
strictly proper, then it should be reduced to a feedthrough term plus a strictly proper term.

Controller canonical form of G(s) for Problem 7.19(c).

For G(s), we have,

F =

�
�5 �6
1 0

�
; G =

�
1
0

�
; H =

�
1 1

�
:

Problems and Solutions for Section 7.5: Control-Law De-
sign for Full-State Feedback
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20. Consider the plant described by,

_x =

�
0 1
7 �4

�
x+

�
1
2

�
u;

y = [ 1 3 ]x:

a) Draw a block diagram for the plant with one integrator for each state variable.
b) Find the transfer function using matrix algebra.
c) Find the closed-loop characteristic equation if the feedback is

(1) u = �[ K1 K2 ]x; (2) u = �Ky.

Solution:

State realization showing integrators explicitly.

(a) See �gure.

(b) Using the formula G(s) = H(sI� F)�1G, we obtain,

G(s) =
Y (s)

U(s)
=

7s+ 27

s2 + 4s� 7 :

The Matlab command ss2tf can also be used.

(c)

(i) State feedback, u = �[K1 K2]x.

det(�I� F+GK) = det

�
�+K1 �1 +K2

�7 + 2K2 �+ 4 + 2K2

�
= �2 + �(4 + 2K2 +K1) + (6K1 + 7K2 � 7) = 0:

(ii) Output feedback,

u = �Ky = �K
�
1 3

�
x = �

�
K 3K

�
x:

This yields the following closed-loop characteristic equation:

�2 + �(7K + 4) + (27K � 7) = 0:
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Hints: If you have already solved the case for state feedback, simply plug K1 = K and K2 = 3K
into the characteristic equation for state feedback and �nd the characteristic equation for output
feedback. The output vector H �xes the ratio among the state variables. Secondly, although
there were products of K1 and K2 when we were forming the determinant, they should all cancel
in your �nal answer. The reason for this is that the characteristic equation _x = (F�GK)x is
linear in K.

21. For the system,

_x =

�
0 1

�6 �5

�
x+

�
0
1

�
u;

y =
�
1 0

�
x;

design a state feedback controller that satis�es the following speci�cations:

� Closed-loop poles have a damping coe¢ cient � = 0:707.

� Step-response peak time is under 3.14 sec.

Verify your design with Matlab.

Solution:

For a second-order system, the speci�cation on rise time can be translated into a value of !nby
the equation !d = �. Then determine !n from !d = !n

p
1� �2. This yields !n = 1:414.

Using full state feedback, we would like the a characteristic equation to be,

s2 + 2�!ns+ !
2
n = s2 + 2s+ 2 = 0:

Using state feedback u = �Kx, we get,

_x = (F�GK)x =
�

0 1
�6� k1 �5� k2

�
x:

Hence the closed-loop characteristic equation is,

s2 + (5 + k2)s+ (6 + k1) = 0:

Comparing coe¢ cients, k1 = �4 and k2 = �3. The Matlab command place can also be used.
The reference step can be simulated in Matlab with u = �Kx+ r, and the Matlab command
step, as shown below.
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0 1 2 3 4 5 6
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Step response for Problem 7.21.

22. a) Design a state feedback controller for the following system so that the closed-loop step response
has an overshoot of less than 25% and a 1% settling time under 0.115 sec.:

_x =

�
0 1
0 �10

�
x+

�
0
1

�
u;

y =
�
1 0

�
x:

b) Use the step command in Matlab to verify that your design meets the speci�cations. If it
does not, modify your feedback gains accordingly.

Solution:

(a) For the overshoot speci�cation,

Mp = e
���p
1��2 < 25% =) � �= 0:4:

For the 1% settling time speci�cation, we use,

e��!nts = 0:01 =) !n =
4:6

�ts
:
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(b) This can be implemented in Matlab with the following code:

F = [0,1;0,-10];

G = [0;1];

H = [1,0];

J = 0;

zeta = 0.404; % Tweak values slightly so that specs are met.

ts = 0.114;

wn = 4.6/(ts*zeta);

p = roots([1, 2*zeta*wn, wn^2]);

k = place(F,G,p);

sysCL=ss(F-G*k,G,H,J)

step(sysCL);

The step response is shown next.
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Step response for Problem 7.22.
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23. Consider the system,

_x =

24 �1 �2 �2
0 �1 1
1 0 �1

35x+
24 2
0
1

35u;
y =

�
1 0 0

�
x:

a) Design a state feedback controller for the system so that the closed-loop step response has an
overshoot of less than 5% and a 1% settling time under 4.6 sec.
b) Use the step command in Matlab to verify that your design meets the speci�cations. If it
does not, modify your feedback gains accordingly.

Solution:

(a) There are many di¤erent approaches to designing the control law. We will attack the problem
using a symmetric root locus. We assume the output is x1. Although the system is third-order,
we can still use the second-order order rules of thumb in order to get an estimate of where we
would like the closed loop poles.

� =
4:6

ts
=) �!n = 1;

Mp � 5% =) � > 0:7:

The open-loop poles are at �1:45 and �0:77� j1:47 and the open-loop zeros are at �1:37 and
0:37. The symmetric root locus is shown on the next page and was generated using the following
Matlab code:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% the function srl is used to compute the roots of the symmetric root locus

function [k,p]=srl(f,g,h)

a=[f 0*f;-h�*h -f�];

b=[g;0*g];

c=[0*h g�];

rlocus(a,b,c,0);

[k,p]=rloc�nd(a,b,c,0)

Note that crosses indicate where the closed-loop pole locations have been selected, which roughly
correspond to the � and !n suggested by the rules of thumb for a second-order system with
no zeros. The control gains K =

�
0:78 0:07 0:28

�
correspond to these closed loop pole

locations. The Matlab command place can be used to verify this computation. The step
response is shown next using the Matlab step command.

Technically, this closed-loop step response meets the 4:6 sec 1% settling time and 5% overshoot.
However, the right half plane zero close to the origin gives catastrophic results in terms of
undershoot. This should alert the reader to the importance of paying attention to the zeros of
the system, especially in the right half plane.
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Closed-loop step response for Problem 7.23.

24. Consider the system in Fig. 7.83.

s 2 1 4
s

U Y

Figure 7.86: System for Problem 7.24.

a) Write a set of equations that describes this system in the control canonical form as _x =
Fx+Gu and y = Hx.
b) Design a control law of the form,

u = �[ K1 K2 ]

�
x1
x2

�
;

that will place the closed-loop poles at s = �2� 2j:

Solution:

(a) Let�s write this system in the control canonical form,
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�
_x1
_x2

�
=

�
0 �4
1 0

� �
x1
x2

�
+

�
1
0

�
u;

y =
�
1 0

�
x:

(b) If u = �[K1 K2]x, the poles of the closed-loop system satisfy det(sI�F+GK) = 0. Thus,

det

�
s+K1 �1 +K2

4 s

�
= 0 =) s2 +K1s+ 4 +K2 = 0:

The closed-loop characteristic equation is,

(s+ 2� 2j)(s+ 2 + 2j) = s2 + 4s+ 8 = 0:

Comparing coe¢ cients, we have K1 = 4 and K2 = 4. The Matlab command place can also be
used to verify this result.

25. Output Controllability : In many situations a control engineer may be interested in controlling
the output y rather than the state x. A system is said to be output controllable if at any time
you are able to transfer the output from zero to any desired output y� in a �nite time using an
appropriate control signal u�. Derive necessary and su¢ cient conditions for a continuous system
(F,G,H) to be output controllable. Are output and state controllability related? If so, how?

Solution:

Because we are considering linear systems, if you can take the state from some initial state to
some �nal condition in a �nite time with a �nite input, then you can also take it to the same
state in in�nitesimal time using impulsive inputs. To express this mathematically, let u be,

u(t) = g1�(t) + g2�
(1)(t) + � � �+ gn�(n�1)(t);

where �(t) represents a delta function, �(1)(t) represents the �rst derivative of a delta function
(a unit doublet), etc., and the gi are scalars to be determined. Let,

u� = [g1 g2 � � � gn]T ;

then
x(0+)� x(0�) = C u�:

Hence, we have found a control signal that will drive the state to arbitrary values given the
non-singularity of the controllability matrix, C.
In fact, the invertibility of C is a necessary and su¢ cient condition for state controllability. For
output controllability,

Hx(0+)�Hx(0�) = HC u�;
y(0+)� y(0�) = HC u�:

Assuming (without loss of generality) that y(0�) = 0, we have,

y(0+) = [HG HFG � � �HFn�1G]u�:
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Therefore, a system is output controllable if and only if,

[HG HFG � � �HFn�1G] is full rank:

This is always true (for a single-input single-output system) unless the transfer function is zero.
Of course, state controllability implies output controllability, but output controllability does not
imply state controllability.

26. Consider the system,

_x =

2664
0 4 0 0

�1 �4 0 0
5 7 1 15
0 0 3 �3

3775x+
2664
0
0
1
0

3775u:
a) Find the eigenvalues of this system. (Hint: Note the block-triangular structure.)
b) Find the controllable and uncontrollable modes of this system.
c) For each of the uncontrollable modes, �nd a vector v such that,

vTG = 0; vTF = �vT :

d) Show that there are an in�nite number of feedback gains K that will relocate the modes of
the system to �5, �3, �2, and �2.
e) Find the unique matrix K that achieves these pole locations and prevents initial conditions
on the uncontrollable part of the system from ever a¤ecting the controllable part.

Solution:

(a) Because the system is block lower triangular, we can determine the eigenvalues of the system
by taking the union of the eigenvalues of each of the blocks along the main (block)diagonal.

s2 + 4s+ 4 = 0 =) �2;�2:
s2 + 2s� 48 = 0 =) 6;�8

Thus, the eigenvalues of the system are �2;�2; 6, and �8. (Easily checked with Matlab�s eig
command).

(b) To �nd the controllable or uncontrollable modes of the system, we follow method learned
in Problem 7.28. Speci�cally, we �nd an orthogonal similarity transformation which transforms
(F, G, H) to (�F, �G, �H) where �F is an upper-Hessenberg matrix. (See Problem 7.28 for details).
Observe that this system is almost in the desired form already! Simply by interchanging the
state variables x3 and x4, we can transform the system into the proper form.2664

_x1
_x2
_x4
_x3

3775 =
2664

0 4 0 0
�1 �4 0 0
0 0 �3 3
5 7 15 1

3775
2664
x1
x2
x4
x3

3775+
2664
0
0
0
1

3775u:
Now the controllable and uncontrollable modes can be determined by inspection. The uncontrol-
lable modes correspond to the eigenvalues of the F11 block, so �2 and �2 are both uncontrollable
modes. Similarly, the controllable modes from the F22 block are �8 and 6.
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Figure 7.87: Coupled pendulums for Problem 7.27.

Matlab function ctrbf will give a similar result, although the order of the state variables may
be switched.

(c) Notice that we need the left eigenvectors of F that is orthogonal to G. The only left
eigenvector of F that is orthogonal to G is

�
1 2 0 0

�T
:

(d) Because the modes at �2 and �2 are uncontrollable, we expect that state feedback will not
have any a¤ect on these modes. Writing an expression for the feedback we have,2664

_x1
_x2
_x3
_x4

3775 =
2664

0 4 0 0
�1 �4 0 0
5� k1 7� k2 1� k3 15� k4
0 0 3 �3

3775
2664
x1
x2
x3
x4

3775 :
Notice that the system matrix is still block diagonal. The characteristic equation of the F22
block gives,

det(sI� F22) = s2 + (2 + k3)s+ (3k3 + 3k4 � 48) = 0:

Picking k3 = 6 and k4 = 15 will place the controllable roots at �3 and �5. Since k1 and k2
are arbitrary, there are an in�nite number of feedback gains that will relocate the modes of the
system to the desired locations.

(e) To completely decouple the controllable and uncontrollable portions of the system, we make
the F21 block identically zero by setting k1 = 5 and k2 = 7.

27. Two pendulums, coupled by a spring, are to be controlled by two equal and opposite forces u,
which are applied to the pendulum bobs as shown in Fig. 7.86. The equations of motion are

ml2��1 = �ka2(�1 � �2)�mgl�1 � lu;
ml2��2 = �ka2(�2 � �1)�mgl�2 + lu:

a) Show that the system is uncontrollable. Can you associate a physical meaning with the
controllable and uncontrollable modes?
b) Is there any way that the system can be made controllable?
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Solution:

(a) Using the state vector x = [�1 _�1 �2 _�2]
T ;

_x =

266664
0 1 0 0

�
�
ka2

ml2 +
g
l

�
0 ka2

ml2 0

0 0 0 1
ka2

ml2 0 �
�
ka2

ml2 +
g
l

�
0

377775x+
2664

0
� 1
ml
0
1
ml

3775u:

The controllability matrix is determined as,

C =
�
G FG F2G F3G

�

=

26666664
0 � 1

ml 0 1
ml

�
ka2

ml2 +
g
l

�
+ ka2

m3l3

� 1
ml 0 1

ml

�
ka2

ml2 +
g
l

�
+ ka2

m3l3 0

0 1
ml 0 � ka2

m3l3 �
1
ml

�
ka2

ml2 +
g
l

�
1
ml 0 � ka2

m3l3 �
1
ml

�
ka2

ml2 +
g
l

�
0

37777775
Then (F,G) is uncontrollable since det(C)=0. If we re-write the state equations in terms of the
state vector,

z =
�
� _� � _�

�T
;

where, � = �1 + �2; and, � = �1 � �2 , then the resulting equations of motion are,

ml2�� = �mgl�
ml2�� = �2ka2� �mgl� � 2lu:

Clearly, �, the �pendulum mode� (or the symmetric mode, i.e., the pendulums swinging to-
gether), is uncontrollable and, �, the �spring mode�(i.e., the unsymmetric mode) is controllable.

(b) Yes, make the forces unequal, i.e., let u1 6= u2; or eliminate one of the forces, i.e., let
u1 = 0; or let u2 = 0:

28. The state-space model for a certain application has been given to us with the following state
description matrices:

F =

266664
0:174 0 0 0 0
0:157 0:645 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

377775 ; G =

266664
�0:207
�0:005
0
0
0

377775 ; H = [ 1 0 0 0 0 ]:

a) Draw a block diagram of the realization with an integrator for each state variable.
b) A student has computed det C = 2:3� 10�7 and claims that the system is uncontrollable. Is
the student right or wrong? Why?
c) Is the realization observable?

Solution:

(a) The block diagram is shown below.
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Block diagram for Problem 7.28.

(b) The system is controllable because a control signal u (command) reaches all the state vari-
ables of the system through the integrators in Fig. 7.26. The determinant of the controllability
matrix is small, det(C) = �2:3� 10�7, due to poor scaling of system variables. For example, if
the control signal is scaled by 100, then det(C) = �2:3� 103.
(c) The realization is unobservable. You can check det(O) or just observe from the block diagram
that there is no path from the state variables x2; x3; x4, or x5 to the output y.

29. Staircase Algorithm (Van Dooren et al., 1978): Any realization (F,G,H) can be transformed by
an orthogonal similarity transformation to (�F, �G, �H), where �F is an upper Hessenberg
matrix (having one nonzero diagonal above the main diagonal):

�F = TTFT =

266664
� �1 0 0

� � . . . 0

� � . . . �n�1
� � � � � �

377775 ; �G = TTG =

2666664
0
0
...
0
g1

3777775 ;

where g1 6= 0, and,
�H = HT = [h1 � � �hn]; T�1 = TT :

Orthogonal transformations correspond to a rotation of the vectors (represented by the matrix
columns) being transformed with no change in length.
a) Prove that if �i = 0 and �i+1; : : : ; �n�1 6= 0 for some i, then the controllable and uncontrol-
lable modes of the system can be identi�ed after this transformation has been done.
b) How would you use this technique to identify the observable and unobservable modes of (F,
G, H)?
c) What advantage does this approach for determining the controllable and uncontrollable modes
have over transforming the system to any other form?
d) How can we use this approach to determine a basis for the controllable and uncontrollable
subspaces, as in Problem 7.43?
This algorithm can be used to design a numerically stable algorithm for pole placement [see
Minimis and Paige (1982)]. The name of the algorithm comes from the multi-input version in
which the �i are the blocks that make �F resemble a staircase.

Solution:
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(a) If �i = 0,

�F = TTFT

26666666664

� �1 0 0 0 0 0 0
� � �2 0 0 0 0 0
� � � 0 0 0 0 0
� � � � �i+1 0 0 0

� � � � � . . . 0 0
� � � � � � � �n�1
� � � � � � � �

37777777775
=

�
F11 0
F21 F22

�
; �G = TTG =

2666666664

0
0
0
0
0
0
g1

3777777775
;

This suggests naturally splitting up the state vector into two parts x = [x1 x2]Twhere x1 and
x2 are vectors of the appropriate size (depending upon which �i = 0). Then recognize that the
equations are,

_x1 = F11x1;

_x2 = F21x1 + F22x2 + g1u:

Notice that the control signal u and the state x2 do not e¤ect the state x1. Thus, all of the
modes associated with the block F11 are uncontrollable. All of the states in x2 are controllable.
This is easily checked by forming the controllability matrix associated with the pair (F22,g1).
Hence, the system has been split into its controllable and uncontrollable parts.

(b) Use duality, i.e., transform [FTHT ] into Hessenberg form.

(c) Because T�1 = TT , three advantages are recognized:

(i) Better numerical accuracy.

(ii) The controllable-uncontrollable decomposition is immediate.

(iii) Repeated roots are handled.

(d) Simply split T and extract the controllable and uncontrollable subspaces,

T = [ T1|{z}
i

T2|{z}]
n�i

; (3)

T1 = N (CT ); T2 = R(C): (4)

See the Matlab ctrbf (and obsvf) functions.

Problems and Solutions for Section 7.6: Selection of Pole
Locations for Good Design

30. The normalized equations of motion for an inverted pendulum at angle � on a cart are,

�� = � + u; �x = ��� � u;

where x is the cart position, and the control input u is a force acting on the cart.
a) With the state de�ned as x = [�; _�; x; _x]T , �nd the feedback gain K that places the closed-
loop poles at s = �1;�1;�1� 1j.
For parts (b) through (d), assume that � = 0:5.
b) Use the symmetric root locus to select poles with a bandwidth as close as possible to those of
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part (a), and �nd the control law that will place the closed-loop poles at the points you selected.
c) Compare the responses of the closed-loop systems in parts (a) and (b) to an initial condition
of � = 10�. You may wish to use the initial command in Matlab.
d) Compute Nx and Nu for zero steady-state error to a constant command input on the cart
position, and compare the step responses of each of the two closed-loop systems.

Solution:

(a) The state space equations of motion are,2664
_�
��
_x
�x

3775 =
2664

0 1 0 0
1 0 0 0
0 0 0 1
�� 0 0 0

3775
2664
�
_�
x
_x

3775+
2664

0
1
0
�1

3775u:
We require the closed-loop characteristic equation to be,

�c(s) = (s+ 1)
2(s2 + 2s+ 2) = s4 + 4s3 + 7s2 + 6s+ 2:

From the above state equations,

det(sI� F+GK) = s4 + (k2 � k4)s3 + (k1 � k3 � 1)s2 + k4(1� �)s+ k3(1� �) � �c(s)

Comparing coe¢ cients yields:

k1 =
10� 8�
1� � ; k2 =

10� 4�
1� � ; k3 =

2

1� � ; k4 =
6

1� � ;

K =
�
12 16 4 12

�
:

(b) The symmetric root locus is shown below, where we have chosen H =
�
0 0 1 0

�
. The

following Matlab commands can be used to generate the symmetric root locus,

% Symmetric root locus

a=[F, 0*F;-H�*H, -F�];

b=[G;0*G];

c=[0*H, G�];

d=0;

rlocus(a,b,c,d);

The chosen pole locations, shown on the symmetric root locus, result in a feedback gain of (using
Matlab�s place command),

K =
�
13:5 18:36 3:9 13:98

�
:

(c) The initial condition response to �(0) = 10� for both control designs in (a) and (b) is shown
on the next page.

(d) To compute Nx and Nu for zero steady-state error to a constant command input on cart
position, x, we solve the equations,�

F G
H2 J

� �
Nx
Nu

�
=

�
0
1

�
:
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This yields Nx = [0 0 1 0]T and Nu = 0. The step responses for each of the closed-loop systems
(using the Matlab step command) are shown next.
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Symmetric root locus for Problem for Problem 7.30.
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Step response using Nx and Nu for Problem 7.30.

31. Consider the feedback system in Fig. 7.88. Find the relationship between K, T , and � such that
the closed-loop transfer function minimizes the integral of the time multiplied by the absolute
value of the error (ITAE) criterion,

J =

Z 1

0

tjejdt;

for a step input. Assume !0 = 1.

U S
2

1
1 1 T s

K
Ys 2 1 2 j s 1 1

1

Figure 7.88: Control system for Problem 31.

Solution:

From the diagram:
Y (s)

U(s)
=

K=T

s3 + ( 1T + 2�)s
2 + (2 + 2�

T )s+
2+K
T

:
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From the ITAE requirements [see Franklin, Powell, Emami-Naeini 3rd. Edition, pp. 508], we
need to have,

�c(s) = s3 + 1:75s2 + 2:15s+ 1:

Comparing the coe¢ cients,

1

T
+ 2� = 1:75; 2 +

2�

T
= 2:15;

2 +K

T
= 1:

32. Prove that the Nyquist plot for LQR design avoids a circle of radius one centered at the -1 point
as shown in Fig. 7.89. Show that this implies that 1

2 <GM< 1 the �upward� gain margin
is GM= 1; and there is a �downward�GM= 1

2 , and the phase margin is at least PM= �60
�.

Hence the LQR gain matrix, K, can be multiplied by a large scalar or reduced by half with
guaranteed closed-loop system stability.

I m ( L ( jv ) )

R e ( L ( jv ) )2 2 2 1 6 0 8

a 1

Figure 7.89: Nyquist plot for an optimal regulator.

Solution:

It has been proved (Anderson and Moore, 1990) that the Nyquist plot for LQR design avoids a
circle of radius one centered at the �1 point as shown in Fig. 7.89. This leads to extraordinary
phase and gain margin properties as shown below. First note that the state-feedback system
can be re-drawn in the usual feedback con�guration as shown on the next page. Using Eq.
(7.60) and factoring (sI� F), we have

�c(s) = det[sI� (F�GK)] (5a)

= detf(sI� F)[I+ (sI� F)�1GK]g
= det(sI� F) det ([I+ (sI� F)�1GK])
= D(s)[1 +K(sI� F)�1G]:
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Now1 , using the above equation and Eq. (7.95) we can write,

�c(s)�c(�s) = D(s)D(�s)[1 +K(sI� F)�1G][1 +K(�sI� F)�1G]; (6a)

= 1 + �G0(s)G0(�s):

Setting s = j! we obtain,

�c(j!)�c(�j!) = jD(j!)j2j[1 +K(j!I� F)�1G]j2 (7a)

= jD(j!)j2j[1 + �jG(j!)j2j:

But since �jG(j!)j2 � 0; we can conclude that the return di¤erence must satisfy,

j1 +K(j!I� F)�1Gj � 1: (8)

Let us re-write the loop gain as sum of its real and imaginary parts,

L(j!) = K(j!I� F)�1G = Re [L(j!))+jIm(L(j!)] : (9)

Finally, Eq. (8) implies that,

([Re(L(j!)]+1)
2
+[Im(L(j!)]

2 � 1; (10)

which means that the Nyquist plot must indeed avoid a circle centered at �1 with unit radius.
The Nyquist plot approaches the origin for large frequencies, and we �nd that the �upward�
gain margin GM =1. The only other point on the negative real axis, in the proximity of the
same circle, that the Nyquist plot can possibly cross is close to �2. This implies a �downward�
gain margin of GM = 1

2 (see also Problem 6.24). Hence the LQR gain matrix can be multiplied
by a large scalar or reduced by half with guaranteed closed-loop system stability. As far as the
determination of the phase margin PM is concerned, the closest possible approach point of the
Nyquist plot to the �1 point is shown in Fig. 7.89. From this �gure we conclude that the PM
is at least 60�. These margins are remarkable and it is not realistic to assume that they can
be achieved in practice because of the presence of modeling errors and lack of sensors!

Optimal regulator in a feedback con�guration.
1We have used the following result from matrix theory: if A is n�m matrix and B is m�n then det[In �AB] =

det[Im �BA]: See Appendix C.
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Problems and Solutions for Section 7.7: Estimator Design
33. Consider the system

F =

�
�2 1
1 0

�
; G =

�
1
0

�
; H = [1 2];

and assume that you are using feedback of the form u = �Kx+ r, where r is a reference input
signal.
a) Show that (F,H) is observable.
b) Show that there exists a K such that (F�GK,H) is unobservable.

c) Compute a K of the form K = [1;K2] that will make the system unobservable as in part (b);
that is, �nd K2 so that the closed-loop system is not observable.
d) Compare the open-loop transfer function with the transfer function of the closed-loop system
of part (c). What is the unobservability due to?

Solution:

(a)

O =
�
H
HF

�
=

�
1 2
0 1

�
;

is nonsingular. Therefore, (F,H) is observable.

(b) Let,

Ounobs=
�

H
H(F�GK)

�
=

�
1 2

�K1 1�K2

�
:

So if det(Ounobs) = 1�K2 + 2K1 = 0, then (F�GK,H) is unobservable.
(c) K1 = 1 =) 1 �K2 + 2 = 0 =) K2 = 3. The result can be veri�ed using Matlab�s place
command.

(d)

Gol(s) = H(sI� F)�1G =
s+ 2

s2 + 2s� 1 =
s+ 2

(s� 0:414)(s+ 2:414) :

Gcl(s) = H(sI� F+GK)�1G =
s+ 2

s2 + 3s+ 2
=

s+ 2

(s+ 2)(s+ 1)
=

1

(s+ 1)
:

The computations can be carried out using Matlab�s ss2tf command. So the unobservability
is due to a cancellation of one of the closed-loop poles with the zero of the system. In other
words, this closed-loop mode is unobservable from the output.

34. Consider a system with the transfer function,

G(s) =
9

s2 � 9 :

a) Find (F0, G0, H0) for this system in observer canonical form.
b) Is (F0, G0) controllable?
c) Compute K so that the closed-loop poles are assigned to s = �3� 3j.
d) Is the closed-loop system of part (c) observable?
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e) Design a full-order estimator with estimator-error poles at s = �12� 12j.
f) Suppose the system is modi�ed to have a zero:

G1(s) =
9(s+ 1)

s2 � 9 :

Prove that if u = �Kx + r, there is a feedback gain K that makes the closed-loop system
unobservable. [Again assume an observer canonical realization for G1(s).]

Solution:

(a) For a transfer function,

G(s) =
b1s+ b2

s2 + a1s+ a2
;

the observer canonical form becomes,

Fo =

�
�a1 1
�a2 0

�
=

�
0 1
9 0

�
; Go =

�
b1
b2

�
=

�
0
9

�
; Ho =

�
1 0

�
:

(b) To check whether (Fo;Go) is controllable we form the controllability matrix,

C =
�
Go FoGo

�
=

�
0 9
9 0

�
) det(C) = �81 6= 0:

Thus, the system is controllable.

(c) K =
�
3 2=3

�
: The result can be veri�ed using Matlab�s place command.

(d) The system is in observer canonical form. Hence, it is guaranteed to be observable. To
check,

O =
�

Ho

HoFo

�
=

�
1 0
0 1

�
=) det(O) = 1 6= 0 6= 0:

(e) Solving det(sI � Fo + LHo) = (s + 12)
2 + 144 for L yields L =

�
24 297

�T
. The result

can be veri�ed using Matlab�s place command.

(f) The realization for,

G(s) =
9(s+ 1)

s2 � 9 ;

in observer canonical form yields,

Fo =

�
0 1
9 0

�
; Go =

�
9
9

�
; Ho =

�
1 0

�
:

Thus, for the system with feedback,

O =
�

Ho

Ho(Fo �GoK)

�
=

�
1 0

�9k1 1� 9k2

�
=) det(O) = 1� 9k2:

Thus,
f(k1; k2) jk2 = 1=9g;
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is the set of all k1 and k2 that make the system unobservable. So we have shown that there
exists a feedback gain K which makes the closed-loop system unobservable. Note that for
k2 = 1=9,

det(sI� Fo +GoK) = det

�
s+ 9k1 �1 + 9k2
�9 + 9k1 s+ 9k2

�
= (s+ 9k1)(s+ 1):

Thus, the reason why the system becomes unobservable is that the pole at s = �1 is cancelled
by a zero.

35. Explain how the controllability, observability, and stability properties of a linear system are
related.

Solution:

controllability =) det [G FG F2G � � �Fn�1G] 6= 0:

observability =) det

2666664
H
HF
HF2

...
HFn�1

3777775 6= 0:
stability =) Refeigenvalues(F)g < 0.
So,in general, there is no connection between these three properties. However, for a minimal
realization (controllable, observable), internal and external stabilities are the same.

Note that the mathematical relations given above are idealizations, much like a frictionless plane
in physics. In practice, it is important to consider the singular values of the controllability or
observability matrices and their proximity to the j! axis. For example, if two of the eigenvectors
of the controllability matrix are nearly parallel, then the system is nearly uncontrollable and
large actuator signals may be required to get the system to a particular state in state space.

36. Consider the electric circuit shown in Fig. 7.90.

2

i L L

u

R

v c

1

2
C

R y

1

Figure 7.90: Electric circuit for Problem 35.

a) Write the internal (state) equations for the circuit. The input u(t) is a current, and the
output y is a voltage. Let x1 = iL and x2 = vc.
b) What condition(s) on R, L, and C will guarantee that the system is controllable?
c) What condition(s) on R, L, and C will guarantee that the system is observable?

Solution:

(a) Apply Kirchho¤�s voltage and current laws, with x1 = iL and x2 = vc, we obtain,
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L _x1 +Rx1 = x2 +RC _x2;

_x2 = u� x1;
y = (u� x1)R

Thus, �
_x1
_x2

�
=

�
�2R=L 1=L
�1=C 0

� �
x1
x2

�
+

�
R=L
1=C

�
u;

y =
�
�R 0

�
x+Ru:

(b) The condition for the system to be uncontrollable is det(C) =0.

C =
�
G FG

�
=

�
R=L �2R2=L2 + 1=LC
1=C �R=LC

�
:

det(C) = R2=L2C � 1=LC2:

Thus, the system is controllable if R2 6= L=C.

(c) The condition for the system to be unobservable is,

O =

�
H
HF

�
=

�
�R 0
2R2=L �R=L

�
:

det(O) = R2=L:

Since det(O) 6= 0 for any R;L;C except R = 0 or L =1, the system is observable.

37. The block diagram of a feedback system is shown in Fig. 7.91. The system state is,

x =

�
xp
xf

�
;

and the dimensions of the matrices are as follows:

F = n� n; L = n� 1;
G = n� 1; x = 2n� 1;
H = 1� n; r = 1� 1;
K = 1� n; y = 1� 1;

a) Write state equations for the system.
b) Let x = Tz, where

T =

�
I 0
I �I

�
:

Show that the system is not controllable.
c) Find the transfer function of the system from r to y.

Solution:
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(a) We have, �
_x
_xf

�
=

�
F �GK
LH F� LH�GK

� �
x
xf

�
+

�
G
G

�
r:

(b) In order to apply our transformation of coordinates, we need T�1,

T =

�
I 0
I �I

�
=) T�1 =

�
I 0
I �I

�
:

Thus,

Fcl = T�1
�
F �GK
LH F� LH�GK

�
T =

�
F�GK �GK

0 F� LH

�
;

Gcl =

�
I 0
I �I

� �
G
G

�
=

�
G
0

�
;

Hcl =
�
H 0

� � I 0
I �I

�
=
�
H 0

�
:

In the new coordinate system, we have,

_z =

�
F�GK �GK

0 F� LH

�
z+

�
G
0

�
r;

y =
�
H 0

�
z:

Observe that the system is now decomposed into controllable and uncontrollable parts. Hence,
we have shown that it is an uncontrollable system.

(c) The transfer function is,

T (s) = H[sI� (F�GK)]�1G:

38. This problem is intended to give you more insight into controllability and observability. Consider
the circuit in Fig. 7.92, with an input voltage source u(t) and an output current y(t).

S
2

1
r

s
1

K

S

y

1

G

G

L

F

1

S
1

1 s
1

F

S
1

H

x f

x p

1

H

2

Figure 7.91: Block diagram for Problem 7.37.
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u ( t )

R 1

x 1

1

2
C

R 2

y ( t )

L x 2
1

2

z

Figure 7.92: Electric circuit for Problem 7.38.

a) Using the capacitor voltage and inductor current as state variables, write state and output
equations for the system.
b) Find the conditions relating R1, R2, C, and L that render the system uncontrollable. Find
a similar set of conditions that result in an unobservable system.
c) Interpret the conditions found in part (b) physically in terms of the time constants of the
system.
d) Find the transfer function of the system. Show that there is a pole-zero cancellation for the
conditions derived in part (b) (that is, when the system is uncontrollable or unobservable).

Solution:

(a) From Figure 7.92, �
_x1
_x2

�
=

�
� 1
R1C

0

0 R2

L

� �
x1
x2

�
+

�
1

R1C
1
L

�
u;

y =
�
� 1
R1

1
�
x+

1

R1
u:

(b) First, form the controllability matrix,

C =
�
G FG

�
=

� 1
R1C

� 1
(R1C)2

1
L �R2

L2

�
;

det(C) = �R2=R1CL2 + 1=L(R1C)2:

For uncontrollability, det(C) = 0 implies R1R2C = L.

Next, form the observability matrix,

O =

�
H
HF

�
=

"
� 1
R1

1
1

R2
1C

�R2

L

#
;

det(O) = R2=R1L� 1=R21C:

For unobservability, det(O) = 0 implies, again that, R1R2C = L.

(c) When the system is unobservable/uncontrollable, we have 1=R1C = R2=L so that:�
_x1
_x2

�
=

�
� 1
R1C

0

0 � 1
R1C

� �
x1
x2

�
+

�
1

R1C
1
L

�
u;

y =
�
� 1
R1

1
�
x+ [1=R1]u:
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The two modes of the system have the same time constant and hence cannot be changed in-
dependently using only one control u, i.e., it is not controllable. The system output is a
linear combination of modes having the same frequency. It is thus impossible to determine the
composition of the combination, i.e., it is not observable.

(d)

G(s) =
s2 + R1+R2

L s+ 1
LC

R1(s+ 1=R1C)(s+R2=L)

=
(s+ a)(s+ b)

R1(s+ 1=R1C)(s+R2=L)
;

where,

a; b =
1

2

"
R1 +R2

L
�
r
(R1 +R2)2

L2
� 4

LC

#
:

Substituting 1=C = R1R2=L, we �nd a = R2

L , and b =
R1

L . Thus,

G(s) =
(s+R2=L)(s+R1=L)

R1(s+ 1=R1C)(s+R2=L)

=
s+R1=L

R1(s+ 1=R1C)
:

Observe the pole-zero cancellation in the transfer function.

39. The linearized equations of motion for a satellite are,

_x = Fx+Gu;

y = Hx;

where

F =

2664
0 1 0 0
3!2 0 0 2!
0 0 0 1
0 �2! 0 0

3775 ; G =

2664
0 0
1 0
0 0
0 1

3775 ; H =

�
1 0 0 0
0 0 1 0

�
;

u =

�
u1
u2

�
; y =

�
y1
y2

�
:

The inputs u1 and u2 are the radial and tangential thrusts, the state variables x1 and x3 are
the radial and angular deviations from the reference (circular) orbit, and the outputs y1 and y2
are the radial and angular measurements, respectively.
a) Show that the system is controllable using both control inputs.
b) Show that the system is controllable using only a single input. Which one is it?
c) Show that the system is observable using both measurements.
d) Show that the system is observable using only one measurement. Which one is it?

Solution:
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(a) Checking the controllability matrix:

C =
�
G FG F2G F3G

�
=

2664
0 0 1 0
1 0 0 2!
0 0 0 1
0 1 �2! 0

� � �

3775 :
Considering only the �rst four columns of the controllability matrix, the rank is already 4 and
hence it is controllable. Incidentally, you could also show this part of the problem by �rst
doing part (b) and then recognizing that if the system is controllable from a single actuator, it
will surely be controllable from the same actuator plus any other additional actuators you care
to add. This could be useful in multivariable system design. For example, when actuators are
expensive, one design criterion could be to minimize the number of actuators while maintaining
controllability of the system.

(b) Consider only the �rst (radial) thruster, u1, (i.e., u2 = 0). Then G1 =
�
0 1 0 0

�T
:

So we have,

C1=
�
G1 FG1 F

2G1 F
3G1

�
=

2664
0 1 0 �!2
1 0 �!2 0
0 0 �2! 0
0 �2! 0 2!3

3775 :
The rank is 3, hence the satellite is uncontrollable using only the radial thruster, u1. Now
consider the second (tangential) thruster, u2, (i.e., u1 = 0). Then, G2 =

�
0 0 1 0

�T
: So

we have,

C2=
�
G2 FG2 F

2G2 F
3G2

�
=

2664
0 0 2! 0
0 2! 0 �2!3
0 1 0 �4!2
1 0 �4!2 0

3775 :
The rank is 4, hence the satellite is controllable using only the tangential thruster, u2. The
tangential thruster can be used to control the angular velocity of the satellite, and hence radial
deviations can be controlled.

(c) Checking the observability matrix:

O =

2664
H
HF
HF2

HF3

3775 =
2666664

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

...

3777775 :

Since the rank of the �rst four rows is already 4, the system is observable.

(d) Using only the �rst measurement, y1, we have,

O1=

2664
H1

H1F
H1F

2

H1F
3

3775 =
2664

1 0 0 0
0 1 0 0
3!2 0 0 2!
0 �!2 0 0

3775 :
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This has a rank of 3, hence the system�s state is unobservable using only a radial measurement.
Now considering the tangential measurement,

O2=

2664
H2

H2F
H2F

2

H2F
3

3775 =
2664

0 0 1 0
0 0 0 1
0 �2! 0 0

�6!3 0 0 �4!2

3775 :
Since this matrix has a rank of 4, the system is observable using only the tangential measurement.

40. Consider the system in Fig. 7.93.

k d

FF

g

M

G a s j e t
K 5 k d
u 1 5 2 v 2u 1 2 K (u 1 2 u 2 ) 1 F / m l
u 2 5 2 v 2u 2 1 K (u 1 2 u 2 ) 2 F / m l

u 1 u 2

M

Figure 7.93: Coupled pendulums for Problem 40.

a) Write the state-variable equations for the system, using [�1 �2 _�1 _�2]T as the state vector and
F as the single input.
b) Show that all the state variables are observable using measurements of �1 alone.
c) Show that the characteristic polynomial for the system is the product of the polynomials for
two oscillators. Do so by �rst writing a new set of system equations involving the state variables2664

y1
y2
_y1
_y2

3775 =
2664
�1 + �2
�1 � �2
_�1 + _�2
_�1 � _�2

3775 :
Hint: If A and D are invertible matrices, then,�

A 0
0 D

��1
=

�
A�1 0
0 D�1

�
:

d) Deduce the fact that the spring mode is controllable with F but the pendulum mode is not.

Solution:
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The equations of motion for the system given in Fig. 7.93

ml2��1 = �kd2(�1 � �2)�mgl�1 + lu;
ml2��2 = �kd2(�2 � �1)�mgl�2 � lu;

where u is the force from the gas jet, l is the pendulum length, m is the pendulum mass, and d
is as given in the �gure. Letting !2 = g=l, K = kd2=ml2, and F = (1=ml)u, we obtain:

��1 = �!2�1 �K(�1 � �2) + F;
��2 = �!2�2 �K(�2 � �1)� F:

(a) Using the state vector x = [�1 �2 _�1 _�2]T ,

_x =

2664
0 0 1 0
0 0 0 1

�(!2 +K) K 0 0
K �(!2 +K) 0 0

3775x+
2664

0
0
1
�1

3775F:
(b) Considering only the measurement of �1, then:

y =
�
1 0 0 0

�
x:

Observability:

O =

2664
H
HF
HF2

HF3

3775 =
2664

1 0 0 0
0 0 1 0

�(!2 +K) K 0 0
0 0 �(!2 +K) K

3775 :
Since K 6= 0, det(Og 6= 0. Hence, the state is observable with �1.
(c) De�ne a state vector, x, such that: x = [y1 _y1 y2 _y2]T = [�1+�2 _�1+_�2 �1��2 _�1� _�2]T : Note
that the order of the state variables is chosen such that the resulting plant matrix is block
diagonal. With this state vector,

_x =

2664
0 1 0 0
�!2 0 0 0
0 0 0 1
0 0 �(!2 + 2K) 0

3775x+
2664
0
0
0
2

3775F:
The characteristic equation of the system is,

det(sI� F) = (s2 + !2)(s2 + !2 + 2K):

Thus, it is the product of two oscillators with frequencies ! and
p
!2 + 2K.

(d) From the state equations in part (c), note that they are block diagonal. Thus there is no
coupling between the spring mode (�1� �2) and the pendulum mode (�1+ �2). Because the gas
jets, via F , are only connected to the spring mode, we conclude that spring mode is controllable
while the pendulum mode is not.
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41. A certain �fth-order system is found to have a characteristic equation with roots at 0, �1, �2,
and �1 � 1j. A decomposition into controllable and uncontrollable parts discloses that the
controllable part has a characteristic equation with roots 0, and �1� 1j. A decomposition into
observable and nonobservable parts discloses that the observable modes are at 0, �1, and �2.
a) Where are the zeros of b(s) = Hadj(sI� F)G for this system?
b) What are the poles of the reduced-order transfer function that includes only controllable and
observable modes?

Solution:

(a) b(s) = Hadj(sI� F)G
controllable modes: 0,�1� j
observable modes: 0 ,�1,�2.
Hence, mode 0 is the only mode that is both controllable and observable. Therefore, b(s) has
zeros at s = �1, s = �2, and s = �1� j.
(b) Reduced transfer function has only one pole which is at the origin, i.e., s = 0.

42. Consider the systems shown in Fig. 7.94, employing series, parallel, and feedback con�gurations.

S

2

1

r
u 1 G 1 ( s ) 5D 1 ( s )

N 1 ( s )

u 5 u 1 y 1 5 u 2

y 1

G 2 ( s ) 5D 2 ( s )
N 2 ( s )

y

u 2

G 1 ( s ) 5D 1 ( s )
N 1 ( s )

G 2 ( s ) 5D 2 ( s )
N 2 ( s )

y

u 1 G 1 ( s ) 5
D 1 ( s )
N 1 ( s )

G 2 ( s ) 5D 2 ( s )
N 2 ( s )

y 5 y 1 1 y 2S

1

1

y 2u 2

u

( c )

( a ) ( b )

Figure 7.94: Block diagrams for Problem 7.42: (a) series; (b) parallel; (c) feedback

a) Suppose we have controllable-observable realizations for each subsystem:

_xi = Fixi +Giui;

yi = Hixi; where i = 1; 2:

Give a set of state equations for the combined systems in Fig. 7.94.
b) For each case, determine what condition(s) on the roots of the polynomials Ni and Di is
necessary for each system to be controllable and observable. Give a brief reason for your answer
in terms of pole-zero cancellations.
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Solution:

(a) Series connection, �
_x1
_x2

�
=

�
F1 0

G2H1 F2

� �
x1
x2

�
+

�
G1

0

�
u;

y =
�
0 H2

� � x1
x2

�
:

See the Matlab series command.

(b) Parallel connection, �
_x1
_x2

�
=

�
F1 0
0 F2

� �
x1
x2

�
+

�
G1

G2

�
u;

y =
�
H1 H2

� � x1
x2

�
:

See the Matlab parallel command.

(c) Feedback connection,�
_x1
_x2

�
=

�
F1 0
0 F2

� �
x1
x2

�
+

�
G1(r � y2)
G2y1

�
;

=

�
F1 �G1H2

G2H1 F2

� �
x1
x2

�
+

�
G1

0

�
r;

y =
�
H1 0

� � x1
x2

�
:

See the Matlab feedback command.

(d) Since each sub-system is in controllable-observable realization, each transfer function G1(s)
and G2(s) is minimal (i.e., no cancellations).

(e) Series connection:
Y (s)

U(s)
= G2(s)G1(s) =

N2(s)

D2(s)
:
N1(s)

D1(s)

For observability, N2(s) and D1(s) must be coprime (i.e., no common factors). Otherwise,
a mode of D1(s) is masked from the output. For controllability, N1(s) and D2(s) must be
coprime. Otherwise, a mode of D2(s) is masked from the output.

(f) Parallel connection:

Y (s)

U(s)
= G1(s) +G2(s) =

N1(s)

D1(s)
+
N2(s)

D2(s)
=
N1(s)D2(s) +D1(s)N2(s)

D1(s)D2(s)
:

For observability (controllability), D1(s) and D2(s) must be coprime. Otherwise, the two modes
appear as a single mode from the output (input).

(g) Feedback connection:

Y (s)

R(s)
=

G1(s)

1 +G1(s)G2(s)
=

N1(s)D2(s)

D1(s)D2(s) +N1(s)N2(s)
:
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For observability, N1(s) and D2(s) must be coprime (i.e., no common factors). For controlla-
bility, N2(s) and D1(s) must be coprime.

43. Consider the system �y + 3 _y + 2y = _u+ u.
a) Find the state matrices Fc, Gc, and Hc in control canonical form that correspond to the
given di¤erential equation.
b) Sketch the eigenvectors of Fc in the (x1; x2) plane, and draw vectors that correspond to the
completely observable (x0) and the completely unobservable (x�0) state variables.
c) Express x0 and x�0 in terms of the observability matrix O.
d) Give the state matrices in observer canonical form and repeat parts (b) and (c) in terms of
controllability instead of observability.

Solution:

(a) The Laplace transform of the di¤erential equation gives the transfer function,

G(s) =
Y (s)

U(s)
=

s+ 1

s2 + 3s+ 2
:

Hence in controller canonical form,

Fc =

�
�3 �2
1 0

�
; Gc =

�
1
0

�
; Hc =

�
1 1

�
:

(b) First, we �nd the eigenvectors of Fc or the modal directions of the system,

det(sI� Fc) = 0 =) s = �1;�2:

(Fc + I)v1 = 0 =) v1 =

�
1
�1

�
:

(Fc + 2I)v2 = 0 =) v2 =

�
2
�1

�
:

Using partial-fraction expansion of G(s), we can determine which modes are unobservable and
which are observable. The mode s = �1, this mode has a pole-zero cancellation in G(s), so
v1 is the unobservable mode shape. The mode s = �2, does appear in the minimal transfer
function, so v2 is the observable mode shape. Therefore, the completely unobservable direction
is equal to v1. The completely observable direction is v?2 , where v

?
2 is the projection of v2 on

the orthogonal direction to v1. These vectors are drawn in the �gure below. Note from the
�gure that xo is, in fact, the same as H. Also, the observable mode, v2 is observable since the
projection of v2 onto xo is not zero, i.e.,

xTo v2 = Hcv2 6= 0:
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Observable and unobservable state directions for Problem 7.43(b).

(c) Observability measures the ability to reconstruct the realization state variables given an
output and its derivatives. Consider the determination of the state initial condition, x(0),
given the initial output measurement and its derivatives, Y(0), where,

Y(0) =

26664
y(0)
_y(0)
...

y(n�1)(0)

37775 =
26664

Hc

HcFc
...

HcF
(n�1)
c

37775x(0) = Ox(0):
So the determination of x(0) is equivalent to the solution of Y (0) = Ox(0). From linear
algebra, the unobservable state variables are in the null space of the observability matrix, and
the observable state variables are in the left-range space of O:

xo 2 N (O); xo 2 R(OT ):

So that,

xo = v1 =

�
1
�1

�
; xo =

�
1
1

�
;

(d) In observer canonical form,

Fo =

�
�3 1
�2 0

�
; Go =

�
1
1

�
; Ho =

�
1 0

�
:

The eigenvectors of Fo are,

det(sI� Fo) = 0 =) s = �1;�2:

(Fo+I)v1 = 0 =) v1 =

�
1
2

�
:

(Fo + 2I)v2 = 0 =) v2 =

�
1
1

�
:
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The mode s = �1, has a pole-zero cancellation from G(s), so v1 is the uncontrollable mode
shape. The mode s = �2, appears in G(s), so v2 is the controllable mode shape. These vectors
are drawn in the �gure below.

Controllable and uncontrollable state directions for Problem 7.43(d).

Controllability measures the ability to drive the states to arbitrary values. Consider the use of
u(t) to move the state vector, x(0�), to an arbitrary value, say x(0+), where,

u(t) = g1�(t) + g2 _�(t) + � � �+ gn�(n�1)(t):

So that,
x(0+)� x(0�) = Cu�;

where u� = [g1 g2 � � �+ gn]
T . Hence, a controllable state is one in which some vector u�exists

such that xc = Cu�. From linear algebra,

xc 2 N (CT ); xc 2 RfCg:

So that,

xc = v1 =

�
1
�1

�
; xc =

�
1
1

�
:

44. The equations of motion for a station-keeping satellite (such as a weather satellite) are

�x� 2! _y � 3!2x = 0; �y + 2! _x = u;

where,

x = radial perturbation;

y = longitudinal position perturbation;

u = engine thrust in the y � direction;
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R e f e r e n c e
lo n g i t u d e

D e s i r e d
l o c a t i o n
o n o r b i t

u

y

x

Figure 7.95: Diagram of a station-keeping satellite in orbit for Problem 44.

as depicted in Fig. 7.94. If the orbit is synchronous with the earth�s rotation, then ! =
2�=(3600� 24) rad/sec.
a) Is the state [x _x y _y]T observable?
b) Choose x = [ x _x y _y ]T as the state vector and y as the measurement, and design a
full-order observer with poles placed at s = �2!, �3!, and �3! � 3!j.
Solution:

(a) There is not enough information to answer this question. Recall, as mentioned in the chapter,
that both observability and controllability are properties of realizations. Thus if you are only
given di¤erential equations or transfer functions you will not be able to conclude anything about
the observability or controllability of the system. This problem was designed to heighten the
readers awareness of this issue.

(b) Choosing x1 = x, x2 = _x, x3 = y, x4 = _y, and z as the output of the system (so that it
doesn�t con�ict with the variable y, we have the following in state space equations.2664

_x1
_x2
_x3
_x4

3775 =

2664
0 1 0 0
3!2 0 0 2!
0 0 0 1
0 �2! 0 0

3775
2664
x1
x2
x3
x4

3775+
2664
0
0
0
1

3775u;
z =

�
0 0 1 0

�
x:

Now that we have a realization for the system, we can check the observability to verify that we
can arbitrarily place the estimator poles. The observability matrix is,

O =

2664
0 0 1 0
0 0 0 1
0 �2! 0 0

�6!3 0 0 �4!2

3775 :
Since O is full rank, the realization can now be declared observable. The desired and actual
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estimator characteristic equations are,

�e;desired(s) = (s+ 2!)(s+ 3!)(s+ 3! � j3!)(s+ 3! + j3!)
= s4 + 11!s3 + 54!2s2 + 126!3s+ 108!4

�e(s) = det(sI� F+ LH) = s4 + l3s
3 + (l4 + !

2)s2 + (�2!l2 + !2l3)s+ (�3!2l4 � 6!3l1):

Equating coe¢ cients gives,

l1 = �44:5!; l2 = �57:5!2; l3 = 11!; l4 = 53!2:

45. The linearized equations of motion of the simple pendulum in Fig. 7.96 are

�� + !2� = u:

a) Write the equations of motion in state-space form.
b) Design an estimator (observer) that reconstructs the state of the pendulum given measure-
ments of _�. Assume ! = 5 rad/sec, and pick the estimator roots to be at s = �10� 10j.
c) Write the transfer function of the estimator between the measured value of _� and the esti-
mated value of �.
d) Design a controller (that is, determine the state feedback gain K) so that the roots of the
closed-loop characteristic equation are at s = �4� 4j.

u

Figure 7.96: Pendulum diagram for Problem 7.45.

Solution:

(a) De�ning x1 = � and x2 = _�, and anticipating that the measured variable in part (b) is _�, we
have, �

_x1
_x2

�
=

�
0 1
�!2 0

� �
x1
x2

�
+

�
0
1

�
u;

y =
�
0 1

�
x:

(b) From,

det(sI� F+ LH) = 0;

det

��
s 0
0 s

�
�
�

0 1
�!2 0

�
+

�
l1
l2

� �
0 1

��
= s2 + l2s+ !

2(�l1 + 1) = 0:
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Using ! = 5 and the speci�ed roots for the estimator, we calculate l1 = �7, and l2 = 20. This
result can be veri�ed using Matlab�s place command.

(c) To �nd the transfer function from the measured value of _�, y, to the estimated value of �, �̂,
we use the estimator equations,

�
x̂ = Fx̂+Gu+ L(y �Hx̂)

= (F� LH)x̂+Gu+ Ly:

Since this is in state space form, we can now directly compute the transfer function from y to
�̂. It is simply,

�̂(s)

Y (s)
=

�
1 0

�
(sI� F+ LH)�1L

=
�7(s� 20=7)
s2 + 20s+ 200

:

(d) For controller gain K = [k1 k2], we require,

det(sI� F+GK) = 0 =) s2 + k2s+ !
2 + k1 = 0:

Comparing this with the speci�ed roots equation:

(s+ 4 + j4)(s+ 4� j4) = s2 + 8s+ 32 = 0;

we obtain k1 = 7, and k2 = 8. This result can be veri�ed using Matlab�s place command.

46. An error analysis of an inertial navigator leads to the set of normalized state equations24 _x1
_x2
_x3

35 =
24 0 �1 0
1 0 1
0 0 0

3524 x1
x2
x3

35+
24 0
0
1

35u;
where

x1 = east� velocity error;
x2 = platform tilt about the north axis;

x3 = north� gyro drift;
u = gyro drift rate of change:

Design a reduced-order estimator with y = x1 as the measurement, and place the observer error
poles at �0:1 and �0:1. Be sure to provide all the relevant estimator equations.
Solution:

Partitioning the system matrices yields,24 _x1
_x2
_x3

35 =

�
Faa Fab
Fba Fbb

�24 x1
x2
x3

35+
24 0
0
1

35u;
=

24 0 �1 0
1 0 1
0 0 0

3524 x1
x2
x3

35+
24 0
0
1

35u;
y =

�
1 0 0

�
x:
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The characteristic equation of the reduced order estimator is then given by,

det(sI� Fbb + LFab) = s2 � l1s� l2 = 0:

The desired characteristic equation for the reduced order estimator poles is

�e(s) = (s+ 0:1)
2 = s2 + 0:2s+ 0:01:

Thus, l1 = �0:2, and l2 = �0:01. This result can be veri�ed using Matlab�s acker command.

Problems and Solutions for Section 7.8: Compensator De-
sign: Combined Control Law and Estimator

47. A certain process has the transfer function G(s) = 4=(s2 � 4).
a) Find F, G, and H for this system in observer canonical form.
b) If u = �Kx, compute K so that the closed-loop control poles are located at s = �2� 2j.
c) Compute L so that the estimator-error poles are located at s = �10� 10j.
d) Give the transfer function of the resulting controller (for example, using Eq. (7.177)).
e) What are the gain and phase margins of the controller and the given open-loop system?

Solution:

(a) From the transfer function, we can read o¤ the elements that will give observer canonical
form,

_x = Fox+Gou;

y = Hox;

Fo =

�
0 1
4 0

�
; Go =

�
0
4

�
; Ho =

�
1 0

�
:

(b) With u = �[k1 k2][x1 x2]T , we want to achieve the following closed-loop characteristic
equation:

�c(s) = (s+ 2 + 2j)(s+ 2� 2j) = s2 + 4s+ 8 = 0:

From det(sI� F+GK) = 0, we obtain,

s2 + 4k2s+ 4k1 � 4 = 0:

Comparing the coe¢ cients yields k1 = 3, and k2 = 1. This result can be veri�ed using Matlab�s
place command.

(c) The estimator roots are determined by the equation �e(s) = 0. We want to �nd l1 and l2
such that,

�e(s) = (s+ 10 + 10j)(s+ 10� 10j) = s2 + 20s+ 200:

�e(s) = det(sI� F+ LH)

= det

��
s �1
�4 s

�
+

�
l1
l2

� �
1 0

��
= det

�
s+ l1 �1
�4 + l2 s

�
= s2 + l1s+ l2 � 4:



7060 CHAPTER 7. STATE-SPACE DESIGN

Comparing the coe¢ cients yields l1 = 20, l2 = 204. This result can be veri�ed using Matlab�s
place command.

(d) The transfer function of the resulting compensator is,

D(s) =
U(s)

Y (s)
= �K(sI� F+GK+ LH)�1L;

= �
�
3 1

� � s+ 20 �1
212 s+ 4

��1 �
20
204

�
=

�264s� 692
s2 + 24s+ 292

:

This result can be veri�ed using Matlab�s ss2tf command.

(e) The next �gure shows the Nyquist plot generated by Matlab (using the nyquist command),
note that there is both a positive and negative gain margin. The Nyquist plot has a positive
gain margin of 0:4220 (i.e., the gain can be increased by 1=0:422 = 2:37) and a negative margin
of 5:46 (i.e., the gain can be decreased by 1=5:46 = 0:183) before the number of encirclements
of the �1 point changes.
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Nyquist plot for Problem 7.47.

48. The linearized longitudinal motion of a helicopter near hover (Fig. 7.97) can be modeled by the
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normalized third-order system,24 _q
_�
_u

35 =
24 �0:4 0 �0:01

1 0 0
�1:4 9:8 �0:02

3524 q
�
u

35+
24 6:3

0
9:8

35 �;
where,

V e r t i c a l

F u s e l a g e
re f e r e n c e
a x i s

R o t o r
t h r u s t

R o t o r

u
d

u

Figure 7.97: Helicopter for Problem 7.48.

q = pitch rate;

� = pitch angle of fuselage;

u = horizontal velocity (standard aircraft notation);

� = rotor tilt angle (control variable):

Suppose our sensor measures the horizontal velocity u as the output; that is, y = u.
a) Find the open-loop pole locations.
b) Is the system controllable?
c) Find the feedback gain that places the poles of the system at s = �1� 1j and s = �2.
d) Design a full-order estimator for the system, and place the estimator poles at �8 and �4�
4
p
3j.

e) Design a reduced-order estimator with both poles at �4. What are the advantages and
disadvantages of the reduced-order estimator compared with the full-order case?
f) Compute the compensator transfer function using the control gain and the full-order estimator
designed in part (d), and plot its frequency response using Matlab. Draw a Bode plot for the
closed-loop design, and indicate the corresponding gain and phase margins.
g) Repeat part (f) with the reduced-order estimator.
h) Draw the symmetrical root locus (SRL) and select roots for a control law that will give a
control bandwidth matching the design of part (c), and select roots for a full-order estimator
that will result in an estimator error bandwidth comparable to the design of part (d). Draw
the corresponding Bode plot and compare the pole placement and SRL designs with respect to
bandwidth, stability margins, step response, and control e¤ort for a unit-step rotor-angle input.
Use Matlab for the computations.

Solution:
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Again, the equations of motion for the helicopter are,24 _q
_�
_u

35 =
24 �0:4 0 �0:01

1 0 0
�1:4 9:8 �0:02

3524 q
�
u

35+
24 6:3

0
9:8

35 �:
(a) The open-loop poles are the eigenvalues of F. Solving det(sI� F) = 0 gives the open-loop
poles as s = �0:6565 and s = 0:1183� j0:3678: In Matlab, use eig(F). We also note that the
zeros of the plant are in the RHP at 0:25� j2:5 and can be computed using the Matlab tzero
command.

(b) To determine controllability, we want to look at the rank of the controllability matrix. For
the helicopter,

rankfCg = rank
�
G FG F2G

�
= 3:

Thus, the system is controllable. Alternatively, you can �nd the singular values of the matrix C
using the Matlab svd command. This will give an indication of how large the actuator signals
will need to be.

(c) When the order of the system gets larger than two, it is often convenient to let the computer
do the necessary calculations. Using Matlab�s place command and the speci�ed pole locations,
we �nd the control gains,

K =
�
0:4706 1:0 0:0627

�
:

If we have to do this computation by hand, the approach would be the following. Form the
desired characteristic equation and compare it with the equation,

det(sI� F+GK) = 0:

to obtain the values for K.

(d) Using the duality principle, we �nd the estimator gains using Matlab�s place command as
well. We �nd,

L =
�
44:7097 18:8130 15:5800

�T
:

(e) The notation of this solution follows Equation 7.139 in the text. Reordering the system
matrix, we have, 24 _u

_q
_�

35 =

24 �0:02 �1:4 9:8
�0:01 �0:4 0
0 1 0

3524 u
q
�

35+
24 9:8

0
6:3

35 �
=

�
Faa Fab
Fba Fbb

� �
xa
xb

�
+

�
Ga
Gb

�
�:

To design the reduced order estimator, we need to solve the characteristic equation,

det(sI� Fbb + LFab) = 0:

So that the estimator gains, L, place the poles at the desired locations. Using Matlab�s place
command, we �nd,

L =
�
1:2510 0:9542

�T
:
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The advantages of the reduced order estimator are that the resulting estimator is simpler (in
terms of the number of �ops, Floating point operations, count necessary to implement the
estimator on a real system). Another issue is that you are using the measurement of the state
directly. This would be advantageous if the measured signal was relatively noise free. However,
if the signal was noisy, then it would be better to use the full order estimator because it provides
�ltering of noisy measurement.

(f) The compensator for the controller in part (c) and estimator in part (d) is,

Dc(s) = �K(sI� F+GK+ LH)�1L = 40:8s2 + 61:0s+ 31:9

s3 + 19:58s2 � 210:4s+ 814:7

=
40:8(s+ 0:75� j0:47)

(s+ 28:1)(s� 4:26� j3:29) :

The �gures on the next page show the Bode plot of the compensator transfer function using the
full-order estimator, and the Bode plot of the plant and compensator. The Phase and Gain
margins for the system are -2.6 db and 22.0 degrees respectively.
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Problem 7.48: Bode plots of compensator using the full-order estimator alone.
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Problem 7.48: Bode plot of plant and compensator combined.

(g) Compensator for the controller in part (c) and estimator in part (e) (i.e., the reduced-order
estimator) is,

Dcr(s) = Cr(sI�Ar)
�1Br +Dr:

Ka = 0:0627; Kb = [0:4706; 1];

Ar = Fbb � LFab � (Gb � LGa)Kb =

�
4:16 �6:30
6:74 0:00

�
;

Br = ArL+ Fba � LFaa � (Gb � LGa)Ka =

�
�0:423
9:034

�
;

Cr = �Kb =
�
�0:4706 �1

�
;

Dr = �Ka �KbL = �1:61:

(h) Thus, the transfer function for the compensator using the reduced-order estimator is,

Dcr(s) = Cr(sI�Ar)
�1Br +Dr =

�1:61s2 � 2:16s+ 0:97
s2 � 4:16s+ 42:44 :
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The �gure below shows the open-loop transfer function for the compensator designed using the
reduced-order estimator. The Bode plot for the plant and the compensator is also shown on
the next page.
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Problem 7.48: Bode plot of the compensator transfer function using the reduced-order
estimator.
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Problem 7.48: Bode plot of the compensated system.

49. Suppose a DC drive motor with motor current u is connected to the wheels of a cart in order
to control the movement of an inverted pendulum mounted on the cart. The linearized and
normalized equations of motion corresponding to this system can be put in the form

�� = � + v + u;

_v = � � v � u;

where,

� = angle of the pendulum;

v = velocity of the cart:

a) We wish to control � by feedback to u of the form,

u = �K1� �K2
_� �K3v:

Find the feedback gains so that the resulting closed-loop poles are located at �1, �1� j
p
3.

b) Assume that � and v are measured. Construct an estimator for � and _� of the form,

_̂x = Fx̂+ L(y � ŷ);
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where x = [ � _� ]T and y = �. Treat both v and u as known. Select L so that the estimator
poles are at �2 and �2.
c) Give the transfer function of the controller, and draw the Bode plot of the closed-loop system,
indicating the corresponding gain and phase margins.
d) Using Matlab, plot the response of the system to an initial condition on �, and give a
physical explanation for the initial motion of the cart.

Solution:

(a) De�ning the state x = [� v]T , the system is written as,24 _�
��
_v

35 =

24 0 1 0
1 0 1
1 0 �1

3524 �
_�
v

35+
24 0

1
�1

35u;
_x = Fx+Gu:

Using det(sI� F+GK) = 0 with K =
�
k1 k2 k3

�
; we �nd the characteristic equation,

s3 + s2(1� k3 + k2) + s(k1 � 1) + 2(k3 � 1) = 0:

The desired characteristic equation is,

(s+ 1)((s+ 1)2 + 3) = s3 + 3s2 + 6s+ 4 = 0:

Comparing coe¢ cients, K =
�
7 5 3

�
. This result can be veri�ed using the Matlab place

command.

(b) The estimator equations (both explicitly and symbolically) for estimating x̂ =
�
� _�

�T
are,24 ^

_�
^
��

35 =

�
0 1
0 1

�" �̂
^
_�

#
+

�
0
1

�
v +

�
0
1

�
u+ L(y � ŷ);

= Febx+Gvv +Guu+ L(y � ŷ):

where u and v are assumed to be known. The output equations for the plant and the estimator
are,

y = Hx =
�
1 0 0

�
x;

ŷ = Hex̂ =
�
1 0

�
x̂:

With L =
�
l1 l2

�T
, the characteristic equation becomes,

det(sI� Fe + LHe) = s2 + sl1 + l2 � 1 = 0:

Equating with the desired characteristic equation,

(s+ 2)(s+ 2) = s2 + 4s+ 4;

we have L =
�
4 5

�T
: This result can be veri�ed using the Matlab place command.
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(c) Construct the feedback u in terms of both the measured signal v and the estimated state x̂.
Using the feedback gains from (a), we have,

u = �K1�̂ �K2

�
�̂ �K3v;

= �Kex̂�K3v:

Plugging this expression for u into the estimator equation we have,

�
x̂ = (Fe �GuKe � LHe)x̂+ (Gv�GuK3)v + Ly;

u = �Kex̂�K3v:

The transfer function from y to u can now be read directly from these two equations by setting
all of the auxiliary inputs to zero, i.e., v = 0. Thus,

Dc(s) = �Ke(sI� Fe+GuKe+LHe)
�1L =

�(53s+ 55)
s2 + 9s+ 31

:

The Bode plots are shown next.
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Open-loop Bode plot of compensator transfer function for Problem 7.49.
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Bode plot of the compensator and plant together for Problem 7.49.

(d) One approach to simulating the system is to augment the plant and estimator equations into
one matrix. Recognizing that v =

�
0 0 1

�
x = Hvx, we can eliminate u and v.

_x = Fx+Gu = (F�GK3Hv)x�GKex̂
�
x̂ = Fex̂+Gvv +Guu+ L(y � ŷ)

= (GvHv �GuK3Hv + LH)x+ (Fe�LHe�GuKe)x̂:

This is now easily implemented using the Matlab command lsim. The �gure on the next page
shows the closed-loop system response due to an initial angle of � = 0:1 rad with respect to a
vertical line. The initial motion of the cart is in the direction that the pendulum is leaning (due
to the initial condition). Physically, if the cart moved away from the direction that the pendulum
was leaning, then it would cause the angle to increase eventually toppling the pendulum.
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50. Consider the control of

G(s) =
Y (s)

U(s)
=

10

s(s+ 1)
:

a) Let y = x1 and _x1 = x2, and write state equations for the system.
b) Find K1 and K2 so that u = �K1x1�K2x2 yields closed-loop poles with a natural frequency
!n = 3 and a damping ratio � = 0:5.
c) Design a state estimator for the system that yields estimator error poles with !n1 = 15 and
�1 = 0:5.
d) What is the transfer function of the controller obtained by combining parts (a) through (c)?
e) Sketch the root locus of the resulting closed-loop system as plant gain (nominally 10) is varied.

Solution:

The state equations are, �
_x1
_x2

�
=

�
0 1
0 �1

� �
x1
x2

�
+

�
0
10

�
u;

y =
�
1 0

�
x:

(b) K = place(F;G, roots([1 2 � zeta � wn wn^2]))= [0:9 0:2].
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(c) L = place(F0;H0; roots([1 2 � zeta � wn wn^2]))0= [14 211]T :
(d) The transfer function for the controller is,

Dc(s) = �K(sI� F+GK+ LH)�1L

=
�(54:8s+ 202:5)
s2 + 17s+ 262

:

(e) The �gure below shows the root locus around a nominal gain of 10, which is indicated by
asterisk.
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Problem 7.50: Root locus of the closed-loop system as plant gain is varied.

51. Unstable equations of motion of the form,

�x = x+ u;

arise in situations where the motion of an upside-down pendulum (such as a rocket) must be
controlled.
a) Let u = �Kx (position feedback alone), and sketch the root locus with respect to the scalar
gain K.
b) Consider a lead compensator of the form,

U(s) = K
s+ a

s+ 10
X(s):

Select a and K so that the system will display a rise time of about 2 sec and no more than 25%
overshoot. Sketch the root locus with respect to K.
c) Sketch the Bode plot (both magnitude and phase) of the uncompensated plant.
d) Sketch the Bode plot of the compensated design, and estimate the phase margin.
e) Design state feedback so that the closed-loop poles are at the same locations as those of the
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design in part (b).
f) Design an estimator for x and _x using the measurement of x = y, and select the observer gain
L so that the equation for ~x has characteristic roots with a damping ratio � = 0:5 and a natural
frequency !n = 8 rad/sec.
g) Draw a block diagram of your combined estimator and control law, and indicate where x̂ and
_x appear. Draw a Bode plot for the closed-loop system, and compare the resulting bandwidth
and stability margins with those obtained using the design of part (b).

Solution:

(a) The root locus using position feedback alone is shown below. Notice that no matter how
large the gain is made, the closed-loop roots are never strictly in the LHP.

(b) First of all, we need to translate the speci�cations into values for !n and �. Although
the closed system with a lead compensator is third-order, we assume the rules of thumb for a
second-order system are valid and then validate our design after settling on values for a and K.

Mp < 25% =) � > 0:4; !n =
1:8

tr
=
1:8

2
= 0:9:

Try � = 0:4 and !n = 1 for the design. Because the form of the compensator is speci�ed, we
can calculate the closed-loop transfer function to be,

Y (s)

R(s)
= T (s) =

s+ 10

s3 + 10s2 + (K � 1)s+ (Ka� 10) :

Note that we have subtly introduced r as a reference input to the plant. The desired closed
loop poles should be placed at (taking � = 10),

(s+ �)(s2 + 2�!ns+ !
2
n) = (s+ 10)(s

2 + 0:8s+ 1) = s3 + 10:8s2 + 9s+ 10:

Although the coe¢ cient for the s2 term doesn�t match exactly, we just want to get a ballpark
estimate for K and a. So comparing the other coe¢ cients, we �nd K = 10 and a = 2. Using
these values, the root locus for using the lead compensator is shown. To verify that our design
is acceptable, we also check the step response of the system. This is shown on the last �gure in
this section.
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Problem 7.51: Root locus with position feedback alone.
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Root locus for Problem 7.51.

(c) The Bode plot of 1
s2�1 is shown below.

(d) The Bode plot of the compensated design is also shown on the next page. The phase margin
is approximately 23�. The gain margin is 0.5.
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Problem 7.51: Bode plots for the open-loop system.
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Problem 7.51: Compensator and plant combined.

(e) Although the design in part (b) has three closed-loop poles (due to the lead compensator),
full state feedback on a second-order system does not introduce an extra pole. Recognizing
this, we keep the poles closest to the plant�s open loop poles, �0:433 � 0:953j. The feedback
gains K can now be determined using Matlab�s place command,

K = place(F;G; [�0:433+ 0:953 � j;�0:433� 0:953 � j]) = [2:09 0:87]:

(f) The estimator gains are just as easy to produce. With � = 0:5 and !n = 8, we have,

[F;G;H; J] = tf2ss([0 0 1]; [1 0 � 1])
pe = [1 2 � zeta � omegan omegan^2]

L = place(F0;H0; pe)0 = [8 65]T :

(g) The estimator equations are,

�
x̂ = Fx̂+Gu+ L(y �Hx̂);
u = �Kx̂:

and are shown in block diagram form on top of the next page.
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Block diagram of the combined estimator and control law in Problem 7.51.

The Bode plot of the controller and plant designed using pole placement techniques is shown
below. The phase margin is approximately 22� and the gain margin now has a limitation both
for increasing and decreasing the gain. The gain can be increased by a factor of 1=0:14 = 7:14 =
17 db and decreased by a factor of 1=1:96 = 0:51 = �5:8 db. So the lead compensator has
roughly equivalent stability margins.
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Problem 7.51: Bode plot of plant and compensator design with pole placement.

The step responses for both designs are shown on the next page using the Matlab step command.
They di¤er slightly because the DC gain of the compensator designed using pole placement hasn�t
been adjusted for unity gain. Also the speci�cation for less than 25% overshoot has not been
met with the pole placement design. This can be attributed to an estimator roots which are
too slow. Increasing the !n of the estimator to 10 rad/sec will meet the speci�cation.
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Problem 7.51: Closed-loop step responses.

52. A simpli�ed model for the control of a �exible robotic arm is shown in Fig. 7.98, where

k=M = 900 rad= sec2;

y = output; the mass position;

u = input; the position of the end of the spring:

k

y

M

u

Figure 7.98: Simple robotic arm for Problem 7.52.

a) Write the equations of motion in state-space form.
b) Design an estimator with roots as s = �100� 100j.
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c) Could both state variables of the system be estimated if only a measurement of _y was available?
d) Design a full-state feedback controller with roots at s = �20� 20j.
e) Would it be reasonable to design a control law for the system with roots at s = �200� 200j?
State your reasons.
f) Write equations for the compensator, including a command input for y. Draw a Bode plot
for the closed-loop system, and give the gain and phase margins for the design.

Solution:

(a) De�ning x1 = y and x2 = _y, we have,�
_x1
_x2

�
=

�
0 1

�k=M 0

� �
x1
x2

�
+

�
0

k=M

�
u;

y =
�
1 0

�
x:

(b) Comparing coe¢ cients of like powers of s,

(s+ 100 + j100)(s+ 100� j100) = s2 + 200s+ 20000 = 0

= det(sI� F+ LH) = s2 + l1s+ l2 + 900 = 0;

yields L =
�
200 19100

�T
. This result can be veri�ed using the Matlab place command.

(c) Let�s check if x1 is observable with y = x2. det(O)= k=M 6= 0. So y is observable and (not
surprisingly) both state variables can be estimated from _y.

(d) Comparing coe¢ cients of like powers of s,

(s+ 20 + j20)(s+ 20� j20) = s2 + 40s+ 800 = 0

= det(sI� F+GK) = s2 + 900k2s+ 900(k1 + 1) = 0;

yields K =
�
�0:111 0:044

�
. This result can be veri�ed using Matlab�s place command.

(e) No.

(i) The bandwidth of the spring is about 30 rad/sec and system roots at 200 rad/sec means that
large control levels will be required.

(ii) When using an estimated state feedback, you would like the estimates of the state to have
converged �to some extent�before generating a control signal from the estimate. This is the
reason for the rule of thumb about picking the estimator roots 3 to 10 times faster than the
control roots.

(f) We can express the compensator as,

�
x̂ = (F�GK� LH)x̂+ Ly;
u = �Kx̂:

Thus the loop gain is,

D(s)G(s) = � 744000(s� 12:2)
(s+ 120� 116j)(s� 30j) :

Note that the compensator has a zero in the RHP (non-minimum phase). This result can be
veri�ed using Matlab�s ss2tf command. The root locus of the compensated system is shown
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below. From the Bode plot of the loop gain, we �nd that the gain margin is approximately
8:8 db (can be veri�ed from the root locus as well) and the phase margin is approximately �64�.
Note that the closed-loop system is stable despite the fact that the phase margin is negative.
This is true because the closed-loop system is non-minimum phase.
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Problem 7.52: Bode plot of plant and compensator for robot arm.

53. The linearized di¤erential equations governing the �uid-�ow dynamics for the two cascaded
tanks in Fig. 7.99 are

� _h1 + ��h1 = �u;

� _h2 + ��h2 = ��h1;

where,

�h1 = deviation of depth in tank 1 from the nominal level;

�h2 = deviation of depth in tank 2 from the nominal level;

�u = deviation in 
uid in
ow rate to tank 1 (control):

a) Level Controller for Two Cascaded Tanks: Using state feedback of the form,

�u = �K1�h1 �K2�h2;

choose values of K1 and K2 that will place the closed-loop eigenvalues at,

s = �2�(1� j):
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b) Level Estimator for two Cascaded Tanks: Suppose that only the deviation in the level of
tank 2 is measured (that is, y = �h2). Using this measurement, design an estimator that will
give continuous, smooth estimates of the deviation in levels of tank 1 and tank 2, with estimator
error poles at �8�(1� j).
c) Estimator/Controller for Two Cascaded Tanks: Sketch a block diagram (showing individual
integrators) of the closed-loop system obtained by combining the estimator of part (b) with the
controller of part (a).
d) Using Matlab, compute and plot the response at y to an initial o¤set in �h1. Assume � = 1
for the plot.

h 1

h 2

u

Figure 7.99: Coupled tanks for Problem 7.53.

Solution:

(a) Comparing coe¢ cients of like powers of s,

det

�
s+ � +K1 K2

�� s+ �

�
= s2 + (2� +K1)s+ �

2 + �(K1 +K2) = 0:

= (s+ 2� + 2�j)(s+ 2� � 2�j) = s2 + 4�s+ 8�2 = 0;

gives K1 = 2� and K2 = 5�.

(b) Comparing coe¢ cients of like powers of s,

det

�
s+ � l1
�� s+ � + l2

�
= s2 + (2� + l1)s+ �(l1 + l2) + �

2 = 0

= (s+ 8� + 8�j)(s+ 8� � 8�j) = s2 + 16�s+ 128�2 = 0:

gives l1 = 113� and l2 = 14�.

(c) The �gure below shows a block diagram of the system.
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Block diagram for of closed-loop system for Problem 7.53.

(d) The response to an initial condition on �h1(0) is shown on the next page using the Matlab
initial command.
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Problem 7.53: Initial condition response for o¤set in �h1(0).

54. The lateral motions of a ship that is 100 m long, moving at a constant velocity of 10 m/sec, are
described by 24 _�

_r
_ 

35 =
24 �0:0895 �0:286 0
�0:0439 �0:272 0

0 1 0

3524 �
r
 

35+
24 0:0145
�0:0122

0

35 �;
where

� = sideslip angle; deg;

 = heading angle;

� = rudder angle; deg;

r = yaw rate: See Fig: 7:100:

a) Determine the transfer function from � to  and the characteristic roots of the uncon-
trolled ship.
b) Using complete state feedback of the form,

� = �K1� �K2r �K3( �  d);

where  d is the desired heading, determine values of K1, K2, and K3 that will place the closed-
loop roots at s = �0:2;�0:2� 0:2j.
c) Design a state estimator based on the measurement of  (obtained from a gyrocompass, for
example). Place the roots of the estimator error equation at s = �0:8 and �0:8� 0:8j.
d) Give the state equations and transfer function for the compensator Dc(s) in Fig. 7.101, and
plot its frequency response.
e) Draw the Bode plot for the closed-loop system, and compute the corresponding gain and
phase margins.
f) Compute the feed-forward gains for a reference input, and plot the step response of the system
to a change in heading of 5�.

Solution:

(a) With  as the measurement,

y =
�
0 0 1

� 24 �
r
 

35 = Hx:
The transfer function from � to  is (using Matlab�s ss2tf command),

 (s)

�(s)
= H(sI� F)�1G =

�0:0122(s+ 0:142)
s(s+ 0:326)(s+ 0:036)

:

The roots of the uncontrolled ship are the poles of the above transfer function:s = 0;�0:326;�0:036:
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Figure 7.100: View of ship from above for Problem 7.54.
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Figure 7.101: Ship control block diagram for Problem 7.54.

(b) De�ne K =
�
K1 K2 K3

�
and let � = �Kx. Then,

det[sI� F+GK] = det

24 s+ 0:0895 + 0:0145K1 0:286 + 0:0145K2 0:0145K3

0:0439� 0:0122K1 s+ 0:272� 0:0122K2 �0:0122K3

0 �1 s

35 ;
gives roots at s = �0:2;�0:2� j0:2, when,

K1 = 0:276; K2 = �19:22; K3 = �9:26:

This result can be veri�ed using Matlab�s place command.

(c) With L =
�
l1 l2 l3

�T
,

det[sI� F+ LH] = det

24 s+ 0:0895 0:286 l1
0:0439 s+ 0:272 l2
0 �1 s+ l3

35 ;
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gives roots at s = �0:8; : �0:8� j0:8, when

l1 = �19:09; l2 = 1:81; l3 = 2:04:

Again, this result can be veri�ed using Matlab�s place command.

(d) The compensator state equations are,

�
x̂ = Fx̂+Gu+ L(y �Hx̂) = (F�GK� LH)x̂+ Ly;
u = �Kx̂:

The compensator transfer function is given by (using the Matlab ss2tf command),

Dc(s) = �K(sI� F+GK+ LH)�1L = 58:96
s2 + 0:753s+ 0:161

s3 + 2:64s2 + 3:2s+ 1:05
:

(e) The Bode plot of the closed-loop system is shown on the next page. The Matlab command
Bode or Margin can be used to create this �gure. Note that when you �nd the Bode plot, the
gain and phase margins only make sense if you consider the transfer function:

G(s) = �Dc(s)
 (s)

�(s)
:

Since the margins on a Bode plot assume negative feedback, the negative sign incorporated
in Dc(s) must be removed. The gain and phase margins are Gain Margin = 6:15 db; Phase
Margin = 52:8�.



7087

­150

­100

­50

0

50

100
M

ag
ni

tu
de

 (d
B)

10
­3

10
­2

10
­1

10
0

10
1

10
2

­270

­225

­180

­135

­90

Ph
as

e 
(d

eg
)

Bode Diagram
Gm = 15.8 dB (at 1.42 rad/sec) ,  Pm = 52.8 deg (at 0.334 rad/sec)

Frequency   (rad/sec)

­150

­100

­50

0

50

100
M

ag
ni

tu
de

 (d
B)

10
­3

10
­2

10
­1

10
0

10
1

10
2

­270

­225

­180

­135

­90

Ph
as

e 
(d

eg
)

Problem 7.54: Bode plot of closed-loop system for ship control.

(f) Consider the determination of the feedforward gains Nx and Nu by,

�
Nx
Nu

�
=

�
F G
H J

��1 �
0
1

�
:

This gives Nu = 0, Nx =
�
0 0 1

�T
. Hence the control becomes,

� = K(Nx d � x̂) = KNx d �Kx̂:

The complete closed-loop system step response is shown on the next page. The Matlab
command step can be used to create this �gure.
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Problem 7.54: 5� step response of closed-loop system for ship control.

Problems and Solutions for Section 7.9: Introduction of the
Reference Input with the Estimator

55. NAs mentioned in footnote 11 in Section 7.9.2, a reasonable approach for selecting the feed-
forward gain in Eq. (7.205) is to choose �N such that when r and y are both unchanging, the
DC gain from r to u is the negative of the DC gain from y to u: Derive a formula for �N based
on this selection rule. Show that if the plant is type 1, this choice is the same as that given by
Eq. (7.205).

Solution:

The system equations with the feedforward gains included are,

�
x̂ = (F�GK� LH)x̂+ Ly +Mr;

u = �Kx̂+ �Nr:

To �nd the DC gain from y to u, we let,

x̂ = x̂0; r = 0; y = y0; u = u0:
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Then,

0 = (F�GK� LH)x̂0 + Ly0
u0 = �Kx̂0:

So that the DC gain from y to u is given by,

u0 = K(F�GK� LH)�1Ly0:

Similarly, to �nd the DC gain from r to u, we let,

x̂ = x̂0; y = 0; r = r0; u = u0:

Then,

0 = (F� LK� LH)x̂0 +Mr0;

u0 = �Kx̂0 + �Nr0:

So that the DC gain from r to u is given by,

u0 = (K(F�GK� LH)�1M + �N)r0:

From the footnote in the Servodesign section, we set the DC gain from r to u equal to the
negative of the DC gain from y to u,

�K(F�GK� LH)�1L = K(F�GK� LH)�1M + �N:

Therefore,
�N = �K(F�GK� LH)�1(L+M):

We can show, in general, if �N is chosen as the footnote implies, then the system DC gain is
unity for a type I plant. Consider the general closed-loop system block diagram shown below.
Assuming a Type I plant,

G(s) =
1

s
�G(s);

then the closed-loop DC gain is simply,

Y (0)

R(0)
= lim

s!0
�NDr

G(s)

1� �G(s)Dy

= lim
s!0

�NDr
G(0)

1� �G(0)Dy

= � �N Dr(0)

Dy(0)
:

So, if �NDr = �Dy, then the DC gain of the system is unity. The selection approach of �N
mentioned in the servodesign section is exactly the condition �NDr = �Dy. Hence, since Eq.
7.205 is a direct result of setting the DC gain to unity, then the above expression for �N , that
was derived from the footnote hint, is equivalent to Eq. 7.205.
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General closed-loop system block diagram for Problem 7.55.

Problems and Solutions for Section 7.10: Integral Control
and Robust Tracking

56. Assume that the linearized and time-scaled equation of motion for the ball-bearing levitation
device is �x�x = u+w. Here w is a constant bias due to the power ampli�er. Introduce integral
error control, and select three control gains K = [ K1 K2 K3 ] so that the closed-loop poles
are at �1 and �1 � j and the steady-state error to w and to a (step) position command will
be zero. Let y = x and the reference input r , yref be a constant. Draw a block diagram of
your design showing the locations of the feedback gains Ki. Assume that both _x and x can
be measured. Plot the response of the closed-loop system to a step command input and the
response to a step change in the bias input. Verify that the system is type 1. Use Matlab
(Simulink) software to simulate the system responses.

Solution:

The equations of motion are given by,

�x� x = u+ w;

_w = 0:

A realization of these equations is,�
_x
�x

�
=

�
0 1
1 0

� �
x
_x

�
+

�
0
1

�
u+

�
0
1

�
w;

y =
�
1 0

� � x
_x

�
:

In order to incorporate integral control, we augment the state vector with an integral state, xI ,
such that,

_xI = y � r:

With the augmented state vector, z = [xI x _x]T , the augmented state matrices become,

Fa =

24 0 1 0
0 0 1
0 1 0

35 ; Ga =

24 0
0
1

35 ; Ha =
�
0 1 0

�
:

The design of the state feedback vector, K, is now done using the above augmented state
matrices. For closed-loop poles of s = �1;�1� j,

det(sI� Fa +GaK) = 0;
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when,

K = [ K1 K2 K3 ] = [ 2 5 3 ]:

This result can be veri�ed using the Matlab place command.

The closed-loop system is given by,

_z = (Fa �GaK)z+Gaw +

24 �1
0
0

35 r;
y = Haz:

To show that the system is Type I, show that y = 0 for any constant w in the steady-state, i.e.,
_z = 0. For the closed-loop system we have,

24 0
0
0

35 =
24 0 1 0

0 0 1
�K1 1�K2 �K3

3524 z1
z2
z3

35+
24 0
0
1

35w:

This immediately gives z2 = 0 and y = z2 = 0. Thus, in steady-state y = 0 for any constant
w in the steady-state. The �gure below shows a simulation of the closed-loop system to a
commanded step r, at t = 0. At t = 8, a step in the constant bias w is applied. This �gure
was generated using the Matlab lsim command.
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Problem 7.56: Response of closed-loop system to a unit step input at t = 0 and step
disturbance at t = 8.

The simulation of the closed-loop system in Simulink is shown on the next page.
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57. Consider a system with state matrices,

F =

�
�2 1
0 �3

�
; G =

�
1
1

�
; H = [ 1 3 ]:

a) Use feedback of the form u(t) = �Kx(t) + �Nr(t), where �N is a nonzero scalar, to move the
poles to �3� 3j.
b) Choose �N so that if r is a constant, the system has zero steady-state error; that is y(1) = r.
c) Show that if F changes to F+ �F, where �F is an arbitrary 2� 2 matrix, then your choice of
�N in part (b) will no longer make y(1) = r. Therefore, the system is not robust under changes
to the system parameters in F.
d) The system steady-state error performance can be made robust by augmenting the system
with an integrator and using unity feedback; that is, by setting _xI = r� y, where xI is the state
of the integrator. To see this, �rst use state feedback of the form u = �Kx�K1xI so that the
poles of the augmented system are at �3;�2� j

p
3.

e) Show that the resulting system will yield y(1) = r no matter how the matrices F and G
are changed, as long as the closed-loop system remains stable.
f) For part (d), use Matlab (Simulink) software to plot the time response of the system to a
constant input. Draw Bode plots of the controller as well as the sensitivity function (S) and
the complementary sensitivity function (T ).
Solution:

(a) Using feedback of the form, u = �Kx+Nr; we have,

det(sI� F+GK) = (s+ 2 + k1)(s+ 3 + k2) + k1(1� k1) = s2 + 6s+ 18;

when K = [5 � 4]. This result can be veri�ed using the Matlab place command.
(b) We can �nd the desired value for N by setting the DC gain from r to y equal to unity. The
closed-loop system equations are,

_x = Fx+G(�Kx+Nr) = (F�GK)x+GNr;
y = Hx:

Therefore, the transfer function is,

D(s) = H(sI� F+GK)�1GN;

and the DC gain is simply,

D(0) = H(�F+GK)�1GN =
5

9
N = 1:

Hence, we choose N = 9
5 .

(c) Change F to (F + �F), and let the value of N that keeps the tracking error at zero be N
0
.

Then letting T
0
(s) be the transfer function associated with the perturbed system,

N
0�1 = T

0
(0) = �H(F+ �F�GK)�1G;

= �H[(F�GK)(I� (F�GK)�1�F)]�1G;
= �H(I� (F�GK)�1�F)�1(F�GK)�1G:
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For �F small,

(I� (F�GK)�1�F)�1 = I+ (F�GK)�1�F:

Hence,

N
0�1 = �H(F�GK)�1G| {z }

N�1

�H(F�GK)�1�F(F�GK)�1G:

And for arbitrary �F we arrive at,

N
0�1 6= N�1:

Therefore, small changes in the plant matrix F prevent the steady-state error from reaching
zero. The control system is not robust with respect to changes in F.

(d) Augmenting the system equations with an integrator state, xI , the state equation become,�
_x
_xI

�
=

�
F 0
�H 0

� �
x
xI

�
+

�
G
0

�
u+

�
0
1

�
r;

y = [H 0]

�
x
xI

�
:

or with z = [x xI ]T ,

_z = Faz+Gau+Grr;

y = Haz:

Using feedback of the form u = �Kx� kIxI = �Kaz, we have,

det(sI� Fa +GaKa) = 0 for s = �3;�2� j
p
3;

when Ka =
�
0:3 1:7 �2:1

�
. This result can be veri�ed using the Matlab place command.

(e) We can show that the closed-loop DC gain from r to y is independent of F,

y1 = T (0)r1 = [H 0]

�
�F+GK GkI

H 0

��1 �
0
1

�
r1

= [H 0]

�
� (F�GK)�1GkI [H(F�GK)�1GkI ]�1
� �

� �
0
1

�
r1

= [H(F�GK)�1GkI ][H(F�GK)�1Gk1]�1r1 = r1 independent of F;G;H.

(f) The simulation of the closed-loop system in Simulink is shown on the next page. The closed-
loop step response is shown next. The Bode plot of the controller, the sensitivity function (S),
as well as the complementary sensitivity function (T ), are also shown.
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Simulink simulation for Problem 7.57.
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Bode plot of the controller for Problem 7.57.
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Bode plot of the sensitivity function for roblem 7.57.

58. NConsider a servomechanism for following the data track on a computer-disk memory system.
Because of various unavoidable mechanical imperfections, the data track is not exactly a centered
circle, and thus the radial servo must follow a sinusoidal input of radian frequency !0 (the spin
rate of the disk). The state matrices for a linearized model of such a system are

F =

�
0 1
0 �1

�
; G =

�
0
1

�
; H = [ 1 0 ]:

The sinusoidal reference input satis�es �r = �!20r.
a) Let !0 = 1, and place the poles of the error system for an internal model design at,

�c(s) = (s+ 2� j2)(s+ 1� 1j);

and the pole of the reduced-order estimator at

�e(s) = (s+ 6):

b) Draw a block diagram of the system, and clearly show the presence of the oscillator with
frequency !0 (the internal model) in the controller. Also verify the presence of the blocking
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Figure 7.102: Bode plot of the complementary sensitivity function for Problem 7.57.
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zeros at �j!0.
c) Use Matlab (Simulink) software to plot the time response of the system to a sinusoidal input
at frequency !0 = 1.
d) Draw a Bode plot to show how this system will respond to sinusoidal inputs at frequencies
di¤erent from but near !0.

Solution:

(a) The compensator design consists of two parts: a feedback design using an internal model
approach, and a reduced-order estimator. Let x be the plant state vector where,

_x = Fx+Gu:

Since the reference input satis�es �r = �!20r, we can write out the error-state equations (using
e = y � r) as,

_z = Az+B�;

with,

z =

2664
e
_e
�
_�

3775 ; A =

2664
0 1 0 0
�1 0 1 3
0 0 0 1
0 0 0 �1

3775 ; B =
2664
0
0
0
1

3775 :
With � = �Kz, we can �nd K from pole placement. In this case,

det(sI�A+BK) = 0:

when s = �2� j2;�1� j1, for,

K = [K2 K1 K01 K02]

=
�
�1: 18 17 5

�
:

This result can be veri�ed using the Matlab place command.

To design the estimator, consider the plant matrices given in the problem,

F =

�
Faa Fab
Fba Fbb

�
=

�
0 1
0 �1

�
;G =

�
Ga
Gb

�
=

�
0
1

�
:

So that the equation for the estimate of only x2 is,

x̂b = x̂c + Ly;
�
x̂c = �(L+ 1)x̂b + u;

where the value for L is chosen from the estimate error characteristic equation

det(s� (Fbb � LFab)) = s+ 1 + L:

For an estimator pole at s = �6, we have L = 5.
(b) The block diagram for this compensator is given below. Note that the internal model of
the oscillator is plainly seen.
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Problem 7.58: Compensator structure for robust following of sinusoid using an internal model
controller and reduced-order estimator.

To see the �blocking zeros�, we compute the transfer function from r to e. The system equations
from r to e are,

24 _x
_xI
:
~xb

35 =

24 F�GK01 GCc GK02

BcH Ac 0
0 0 �6

3524 x
xI
~xb

35+
24 G
�Bc
0

35 r;
e =

�
H 0 0

� 24 x
xI
~xb

35� r:

where,

Ac =

�
0 1
�!20 0

�
; Bc =

�
�K1

�K2

�
;

Cc =
�
1 0

�
:

The transmission zeros of this system realization are at s = �6;�3 � j2:645;�j with the last
two as the blocking zeros. The zero locations are computed using the Matlab tzero command.

(c) The time response of the closed-loop system subjected to a sinusoid at a frequency of !0 is
shown below using the Matlab lsim command. The simulation of the closed-loop system in
Simulink is shown on the next page.
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Problem 7.58: Time history of closed-loop system with a sinusoidial input.
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Problem 7.58: Bode plot of closed-loop system for sinusoidal following.

(d) A Bode plot of the compensated system is given above.

59. NCompute the controller transfer function (from Y (s) to U(s)) in Example 7.38. What is the
prominent feature of the controller that allows tracking and disturbance rejection?

Solution:

The related equations from the Text are,

�
�̂ = l1(e� x̂);
�
x̂ = �3x̂+ �̂+ u+ l2(e� x̂);
u = �Kx̂� �̂:

To �nd the transfer function from Y (s) to U(s), we re-write the equations as,24 �
�̂
�
x̂

35 =

�
0 �l1
0 �3�K � l2

� �
�̂
x̂

�
+

�
l1
l2

�
y;

u =
�
�1 �K

� � �̂
x̂

�
:
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The controller transfer function is,

U(s)

Y (s)
=
�(l1 +Kl2)s� (3l1 +Kl1)

s(s+ 3 +K + l2)
=
�279(s+ 4:0323)

s(s+ 32)
;

and shows the presence of an integrator !

60. NConsider the pendulum problem with control torque Tc and disturbance torque Td:

�� + 4� = Tc + Td;

(here g=l = 4.) Assume that there is a potentiometer at the pin that measures the output angle
�, but with a constant unknown bias b. Thus the measurement equation is y = � + b.
a) Take the �augmented�state vector to be24 �

_�
w

35 ;
where w is the input-equivalent bias. Write the system equations in state-space form. Give
values for the matrices F, G, and H:
b) Using state-variable methods, show that the characteristic equation of the model is s(s2+4) =
0.
c) Show that w is observable if we assume that y = �, and write the estimator equations for264 �̂

_̂
�
ŵ

375 :
Pick estimator gains [ l1 l2 l3 ]

T to place all the roots of the estimator-error characteristic
equation at �10.
d) Using full-state feedback of the estimated (controllable) state-variables, derive a control law
to place the closed-loop poles at �2� 2j.
e) Draw a block diagram of the complete closed-loop system (estimator, plant, and controller)
using integrator blocks.
f) Introduce the estimated bias into the control so as to yield zero steady-state error to the
output bias b. Demonstrate the performance of your design by plotting the response of the
system to a step change in b; that is, b changes from 0 to some constant value.

Solution:

(a) The system with equivalent input disturbance which replaces the actual disturbance, b, with
the equivalent disturbance w at the control input is,

�� = �4� + Tc + w + Td;
_w = 0;

y = �:
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In state-space form,

24 _�
��
_w

35 =

24 0 1 0
�4 0 1
0 0 0

3524 �
_�
w

35+
24 0
1
0

35Tc +
24 0
1
0

35Td;
y =

�
1 0 0

� 24 �
_�
w

35 ;

(b)

det(sI� F) = det

24 s �1 0
4 s �1
0 0 s

35 = s(s2 + 4) = 0:

(c) Forming the observability matrix, we have,

O =

24 H
HF
HF2

35 =
24 1 0 0

0 1 0
�4 0 1

35 :

Clearly, det(O)= 1 6= 0 so that w is observable. The estimator gains can be determined by
solving,

det(sI� F+ LH) = (s+ 10)3 = s3 + 30s2 + 300s+ 1000;

We �nd that L = [ 30 296 1000 ]T . This result can be veri�ed using Matlab�s place
command.

(d) The bias state variable w is not controllable, we cannot move the pole at 0. So state feedback
should place the poles at �2� 2j and 0. Equating,

det(sI� F+GK) = s(s2 + 4s+ 8);

we �nd that K = [ 4 4 0 ]. (Note: the zero was chosen arbitrarily).

(e) The equations shown in the �gure are,

_x = Fx+GTc +GTd;
�
x̂ = Faugx̂+GaugTc + L(y �Hx̂);
y = Hx;

Tc = �Kx̂+ r:
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Block diagram for Problem 7.60(e).

(f) The performance of the system is shown to a step change in the bias b from 0 to 1 at t = 0
sec and then another step change from 1 to 0.2 at t = 5 sec.
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Problem 7.60: Step change in bias.

Problems and Solutions for Section 7.13: Design for Sys-
tems with Pure Time Delay

61. NConsider the system with the transfer function e�TsG(s), where,

G(s) =
1

s(s+ 1)(s+ 2)
:

The Smith compensator for this system is given by

D0
c(s) =

Dc

1 + (1� e�sT )G(s)Dc
:

Plot the frequency response of the compensator for T = 5 and Dc = 1, and draw a Bode plot
that shows the gain and phase margins of the system.2

Solution:

This problem can be solved using a few di¤erent approaches. A computer tool such as Matlab
(see the Matlab command pade) can be used to calculate the exact magnitude and phase of

2This problem was given by Åström (1977).
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D
0

c(s), or a pade approximation can be made for the e
�sT terms,

e�sT � 2� sT + (�sT )2=2! + (�sT )3=3! + : : :
2 + sT + (sT )2=2! + (sT )3=3! + : : :

:

We will show both the exact calculation and Bode plots using a fourth-order pade approximation.
The Bode plot of the compensator

Dc(s) =
1

1 + [1� e�sT ]G(s) ;

appears in the �gures, with,

G(s) =
1

s(s+ 1)(s+ 2)
; and T = 5:

The Bode plot of the closed-loop system is also shown.
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Problem 7.61 Bode plot of closed-loop system: Pade approximation.

Remark : Note that the Smith compensator, D
0

c(s), is structured such that the closed-loop
transfer function is,

T (s) = G(s)

1 +G(s)Dc(s)
e�Ts:



Chapter 8

Digital Control

Problems and Solutions for Section 8.2
1. The z-transform of a discrete-time �lter h(k) at a 1Hz sample rate is

H(z) =
1 + (1=2)z�1

[1� (1=2)z�1][1 + (1=3)z�1] :

(a) Let u(k) and y(k) be the discrete input and output of this �lter. Find
a di¤erence equation relating u(k) and y(k).

(b) Find the natural frequency and damping coe¢ cient of the �lter�s
poles

(c) Is the �lter stable?
Solution:

(a) Find a di¤erence equation :

H(z) =
Y (z)

U(z)
=

1 + (1=2) z�1

[1� (1=2)z�1] [1 + (1=3)z�1]

=) Y (z)� 1
6
z�1Y (z)� 1

6
z�2y(z) = U(z) +

1

2
z�1U(z)

=) y(k)� 1
6
y(k � 1)� 1

6
y(k � 2) = u(k) + 1

2
u(k � 1)

(b) Two poles at z = 1=2 and z = �1=3 in z-plane.

z = esT =) s =
�0:693
T

and s =
�1:10 + 3:14j

T
in s-plane,

where T is the sampling period. Since the sample rate is 1 Hz, T = 1
sec.

For z =
1

2
; !n =

0:693

T
= 0:693 rad/sec, � = 1:0

For z =
�1
3
; !n =

3:33

T
= 3:33 rad/sec, � = 0:330

8001
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(c) Yes, both poles are inside the unit circle.

2. Use the z-transform to solve the di¤erence equation

y(k)� 3y(k � 1) + 2y(k � 2) = 2u(k � 1)� 2u(k � 2);

where

u(k) =

�
k; k � 0;
0; k < 0;

y(k) = 0; k < 0:

Solution:

Y (z)

U(z)
=

2(z�1 � z�2)
1� 3z�1 � 2z�2 =

2

z � 2

u(k) =

�
k k � 0
0 k < 0

�
=) U(z) =

z

(z � 1)2

Y (z) =
2

z � 2 �
z

(z � 1)2 =
2z

z � 2 �
2z

z � 1 �
2z

(z � 1)2

Taking the inverse z-transform from Table 8.1,

y(k) = 2(2k � 1� k) (k � 0)

3. The one-sided z-transform is de�ned as

F (z) =
1X
0

f(k)z�k:

(a) Show that the one-sided transform of f(k + 1) is Zff(k + 1)g =
zF (z)� zf(0).

(b) Use the one-sided transform to solve for the transforms of the Fi-
bonacci numbers generated by the di¤erence equation u(k + 2) =
u(k + 1) + u(k). Let u(0) = u(1) = 1. [Hint: You will need to �nd
a general expression for the transform of f(k + 2) in terms of the
transform of f(k)].

(c) Compute the pole locations of the transform of the Fibonacci num-
bers.

(d) Compute the inverse transform of the Fibonacci numbers.

(e) Show that, if u(k) represents the kth Fibonacci number, then the
ratio u(k + 1)=u(k) will approach (1 +

p
5)=2. This is the golden

ratio valued so highly by the Greeks.
Solution:
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(a)

Z ff()k + 1)g =
1P
k=0

f(k + 1)z�1 =
1P
j=1

f(j)z1(j�1); k + 1 = j

= z
1P
0
f(j)z�1 � zf(0)

= zF (z)� zf(0)

(b)

u(k + 2)� u(k + 1)� u(k) = 0

We have :

Z ff(k + 2)g = z2F (z)� z2f(0)� zf(1)

Taking the z-transform,

z2U(z)� z2u(0)� zu(1)� [zU(z)� zu(0)]� U(z) = 0

=) (z2 � z � 1)U(z) = (z2 � z)u(0) + zu(1)

Since u(0) = u(1) = 1, we have :

U(z) =
z2

z2 � z � 1

(c) The poles are at :

z =
1�
p
5

2
= 1:618; �0:618 , �1; �2

(d) (i) By long division :

1 + z�1 + 2z�2 + 3z�3 + � � �
1� z�1 � z�2) 1

1� z�1 � z�2

z�1 + z�2

z�1 � z�2 � z�3

2z�2 + z�3

2z�2 � 2z�3 � 2z�4

3z�3 + 2z�4

� � �

u(k) = 1; 1; 2; 3; 5; � � �
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(ii) By partial fraction expansion :

U(z) =
1

1� z�1 � z�2 =
1

(1� �1z�1)(1� �2z�1)

=

�
�1

�1 � �2

�
1� �1z�1

+

�
�2

�2 � �1

�
1� �2z�1

u(k) =
�1

�1 � �2
�k1 +

�2
�2 � �1

�k2

=

 
5 +
p
5

10

! 
1 +
p
5

2

!k
+

 
5�
p
5

10

! 
1�
p
5

2

!k
(e) Since j�2j < 1, for large k the second term is �= 0, and the ratio

of u(k + 1) to u(k) is �1 = (1 +
p
5)=2.

4. Prove the seven properties of the s-plane-to-z-plane mapping listed in
Section 8.2.3.

Solution

(a) The stability boundary in s-plane is :

s = j!; for all ! between [�1;1]

By z = esT , this boundary is mapped to :

z = ej!T = cos!T + j sin!T

=) jzj = j cos!T + j sin!T j

Thus, the unit circle in z-plane represents the stability boundary.

(b) In the small vicinity around s = 0 in the s-plane,

s = �� � j!d

where � � !s =
2�
T and !d � !s =

2�
T .

By z = esT , corresponding locations relative to 1 in the z-plane are :

z � 1 = e(���j!d)T � 1
= e��T (cos!dT � j sin!dT )� 1

�=
�
1 +

(��T )
1!

+
(��T )2
2!

+ :::

�
(1� j!dT )� 1

= 1� �T � j!dT � j�T!dT � 1
�= ��T � j!dT

Thus, is approximately mapped to z � 1 = ��T � j!dT . The small
vicinity around z = +1 in the z-plane is identical to the vicinity
around s = 0 in the s-plane by a factor of T = 2�

!s
.
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(c) An arbitrary location in the s-plane is represented by :

s = ��!n + j!n
q
1� �2

= xs(!n) + jys(!n)

where !n is in rad/sec and is nondimensional. Thus, the s-plane
locations give response information in terms of frequency.

By z = esT = es
2�
!s , the corresponding location in the z-plane is :

z = e�2�
!n
!s cos

�
2�

q
1� �2!n

!s

�
+ je�2�

!n
!s sin

�
2�

q
1� �2!n

!s

�
= xz

�
!n
!s

�
+ jyz

�
!n
!s

�
Since !n

!s
is nondimensional, the z-plane locations give response in-

formation normalized to the sample rate.

(d) Locations in the s-plane, s = �� � j!d, are mapped to z-plane loca-
tions :

z = e��T (cos!dT � j sin!dT )

If z is on the negative real axis, we need :

cos!dT < 0; sin!dT = 0

=) !dT = 2�n+ �; n = 0; 1; 2; :::

=) !d = (2n+ 1)
!s
2
; n = 0; 1; 2; :::

Indeed, if !d = (2m+ 1)!s2 ; n = 0; 1; 2; :::;

z = �e��T =) negative real axis

Thus, the negative real z-axis represents a horizontal line with a
damped frequency :

!d = (2n+ 1)
!s
2
; n = 0; 1; 2; :::

(e) An arbitrary vertical line in the left half of the s-plane is represented
by :

s = �� � j!d; � > 0; for all !d between [�1;1]

By z = esT , the vertical line is mapped to :

z = �e��T e�j!dT = �e��T (cos!dT � j sin!dT )

=) jzj = r = j � e��T j = constant < 1
\z = 0 �! 2� as !d = 2n� �! (2n+ 1)�

Thus, vertical lines in the left half of the s-plane map into circles
within the unit circle of the z-plane.
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(f) An arbitrary horizontal line in the s-plane is represented by :

s = �� � j!d; for � between [�1;1]; at a given !d

By z = esT , the horizontal line is mapped to :

z = �e��T e�j!dT = �e��T (cos!dT � j sin!dT )

=) \z = tan�1
�
e��T sin!dT

e��T cos!dT

�
= !dT = constant

jzj = r = 0 �!1 as � =1 �! �1

Thus, a horizontal line in the s-plane maps into radial lines in the
z-plane.

(g) Let s-plane locations s1 and s2 be :

s1 = �� � j!d
s2 = �� � j (!d +m!s) ; m = 1; 2; 3; :::

where !d is between
h
� 2�
!s
; !s2

i
; which is called the �primary strip�.

By z = esT = es
2�
!s , these s-plane locations are mapped to z-plane

locations :

z1 = e��
2�
!s

�
cos!d

2�

!s
+ j sin!d

2�

!s

�
z2 = e��

2�
!s

�
cos
�
!d + 2m

!s
2

� 2�
!s
+ j sin

�
!d + 2m

!s
2

� 2�
!s

�
= e��

2�
!s

�
cos

�
!d
2�

!s

�
cos 2m� � sin

�
!d
2�

!s

�
sin 2m� + j sin

�
!d
2�

!s

�
cos 2m� + :::

�
= e��

2�
!s

�
cos

�
!d
2�

!s

�
+ j sin

�
!d
2�

!s

��
= z1

Thus, frequencies greater than
!s
2
appear in the z-plane on top of

corresponding lower frequencies. Physically, this means that fre-
quencies sampled faster than

!s
2
will appear in the samples to be at

a much lower frequency. This is called �aliasing�.
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Problems and Solutions for Section 8.3
5. A unity feedback system has an open-loop transfer function given by

G(s) =
250

s[(s=10) + 1]
:

The following lag compensator added in series with the plant yields a
phase margin of 50�:

D(s) =
s=1:25 + 1

50s+ 1
:

Using the matched pole-zero approximation, determine an equivalent dig-
ital realization of this compensator.

Solution:

(a) For the compensated closed-loop system,
Dc(s)G(s)

1 +Dc(s)G(s)
, the band-

width is approximately 3 rad/sec. A very safe sample rate would
be faster than !n by a factor of 20. So choose a sample rate, !s,
to be :

!s = 20� 3 = 60 rad/sec �= 10 Hz
So the sample rate is T = 0:1 sec.
Since

Dc(s) =
1 + s=1:25

1 + s=0:02
= 0:016

s+ 1:25

s+ 0:02
;

an equivalent Dc(z) is found for the matched pole-zero method
by using method summarized in Section 8.3.1. Step 1 maps the
pole and zero, while Eq. (8.22) shows how to compute the gain.
The result is,

Dc(s) = 0:0170
z � 0:8825
z � 0:9980 :

6. The following transfer function is a lead network designed to add about
60� of phase at !1 = 3 rad=sec:

H(s) =
s+ 1

0:1s+ 1
:

(a) Assume a sampling period of T = 0:25 sec, and compute and plot
in the z-plane the pole and zero locations of the digital implementa-
tions of H(s) obtained using (1) Tustin�s method and (2) pole-zero
mapping. For each case, compute the amount of phase lead provided
by the network at z1 = ej!1T

(b) Using a log-log scale for the frequency range ! = 0:1 to ! = 100 rad/sec,
plot the magnitude Bode plots for each of the equivalent digital sys-
tems you found in part (a), and compare with H(s). (Hint: Magni-
tude Bode plots are given by jH(z)j = jH(ej!T )j.)
Solution:
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(a)

H(s) =
s+ 1

0:1s+ 1
; \H(j!)j!=3 = 54:87�

FromMatlab, [mag,phasew1] = bode([1 1],[.1 1],3) yields phasew1
= 54.87.
(1) Tustin�s method, analytically :

H(z) = H(s)j
s= 2

T
1�z�1
1+z�1

=
(2 + T ) + (T � 2)z�1

(0:2 + T ) + (T � 0:2)z�1

= 5
z � 0:7778
z + 0:1111

or, via Matlab:

sysC = tf([1 1],[.1 1]);

sysDTust = c2d(sysC,T,�tustin�)

Phase lead at !1 = 3 : \H(ej!1T ) = 54:90�; which is most
easily obtained by Matlab

[mag,phasew1] = bode(sysDTust,3)

The pole-zero plot is:

(2) Matched pole-zero method, analytically :

H(z) = K
z � e�1T
z � e�10T = 4:150

z � 0:7788
z � 0:0821

K = 4:150 =) jH(z)jz=1 = jH(s)js=0

or, alternatively via Matlab

sysDmpz = c2d(sysC,T,�matched�)

will produce the same result.
Phase lead at !1 = 3 : \H(ej!1T ) = 47:58� is obtained from
[mag,phasew1] = bode(sysDmpz,3). The pole-zero plot is below.
Note how similar the two pole-zero plots are.
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(b) The Bode plots match fairly well until the frequency approaches
the half sample frequency (�= 12 rad/sec), at which time the
curves diverge.
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7. The following transfer function is a lag network designed to introduce a
gain attenuation of 10(�20dB) at !1 = 3 rad/sec:

H(s) =
10s+ 1

100s+ 1
:

(a) Assume a sampling period of T = 0:25 sec, and compute and plot
in the z-plane the pole and zero locations of the digital implementa-
tions of H(s) obtained using (1) Tustin�s method and (2) pole-zero
mapping. For each case, compute the amount of gain attenuation
provided by the network at z1 = ej!1T .
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(b) For each of the equivalent digital systems in part (a), plot the Bode
magnitude curves over the frequency range ! = 0:01 to 10 rad/sec.

Solution:

(a) First, we�ll compute the attenuation of the continuous system,

H(s) =
10s+ 1

100s+ 1
; jH(j!)j!=3 = 0:1001 (�20 db)

(1) Tustin�s method :

H(z) = H(s)j
s= 2

T
1�z�1
1+z�1

=
(20 + T ) + (T � 20)z�1
(200 + T ) + (T � 200)z�1

= 0:10112
z � 0:97531
z + 0:99750

or, use c2d as shown for problem 5.
Gain attenuation at !1 = 3 : jH(ej!1T )j = 0:1000 (�20 db);
most easily computed from: [mag,phase]=bode(sysDTust,T,3).
(2) Matched pole-zero method :

H(z) = K
z � e�0:1T
z � e�0:01T = 0:10113

z � 0:97531
z � 0:99750

K = 0:10113 � jH(z)jz=1 = jH(s)js=0

Gain attenuation at !1 = 3 : jH(ej!1T )j = 0:1001 (�20 db);
most easily computed from: [mag,phase]=bode(sysDmpz,T,3).

In this case, the sampling rate is so fast compared to the break
frequencies that both methods give essentially the same equiva-
lent, and both have a gain attenuation of a factor of 10 at !1 = 3
rad/sec.

(b) All three are essentially the same and indistinguishable on the
plot because the range of interest is below the half sample fre-
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quency (= 12 rad/sec).
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Figure 8.20: Control system for Problem 8

Problems and Solutions for Section 8.5
8. For the system shown in Fig. 8.20, �nd values for K, TD, and TI so that

the closed-loop poles satisfy � > 0:5 and !n > 1 rad/sec. Discretize
the PID controller using:

(a) Tustin�s method

(b) matched pole-zero method

Use Matlab to simulate the step response of each of these digital imple-
mentations for sample times of T = 1, 0.1, and 0.01 sec.

Solution

(a) Continuous PID-controller design
Plant transfer function :

G(s) =
1

s(s+ 1)

Continuous PID controller :

D(s) = K

�
1 + TDs+

1

TIs

�
There is no requirement that there be an integral term, so �rst let�s
look at a design without the integral term. To understand the di¢ -
culty, a sketch of the root locus with only proportional control (TD
=0) shows that K = 1 yields roots at s = �0:5� 0:86j which means
that ! = 1 rad/sec and � = 0:5: If we lower or raise the gain, one
of the specs will not be met. So the design speci�cations are mar-
ginally met with proportional control only. It would certainly be
useful to add a little derivative control in order to pull the locus to
the left and provide some margin above the specs. One approach
is to try some values of TD and iterate with rlocus in Matlab until
a comfortable margin is reached on the two specs. Generally, it is
also a good design feature to have some integral control in order to
reduce steady state errors, so it would make sense to include the inte-
gral term. This term can also be designed iteratively by introducing
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a small amount (large TI) and adjusting the other gains as needed
to meet the specs. Clearly, this problem is underdetermined and
there are many ways to meet the specs, a typical situation in control
system design.

Another approach for those more mathematically inclined is to eval-
uate the characteristic equation :

1 +D(s)G(s) = 1 +K
s+ TDs

2 + 1
TI

s

1

s(s+ 1)
= 0

=) s3 + (1 +KTD)s
2 +KP s+

K

TI
= 0

Speci�cation :

!n > 1 rad/sec, � > 0:5

Choose the desired dominant closed-loop poles to exceed the specs,
a reasonable choice is :

s = �0:8� j =) ! = 1:28 > 1; � = 0:625 > 0:5

Evaluate the characteristic equation at s = �0:8 + j :�
1:888� 0:36(1 +KTD)� 0:8KP +

K

TD

�
+f0:92�1:6(1+KTD)+Kgj = 0

so the real and complex terms must each equal zero. We somewhat
arbitrarily select TI = 10:0 , which will provide a fairly low gain on
the integral term. Evaluating the expression above yields the K and
TD: So we have:

K = 1:817; TD = 0:3912; TI = 10:0

Re-arranging some, we have the continuous PID controller transfer
function:

D(s) =
KTD(s+ �)(s+ �)

s

where

� =
1

2TD
+

1

2TD

r
1� 4TD

TI

� =
1

2TD
� 1

2TD

r
1� 4TD

TI
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(b) Discrete PID controller by Tustin�s method can be obtained analyt-
ically as below or by using c2d in Matlab :

D(z) = D(s)j
s= 2

T
1�z�1
1+z�1

=

K

�
2
T
1�z�1
1+z�1 + TD

�
2
T
1�z�1
1+z�1

�2
+ 1

TI

�
2
T
1�z�1
1+z�1

=

�
K +KTD

2
T +

KT
2TI

�
+
�
�2KTD 2

T + 2
KT
2TI

�
z�1 +

�
�K +KTD

2
T +

KT
2TI

�
z�1

1� z�2

=

8><>:
3:3300�2:662z�1�0:305z�2

1�z�2 ; T = 1
16:042�28:414z�1+12:408z�2

1�z�2 T = 0:1
143:980�284:322z�1+140:346z�2

1�z�2 T = 0:01

9>=>;
(c) For the Matched Pole-zero approximation, note there is one more

zero than pole, hence we need to add a pole at z = �1,

D(z) = Kd
(z � e��T )(z � e��T )

(z + 1)(z � 1)

There is no DC gain for this transfer function, so we can either match
the Kv of D(z) with that of D(s) or match the gain at some other
frequency. A good choice would be to match the gains at s = j!n
for example. (!n is the closed-loop natural frequency.) Carrying
this out,

D(s)js=j!n = KTD

�
1

TD
+

�
!n �

1

TITD!n

�
j

�

jD(s)js=j!n j = KTD

s�
1

TD

�2
+

�
!n �

1

TITD!n

�2

D(z)jz=ej!nT = Kd
A+Bj

fcos(2!nT )� 1g2 + fsin(2!nT )g2

jD(z)jz=ej!nT j = Kd

p
A2 +B2

2 + 2 cos(2!nT )

where

A =
n
cos(2!nT )�

�
e��T + e��T

�
cos(!nT ) + e

�(�+�)T
o
fcos(2!nT )� 1g

+
�
sin(2!nT )� (e��T + e��T ) sin(!nT )

	
sin(2!nT )

B =
n
cos(2!nT )�

�
e��T + e��T

�
cos(!nT ) + e

�(�+�)T
o
sin(2!nT )

+
�
sin(2!nT )� (e��T + e��T ) sin(!nT )

	
fcos(2!nT )� 1g
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jD(s)js=j!n j = jD(z)jz=ej!nT j

=) Kd = KTD

s�
1

TD

�2
+

�
!n �

1

TITD!n

�2
2 + 2 cos(2!nT )p

A2 +B2

Thus,

D(z) = Kd

1�
�
e��T + e��T

�
z�1 + e�(�+�)T z�2

1� z�2

=

8><>:
3:339�3:349z�1�0:263z�2

1�z�2 ; T = 1
16:092�28:518z�1+12:462z�2

1�z�2 T = 0:1
143:985�284:333z�1+140:351z�2

1�z�2 T = 0:01

9>=>;

Step responses (T = 1; T = 0:1; T = 0:01) :

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

time (sec)

y

Step Response (T=1)

­ ­ ­ MPZ

­ ­ ­ Tustin

____ Continuous
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0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

time (sec)

y

Step Response (T=0.1)

­ ­ ­ tustin and MPZ

______ continuous

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

time (sec)

y

Step Response (T=0.01)

­ ­ ­ Tustin and MPZ

______ Continuous
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Figure 8.21: Control system for Problem 8.8

Problems and Solutions for Section 8.6
9. Consider the system con�guration shown in Fig. 8.21, where

G(s) =
40(s+ 2)

(s+ 10)(s2 � 1:4) :

(a) Find the transfer function G(z) for T = 1 assuming the system is
preceded by a ZOH.

(b) Use Matlab to draw the root locus of the system with respect to
K.

(c) What is the range of K for which the closed-loop system is stable?

(d) Compare your results of part (c) to the case where an analog con-
troller is used (that is, where the sampling switch is always closed).
Which system has a larger allowable value of K?

(e) Use Matlab to compute the step response of both the continuous
and discrete systems with K chosen to yield a damping factor of
� = 0:5 for the continuous case.
Solution

(a) Using partial fraction expansion along with Table 8.1,

G(z) =
z � 1
z
Z
�
G(s)

s

�
=
z � 1
z
Z
�

40(s+ 2)

s(s+ 10)(s2 � 1:4)

�
=

z � 1
z
Z
�
40

�
�0:1429

s
+
0:0081

s+ 10
+

0:0331

s+
p
1:4

+
0:1017

s�
p
1:4

��
=

z � 1
z
Z
�
40

�
�0:1429 z

z � 1 + 0:0081
z

z � e�10

+0:0331
z

z � e�
p
1:4
+ 0:1017

z

z � e
p
1:4

��
=

7:967z�1 + 1:335z�2 � 0:3245z�3
1� 3:571z�1 + 1:000z�2 � 0:00004540z�3

Alternately, we could compute the same result using c2d in Matlab
with G(s).

(b) The z-plane root locus is shown.
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(c) A portion of the locus is outside the unit circle for any value
of K; therefore, the closed-loop system for the discrete case is
unstable for all K.

(d) The s-plane root locus is shown. The closed-loop system is stable
for K > 0:175. The analog case has a larger allowable K.

(e) Since � = 0:5 must be achieved, an analytical approach would
be to let a desired closed-loop pole be :

sd = � +
p
3�j

Evaluate the continuous characteristic equation at sd :�
1 +

40K(s+ 2)

s(s+ 10)(s2 � 1:4)

�
js=�+p3�j = 0
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and �nd that a cubic results, i.e., there are three places on the
locus where � = 0:5:

=) (�8�3 � 20�2 + 40K� � 1:4� + 80K � 14)

+(34:641�2 + 40
p
3K � 1:4

p
3)j = 0

=) � =

24 �3:7732�0:6857
�0:5411

35 ; K =

24 1:9216
0:3778
0:3056

35
=) s =

24 �3:7732� 6:5354j�0:6857� 1:1876j
�0:5411� 0:9373j

35
=) !n =

24 7:5456
1:3713
1:0823

35 ; � = 0:5

Any of these gains yield a damping factor of � = 0:5 for the
continuous case; however, we will use the lowest value of K.
Alternatively, we could use rloc�nd from Matlab to determine
K at the desired � = 0:5.
Step responses for K = 0:3056 :

0 2 4 6 8
­ 5

0

5

1 0

C l o s e d ­ L o o p   S t e p   R e s p o n s e   ( K = 0 . 3 0 5 6 )

T i m e   ( s e c )

y

D i s c r e t e

C o n t i n u o u s

As expected from the root loci, the discrete case is unstable for
this case of quite slow sampling. The z-plane / s-plane root
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loci with closed-loop poles for 1:9216, 0:3778, 0:3056 marked are
shown below:

10. Single-axis Satellite Attitude Control: Satellites often require attitude con-
trol for proper orientation of antennas and sensors with respect to Earth.
Figure 2.6 shows a communication satellite with a three-axis attitude-
control system. To gain insight into the three-axis problem we often con-
sider one axis at a time. Figure 8.23 depicts this case where motion is
only allowed about an axis perpendicular to the page. The equations of
motion of the system are given by

I�� =MC +MD;

where



8021

Figure 8.22: Satellite control schematic for Problem 10

I = moment of inertia of the satellite about its mass center;

MC =control torque applied by the thrusters;

MD =disturbance torques;

� =angle of the satellite axis with respect to an inertial reference with no

angular acceleration:

We normalize the equations of motion by de�ning

u =
MC

I
; wd =

MD

I
;

and obtain
�� = u+ wd:

Taking the Laplace transform yields

�(s) =
1

s2
[u(s) + wd(s)];

which with no disturbance becomes

�(s)

u(s)
=
1

s2
= G1(s):

In the discrete case where u is applied through a ZOH, we can use the
methods described in this chapter to obtain the discrete transfer function

G1(z) =
�(z)

u(z)
=
T 2

2

�
z + 1

(z � 1)2

�
:

(a) Sketch the root locus of this system by hand assuming proportional
control.
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(b) Draw the root locus using Matlab to verify the hand sketch.

(c) Add a discrete velocity feedback to your controller so that the dom-
inant poles correspond to � = 0:5 and !n = 3�=(10T ).

(d) What is the feedback gain if T = 1 sec? If T = 2 sec.

(e) Plot the closed-loop step response and the associated control time
history for T = 1 sec.

Solution

(a) The hand sketch will show that the loci branches depart vertically
from z = 1; therefore, the system is marginally stable or unstable
for any value of gain.

(b) The Matlab version below con�rms the situation.

G1(z) =
T 2

2

(z + 1)

(z � 1)2 = K0
(z + 1)

(z � 1)2

(c) To obtain the desired damping and frequency, Fig. 8.4 shows
that a root locus branch should go through the desired poles at
z = 0:44 � 0:44j: After some trial and error, you can �nd that
this can be accomplished with the lead compensation :

D(z) = K
(z � 0:63)
(z + 0:44)

The speci�c value of K that yields the closed-loop poles are at :

z = 0:44� 0:44j; �0:113

is K = 0:692
K0

: The second-order pair give :

!n =
0:917

T
rad/sec

� = 0:519
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which is close enough to the desired speci�cations. The root
locus for the compensated design is:

(d)

K =
0:692
T 2

2

=

�
1:383 for T = 1 sec
0:3458 for T = 2 sec

�
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(e) Closed-loop step response :

0 2 4 6 8 1 0 1 2 1 4
0

0 . 5

1

1 . 5

C l o s e d ­ L o o p   S t e p   R e s p o n s e   ( T = 1 s )

T i m e   ( s e c )

t
h
e
t
a

0 2 4 6 8 1 0 1 2 1 4
­ 1 . 5

­ 1

­ 0 . 5

0

0 . 5

1

1 . 5
T i m e   H i s t o r y   o f   C o n t r o l   E f f o r t   ( T = 1 s )

T i m e   ( s e c )

u

11. It is possible to suspend a mass of magnetic material by means of an
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Figure 8.23: Schematic of magnetic levitation device for Problems11

electromagnet whose current is controlled by the position of the mass
(Woodson and Melcher, 1968). The schematic of a possible setup is shown
in Fig. 8.23, and a photo of a working system at Stanford University is
shown in Fig. 9.2. The equations of motion are

m�x = �mg + f(x; I);

where the force on the ball due to the electromagnet is given by f(x; I).
At equilibrium the magnet force balances the gravity force. Suppose we
let I0 represent the current at equilibrium. If we write I = I0 + i, expand
f about x = 0 and I = I0, and neglect higher-order terms, we obtain the
linearized equation

m�x = k1x+ k2i: (1)

Reasonable values for the constants in Eq. (1) are m = 0:02 kg, k1 = 20
N=m, and k2 = 0:4 N=A.

(a) Compute the transfer function from I to x, and draw the (continuous)
root locus for the simple feedback i = �Kx.

(b) Assume the input is passed through a ZOH, and let the sampling
period be 0.02 sec. Compute the transfer function of the equivalent
discrete-time plant.

(c) Design a digital control for the magnetic levitation device so that the
closed-loop system meets the following speci�cations: tr � 0:1 sec,
ts � 0:4 sec, and overshoot � 20%.
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(d) Plot a root locus with respect to k1 for your design, and discuss the
possibility of using your closed-loop system to balance balls of various
masses.

(e) Plot the step response of your design to an initial disturbance dis-
placement on the ball, and show both x and the control current i.
If the sensor can measure x only over a range of �1=4cm and the
ampli�er can only provide a current of 1 A, what is the maximum
displacement possible for control, neglecting the nonlinear terms in
f(x; I)?

Solution:

(a)

G(s) =
X(s)

I(s)
=

k2=m

s2 � k1=m
(2)

=
20

s2 � 1000

(b) T = 0:02 sec,

G(z) = (1� z�1)Z
�
G(s)

s

�
= 0:004135

z + 1

(z � 0:5313)(z � 1:8822)



8027

(c) The speci�cations imply that :

tr � 0:1 sec =) !n �
1:8

0:1
= 18 rad/sec

ts � 0:4 sec =) � � 4:6
0:4

= 11:5 rad/sec

=) r = jzj � e�11:5�0:02 = 0:7945 ( � z = esT )
Mp � 20% =) � � 0:48

Thus, the closed-loop poles must be pulled into the unit circle
near r = 0:8 and � = 0:5. Using the template of Fig. 8.4, we
experiment with lead compensation and select,

D(z) = 116
z � 0:5313
z � 0:093

The closed-loop poles are :

z = 0:75� 0:39j; 0:53

Performance :

tr = 0:072

ts = 0:397

Mp = 18:3%

which meet all the speci�cations. The root locus is below.
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The step response shows Mp

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8
0

1

2

3

4

5

6

7

8
C l o s e d ­ L o o p   S t e p   R e s p o n s e

T i m e   ( s e c )

x
 
[
m
]

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8
­ 4 0 0

­ 3 0 0

­ 2 0 0

­ 1 0 0

0

1 0 0

2 0 0
T i m e   H i s t o r y   o f   C o n t r o l   E f f o r t

T i m e   ( s e c )

i
 
[
A
]

(d) As can be seen from Eq. (2), the loop gain and the open loop pole
locations depend on the mass of the ball. Changing the mass
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will therefore a¤ect the dynamic characteristics of the system
and may render it unstable. A root locus of the closed-loop
poles versus k1 shows how the locus changes as a function of the
mass:

The closed-loop system becomes unstable for k1 � 24. Since a
small increase in k1 makes the system unstable and a decrease
in m has the same e¤ect on the system, it is di¢ cult to balance
balls of smaller masses.

(e) The response to an initial x displacement is shown :

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8

­ 1 . 5

­ 1

­ 0 . 5

0

0 . 5

1

C l o s e d ­ L o o p   I n i t i a l   R e s p o n s e

T i m e   ( s e c )

x
 
[
m
]
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0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8

­ 1 0 0

­ 5 0

0

5 0

1 0 0

T i m e   H i s t o r y   o f   C o n t r o l   E f f o r t

T i m e   ( s e c )

i
 
[
A
]

The assumption here is that an allowable transient must stay in
the range of the sensor and not require more than the limit of
the current. From I(z) = D(z)(0 �X(z)), we have a di¤erence
equation :

i(k)� 0:093i(k � 1) = �116fx(k)� 0:5313x(k � 1)g

For k = 0, i(0) = �116x(0). We see that if x(0) = 1 then
i(0) = �116. Note that i(0) = �D(1)x(0).
Thus, if i is to be kept below 1A then x(0) must be kept below
1=116 = 0:00862 m = 0:862 cm = 0:339 inch, which is greater
than the sensor range. The current control can handle any dis-
placement in the range of �0:25 inch.

12. Repeat Problem 5.27 in Chapter 5 by constructing discrete root loci
and performing the designs directly in the z-plane. Assume that the
output y is sampled, the input u is passed through a ZOH as it enters
the plant, and the sample rate is 15 Hz.

Solution

(a) The most e¤ective discrete design method is to start with some idea
what the continuous design looks like, then adjust that as necessary
with the discrete model of the plant and compensation. We refer to
the solution for Probelm 5.27 for the starting point. It shows that
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the specs can be met with a lead compensation,

D1(s) = K
(s+ 1)

(s+ 60)

and a lag compensation,

D2(s) =
(s+ 0:4)

(s+ 0:032)
:

Although it is stated in the solution to Problem 5.27 that a gain,
K = 240 will satisfy the constraints, in fact, a gain of about K = 270
is actually required to meet the rise time constraint of tr � 0:4 sec.
So we will assume here that our reference continuous design is

D1(s) = 270
(s+ 1)

(s+ 60)

(s+ 0:4)

(s+ 0:032)

It yields a rise time, tr �= 0:38; Mp
�= 15%; andKv = (270)(

1
60 )(

0:4
0:32 ) =

56: So all specs are met. For interest, use of the damp function shows
that !n = 6:4 rad/sec for the dominant roots, and those roots have
a damping ratio, � �= 0:7: For the discrete case with T = 15 Hz,
we should expect some degradation in performance, especially the
damping, because the sample rate is approximately 15�!n:
The discrete transfer function for the plant described by G(s) and
preceeded by a ZOH is:

G(z) = (1� z�1)Z
�
G(s)

s

�
=

z � 1
z
Z
�

10

s(s+ 1)(s+ 10)

�
This is most easily determined via Matlab,

sysC = tf([10],[1 11 10 0]);
T=1/15;
sysD = c2d(sysC,T,�zoh�);

which produces:

G(z) = 0:00041424
(z + 3:136)(z + 0:2211)

(z � 1)(z � 0:9355)(z � 0:5134
The essential elements of the compensation are that the lead provides
velocity feedback with a TD = 1 and the lag provides some high
frequency gain. The discrete equivalent of the proportional plus
lead would be (see Eq. 8.42):

D1(z) = K(1 +
TD
T
(1� z�1)) = K (1 + TD=T )z � TD=T

z
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which for T = 1=15 = 0:0667 and TD = 1 reduces to

D1(z) = 270
16z � 15z�1

z
= 4320

z � 0:9375
z

:

The lag equivalent is best introduced by use of one of the approxi-
mation techniques, such as the matched pole-zero:

D2(z) =
z � e�0:4T
z � e�0:032T =

z � :9737
z � :9979

as its whole function is to raise the gain at very low frequencies for
error reduction. Examining the resulting discrete root locus and
picking roots with rloc�nd to yield the required damping shows that
the gain, K = 60:While the use of damp indicates that the frequency
and damping are acceptable, the time response shows an overshoot
of about 20% and the rise time is slightly below spec. We therefore
need to increase the lead (move the lead zero closer to z = +1) to
decrease the overshoot and increase gain to speed up the rise time.
Several iterations on these two quantities indicates that moving the
lead zero from z = 0:9375 to z = 0:96 and increasing the gain from
K = 60 to K = 65 meets both specs. The velocity coe¢ cient is
found from and is also satis�ed.

Kv =
lim

z ! 1

(z � 1)D(z)G(z)
Tz

The time response of the �nal design below shows that all specs are
met.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

time (sec)

y

Step Response

13. Design a digital controller for the antenna servo system shown in Figs. 3.61
and 3.62 and described in Problem 3.31. The design should provide a step
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response with an overshoot of less than 10% and a rise time of less than
80 sec.

(a) What should the sample rate be?

(b) Use the matched pole-zero discrete equivalent method.

(c) Use discrete design and the z-plane root locus.

Solution

(a) The equation of motion is :

J�� +B� = Tc

where
J = 600000 kg.m2; B = 20000 N.m.sec

If we de�ne :

a =
B

J
=
1

30
; U =

Tc
B

after Laplace transform, we obtain :

G(s) =
�(s)

u(s)
=

1

s(30s+ 1)

From the speci�cations,

Mp < 10% =)MP
�=
�
1� �

0:6

�
100 =) � > 0:54

tr < 80 sec =) tr �=
1:8

!n
< 80 =) !n �= !BW > 0:0225

Note that !pn �= 1=30 < !n.
If designing by emulation, a sample rate of 20 times the bandwidth
is recommended. If using discrete design, the sample rate can be
lowered somewhat to perhaps as slow as 10 times the bandwidth.
However, to reject random disturbances, best results are obtained by
sampling at 20 times the closed-loop bandwidth or faster. Thus, for
both design methods, we choose :

T = 10 sec

!s = 0:628 rad/sec, which is > 20!n = 0:45 rad/sec

(b) Continuous design :
Use a proportional controller :

u(s) = D(s)(�r(s)� �(s)) = K(�r(s)� �(s))
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Root locus :
Choose K = 0:210.
The closed-loop pole location in s-plane :

s = �0:0167� 0:0205j

The corresponding natural frequency and damping :

!n = 0:0265; � = 0:6299

Digitized the continuous controller with matched pole-zero method :

D(z) = 0:0210

Tc(z) = Bu(z) = 420(�r(z)� �(z))

Performance :

Mp = 0:119

tr = 67:3 sec

(c) With u(k) applied through a ZOH, the transfer function for an equiv-
alent discrete-time system is :

G(z) = K
z + b

(z � 1)(z � eaT )

where

K =
aT � 1 + e�aT

a
; b =

1� e�aT � aTe�aT
aT � 1 + e�aT

=) G(z) = 1:4959
z + 0:8949

(z � 1)(z � 0:7165)
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Use a proportional control of the form :

D(z) = K

Root locus :

The speci�cation can be achieved with the proportional control. How-
ever, we try to achieve the same closed-loop poles as the emulation
design (part (b)) for comparison. These closed-loop pole locations
are denoted by " + " in the root locus.
Use a PD control of the form :

D(z) = K
z � �
z

Root locus :
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Choose K = 0:0294; � = 0:3.

The resulting z-plane roots :

z = 0:8280� 0:1725j; 0:0165

This corresponds to the s-plane roots :

s = �0:0167�0:0205j (the design point of emulation design); �0:4104

which satisfy the speci�cation :

!n = 0:0265; 0:4104

� = 0:6321; 1:000

The control law :

D(z) = 0:0294
z � 0:3
z

Tc(z) = Bu(z) = 588
z � 0:3
z

Performance :

Mp = 0:079

tr = 71:3 sec

Step response :
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T

c
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14. The system

G(s) =
1

(s+ 0:1)(s+ 3)

is to be controlled with a digital controller having a sampling period of
T = 0:1 sec. Using a z-plane root locus, design compensation that will
respond to a step with a rise time tr � 1 sec and an overshoot Mp � 5%.
What can be done to reduce the steady-state error?

Solution

(a) Continuous plant :

G(s) =
1

(s+ 0:1)(s+ 3)
; Type 0 system

Discrete model of G(s) preceeded by a ZOH (T = 0:1 sec) :

G(z) = 0:0045
z + 0:9019

(z � 0:7408)(z � 0:99)

Speci�cations :

tr � 1 sec �! !n � 1:8 rad/sec
Mp � 5% �! � � 0:7

Discrete design : A simple proportional feedback, D(z) = K = 4:0,
will bring the closed-loop poles to :

z = 0:8564� 0:1278j
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which are inside the specs region.

!n = 2:07 rad/sec; � = 0:70

Root locus :

Step response :
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T i m e   ( s e c )

u

The step response shows that :

tr �= 1:02 sec

Mp
�= 4:7%

However, since the system is type 0, steady-state error exists and is
7% in this case. An integral control of the form,

D(z) =
K

TI

Tz

z � 1

can be added to the proportional control to reduce the steady-state
error, but this typically occurs at the cost of reduced stability.

15. The transfer function for pure derivative control is

D(z) = KTD
z � 1
Tz

;

where the pole at z = 0 adds some destabilizing phase lag. Can this phase
lag be removed by using derivative control of the form

D(z) = KTD
(z � 1)
T

?

Support your answer with the di¤erence equation that would be required,
and discuss the requirements to implement it.

Solution:
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(a) No, we cannot use derivative control of the form :

D(z) = KTD
z � 1
T

to remove the phase lag. The di¤erence equation corresponding to

D(z) = KpTD
z � 1
T

=
U(z)

E(z)

is

u(k) = KpTD
e(k + 1)� e(k)

T

This is not a causal system since it needs the future error signal
to compute the current control. In real time applications, it is not
possible to implement a non-causal system.



Chapter 9

Nonlinear Systems

Problems and Solutions for Section 9.2: Analysis By Lineariza-
tion
1. Figure 9.56 shows a simple pendulum system in which a cord is wrapped around a �xed cylinder.
The motion of the system that results is described by the di¤erential equation

(l +R�)�� + g sin � +R _�
2
= 0;

where

l = length of the cord in the vertical (down) position;

R = radius of the cylinder:

(a) Write the state-variable equations for this system.

(b) Linearize the equation around the point � = 0, and show that for small values of � the
system equation reduces to an equation for a simple pendulum, that is,

�� + (g=l)� = 0:

R u

l

l 1 R u

Figure 9.56: Motion of cord wrapped around a �xed cylinder for Problem 1.

Solution:

9001
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(a) This is a second order non-linear di¤erential equation in �. Let x =
�
_� �

�T
.

_x1 = �� = �R
_�
2
+ g sin �

(l +R�)
= �Rx

2
1 + g sinx2
(l +Rx2)

;

_x2 = _� = x1:

(b) For small values of �.

(l +R�) �= l;

sin � �= �;

_�
2 �= 0:

(a)

l�� + g� = 0

�� +
g

l
� = 0

2. The circuit shown in Fig. 9.57 has a nonlinear conductance G such that iG = g(vG) = vG(vG �
1)(vG � 4). The state di¤erential equations are

di

dt
= �i+ v;

dv

dt
= �i+ g(u� v);

where i and v are the state variables and u is the input.

(a) One equilibrium state occurs when u = 1 yielding i1 = v1 = 0. Find the other two pairs of
v and i that will produce equilibrium.

(b) Find the linearized model of the system about the equilibrium point u = 1, i = v1 = 0.

(c) Find the linearized models about the other two equilibrium points.

z

i

L 5 1i G

R 5 1u

1

2

C 5 1 v

1

2

2v G
1

G

Figure 9.57: Nonlinear circuit for Problem 2.

Solution:
(a) Equilibrium:

di

dt
= �i+ v = 0;

dv

dt
= �i+ g(u� v) = 0;
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g(u� v)� i = (u� v) [(u� v)� 1] [(u� v)� 4]� v = 0;

as u = 1,

(1� v)(�v)(�3� v)� v = v
�
v2 + 2v � 2

�
= 0:

v = 0;�1�
p
3:

So,
i = v = 0;�1�

p
3:

(b) Let�s replace u, v, and i by 1 + �u, �v, and �i.

�_i = ��i+ �v;
� _v = ��i+ g(1 + �u� �v);

= ��i+ (1 + �u� �v)((1 + �u� �v)� 1)((1 + �u� �v)� 4);
= ��i+ (1 + �u� �v) (�u� �v) (�u� �v � 3);
�= ��i� 3�u+ 3�v:

d

dt

�
�i
�v

�
=

�
�1 1
�1 3

� �
�i
�v

�
+

�
0
�3

�
�u:

(c) In general the linearized form will be,

d

dt

�
�i
�v

�
=

�
�1 1

�1 @g
@v

� �
�i
�v

�
+

�
0
@g
@u

�
�u;

As u = 1;

g(u; v) = g(1; v) = v
�
v2 + 2v � 2

�
;

@g

@v
=

�
v2 + 2v � 2

�
+ v (2v + 2) ;

= 5� 2
p
3 when v = �1�

p
3:

Also

@g (u� v)
@v

= �g0 (u� v) ;

@g (u� v)
@u

= g0 (u� v) = �@g
@v

= �5� 2
p
3:

So,
d

dt

�
�i
�v

�
=

�
�1 1

�1 5� 2
p
3

� �
�i
�v

�
+

�
0

�5� 2
p
3

�
�u:
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3. Consider the circuit shown in Fig. 9.58; u1and u2 are voltage and current sources, respectively,
and R1 and R2 are nonlinear resistors with the following characteristics:

Resistor 1 : i1 = G(v1) = v31
Resistor 2 : v2 = r(i2);

where the function r is de�ned in Fig. 9.59.

(a) Show that the circuit equations can be written as

_x1 = G(u1 � x1) + u2 � x3
_x2 = x3
_x3 = x1 � x2 � r(x3):

Suppose we have a constant voltage source of 1 Volt at u1 and a constant current source
of 27 Amps; i.e., uo1 = 1, uo2 = 27. Find the equilibrium state xo = [xo1; x

o
2; x

o
3]
T for the

circuit. For a particular input uo , an equilibrium state of the system is de�ned to be any
constant state vector whose elements satisfy the relation

_x1 = _x2 = _x3 = 0:

Consequently, any system started in one of its equilibrium states will remain there inde�-
nitely until a di¤erent input is applied.

(b) Due to disturbances, the initial state (capacitance, voltages, and inductor current) is slightly
di¤erent from the equilibrium and so are the independent sources; that is,

u(t) = uo + �u(t)
x(t0) = xo(t0) + �x(t0):

Do a small-signal analysis of the network about the equilibrium found in (a), displaying
the equations in the form

� _x1 = f11 �x1 + f12 �x2 + f13 �x3 + g1 �u1 + g2 �u2:

(c) Draw the circuit diagram that corresponds to the linearized model. Give the values of the
elements.

R 2

x 1

1

2

R 1

v 212

v 121

1 Fzu 1
(5 1 V )

1

2

i 1

i 2 5 x 3

1

2

1 H
u 2

(5 2 7 A )

1 F

1 x 2 2

Figure 9.58: A nonlinear circuit for Problem 3.

Solution:
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(a)

i1 = G (u1 � x1) ;

i1 � i2 + u2 = C
d

dt
x1;

i2 = C
d

dt
x2 = x3;

v2 = r (i2) ;

0� x2 + x1 � v2 = L
d

dt
i2:

C _x1 = G (u1 � x1)� x3 + u2;
C _x2 = x3;

L _x3 = x1 � x2 � r (x3) :

As C = L = 1,

_x1 = G (u1 � x1)� x3 + u2;
_x2 = x3;

_x3 = x1 � x2 � r (x3) :

(b) Equilibrium state around u01 = 1, u
0
2 = 27.

0 = G
�
u01 � x01

�
� x03 + u02;

= G
�
1� x01

�
� x03 + 27;

0 = x03;

0 = x01 � x02 � r (0) :

i 2

v 2

1

2

2 1 0
S l o p e 5 ½

S lo p e 5 1

Figure 9.59: Nonlinear resistance for Problem 3.
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G
�
1� x01

�
� x03 + 27 =

�
1� x01

�3
+ 27 = 0;

x01 = 4;

x02 = x01 � r (0) = 4� 2 = 2;
x03 = 0:

x0 =
�
4 2 0

�T
:

� _x1 = G
��
u01 + �u1

�
�
�
x01 + �x1

��
�
�
x03 + �x3

�
+
�
u02 + �u2

�
;

= (�3 + �u1 � �x1)3 � �x3 + 27 + �u2;
�= �27 + 3� 9 (�u1 � �x1)� �x3 + 27 + �u2;
= �27�x1 � �x3 + 27�u1 + �u2:

� _x2 = x03 + �x3;

= �x3:

� _x3 =
�
x01 + �x1

�
�
�
x02 + �x2

�
� r

�
x03 + �x3

�
;

= 4 + �x1 � 2� �x2 � (�x3 + 2) ;
= �x1 � �x2 � �x3:

(c) Circuit diagram:

Linear circuit model for Problem 9.3.

L = 1H; R1 =
1
27
; R2 = 1
:

4. Consider the nonlinear system

_x = �x2e� 1
x + sinu x(0) = 1

a) Assume uo = 0 and solve for xo(t).

b) Find the linearized model about the nominal solution in part (a).

Solution:
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(a)

_x(t) = �x2e� 1
x ;

dx

dt
= �x2e� 1

x ;

�x�2e 1x dx = dt:

Integrate both sides:

Z x(t)

x(0)

� 1
x2
e
1
x dx =

Z t

0

dt;

e
1

x(t) � e 11 = t;

xo(t) =
1

log(t+ e)
:

(b)

_x = �x2e� 1
x + sinu;

� _x = �
h
2xe�

1
x + e�

1
x

i
�x+ cosu �u.

For the equilibrium conditions of part (a),

� _x = � 1

t+ e

�
1 +

2

log(t+ e)

�
�x+ �u.

5. Linearizing e¤ect of feedback. We have seen that feedback can reduce the sensitivity of the
input-output transfer function with respect to changes in the plant transfer function , and
reduce the e¤ects of a disturbance acting on the plant. In this problem we explore another
bene�cial property of feedback: it can make the input-output response more linear than the
open-loop response of the plant alone. For simplicity let us ignore all the dynamics of the plant,
and assume that the plant is described by the static nonlinearity

y(t) =

�
u u � 1
u+1
2 u > 1

a) Suppose we use proportional feedback

u(t) = r(t) + �(r(t)� y(t))

where � � 0 is the feedback gain. Find an expression for y(t) as a function of r(t) for the
closed-loop system (This function is called the nonlinear characteristic of the system.) Sketch
the nonlinear transfer characteristic for � = 0 (which is really open-loop), � = 1, and � = 2.

b) Suppose we use integral control,

u(t) = r(t) +

Z t

0

(r(�)� y(�))d�
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The closed-loop system is therefore nonlinear and dynamic. Show that if r(t) is a constant, say
r, then lim

t!1
y(t) = r. Thus, the integral control makes the steady-state transfer characteristic

of the closed-loop system exactly linear. Can the closed-loop system be described by a transfer
function from r to y?

Solution:

(a)

Fig 10

6:pdf

Problem 9.5. Nonlinear system with saturation: proportional control.

For u � 1:

y = r + �(r � y) = (1 + �)y = (1 + �)r; y = r = u:

For u > 1:

y =
u+ 1

2
=
1

2
+
1

2
[r + �(r � y)];

2y = 1 + r + �r � �y;
(2 + �)y = 1 + (1 + �)r;

y =
1 + (1 + �)r

2 + �
: See Figure on top of the next page.

if � = 0 then y =
1 + r

2
:

if � = 1 then y =
1

3
+
2

3
r:

if � = 2 then y =
1

4
+
3

4
r: See middle Figure on the next page.
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Problem 9.5. Open-loop vs closed-loop response.
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Problem 9.5. Open-loop vs closed-loop response for various values of �:

(b)

Fig 11

9:pdf

Problem 9.5. Nonlinear system with saturation: integral control.

u = r +

Z t

0

(r � y)dt;

r = cons tan t;
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u < 1,

y = r +

Z t

0

(r � y)dt;

Y = R+
R� Y
s

;

(1 + s)Y = (1 + s)R; Y = R

Assume stable: y stays bounded,

y ! y1;

y = r +

Z t

0

(r � y1)dt!1 if y1 6= r;

) y1 = r;

_y = r � y;
_y + y = r:

u > 1,

y =
1

2
+
1

2
(r +

tZ
0

(r � y)dt;

y = f(u);

_x = r � y;

_y =
1

2
(r � y);

2 _y + y = r;

Y (s)

R(s)
=

1

2s+ 1
:

In the steady-state: y = r:

6. This problem shows that linearization does not always work. Consider the system

_x = �x3 x(0) 6= 0

a) Find the equilibrium point and solve for x(t).

b) Assume � = 1. Is the linearized model a valid representation of the system?

c) Assume � = �1. Is the linearized model a valid representation of the system?
Solution: (a) The equilibrium point is found from:

_x = �x3 = 0;

) xe = 0:
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To determine x(t) we re-write the system equation as,

dx

x3
= �dt;

Integrating both sides:

Z x(t)

x(0)

dx

x3
= �

Z t

0

dt;

�1
2
x�2jx(t)x(0) = �t;

x2 =
x(0)2

1� 2�x(0)2t ;

x(t) =
1p

x(0)�2 � 2�t
: (�)

(b) If � = 1 the linearized system is,

� _x = 3(1)x2e = 0;

�x = cons tan t,

that is the linear system is not asymptotically stable (it is neutrally stable). However, we can
see from the nonlinear solution given by Equation (*) that the system is unstable and exhibits a
�nite �escape-time�at t = 1

2x(0)
�2 (i.e., the response of the nonlinear system tends to in�nity in

�nite time;see Figure on the next page). The linear system does not predict qualitative behavior
of the nonlinear system. So the linear model is not a valid representation of the system.

(c) If � = �1 the linearized system is

� _x = 3(�1)x2e = 0;
�x = cons tan t,

that is the linear system is not asymptotically stable (it is neutrally stable). However, we can
see from the nonlinear solution given by Equation (*) that the system is asymptotically stable
as x2 starts o¤ at x2o but drops o¤ to zero (see Figure on top of the next page). The linear
system does not predict qualitative behavior of the nonlinear system. So the linear model is not
a valid representation of the system. The two systems corresponding to � = +1 and � = �1
have the same linearized system but very di¤erent nonlinear behavior. The conclusion is that
the linearized system usually gives a good idea of the system behavior around the equilibrium
(xe) but not always.
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Problem 9.6: Behavior of nonlinear system.

7. Consider the object moving in a straight line with constant velocity shown in Figure 9.60. The
only available measurement is the range to the object. The system equations are

24 _x
_v
_z

35 =
24 0 1 0
0 0 0
0 0 0

3524 x
v
z

35

where

z = cons tan t

_x = cons tan t = v0

r =
p
x2 + z2

Derive a linear model for this system.
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Solution: This system has only an output nonlinearity,

y = r = h(x);

�r =
�h

@x
�x = H�x;

H =
�

�h
@x

�h
@v

�h
@z

�
;

=
�
x
r 0 z

r

�
:

_x = Fx;

�r =
�
x
r 0 z

r

�
x:

Problems and Solutions for Section 9.3: Equivalent Gain
Analysis Using Root Locus

8. Consider the third-order system shown in Fig. 9.61.

(a) Sketch the root locus for this system with respect to K, showing your calculations for the
asymptote angles, departure angles, and so on.

(b) Using graphical techniques, locate carefully the point at which the locus crosses the imag-
inary axis. What is the value of K at that point?

(c) Assume that, due to some unknown mechanism, the ampli�er output is given by the fol-
lowing saturation non linearity (instead of by a proportional gain K):

u =

8<: e; jej � 1;
1; e > 1;
�1; e < �1:

Qualitatively describe how you would expect the system to respond to a unit step input.
Solution:

(a) The locus branches leave the origin at angles of 180�and �60�. Two break in at angles of
�90� near s = �3. See root locus plot.
(b) The locus crosses the imaginary axis at ! = 1 for K = 0:5.

(c) The system is conditionally stable and with saturation would be expected to be stable for
small inputs and go unstable for large inputs.

O b j e c t

z

x
0

Figure 9.60: Diagram of moving object for Problem 9.7.
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Root locus for Problem 9.8.

(a) Problems and Solutions for Section 9.4: Equivalent Gain
Analysis Using Frequency Response: Describing Func-
tions

9. Compute the describing function for the relay with deadzone nonlinearity shown in Figure 9.6
(c).

YS

2

1

KR
s 3

( s 1 1 ) 2e u

Figure 9.61: Control system for Problem 9.8.
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Solution:

Y1 =
1

�

Z 2�

0

y(t) sin(!t)d(!t)

=
4

�

Z �
2

0

y(t) sin(!t)d(!t)

=
4N

�

Z �
2

!t1

sin(!t)d(!t)

=
4N

�
cos(!t1):

Since !t1 =
h
a then cos(!t1) =

q
1�

�
h
a

�2
:

The describing function is then given by,

DF =
Y1
a
=
4N

�a

s
1�

�
h

a

�2
:

10. Compute the describing function for gain with dead zone nonlinearity shown in Figure 9.6 (d).

Solution: This is an odd nonlinearity so that all the cosine terms are zeros and the DF is real:

Y1 =
1

�

Z 2�

0

y(t) sin(!t)d(!t);

=
4

�

Z �
2

0

y(t) sin(!t)d(!t);

=
4Ko

�

Z �
2

0

(A sin(!t)� a) sin(!t)d(!t):

Since h = a sin(!t1) then !t1 = sin
�1 � h

�

�
;

Y1 =
4aKo

�

"Z �
2

!t1

(sin2(!t)� sin(!t1) sin(!t))d(!t)
#
;

=
2aKo

�

"
�

2
� sin�1

� a
A

�
� a

A

r
1�

� a
A

�2#
:

The describing function is then given by,

DF =
Y1
a
=
2Ko

�

24�
2
� sin�1

�
h

a

�
� h

a

s
1�

�
h

a

�235 :
11. Compute the describing function for the preloaded spring or Coulomb plus viscous friction

nonlinearity shown in Figure 9.6 (e).

Solution: This is a combination of a gain, K0, plus a relay nonlinearity (see Example 9.11).
Therefore,

DF =
K0a

a
+
4N

�a
= K0 +

4N

�a
:



9017

12. Consider the quantizer function shown in Figure 9.62 that resembles a staircase. Find the
describing function for this nonlinearity and write a Matlab .m function to generate it.

d 1 d 2 d 3 d 4

h
u

q

2 q

3 q

4 q

y

Figure 9.62: Quantizer nonlinearity for Problem 12.

Solution. The abscissa breakpoints are denoted by �i. From Eq. 9.23,

b1 =
4

�

Z �
2

0

f (a sin!t) sin!t d(!t)

=
4

�

Z '1

0

0 � sin!t d(!t) +
Z '2

0

q � sin!t d(!t) + :::+
Z 'n

0

nq � sin!t d(!t)

=
4

�
(cos'1 + cos'2 + :::+ cos'n);

where,

 i = sin

�
�i
a

�
i = 1; :::; n:

The describing function is then given by,

Keq(a) =
b1
a
=

8><>:
0 0 < a < q

2

4q
�a

nX
i=1

q
1�

�
2i�1
2a q

�2 2n�1
2 q < a < 2n+1

2 q

The following shows the Matlab .m function:

% Feedback Control of Dynamic Systems, 6e

% Franklin, Powell, Emami

% Problem 9.12
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clear all;

close all;

na = 99;

nn = 6;

Keq=zeros(1,nn*na);

for n=1:nn

ai = linspace((2*n-1)/2, (2*n+1)/2, na);

for ni=1:na

for k=1:n

Keq((n-1)*na+ni) = Keq((n-1)*na+ni) + (4/(pi*ai(ni)))*sqrt(1- ((2*k-1)/(2*ai(ni)))^2);

end;

end;

end;

plot(linspace(1/2,(2*nn+1)/2,na*nn),Keq);

title(�Describing function for quantizer nonlinearity�)

xlabel(�a/q�)

ylabel(�K_{eq}�)

grid;

hold o¤

The describing function is plotted in the �gure as a function of aq . The maximum of the DF
occurs at Keq =

4
� = 1:27 corresponding to

a
q = 0:7. Since the staircase can be approximated

by a straight line, it is seen that the DF will in the limit approach the slope of the linear
approximation, that is one.
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13. Derive the describing function for the ideal contactor controller shown in Figure 9.63. Is it
frequency dependent? Would it be frequency dependent if it had a time delay or hysteresis?
Graphically, sketch the time histories of the output for several amplitudes of the input and
determine the describing function values for those inputs.

O u t p u t

I n p u t
d

T

Figure 9.63: Contactor for Problem 9.13.
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Solution:

Y1 =
1

�

Z 2�

0

y(t) sin(!t)d(!t)

=
4

�

Z �
2

0

y(t) sin(!t)d(!t)

=
4T

�

Z �
2

!t1

sin(!t)d(!t)

=
4T

�
cos(!t1):

Si nce !t1 =
d

a
then cos(!t1) =

s
1�

�
d

a

�2
:

The describing function is then given by,

DF =

(
Y1
a =

4T
�a

q
1�

�
d
a

�2
d < a

0 a < d

and is not frequency dependent. See Figure on top of the next page. Frequency dependence
will be introduced with a delay.
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Problem 9.13. DF for d = 0:1, T = 1:0.
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Problem 9.13. DF values for several di¤erent input frequencies.

14. A contactor controller of an inertial platform is shown in Figure 9.64 where

I = 0:1kgm2

I

B
= 10 sec

h

c
= 1

J

c
= 0:01 sec

�L = 0:1 sec

�f = 0:01 sec

d = 10�5rad

T = 1Nm

The required stabilization resolution is approximately 10�6 rad

K'
m
> d for '

m
> 10�6rad

Discuss the existence, amplitude and frequency of possible limit cycles as a function of the gain
K and the DF of the controller. Repeat the problem for a deadband with hysteresis.

I s 1 B
1

s
1

d
T

M o t o r a n d c o n t r o l l e r
G i m b a l l e d

G y r o

wv

w mK
t L s 1 1
t f s 1 1

h
c s ( s 1 1 )J

c

Figure 9.64: Block diagram of the system for Problem 9.14.

Solution: Limit cycles depend on the natural behavior of the closed-loop part. The DF of the
switch = Keq: Characteristic equation is:

KG+ 1 = 0

K

B

h

c
=

Keq

s
��
J
c

�
s+ 1

� ��Ls+ 1
�fs+ 1

�
1��

I
B

�
s+ 1

� + 1 = 0:
�
KeqK

0:01

��
0:1s+ 1

s(10s+ 1)(0:01s+ 1)2

�
= �1:
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Frequency response for Problem 9.14.
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Root locus for Problem 9.14.

Condition for limit cycle is \ = �180� which occurs at � 95 rad/sec and magnitude = 1 (see
Figure) but

KKeq

0:01
� 1

10� 10�5 (the value at ! ' 95 rad= sec);

KKeq = 100(rad= sec)(nm sec =rad) = 100 nm;

Keq =
4T

�d

�
d

a

�s
1�

�
d

a

�2
:

with maximum at 4T�d . But note from the �gure below,

Fig
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8

22:pdf

Response for nonlinear system for Problem 9.14.

that for levels of say a > 3d, the output is a constant. The frequency of the limit cycle is �xed
by the phase! So ' is constant. The result is independent of K, for large enough K to insure
that K'� d. This is consistent with KKeq = cons tan t for Keq =

cons tan t
a , a = K',

KeqK =

�
cons tan t
K'

�
K =

cons tan t
'

= cons tan t for K' >> d.

The amplitude is:

Fig 9

23:pdf

Time histories for Problem 9.14.
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See above �gures:

1

2

T

I
�t2 = ' = 5

rad

sec2
(�t)2;

�t =
P

4
; ! =

2�

P
�= 100

rad

sec
;

�t =
2�

4!
=
3:14

200
= 1:57� 10�2 sec;

' = 12� 10�4 rad:

If the resolution of platform picko¤ should be � 10�6rad and �short� term sensor noise �
10�6rad, then K'm >> d is satis�ed, say,

K � 10�6 = d = 10�5 rad;

) K = 10:

KKeq = 100 nm;

) Keq = 10 nm:

Keq =
4T

�d

�
d

a

�s
1�

�
d

a

�2
� 4� 1
� � 10�5

�
d

a

�
= 10:

d

a
= 0:8� 10�5 � 10 = 8� 10�5:

To check:

a =
d

8� 10�5 = 0:125� 10
5 � 10�5 = 0:125 rad:

Here we must consider the mid frequency model because the limit cycle is at ! = 100 rad/sec.
! gets integrated in the gyro below its break frequency but 'm goes through the lead circuit for
a gain of 10 and K = 10 so a = 12:5� 10�4rad�100 = 0:125 rad as before, so it checks.

15. Nonlinear Clegg Integrator There have been some attempts over the years to improve upon the
linear integrator. A linear integrator has the disadvantage of having a phase lag of 90� at all
frequencies. In 1958, J. C. Clegg suggested that we modify the linear integrator to reset its
state, x, to zero whenever the input to the integrator, e, crosses zero (i.e., changes sign). The
Clegg integrator has the property that it acts like a linear integrator whenever its input and
output have the same sign. Otherwise, it resets it output to zero. The Clegg integrator can
be described by

x(t) = e(t) if e(t) 6= 0;
x(t+) = 0 if e(t) = 0;

where the latter equation implies that the state of the integrator, x, is reset to zero immediately
after e changes sign. The Clegg integrator can be implemented with op-amps and diodes. A
potential disadvantage of the Clegg integrator is that it may induce oscillations. (a) Sketch the
output of the Clegg integrator if the input is e = a sin(!t). (b) Prove that the DF for the Clegg
integrator is

N(a; !) =
4

�!
� j 1

!
:

and this amounts to a phase lag of only 38�. Solution: (a) See Figure below.
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(b)

a1 =
2

�

Z �

0

x(t) cos(!t)d(!t)

=
2

�

Z �

0

a

!
cos(!t)d(!t)

=
2a

�!

Z �

0

cos(!t)d(!t)�
Z �

0

cos2(!t)d(!t)

=
2a

�!

�
0 +

�

2

�
= � a

!
:

b1 =
2

�

Z �

0

x(t) sin(!t)d(!t)

=
2

�

Z �

0

a

!
(1� cos(!t)) sin(!t)d(!t)

=
2a

�!

Z �

0

sin(!t)d(!t)�
Z �

0

cos(!t) sin(!t)d(!t)

=
2a

�!
(2 + 0) =

4a

�!
:
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The describing function is then given by,

DF =
Y1
a
=

4

�!
� j 1

!

=
1

!

s
1 +

�
4

�

�2
arctan

�
��
4

�
=

1:619

�
\� 38:15�:

�Problems and Solutions for Section 9.5: Analysis and De-
sign Based on Stability

16. Compute and sketch the optimal reversal curve and optimal control for the minimal time control
of the plant

_x1 = x2

_x2 = �x2 + u
juj � 1

Use the reverse time method and eliminate the time.

Solution: Use the reverse time method and eliminate the time:

_x1 = �x2;
_x2 = x2 � u:

For u = +1;time reversal means that we let � = �t, and that changes the sign on the system
and the input matrices,

dx

d�
= �Fx�Gu:

In our case,

_x1 = �x2;
_x2 = x2 � 1;

dx2
d�

= x2 � 1;

dx2
(x2 � 1)

= d� :

Integrate both sides: Z x2

0

dx2
(x2 � 1)

=

Z �

0

d� :

ln(x2 � 1) = � + C1:
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Since x2(0) = 0 then,

C1 = ln(�1);
ln(x2 � 1)� ln(�1) = � ;

ln(1� x2) = � ;

x2 = 1� e� ;
� = ln(1� x2):

Now,

_x1 = �x2;
_x1 = �1 + e� ;

dx1 = (�1 + e� )d� :

Integrate both sides: Z x1

0

dx1 =

Z �

0

(�1 + e� )d�:

x1 = e� � � � 1:

Eliminate � to get,
x1 = �x2 � ln(1� x2):

This is the reversal curve for u = 1, x2 < 0.

For u = �1,

_x2 = x2 + 1;

dx2
x2 + 1

= d� :

Integrate both sides: Z x2

0

dx2
x2 + 1

=

Z �

0

d� :

ln(x2 + 1) = � + C1:

Since x2(0) = 0 then

ln(x2 + 1) = � + C1;

) C1 = ln(1);

ln(x2 + 1) = � ;

x2 + 1 = e� ;

x2 = e� � 1;
) � = ln(x2 + 1):
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Now,

_x1 = �x2 = 1� e� ;
dx1 = (1� e� )d� :

Integrate both sides: Z x1

0

dx1 =

Z �

0

(1� e� )d� ;

x1 = �e� + � + C2;
x2(0) = 0; C2 = 1;

x1 = �e� + � + 1:

Eliminate � to get,
x1 = ln(1 + jx2j)� x2:

This is the reversal curve for u = �1, x2 > 0.
We can then write in general, for all x2,

x1 = sgn(x2) ln(1 + jx2j)� x2

Therefore, the control law is:

u = �sgn[x1 + x2 � sgn(x2) ln(1 + jx2j)]:

Fig 14

25:pdf

Optimal reversal curve for Problem 9.15.
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17. Sketch the optimal reversal curve for the minimal time control with juj � 1 of the linear plant

_x1 = x2

_x2 = �2x1 � 3x2 + u:

Solution: We reverse time that means � = �t, and that changes the sign on the system and
the input matrices,

dx

d�
= �Fx�Gu:

In our case,

_x1 = �x2
_x2 = +2x1 + 3x2 � u:

We simulate the system using the Matlab lsim function with u = +1 and store x1 and x2, and
repeat with u = �1 and store x1 and x2 and plot the results to obtain the optimal reversal curve
shown in the plot on the next page:

%Franklin, Powell, Emami 6e

%Problem 9.17

t=0:.01:1;

F=[0 1;-2 -3];

G=[0;1];

H=[1 0];

J=[0];

% Using the reverse time method

sys=ss(-F,-G,H,J);

%u=+1;

[yp,t,xp]=lsim(sys,ones(101,1),t);

plot(xp(:,1),xp(:,2));

hold on;

%u=-1

[ym,t,xm]=lsim(sys,-1*ones(101,1),t);

plot(xm(:,1),xm(:,2));

grid;

xlabel(�x_1�);

ylabel(�x_2�);

title(�Optimal reversal curve�);
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Optimal reversal curve for Problem 9.16.

18. Sketch the time optimal control law for

_x1 = x2

_x2 = �x1 + u
juj � 1

and show a trajectory for x1(0) = 3, and x2(0) = 0.

Solution: u = +1,

sX1(s) = �X2(s);

sX2(s) = X1(s)�
1

s
;

X2(s) = � 1

s2 + 1
;

x2(t) = � sin(t);
_x2 = � cos(t) = x1 � 1;
x1 = +1� cos(t):



9033

We see that,
(x1 � 1)2 + x22 = 1

that is a circle with center at (1; 0); x2 < 0:

Similarly for u = �1 we get,

x2(t) = sin(t)

x1(t) = cos(t)� 1
(x1 + 1)

2 + x22 = 1;

that is a circle with center at (�1; 0); x2 > 0:

Fig 12

27:pdf

Reversal curves for Problem 9.18.

The trajectories for this system are circles centered at (�1; 0). This is called the Bushaw
problem in optimal control literature.

19. Consider the thermal control system shown in Figure 9.65. The physical plant can be a room,
an oven, etc.

(a) What is the limit cycle period?

(b) If Tr is commanded as a slowly increasing function, sketch the output of the system, T .
Show the solution for Tr �large�.
Solution:
(a) This is a �rst order system so use (T; t) plot. For an oven, it is piecewise linear

_T + aT = BN sgn(e) with hysteresis

with

Tr = 800
�C;

BN

a
� 1000�C above T = 0 (say room temperature)
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Figure 9.65: Thermal system for Problem 9.19.

a ' 0:01 sec�1; plot vs at; h � 100�C; To = 0:

(b)

limit cycle period , P = ton + toff ;

Tre
�at = (Tr � h)

gives toff , �
BN

a
� (Tr � h)

�
e�at =

�
BN

a
� Tr

�
gives ton,

aP = � ln
�
700

800

�
� ln

�
200

300

�
,

P = 100(0:058 + 0:176) = 23:4 sec :
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Temperature output for Problem 9.19.

(c) See Figure below.
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Temperature output for reference input Tr = 3t for Problem 9.19.

20. Several systems such as spacecraft, spring-mass system with resonant frequency well below the
frequency of switching, a large motor driven load with very small friction, etc. can be modeled
as just an inertia. For an ideal switching curve, sketch the phase portraits of the system. The
switching function is e = � + �!. Assume � = 10 sec, and the control signal = 10�3 rad/sec2.
Now sketch the results with,

a) deadband,

b) deadband plus hysteresis,

c) deadband plus time delay T ,

d) deadband plus a constant disturbance.

Solution:

(a)

d!

d�
=

u

!
=
10�3rad= sec2

!
;

!2

2
= u �;

� = 500 !2;

! = 10�2 ! � = 0:05:
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Fig 1

31:pdf

Phase portraits for deadband for Problem 9.20.

(a)

Fig 2

32:pdf

Phase portraits for deadband for Problem 9.20.

(b)
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Fig 3

33:pdf

Phase portraits for deadband plus hysteresis for Problem 9.20.

(c)

Fig 4

34:pdf

Phase portraits for deadband plus plus time delay T for Problem 9.20.
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(d)

T! = ��;

�� + �! = 0;

changes slope to �� = ��! + T! = �(� � T )!;
_� = ! u! 0 at t for (� � d+ h+ �! = 0) + T;
_! = u+D ts  ! �s = ��!s + (d� h);
! = (u+D)t+ !o;

) � = (u+D)
t2

2
+ !st+ �s;

for t = T; � = !s(T � �)| {z }
new slope

+ (d� h) +
�
u+D

2

�
T 2| {z }

new intercept

:

Reference:
[1] D. Graham and D. McRuer, Analysis of Nonlinear Control Systems, John Wiley & Sons,
1961.

21. Compute the amplitude of the limit cycle in the case of satellite attitude control with delay

I �� = N u(t��)

using
u = �sgn(� _� + �)

Sketch the phase plane trajectory of the limit cycle and time history of � giving the maximum
value of �.

Solution: Since the delay is � seconds, _� must travel �NI units during the delay. We can
obtain the following relations:

_� =
N

I
(t� t0) + _�0;

� =
1

2

N

I
(t� t0)2 + _�0(t� t0) + �0:

Eliminating (t� t0), we get

� � �0 =
I

2N
( _�
2 � _�20) =

I

2N
( _�
2 � 0);

� =
2N

I
(� � �0) +

I

2N
_�
2
);

and

� + � _� = 0;

� =
1

a
:
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Fig 6

35:pdf

Phase-plane trajectory of limit cycle for Problem 9.21.

From the geometry of the limit cycle (see above Figure),

_�A +
�N

I
= _�B ; (2)

At point A,

�A � �0 =
I

2N
_�
2

A; (3)

�A + � _�A = 0; (4)

At point B,

_�
2

B

�
I

2N

�
= ��0; (5)

We need to solve the above four equations for �0 (for �max = �0, �0 = 0).

It seems to be easiest to �rst eliminate �0 using Eqs. (3) and (5) to get

�A +
I

2N

h
_�
2

B � _�
2

A

i
= 0:

If we eliminate _�B using Eq. (2), then,

�A = �
�

2

�
2_�A +

�N

I

�
= 0:

If we use Eq. (4) to eliminate �A,

� _�A =
�

2

�
2_�A +

�N

I

�
= 0:
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Solve for _�A,

_�A =
�2N

2I

�
1

� ��

�
:

From Eq. (2),

_�B +
N�

I
=
�2N

2I

�
1

� ��

�
:

Then using Eq. (5),

��0 =
I

2N

�
�2N

2I

�
1

� ��

�
+
�N

I

�2
;

or,

j�0j =
I

2N

�
�N(� + 2(� ��))

2I(� ��)

�2
;

j�0j =
N�2

8I

�
2� ��
� ��

�2
= j�maxj:

Time history shown in the Figure below and shows a �nonlinear oscillator.�

Fig 7

36:pdf

Nonlinear oscillator for Problem 9.21.

22. Consider the point mass pendulum with zero friction as shown in Figure 9.66. Using the method
of isoclines as a guide, sketch the phase-plane portrait of the motion. Pay particular attention
to the vicinity of � = �. Indicate a trajectory corresponding to spinning of the bob around and
around rather than oscillating back and forth.

(a) Solution: The equations are:

I�� = mgl sin �;

ml2�� = mgl sin �;

�� =
g

l
sin �;
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lu

M

Figure 9.66: Pendulum for Problem 9.21.

For � � 0, sin � � �;

�� =
g

l
�;

s2 =
g

l
;

s = �
r
g

l
:

There is a �saddle�point at � = 0; 2�; :::.

For � � �, sin � � ��;

�� = �g
l
�;

s2 = �g
l
;

s = �j
r
g

l
:

There is a �center�at � = ��;�3�; :::.

Using isoclines:

�� = _�
d _�

d�
=
g

l
sin �

� =
d _�

d�
=
g

l
sin �:

The isoclines are sinusoidal curves. The phase portraits are shown in the Figure below.
The upper and lower portraits correspond to the �whirling motion�with pendulum going
round and round.
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x ' = y
y ' = sin(x)

­8 ­6 ­4 ­2 0 2 4 6 8

­3

­2

­1

0

1

2

3

x

y

Phase portraits for Problem 9.22.

NOTE:The phase portraits can be generated using the ODE Software in Matlab
pplane7.m (for Matlab Version 7) by Professor John C. Polking at Rice Univer-
sity available on the Web at:

http://math.rice.edu/~d�eld/

23. Draw the phase trajectory for a system

�x = 10�6 m/ sec2

between _x(0) = 0, x(0) = 0 and x(t) = 1mm. Find the transition time, tf , by graphical means
from the parabolic curve by comparing your solution with several di¤erent interval sizes and the
exact solution.

Solution: The phase portrait is shown in the �gure below.



9043

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

x [mm]

v 
[m

m
/s

ec
2 ]

Phase portrait

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

x [mm]

v 
[m

m
/s

ec
2 ]

Phase portrait

Phase portrait for Problem 9.23.

�x = a;
_v

_x
=
a

v
;

v2

2
= ax and a = 10�6;

v =
p
2ax = at+ vo = at;

x(t) =
a

2
t2 + vot+ xo = 5� 10�7t2 = 1� 10�3;

t2 =

�
1

5

�
� 104 ) tf = 45 sec :

v =
�x

�t
:

To obtain t graphically, i.e., by graphical integration, we write,

�t =
�x

v̂
;

where v̂ is the �average�v in a given interval of �x. In the �gure above, we divide x into �ve
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intervals and �nd (going from left to the right),

tf = �t1 +�t2 +�t3 +�t4 +�t5

=
0:2

0:01
+

0:2

0:025
+

0:2

0:0315
+

0:2

0:037
+

0:2

0:0425
= 20 + 8 + 6 + 5:4 + 4:7 = 44:1 sec :

which compares well with the exact answer of t = 45 sec. Better approximation can be found
by �ner division of x. Alternatively we can compute the time from,

tf =

xZ
0

1

v
dx

which means the time can also be found by �nding the area under the v(x)�1 plot.

24. Consider the system with equations of motion,

�� + _� + sin � = 0

a) What physical system does this correspond to?

b) Draw the phase portraits for this system.

c) Show a speci�c trajectory for �0 = 0:5 rad _� = 0.

Solution:

(a) Physical system is a pendulum with a hinge damping.

I �� + b _� +mgl sin � = 0;
_� = !;

_! = � b
I
! � mgl

I
sin �:

Independent variable scaled for � , t
T where T 2 = I

mgl ;

d�

T dt
T

=
1

T

d�

d�
= !:

Let us de�ne 
 , T!.

d�

d�
= 
;

d


d�
= �

�
Tb

I

�

� sin �:
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Fig 5

40:pdf

Pendulum free body diagram for Problem 9.24.

So the problem is a special case with Tb
I =

q
b2

Im gl = 1.

d


d�
= �1� sin �



,

isoclines with slope M = �1� sin �

 ; where M is the slope.

(b) See phase portrait �gure shown in the Figure below. Note the unstable equilibrium
corresponding to � = � and the stable equilibrium corresponding to the origin and
� = 2�.

(c) See trajectory corresponding to (x = �0 = 0:5rad; y = _�0 = 0) in the phase portrait in
the Figure below using pplane7.m software.

x ' = y
y ' = ­ y ­ sin(x)

­2 ­1 0 1 2 3 4 5 6 7

­2

­1.5

­1

­0.5

0

0.5

1

1.5

2

x

y

Phase portraits for pendulum with damping for Problem 9.24.

25. Consider the nonlinear upright pendulum with a motor at its base as an actuator. Design a
feedback controller to stabilize this system.

Solution:
�� = sin � + u:
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Using a lead network: U(s) = � 4(s+1)(s+3) �(s)

x1 = �;

x2 = _�;

x3 = xc:24 _x1
_x2
_x3

35 =

24 x2
sinx1 � 4x1 � 4x3
�3x3 � 2x1

35 :
The linearized system is 24 _x1

_x2
_x3

35 =
24 0 1 0
�3 0 �4
�2 0 �3

3524 x1
x2
x3

35 :
The system has poles at

det(sI� F) = (s+ 1)3:

The system is asymptotically stable near the origin so if the system starts near the upright
position, it will be balanced.

26. Consider the system
_x = � sinx

Prove that the origin is an asymptotically stable equilibrium point.

Solution:We wish to show that
_V (x) � �xTQx.

Select the Lyapunov function for

P = 1 :

V (x) = x2;

then

_V = 2x _x = �2x sinx;
and _V (x) � �x2 for jxj � 1:

Since sinx � 1

2
x for 0 � x � 1;

we choose Q = 1;

and conclude that the origin is an asymptotically stable equilibrium point.

27. A �rst-order nonlinear system is described by the equation _x = �f(x), where f(x) is a continuous
and di¤erentiable nonlinear function that satis�es the following:

f(0) = 0;

f(x) > 0 for x > 0;

f(x) < 0 for x < 0:



9047

Use the Lyapunov function V (x) = x2=2 to show that the system is stable near the origin
(x = 0).

Solution:

_x = �f(x);

V (x) =
1

2
x2;

_V (x) = x _x = �xf(x);
For x > 0 and f(x) > 0 =) _V (x) < 0;

For x < 0 and f(x) < 0 =) _V (x) < 0;

For x = 0 and f(x) = 0 =) _V (x) = 0:

Thus, for all x 6= 0, _V < 0. So applying Lyapunov�s stability criterion, we conclude that the
system is stable.

28. Use the Lyapunov equation
FTP+PF = �Q = �I

to �nd the range of K for which the system in Fig. 9.67 will be stable. Compare your answer
with the stable values for K obtained using Routh�s stability criterion.

S
1

2

R ( s ) 5 0
( s 1 4 ) ( s 2 1 )

K
Y ( s )

Figure 9.67: Control system for Problem 28

Solution:

Our approach is to set up the continuous Lyapunov equation and check that P is a positive
de�nite matrix, i.e., P > 0. Let,

P =

�
p q
q r

�
:

From the �gure, the closed-loop system matrix F in controller canonical form is,

F =

�
�3 4� k
1 0

�
:

Solving FTP+PF = �I yields,�
p q
q r

� �
�3 1
4� k 0

�
+

�
p q
q r

� �
�3 4� k
1 0

�
=

�
�1 0
0 �1

�
;

2q � 6p = �1;
2q(4� k) = �1;

p(4� k) + r � 3q = 0:
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Hence,

q =
�1

2(4� k) ;

p =
1

6

�
3� k
4� k

�
;

r =
�k2 + 7k � 21
6(4� k) :

The two conditions for P > 0 are p > 0 and pr � q2 > 0, or,

p > 0 =) k > 3 or k > 4;

and,

pr � q2 =
k3 � 10k2 + 42k � 72

36(k � 4)2 > 0;

=
(k � 4)(k2 � 6k + 18)

36(k � 4)2 > 0:

which is satis�ed when k > 4, since (k2 � 6k+ 18) is always positive. Thus, k > 4 for stability.
Forming the Routh array, we have,

1 k � 4
3 0

3(k � 4)

Recall that the condition for stability is that all of the coe¢ cients in the �rst column must be
positive, which agrees with our previous answer above, namely k > 4.

Remark : Back of the envelope calculations using the Routh array are handy when the order
of the system is low (as in this example). However for higher order systems, use of Lyapunov
equation solvers, such as Matlab�s lyap command, are recommended.

29. Consider the system
d

dt

�
x1
x2

�
=

�
x1 + x2u

x2(x2 + u)

�
; y = x1:

Find all values of � and � for which the input u(t) = �y(t)+� will achieve the goal of maintaining
the output y(t) near 1.

Solution:

(a) It is desired to maintain the output y(t) of the system,

d

dt

�
x1
x2

�
=

�
x1 + x1 + x2u
x2(x2 + u)

�
;

y = x1:

near 1. Find all values of � and � for which the input u(t) = �y(t) + � will achieve this goal.
The problem has two parts: First, we investigate the equilibrium points; Next, we investigate
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the stability of the system by linearizing the nonlinear state equations near these equilibria.
The nonlinear, closed-loop system equations are,

_x1 = x1 + x2(�x1 + �);

_x2 = x2(x2 + �x1 + �):

To �nd the equilibrium points for the desired output of y = 1, we set x1 = 1, _x1 = _x2 = 0, to
get,

0 = 1 + x2(�+ �);

0 = x2(x2 + �+ �);

which can be solved for the equilibrium values of x2 and the necessary relationship between �
and �. Simultaneous solution yields,

x2 = �
1

�+ �
:

and,
0 = x22 + x2(�+ �) = x22 � 1 =) x2 = �1:

Consider the two equilibrium cases:

x1 = 1; x2 = 1 : Let y1 = x1 � 1; y2 = x2 � 1; and �+ � = �1:

Substituting these into the nonlinear closed-loop equations, we get,

_y1 = (1 + �)y1 � y2 + �y1y2;
_y2 = �y1 + y2 + �y1y2 + y

2
2 :

The characteristic equation of the linearized system is,

s2 � (�+ 2)s+ (2�+ 1) = 0:

There are no values of � which produce stable roots. So we conclude x1 = 1 and x2 = 1 is an
unstable equilibrium point.

x1 = 1; x2 = �1 : Let y1 = x1 � 1; y2 = x2 + 1; and �+ � = 1:

Then,

_y1 = (1� �)y1 + y2 + �y1y2;
_y2 = ��y1 � y2 + �y1y2 + y22 :

The characteristic equation of the linearized system is,

s2 + �s+ (2�� 1) = 0:

So the system is stable for small signals near the equilibrium point if,

� > 1=2 and �+ � � 1 = 0:
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30. Consider the nonlinear autonomous system

d

dt

24 x1
x2
x3

35 =
24 x2(x3 � x1)

x21 � 1
�x1x3

35 :
a) Find the equilibrium point(s).
b) Find the linearized system about each equilibrium point.
c) For each case in part (b), what does Lyapunov theory tell us about the stability of the
nonlinear system near the equilibrium point?

Solution:

(a) Setting _x1 = _x2 = _x3 = 0 and solving the nonlinear equations, we obtain [1; 0; 0]T and
[�1; 0; 0]T as the equilibrium points.

(b) We linearize the nonlinear state equations around the two equilibrium points from the �rst
part.

(i)
x = [1; 0; 0]T : Let y1 = x1 � 1; y2 = x2; and y3 = x3:

Then the nonlinear equations become,

_y1 = �y2 + y2y3 � y1y2;
_y2 = 2y1 + y

2
1 ;

_y3 = �y3 � y1y3:

Thus, the linearized system is _y = Fy where,

F =

24 0 �1 0
�2 0 0
0 0 �1

35 :
(ii)

x = [�1; 0; 0]T : Let y1 = x1 + 1; y2 = x2; and y3 = x3:

Then the nonlinear equations become,

_y1 = y2 + y2y3 � y1y2;
_y2 = �2y1 + y21 ;
_y3 = y3 � y1y3:

Thus, the linearized system is _y = Fy where,

F =

24 0 1 0
�2 0 0
0 0 1

35 :
(c) We can use the linearization from the previous part to determine the stability of the system
near the two equilibria.
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(i) The characteristic equation is (s2+2)(s+1) = 0. The linear system is neutrally (marginally)
stable with two poles on the j! axis. So Lyapunov theory does not tell us whether this system
is stable, and the nonlinear terms will a¤ect the stability at the equilibrium point [1; 0; 0].

(ii) The characteristic equation is (s2+2)(s�1) = 0. Thus the system at the equilibrium point
[�1; 0; 0] is unstable.

31. Van der Pol�s equation: Consider the system described by the nonlinear equation

�x+ "(1� x2) _x+ x = 0

with the constant " > 0.

(a) Show that the equations can be put in the form [Liénard or (x; y) plane]:

_x = y + "

�
x3

3
� x
�

_y = �x.

(b) Use the Lyapunov function V = 1
2 (x

2 + _x2) and sketch the region of stability as predicted
by this V in the Liénard plane.

(c) Plot the trajectories of part (b) and show the initial conditions that tend to the origin. Sim-

ulate the system in Simulink
R

using various initial conditions on x(0) and _x(0). Consider

two cases with " = 0:5, and " = 1:0.
Solution:
(a) If we di¤erentiate the �rst Liénard equation, we obtain

�x = _y + "

�
3x2

3
_x� _x

�
= �x+ "

�
x2 _x� _x

�
= �x� "(1� x2) _x:

which is the same as van der Pol�s equation. Hence the two representations are equivalent.
The two coordinate systems are related by the transformation,�

x
_x

�
=

�
1 0

"(x
2

3 � 1) 1

� �
x
y

�
or, �

x
y

�
=

�
1 0

�"(x23 � 1) 1

� �
x
_x

�
(b) If we linearize the system, we obtain

�x+ " _x+ x = 0

which has both roots inside the LHP at �"�
p
"2�4
2 . Therefore, there is a region of stability

around the origin. De�ne x1 , x; x2 , _x,

_x1 = x2

_x2 = �"(1� x21)x2 � x1:
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Then,

_V = x _x+ _x �x = _x
�
x� "(1� x2) _x� x

�
= �" _x2(1� x2):

Now,

_V � 0) (1� x2) > 0 ) jxj � 1:

The level curves where V = c = constant are circles centered at the origin of the (x, _x)
plane. The theory requires that the region of stability be inside a level curve where V < c.
Therefore, all trajectories starting inside a circle of radius one centered at the origin (see
Figure below) converge to the origin of the (x, _x) plane. This means that the origin is
Lyapunov-stable. It also means that the limit cycle must lie outside a circle of radius one
centered at the origin.

Fig 18

43:pdf

Stability region in the (x, _x) plane.

The stability region may be mapped into the Liénard plane. The circular boundary in the
(x, _x) plane can be mapped into the (x, y) plane:

y = �"
�
x3

3
� x
�
+
p
1� x2

which resembles an ellipsoidal curve as shown in the Figure on top of the next page. An
approximate analytical answer is also possible. The stability region in the Liénard (x, y)
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Figure 9.68: Stability region in the Liénard (x, y) plane.

plane is roughly a rotated ellipse. This can be seen as follows.

V =
1

2
(x2 + _x2) = c

=
1

2

 
x2 +

�
y + "

�
x3

3
� x
��2!

=
1

2

 
x2 + y2 + "2

�
x3

3
� x
�2
+ 2y"

�
x3

3
� x
�!

Assuming that "2 and x3 are small and may be neglected,

V � 1
2

�
x2 + y2 � 2"yx

�
� c

It is seen that the level curves are roughly ellipses that are rotated by an angle of +45� in
the Liénard (x, y) plane.
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Fig 19

45:pdf

Approximation of the stability region in the Liénard (x, y) plane.

(c) Using pplane7.m software we see that the limit cycle is nearly circular with radius 2:

x  ' =  y +  0.5 (0.33333 x x x ­ x)
y  ' = ­ x

­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2

­3

­2

­1

0

1

2

3

x

y

Phase portraits for van der Pol equation in Liénard (x, y) form for " = 0:5:
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x ' = y + (0.33333 x x x ­ x)
y ' = ­ x
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Phase portraits for van der Pol equation in the Liénard (x, y) plane for " = 1:0.

x ' = y
y ' = ­ x ­ 0.5 (1 ­ x  x) y
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Phase portraits for van der Pol equation in the (x, _x) plane for " = 0:5.
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x ' = y
y ' = ­ x ­ (1 ­ x x) y

­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2

­3

­2

­1

0

1

2

3

x

y

Phase portraits for van der Pol equation in the (x, _x) plane for " = 1:0.

The Simulink simulations are shown in the attached �gures.

Simulink simulation diagram for van der Pol�s equation for (x, _x) plane.
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Simulink simulation of van der Pol�s equation in the Liénard (x, y) plane.

Sample trajectories are shown in the attached �gures.
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Trajectory for x(0) = 1, y(0) = 0:5 in the Liénard (x, y) plane for " = 0:5.
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­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1
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­0.3
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­0.1

0

0.1

0.2

0.3

0.4

0.5

y

x

Trajectory for x(0) = 1, y(0) = 0:5 in the Liénard (x, y) plane for " = 1:0.

The corresponding time domain responses are shown in the attached �gures.
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Time (sec)
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State variables for x(0) = 1, y(0) = 0:5 in the Liénard (x, y) plane for " = 0:5.
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State variables for x(0) = 1, y(0) = 0:5 in the Liénard plane for " = 1:0.
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Trajectory for x(0) = 1, _x(0) = 0:5 in the (x, _x) plane for " = 0:5.
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­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1 1.2
­1

­0.5

0

0.5

xd
ot

x

Trajectory for x(0) = 1, _x(0) = 0:5 in the (x, _x) plane for " = 1:0.
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Chapter 10

Control-System Design: Principles
and Case Studies

Problems and Solutions for Chapter 10

1. Of the three types of PID control (proportional, integral, or derivative), which one is the most
e¤ective in reducing the error resulting from a constant disturbance? Explain.

Solution:

Integral control is the most e¤ective in reducing the error due to constant disturbances.

Problem 10.1: Block diagram for showing integral control is the most e¤ective means of
reducing steady-state errors.

Using the above block diagram,

Y = G(W + EDc);

E = R� Y = R�G(W + EDc);

E =
1

1 +DcG
R� G

1 +DcG
W;

e1 = lim
t!1

e(t) = lim
s!0

sE(s) = lim
s!0

s

�
1

1 +DcG
R� G

1 +DcG
W

�
:

Writing G(s) = nG(s)
dG(s)

, and using a step input R(s) = kr
s , and a step disturbance W (s) =

kw
s , we

can show that integral control leads to zero steady-state error, while proportional and derivative

10001
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control, in general, do not.

Integral control; Dc(s) =
1

s
; e1 = lim

s!0
sE(s) = lim

s!0

�
dGskr

dGs+ nG
+

nGskw
dGs+ nG

�
= 0; if nG(0) 6= 0;

Proportional control; Dc(s) = Kp; e1 6= 0;
Derivative control; Dc(s) = s; e1 = kr �G(0)kw 6= 0; if dG(0) 6= 0:

This analysis assumes that there are no pole-zero cancellations between the plant, G; and the
compensator, Dc. In general, proportional or derivative control will not have zero steady-state
error.

2. Is there a greater chance of instability when the sensor in a feedback control system for a
mechanical structure is not collocated with the actuator? Explain.

Solution:

Yes. For comparison, see the following two root loci which were taken from the discussion in
the text on satellite attitude control. In Fig. 10.26, the sensor and the actuator are collocated,
resulting in a stable closed-loop system with PD control. In Fig. 10.5, the sensor and the
actuator are not collocated creating an unstable system with the same PD control.
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Problem 10.2: [Text Fig. 10.26] PD control of satellite: collocated.
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Problem 10.2: [Text Fig. 10.5] PD control of satellite: non-collocated.

3. Consider the plant G(s) = 1=s3. Determine whether it is possible to stabilize this plant by
adding the lead compensator

Dc(s) = K
s+ a

s+ b
; (a < b):

(a) What is the maximum phase margin of the resulting feedback system?

(b) Can a system with this plant, together with any number of lead compensators, be made
unconditionally stable? Explain why or why not.
Solution:

(a) G(s) = 1=s3 has phase angle of -270� for all frequencies. The maximum phase lead from
a compensator Dc(s) = K s+a

s+b is 90
� with b

a = 1. In practice a lead compensator with
b
a = 100 contributes phase lead of approximately 80

�. Hence the closed-loop system will
be unstable with PM = �10�. To have PM t 70� we need, for example, a double lead
compensator Dc(s) =

(s+a)2

(s+b)2 with
b
a = 100.

(b) No, this plant cannot be made �unconditionally stable�because the root locus departure
angles from the three poles at the origin are � 60�. For low enough gain, the poles are
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always in the right-half-plane. If we try positive feedback, one pole departs at 0� so again,
one pole starts into the right-half-plane. For low-enough gain, the system will be unstable.

4. Consider the closed-loop system shown in Fig. 10.88.

(a) What is the phase margin if K = 70; 000?

(b) What is the gain margin if K = 70; 000?

(c) What value of K will yield a phase margin of �70�?

(d) What value of K will yield a phase margin of �0�?

(e) Sketch the root locus with respect to K for the system, and determine what value of K
causes the system to be on the verge of instability.

(f) If the disturbance w is a constant and K = 10; 000, what is the maximum allowable value
for w if y(1) is to remain less than 0.1? (Assume r = 0.)

(g) Suppose the speci�cations require you to allow larger values of w than the value you ob-
tained in part (f) but with the same error constraint [jy(1)j < 0:1]. Discuss what steps
you could take to alleviate the problem.

s ( s 1 5 ) ( s 1 1 0 )
1

S
1

2
R ( s ) Y ( s )s 1 1 0 0

K ( s 1 1 )

d ( s )

S
11

Figure 10.88: Control system for Problem 10.4.

Solution:

(a) To determine the phase and gain margin of the system given in Fig. 10.88, we produce the
Bode plot of the loop gain shown on the next page (using Matlab�s margin command),

KDc(s)G(s) =
K(s+ 1)

s(s+ 5)(s+ 10)(s+ 100)
=

14(s+ 1)

s(s=5 + 1)(s=10 + 1)(s=100 + 1)
;

where K = 70; 000. The Bode plot is shown on the next page along with the phase and
gain margin. From the �gure, the phase margin is about 17� near ! = 25:0 rad/sec.

(b) The gain margin, from the �gure, is approximately 7.2 db at ! = 38:0 rad/sec. Therefore,
the gain and phase margins are

Gain Margin = 7:2 db;

Phase Margin = 17:01�:
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10006 CHAPTER 10. CONTROL-SYSTEM DESIGN: PRINCIPLES AND CASE STUDIES

­120 ­100 ­80 ­60 ­40 ­20 0 20

­60

­40

­20

0

20

40

60

Root Locus

Real Axis

Im
ag

in
ar

y 
Ax

is

Root Locus for Problem 10.4.

(c) A phase margin of 70� requires the magnitude to cross the 0 db line near a frequency of
! = 8:3 rad/sec. Hence, the magnitude frequency response must be attenuated by 15 db,
or the loop gain multiplied by 0:178. Therefore,

K70� = 0:178; K = 12; 500:

(d) A phase margin of 0� results from amplifying the gain by exactly the gain margin value
found in part (b). Hence, we amplify the loop gain by 7:2 db, or 2:293.

K0� = 2:293; K = 160; 500:

(e) The root locus of the system is given (using Matlab�s rlocus command). The value of K
that causes the system to be on the verge of stability is the gain where the root loci cross
the j! axis. This value of K can be calculated algebraically or can be determined by the
use of the Matlab command rloc�nd. In addition, the result from part (d) can be used
since zero phase and gain margin translate to the system being on the verge of instability.
Hence, the range of K for stability is 0 < K < 160; 500.

(f) With R = 0 and the disturbance labeled as w, we can write the transfer function from
W (s) to Y (s) to determine the steady-state output value due to a constant disturbance
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input.

Y (s) =
G

1 +KDcG
W (s);

yss = lim
t!1

y(t) = lim
s!0

sY (s) = lim
s!0

s
G

1 +KDcG
W (s):

If w(t) is constant, w(t) = c, then W (s) = c=s, so we have,

yss =
100c

K
:

(g) Therefore, with K = 10000 and y < 0:1, we have c < 10. Since yss = 100c=K, we can
increase the gain K to obtain the same error speci�cation, yss, given larger values of c.
However, this will sacri�ce system stability and possibly transient performance. In this
case, integral control can be added to reduce the steady-state output error to zero.

5. Consider the system shown in Fig. 10.89, which represents the attitude rate control for a certain
aircraft.

(a) Design a compensator so that the dominant poles are at �2� 2j.
(b) Sketch the Bode plot for your design, and select the compensation so that the crossover

frequency is at least 2
p
2 rad/sec and PM � 50�.

(c) Sketch the root locus for your design, and �nd the velocity constant when !n > 2
p
2 and

� � 0:5.

S

1

2

R Y

C o m p e n s a t o r

D c ( s )

H y d r a u l i c s e r v o

s 2 1 0 .1 s 1 4
2 s 1 0 .1

k r g

s
1

R a t e g y r o

A i r c r a f t

Figure 10.89: Block diagram for aircraft-attitude rate control.

Solution:

(a) With a constant gain compensator, Dc(s) = K, the root locus of,

Dc(s)G(s) =
2K(s+ 0:05)

s(s2 + 0:1s+ 4)
=
num

den
:

does not pass through �2�2j. Therefore we need compensation of at least a lead network.
Let,

Dc(s) = K
s+ z

s+ p
:



10008 CHAPTER 10. CONTROL-SYSTEM DESIGN: PRINCIPLES AND CASE STUDIES

Using the angle criterion, at the closed-loop pole location s = �2 + 2j, we can write an
expression for the angle contribution from the lead network zero, �z, and lead network
pole, �p.

X
�zi �

X
�pi = �180

� =) �z � �p + 134� � 180� � 135� � 116� = �180�:

So we have, � = �z � �p = 117�. In Matlab,

PHI = 180=pi � [ angle(polyval (n; s) =polyval(d; s)) � pi ]:

With selection of z = 0:4, we get p = 11:7. So that our lead design is,

Dc(s) = K
s+ 0:4

s+ 11:7
:

To �nd the compensator gain, K, we can utilize the magnitude criterion at the desired
dominant closed-loop pole locations. We �nd that,

jDc(s)G(s)js=�2�j2 = 1 =) K = 17:0:

So the lead design is,

Dc(s) = 17
s+ 0:4

s+ 11:7
:

(b) The Bode plot of the system loop transfer function,

Dc(s)G(s) = 34
(s+ 0:4)(s+ 0:05)

s(s+ 11:7)(s2 + 0:1s+ 4)
;

is shown on the next page using Matlab�s Bode command. As the plot shows !c = 3
and PM = 67:3�. Therefore, both of the speci�cations are met by our design.
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Problem 10.5 PD control of an aircraft: Bode plot.
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Problem 10.5 PD control of an aircraft: root locus.

(c) The root locus plot is shown above using Matlab�s rlocus command. The velocity constant
is most easily found from either the Bode plot or from,

Kv = lim
s!0

sDc(s)G(s):

For our compensated system, Kv = 0:0145.

6. Consider the block diagram for the servomechanism drawn in Fig. 10.90. Which of the following
claims are true?

(a) The actuator dynamics (the pole at 1000 rad=sec) must be included in an analysis to
evaluate a usable maximum gain for which the control system is stable.

(b) The gain K must be negative for the system to be stable.

(c) There exists a value of K for which the control system will oscillate at a frequency between
4 and 6 rad/sec.

(d) The system is unstable if jKj > 10.
(e) If K must be negative for stability, the control system cannot counteract a positive distur-

bance.
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(f) A positive constant disturbance will speed up the load, thereby making the �nal value of e
negative.

(g) With only a positive constant command input r, the error signal e must have a �nal value
greater than zero.

(h) For K = �1 the closed-loop system is stable, and the disturbance results in a speed error
whose steady-state magnitude is less than 5 rad/sec.

S

1

2

R

A m p l i f i e r

K

A c t u a t o r

T a c h o m e t e r

e

D i s t u r b a n c e ( 0 .1 N ? m )

0 .0 1

s 1 1 0 0 0
1 0 0 0

s ( s 2 1 2 s 1 2 5 )
1 0 0 0 V ( r a d / s e c )

S
1

1
L o a d

2

Figure 10.90: Servomechanism for Problem. 10.6.

Solution:

(a) True. Even though it is tempting to approximate the actuator dynamics as in�nitely fast,
and hence, not important, the actuator pole dramatically alters the root-locus plot of the
system to be controlled. The root locus shown on the next page is for the system without
the actuator pole. The root locus for the entire system is also shown. Note that two very
di¤erent root loci result.

(b) True. On a root locus plot, the pole at s = 0 will immediately move into the right-half
plane unless the gain is negative. The root locus of the system for negative gain K is
shown on the next page.

(c) True. A gain of K = �4:99 produces imaginary poles at s = � 5j.

(d) True. The system is unstable for any gain K > 0, and is unstable for K < �5. Therefore,
it is true that the system is unstable for jKj > 10.

(e) False. Since the actuator has a negative DC gain, a positive disturbance will cause a
negative feedback signal to the load.

(f) True. The disturbance will speed up the load, resulting in a negative error. The closed-
loop system has a DC gain from the disturbance, d, to the error signal, e, of �1. Therefore,
the �nal value of the error due to a disturbance will be �d.

(g) False. The closed-loop system will result in an error signal equal to zero, if the disturbance
is zero. The DC gain from the reference input to the error signal is zero. In addition, a
position disturbance will cause a negative steady-state error.

(h) False. The steady-state speed error due to the disturbance of :1, is 10 rad/sec, since the
DC gain from d to y is 100. The error signal, e, is -0:1.
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Problem 10.6 Servo mechanical root locus plot: without actuator.
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Problem 10.6 Servo mechanical root locus plot: with actuator dynamics.
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Problem 10.6 Servo mechanical root locus plot: for negative gain.

7. A stick balancer and its corresponding control block diagram are shown in Fig. 10.91. The
control is a torque applied about the pivot.

(a) Using root-locus techniques, design a compensator D(s) that will place the dominant roots
at s = �5� 5j (corresponding to !n = 7 rad/sec, � = 0:707).

(b) Use Bode plotting techniques to design a compensator D(s) to meet the following speci�-
cations:

� steady-state � displacement of less than 0.001 for a constant input torque Td = 1,
� Phase Margin � 50�,
� Closed-loop bandwidth �= 7 rad/sec.

Solution:

(a) To have the compensated plant root locus go through the pole location s = �5 � 5j, we
employ a lead compensator,

Dc1(s) = K
s+ z

s+ p
:

Using the angle criterion, X
�zi �

X
�pi = �180

�;
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at the closed-loop pole location s = �5 + 5j, we can write an expression for the angle
contribution from the lead network zero, �z, and lead network pole, �p. We have,

�z � �p � 59� � 159� = �180�;

or,

� = �z � �p = 38�:

In Matlab,

PHI = 180=pi � [ angle(polyval (n; s) =polyval(d; s)) � pi]:

So we have, � = �z � �p = 38�. With selection of z = 10, we get p = 45:7. So that our
lead design is,

Dc1(s) = K
s+ 10

s+ 45:7
:

To �nd the compensator gain, K, we can utilize the magnitude criterion at the desired
dominant closed-loop pole locations. We �nd that,

jDc1(s)G(s)js=�5�5j = 1) K = 471:

Therefore, we have the compensator,

Dc1(s) = 471
s+ 10

s+ 45:7
:

The root locus plot of the compensated plant is shown using Matlab�s rlocus command.

S

1

2

( s 2 2 6 4 )
1

D ( s )

u

T d

T d
u

Figure 10.91: Stick balancer.
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Problem 10.7: Root locus of stick balancer compensated system.

(b) We need a lag network in addition to a lead network to get the required Kp. Let,

Dc2(s) = 64000
(s+ 1)(s=10 + 1)

(s=0:01 + 1)(s=1000 + 1)
:

This compensator will meet our design speci�cations. The Bode plot of Dc2(s)G(s) is
shown on the next page using Matlab�s Bode command. Note that the phase margin is
near 75 degrees. The 0 db cross-over frequency, !c, is approximately 64 rad/sec. Hence,
the bandwidth is near 64 rad/sec. The steady-state displacement to a unity constant input
torque is,

�ss = lim
s!0

G(s)

1 +G(s)Dc(s)
= 1:56� 10�5 < 0:001:

Notice that this is an unstable open-loop system and the Bode plot must be interpreted
carefully. A Nyquist plot is useful here. One is given for this compensator and plant using
Matlab�s nyquist command as shown on the next page.
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Problem 10.7 Frequency design method for stick balancer: Bode plot of compensated
system.
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Problem 10.7 Frequency design method for stick balancer: Nyquist plot of compensated
system.

8. Consider the standard feedback system drawn in Fig. 10.92.

(a) Suppose,

G(s) =
2500 K

s(s+ 25)
:

Design a lead compensator so that the phase margin of the system is more than 45�; the
steady-state error due to a ramp should be less than or equal to 0.01.

(b) Using the plant transfer function from part (a), design a lead compensator so that the
overshoot is less than 25% and the 1% settling time is less than 0.1 sec.

(c) Suppose

G(s) =
K

s(1 + 0:1s)(1 + 0:2s)
;

and let the performance speci�cations now be Kv = 100 and PM � 40�. Is the lead
compensation e¤ective for this system? Find a lag compensator, and plot the root locus
of the compensated system.

(d) Using G(s) from part (c), design a lag compensator such that the peak overshoot is less
than 20% and Kv = 100.
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(e) Repeat part (c) using a lead-lag compensator.

(f) Find the root locus of the compensated system in part (e), and compare your �ndings with
those from part (c).

G ( s ) YS

1

2

R D c ( s )
e

Figure 10.92: Block diagram of a standard feedback control system.

Solution:

(a) The design speci�cation of steady-state error provides information for the design of K.

e1 =
1

Kv
= 0:01 =) Kv = 100:

Kv = lim
s!0

sG(s) = 100K =) K = 1:

The Bode plot of,

G(s) =
2500

s(s+ 25)
;

is given, using Matlab�s margin command and shows that the phase margin is approxi-
mately 30�. Therefore, we need 15� of phase lead. We select 30� of phase lead.
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Problem 10.8: Frequency response of G(s).
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Problem 10.8: Frequency response of Dc(s)G(s).

From text Fig. 6.53 of the text, we have 1
� = 3. Now, we need to �nd the frequency such

that jG(j!)j =
p
� = 0:58. From the Bode plot of G(s), this results in ! = 63:5 rad/sec.

This frequency will be the crossover frequency of Dc(s)G(s), i.e., !c = 63:5 rad/sec. So
the lead compensator is,

Dc(s) =
s
! + 1
s
!
�
+ 1

=
s
z + 1
s
p + 1

;

such that ! = !c
p
� = z ' 37 and !=� = p ' 110. Therefore, we have,

Dc(s) =
s=37 + 1

s=110 + 1
:

The Bode plot of the compensated system is shown on the previous page. The phase
margin is 51� and !c = 63:2 rad/sec.

(b) ForMp = 25%, let � = 0:4. For ts < 0:1, let �!n t 4:6=0:1 = 46. Thus, !n = 115 rad/sec,
and s = �46� j105. We set the lead zero at s = 1:5 � abs(s) = �172 and compute the pole
to be at s = �1284 using the angle criterion. The Bode plot and step response show the
speci�cations are met with an additional gain of 20. Therefore, the compensator is,

Dc(s) = 74:65
s+ 172

s+ 1284
:
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The closed-loop step response is shown below (using Matlab�s step command).
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Step response of the closed-loop system for Problem 10.8 (b).

(c) The design speci�cation of steady-state error provides information for the design of K.

Kv = lim
s!0

sG(s) = K =) K = 100:

The Bode plot of,

G(s) =
100

s(s=5 + 1)(s=10 + 1)
;

shows that the phase margin (using Matlab�s margin) is �40�: This is shown below.
Therefore, we need a phase lead of greater than 80�. A lead compensation Dc(s) =

(s+a)
(s+b)

can not achieve this phase margin requirement. Hence, we try a lag network. We �nd
the frequency such that phase margin of G(j!) is our phase margin speci�cation plus
10�, or phase margin equals 50�. At ! = 2:5 rad/sec, the phase of G(j!) is �130� and
jG(j!)j = � = 34:7. This ! will be crossover frequency of Dc(j!)G(j!), !c = 2:5. Now,
select the zero of Dc(s) one decade below !c, which implies ! = 0:25 rad/sec. This results
in !

� = 0:25=34:7 = 0:0072. The lag network is thus,

Dc(s) =
s=0:25 + 1

s=0:0072 + 1
;
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and the loop gain is,

Dc(s)G(s) =
100(s=0:25 + 1)

s(s=0:0072 + 1)(s=5 + 1)(s=10 + 1)
:

The Bode plot, root locus, and step responses are given on the next two pages (using
Matlab�s bode, rlocus, step commands). Note that the design produces a phase margin
of 43:7�.
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Bode plot of G(s) for Problem 10.8 (c).
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Bode plot of Dc(s)G(s) for Problem 10.8 (c).
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Root locus of Dc(s)G(s) for Problem 10.8 (c).
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Step response of closed-loop system for Problem 10.8 (c).

(d) We can design a lag compensator using root locus methods. The velocity constant requires
the plant gain to be equal to 100, since,

Kv = lim
s!0

sG(s) = K =) K = 100:

Therefore,

G(s) =
100

s(1 + 0:1s)(1 + 0:2s)
=

5000

s(s+ 5)(s+ 10)
:

The root locus plot of G(s) is shown below using Matlab�s rlocus command. For an
overshoot speci�cation of Mp = 20%, we chose � = 0:46. We can �nd the desired closed-
loop pole locations by �nding the intersection of the root locus shown with the constant
damping line for � = 0:46. This results in desired dominant poles at s = �1:61 � 3:11j.
However, Kv = K of G(s) at these pole locations is 2:875, since,���� K

s(s=5 + 1)(s=10 + 1)

����
s=�1:61�j3:11

= 1 =) K = 2:875:

Therefore, we need to raise Kv to 100. This implies using a lag compensator with � =
100
2:875 = 34:8. If we select the compensator zero at s = 0:1, the pole location is s = 0:1

� =
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0:003. Hence,

Dc(s) =
s=0:1 + 1

s=0:003 + 1
;

and the loop gain is,

Dc(s)G(s) =
100(s=0:1 + 1)

s(s=:003 + 1)(s=5 + 1)(s=10 + 1)
:

The step response of the closed-loop system is given on the next page (using Matlab�s step
command). Note the small slow transient in the step response from the lag compensator.
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Root locus for Problem 10.8 (d).
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Step response of closed-loop system for Problem 10.8 (d).

(e) Again, the design speci�cation of steady-state error provides information for the design of
K.

Kv = 100 =) K = 100:

As mentioned in part (c), the phase margin for,

G(s) =
100

s(s=5 + 1)(s=10 + 1)
;

is �40�. First, we select the cross-over frequency, !c. From the Bode plot of G(s) given,

\G(j!) = �180� =) !c = 7:0:

With !c = 7:0 we need 40� more lead. From Fig. 6.52 in the text, an � = 0:1 will provide
55�of lead. We select the lead such that zero location is s = ! = !c

p
� = 2:21. The lead

pole location is s = !
� . So we have:

Dlead(s) =
s=2:21 + 1

s=22:1 + 1
:

Now, we select the zero of the lag at least one decade lower than !c. With � of the lag
equal to 20, we have,

Dlag(s) =
s=0:7 + 1

s=0:035 + 1
:
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The lead-lag compensator is,

Dc(s) =
(s=0:7 + 1)(s=2:21 + 1)

(s=0:035 + 1)(s=22:1 + 1)
:

The system Bode plot and step response appear on the next page.
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Bode plot of G(s)Dc(s). for Problem 10.8 (e).
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(f) The root locus plot of Dc(s)G(s) from part (d) is shown on the next page.



10031

­12 ­10 ­8 ­6 ­4 ­2 0 2 4

­4

­3

­2

­1

0

1

2

3

4

Root Locus

Real Axis

Im
ag

in
ar

y 
Ax

is

Root locus for Problem 10.8 (e).

The main di¤erence between the designs of part (c) and part (e) is that with lead-lag we
have higher !c, and hence higher bandwidth, and also lower rise time and lower overshoot.

9. Consider the system in Fig. 10.92, where

G(s) =
300

s(s+ 0:225)(s+ 4)(s+ 180)
:

The compensator Dc(s) is to be designed so that the closed-loop system satis�es the following speci-
�cations:

1. � zero steady-state error for step inputs,
� PM = 55�, GM � 6 db,
� gain crossover frequency is not smaller than that of the uncompensated plant.

(a) What kind of compensation should be used and why?

(b) Design a suitable compensator Dc(s) to meet the speci�cations.
Solution:

The Bode plot of G(s) is shown on the next page. From the �gure, the phase margin is 10:8� and
!c = 0:623.
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1. (a) Since we need 55� � 10� = 45� of phase lead, a single lead network will do the job.
(b) From a phase lead requirement of 45�, we have 1

� � 10. Note that you can use either Fig.
6.52 of the text, or sin(�) = 1��

1+� where � is the required phase lead in radians. Now we
�nd the frequency, !, of G(j!) such that jG(j!)j =

p
� = 0:32: We �nd ! = 1:11 which

will be the !c of the compensated system. The zero of lead network is chosen as s =
!c
p
� = 0:35. The pole location is located at s = !c

� = 3:5. Hence, the compensator and
the loop gain are,

Dc(s) =
s=0:35 + 1

s=3:5 + 1
;

Dc(s)G(s) =
1:8519(s=0:35 + 1)

s(s=3:5 + 1)(s=0:225 + 1)(s=4 + 1)(s=180 + 1)
:

The Bode plot of Dc(s)G(s), the compensated system is shown on the next page using
Matlab�s margin command. As the �gure shows, !c = 1:1, which is larger than the
crossover frequency of the uncompensated plant, G(s). The Bode plot shows a phase
margin of 55� and a gain margin of 15 db. Both speci�cations meet the requirements.
Finally, since DG is a type 1 system, the steady-state error, e1, due to a step function is
zero as shown on the next page.
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Gm = 6.96 dB (at 0.938 rad/sec) ,  Pm = 10.8 deg (at 0.622 rad/sec)

Frequency   (rad/sec)

­300

­200

­100

0

100

M
ag

ni
tu

de
 (d

B)

10
­2

10
­1

10
0

10
1

10
2

10
3

10
4

­360

­270

­180

­90

Ph
as

e 
(d

eg
)

Bode plot of G(s) for Problem 10.9.
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Lead design for Problem 10.9: Bode plot of the compensated system.
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Step response of closed-loop system for Problem 10.9.

10. We have discussed three design methods: the root-locus method of Evans, the frequency-response
method of Bode, and the state-variable pole-assignment method. Explain which of these methods is
best described by the following statements (if you feel more than one method �ts a given statement
equally well, say so and explain why):

1. (a) This method is the one most commonly used when the plant description must be obtained
from experimental data.

(b) This method provides the most direct control over dynamic response characteristics such
as rise time, percent overshoot, and settling time.

(c) This method lends itself most easily to an automated (computer) implementation.

(d) This method provides the most direct control over the steady-state error constants Kp and
Kv.

(e) This method is most likely to lead to the least complex controller capable of meeting the
dynamic and static accuracy speci�cations.

(f) This method allows the designer to guarantee that the �nal design will be unconditionally
stable.

(g) This method can be used without modi�cation for plants that include transportation lag



10035

terms, for example,

G(s) =
e�2s

(s+ 3)2
:

This method is the one most commonly used when the plant description must be obtained
from experimental data.

Solution:

(a) Frequency response method is the most convenient for experimental data because the sinu-
soidal steady-state records can be obtained directly in the laboratory. Either the root locus
or state variable design generally requires a separate system identi�cation e¤ort between
the experimental data and the construction of a model suitable for the design method.

(b) Either the root-locus or state variable pole assignment are the most direct for control over
dynamic response. The pole-zero characteristics are the items of concentration in these
two design methods.

(c) The state variable pole-assignment is most easily programmed because, once the speci�-
cations are given, the design is completely algorithmic. In the other methods, a trial and
error cycle is required and while the analysis may be done by a computer the design is not
easily implemented.

(d) The frequency response method of Bode shows the error constant (eitherKp orKv) directly
on the graph. State variable or root locus require a separate calculation for these numbers.
(Using Truxal�s formula, however, the state variable pole-assignment method can be used
to give a speci�c control over Kp or Kv ).

(e) The root locus or Bode method will give the least complex controller. These techniques
begin with gain alone and then add network compensation only as necessary to meet
the speci�cations; whereas the state variable technique requires a controller of complexity
comparable to that of the plant right from the start.

(f) Either the root locus, whereby the locus is required to be entirely in the left half plane up to
the operating gain, or the Bode method whereby the phase margin is required to be positive
for all frequencies below crossover to allow the designer to guarantee unconditionally stable
behavior. The state variable design technique does not permit this guarantee.

(g) The frequency response technique can be used immediately for transportation lag, while
the root locus requires a small modi�cation and the state variable design method requires
an approximation.

11. Lead and lag networks are typically employed in designs based on frequency response (Bode)
methods. Assuming a type 1 system, indicate the e¤ect of these compensation networks on each
of the listed performance speci�cations. In each case, indicate the e¤ect as �an increase,�
�substantially unchanged,�or �a decrease.�Use the second-order plant G(s) = K=[s(s+ 1)] to
illustrate your conclusions.

(a) Kv

(b) Phase margin

(c) Closed-loop bandwidth

(d) Percent overshoot
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Figure 10.93: Spirit of Freedom balloon
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Figure 10.94: Hot-air balloon

(e) Settling time

Solution:

Lead Lag
Kv Unchanged Increased
Phase margin Increased Unchanged
Closed loop bandwidth Increased Unchanged
Percent overshoot Decreased Unchanged
Settling time Decreased Unchanged

1. 12. Altitude Control of a Hot-air Balloon: American solo balloonist Steve Fossett landed in
the Australian outback aboard Spirit of Freedom on July 3rd, 2002, becoming the �rst solo
balloonist to circumnavigate the globe (see Fig. 10.93). The equations of vertical motion for a
hot-air balloon (Fig. 10.94), linearized about vertical equilibrium are

� _T +
1

�1
�T = �q;

�2�z + _z = a�T + w;



10038 CHAPTER 10. CONTROL-SYSTEM DESIGN: PRINCIPLES AND CASE STUDIES

where

�T = deviation of the hot� air temperature from the equilibrium

temperature where buoyant force = weight;

z = altitude of the balloon;

�q = deviation in the burner heating rate from the equilibrium rate

(normalized by the thermal capacity of the hot air);

w = vertical component of wind� velocity;
�1; �2; a = parameters of the equations:

An altitude-hold autopilot is to be designed for a balloon whose parameters are

�1 = 250 sec; �2 = 25 sec; a = 0:3 m=(sec � �C):

Only altitude is sensed, so a control law of the form

�q(s) = D(s)[zd(s)� z(s)];

will be used, where zd is the desired (commanded) altitude.

(a) Sketch a root locus of the closed-loop eigenvalues with respect to the gain K for a pro-
portional feedback controller, �q = �K(z � zd). Use Routh�s criterion (or let s = j! and
�nd the roots of the characteristic polynomial) to determine the value of the gain and the
associated frequency at which the system is marginally stable.

(b) Our intuition and the results of part (a) indicate that a relatively large amount of lead
compensation is required to produce a satisfactory autopilot. Because Steve Fossett is a
millionaire, he can a¤ord a more complex controller implementation. Sketch a root locus
of the closed-loop eigenvalues with respect to the gain K for a double-lead compensator,
�q = D(s)(zd � z), where,

D(s) = K

�
s+ 0:03

s+ 0:12

�2
:

(c) Select a gainK for the lead-compensated system to give a crossover frequency of 0.06 rad/sec.

(d) Sketch the magnitude portions of the Bode plots (straight-line asymptotes only) for the
open-loop transfer functions of the proportional feedback and lead-compensated systems.

(e) With the gain selected in part (d), what is the steady-state error in altitude for a steady
vertical wind of 1 m/sec? (Be careful: First �nd the closed-loop transfer function from w
to the error.)

(f) If the error in part (e) is too large, how would you modify the compensation to give higher
low-frequency gain? (Give a qualitative answer only.)
Solution:

� _T +
1

�1
�T = �q =) �T =

1

s+ 1
�1

�q =
�1

�1s+ 1
�q = G1(s)�q;

�2�z + _z = a�T + w =) z =
1

s(�2s+ 1)
(a�T + w) = G2(s)�T +G3(s)w:
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The block diagram of the system is shown below.

Problem 10.13: Block diagram for balloon problem with only altitude measurement.

1. (a) With D(s) = K, the open-loop transfer function is,

DG1G2 = K

�
�1

�1s+ 1

��
a

s(�2s+ 1)

�
=

75K

s(250s+ 1)(25s+ 1)
:

The closed-loop system roots are found from the numerator of the equation 1+DG1G2 = 0.
We can �nd the closed-loop roots which are on the imaginary axis by setting s = j! (i.e.,
constrain the solution to lie on the j! axis) and then equating the real and imaginary parts
to zero. We �nd,

�1�2s
3 + (�1 + �2)s

2 + s+Ka�1 = 0;

=) Ka�1 � (�1 + �2)2 = 0;
! � �1�2!3 = 0:

The result is K = 5:87 � 10�4 and ! = 0:01265. Note that the system is unstable for
K > 5:87� 10�4. The next �gure shows the root locus plot of DG1G2:
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Problem 10.13: Root locus for balloon altitude control system with D(s) = K.
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Problem 10.13: Root locus for balloon altitude control system with double-lead
compensation.

(b) The root locus using a double lead compensator is shown above. The open-loop transfer
function used is,

DG1G2 = K

�
s+ 0:03

s+ 0:12

�2�
�1

�1s+ 1

��
a

s(�2s+ 1)

�
:

(c) To �nd K such that !c = 0:06,

jDG1G2j!=0:06 = 1 =) K = 0:0867:

(d) In order to plot the Bode plots, we need to specify which values for K we are going to
use. For the Bode plot of the proportional compensator, we use K = 5:87 � 10�4 from
part (b) (the case where the closed-loop system is marginally stable). For the Bode
plot of the double lead compensator, we use K = 0:0867 from part (d) (the gain when
the crossover frequency is 0.06 rad/sec). The following �gures show Bode magnitude and
phase plots for the balloon control system for both cases. The solid line (blue) corresponds
to the proportional compensator and the dashed line (green) corresponds to the double lead
compensator.
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Problem 10.13: Bode magnitude plots for proportional control (blue), and double lead
compensation (green).
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Problem 10.13: Bode phase plots for proportional control (blue), and double lead
compensation (green).

Using the notation from part (a), we have (suppressing the Laplace variable s),

Z = G3W +DG1G2E;

E = Zd � Z = Zd �G3W �DG1G2E;
=) E(1 +DG1G2) = Zd �G3W;
=) E = (1 +DG1G2)

�1(Zd �G3W ):

Using a unit step on w(t), i.e., W (s) = 1=s, and ignoring zd because it is not involved in
the transfer function from w to e, we have,

e1 = lim
t!1

e(t) = lim
s!0

sE(s) = lim
s!0

�sG3
1 +DG1G2

W = �2:46 m:

(e) We can add a lag network at low frequency to boost the Kv (e1 = 1=Kv). This will not
a¤ect the crossover frequency, !c = 0:06 rad/sec. For example,

D =

�
s+ 0:02

s+ 0:002

�2�
s+ 0:03

s+ 0:12

�2
;

will increase Kv by a factor of 100 or equivalently reduce the error by factor of 0:01, which
implies e1 = �0:0246 m.
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13. Satellite-attitude control systems often use a reaction wheel to provide angular motion.
The equations of motion for such a system are

Satellite : I�� = Tc + Tex;

Wheel : J _r = �Tc;
Measurement : _Z = _�� aZ;

Control : Tc = �D(s)(Z � Zd);

where,

J = moment of inertia of the wheel,

r = wheel speed,

Tc = control torque;

Tex = disturbance torque;

� = angle to be controlled;

Z = measurement from the sensor;

Zd = reference angle;

I = satellite inertia (1000 kg=m
2
);

a = sensor constant (1 rad=sec);

D(s) = compensation:

(a) Suppose D(s) = K0, a constant. Draw the root locus with respect to K0 for the resulting
closed-loop system.

(b) For what range of K0 is the closed-loop system stable?

(c) Add a lead network with a pole at s = �1 so that the closed-loop system has a bandwidth
!BW = 0:04 rad=sec, a damping ratio � = 0:5; and compensation given by,

D(s) = K1
s+ z

s+ 1
:

Where should the zero of the lead network be located? Draw the root locus of the com-
pensated system, and give the value of K1 that allows the speci�cations to be met.

(d) For what range of K1 is the system stable?

(e) What is the steady-state error (the di¤erence between Z and some reference input Zd) to
a constant disturbance torque Tex for the design of part (c)?

(f) What is the type of this system with respect to rejection of Tex?

(g) Draw the Bode plot asymptotes of the open-loop system, with the gain adjusted for the
value of K1 computed in part (c). Add the compensation of part (c), and compute the
phase margin of the closed-loop system.

(h) Write state equations for the open-loop system, using the state variables �, _�, and Z.
Select the gains of a state-feedback controller Tc = �K���K�

_� to locate the closed-loop
poles at s = �0:02� 0:02j

p
3.

Solution:

The block diagram is shown below.



10045

Problem 10.13: Block diagram for satellite attitude control problem.

1. (a) With the transfer function from the measurement to the satellite�s angle is,

�

Z
=

DG

1 +DGH
:

To form the root locus, we use,

DGH =
K0=I

s2(s+ 1)
=
0:001K0

s2(s+ 1)
:

The root locus is shown on the next page.
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Problem 10.13: Root locus for satellite problem.

(b) From the root locus, using Matlab�s rlocus command, the system is unstable for any value
of K0.

(c) With !n = 0:04 and � = 0:5, the closed-loop poles are at s = �0:02� 0:02
p
3j. Using the

phase angle criterion, X
�zi �

X
�pi = �180�;

�z � 120� � 120� � 2� � 2� = �180�;
=) �z = 64

�:

We can now calculate the location of the zero,

z =
0:02

p
3

tan�z
+ 0:02 =) z = 0:0369:

So the compensator is,

D(s) = K1
s+ 0:0369

s+ 1
:

To �nd value of K1 at s = �0:02� 0:02
p
3, we set,

jDGHjs=�0:02+j0:02p3 = 1:
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Solving for K1 yields K1 = 39:92. We plot the root locus of,

DGH =
K1

I (s+ 0:0369)

s2(s+ 1)2
;

using Matlab�s rlocus command as shown on the next page.
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Problem 10.13: Root locus for satellite problem with lead network.
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Problem 10.13: Root locus for satellite problem with lead network: detailed view.

(d) To �nd the range of K1 for which the system is stable, we use Routh�s method on the
numerator of 1 +DGH = 0, i.e.,

s4 + 2s3 + s2 + 0:001K1s+ 3:69� 10�5K1 = 0:

This leads to the stable region 0 < K1 < 1852:4.

(e) We need to �nd the transfer function from Tex to e. In the Laplace domain (suppressing
the s for clarity),

� = G(Tex +DE);

E = Zd � Z = Zd �H� = Zd �HGTex �HGDE;
=) (1 +HGD)E = Zd �HGTex;
=) E = (1 +HGD)�1Zd � (1 +HGD)�1HGTex:

Thus the steady-state error from a unit step input on Tex can be calculated using the Final
Value Theorem. With Zd and Tex = 1=s, we �nd,

e1 = lim
t!1

e(t) = lim
s!0

sE(s) = lim
s!0

� sHGTex
1 +HGD

= lim
s!0

� HG

1 +HGD
= � 1

K1z
= �0:679:
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Because the system is linear, the steady-state error for any other size step input can be
determined by simply scaling this result.

(f) Type 0.

(g) The Bode plot of DGH is shown below using Matlab�s margin command. The phase
margin is approximately 50� at !c = 0:05 rad/sec and the gain margin is approximately
33 db at ! = 1 rad/sec.
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Problem 10.13: Bode plot for satellite problem.

(h) Taking x = [x1 x2 x3]T = [� _� z]T , u = Tc, and w = Tex, we have,

_x = Fx+Gu+G1w;

y = Hx;

where,

F =

24 0 1 0
0 0 0
1 0 �1

35 ; G =

24 0
1

1000
0

35 ; G1 =

24 0
1

1000
0

35 ; H =
�
1 0 0

�
:

Since state feedback will only use � and _�, we have Kz = 0. Thus, we can only expect to
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place arbitrary at most two of the control poles,

det(sI� F+GK) =

24 s �1 0
K�=1000 s+K _�=1000 0

�1 0 s+ 1

35
= (s+ 1)(s2 +K _�=1000s+K�=1000):

So in order to get the desired closed-loop roots we need,

�c(s) = s
2 + 2�!ns+ !

2
n = s

2 + 0:04s+ 0:0016:

Equating coe¢ cients gives K� = 1:6; and K _� = 40. We can also use Matlab�s place
command.

14. Three alternative designs are sketched in Fig. 10.95 for the closed-loop control of a system with
the plant transfer function G(s) = 1=s(s+ 1). The signal w is the plant noise and may be analyzed
as if it were a step; the signal v is the sensor noise and may be analyzed as if it contained power to
very high frequencies.

1. (a) Compute values for the parameters K1, a, K2, KT , K3, d, and KD so that in each case
(assuming w = 0 and v = 0),

Y

R
=

16

s2 + 4s+ 16
:

Note that in system III, a pole is to be placed at s = �4.
(b) Complete the following table, expressing the last entries as A=sk to show how fast noise

from v is attenuated at high frequencies:
System Kv

y
w

��
s=0

y
v

��
s!1

I
II
III

(c) Rank the three designs according to the following characteristics (the best as �1,� the
poorest as �3�):

I II III
Tracking
Plant-noise rejection
Sensor-noise rejection
Solution:

(a)

I :
Y

R
=

K1

s2 + as+K1
;

=) K1 = 16; a = 4:

II :
Y

R
=

K2

s2 + (1 +KT )s+K2
;

=) K2 = 16; KT = 3:
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S
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r y

s 1 a
s 1 1K 1

s ( s 1 1 )
1

s 1 d
s 1 4K 3

s 1 d
sK D

w

S
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S

1

1

S
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1
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1
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Figure 10.95: Alternative feedback structures for Problem 10.14.

III :
Y

R
=

K3(s+ 4)

s3 + (1 + d)s2 + (KD + d+K3)s+ 4K3
;

Y

R
=

K3(s+ 4)

(s+ 4)(s2 + d+KD

4 s+K3)
; and KD = 3(d� 4)

=) K3 = 16; d = 7;KD = 9:

(b) Kv:

E(s) = R� Y = R� 16

s2 + 4s+ 16
R =

s2 + 4s

s2 + 4s+ 16
R; R(s) =

1

s2
;

e1 = lim
t!1

e(t) = lim
s!0

sE(s) =
1

4
;

Kv =
1

e1
=) Kv = 4 for all the designs.

Y
W js=0:

I :
Y

W
js=0 =

a

K1
=
1

4
:

II :
Y

W
js=0 =

1

K2
=
1

16
:

III :
Y

W
js=0 =

d

4K3
=
7

64
:
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Y
V js!1 :

I :
Y

V
js!1 =

K1

s(s+ a) +K1
js!1 ' K1

s2
=
16

s2
:

II :
Y

V
js!1 =

K2 +KT s

s2 + (1 +KT )s+K2
js!1 ' KT

s
=
3

s
:

III :
Y

V
js!1 =

K3(s+ 4) +KDs

s(s+ d)(s+ 1) +K3(s+ 4) +KDs
js!1 =

K3 +KD

s2
=
25

s2
:

Filling the table, and ranking the three designs:
System Kv

Y
W js=0

Y
V js!1 tracking Plant noise rejection Sensor noise rejection

I 4 1/4 16/s2 Same 3 1
II 4 1/16 3/s Same 1 3
III 4 7/65 25/s2 Same 2 2
15. The equations of motion for a cart-stick balancer with state variables of stick angle, stick

angular velocity, and cart velocity are

_x =

24 0 1 0
31:33 0 0:016
�31:33 0 �0:216

35x+
24 0
�0:649
8:649

35u;
y = [ 10 0 0 ]x;

where the output is stick angle, and the control input is voltage on the motor that drives the cart
wheels.

1. (a) Compute the transfer function from u to y, and determine the poles and zeros.

(b) Determine the feedback gain K necessary to move the poles of the system to the locations
�2:832 and �0:521� 1:068j, with !n = 4 rad/sec.

(c) Determine the estimator gain L needed to place the three estimator poles at �10.
(d) Determine the transfer function of the estimated-state-feedback compensator de�ned by

the gains computed in parts (b) and (c).

(e) Suppose we use a reduced-order estimator with poles at �10, and �10. What is the required
estimator gain?

(f) Repeat part (d) using the reduced-order estimator.

(g) Compute the frequency response of the two compensators.
Solution:

(a) The transfer function (using Matlab�s tf) is,

G(s) =
�0:649(s+ 0:0028)

(s� 5:59)(s+ 5:606)(s+ 0:2) :

(b) With �c = (s + 2:832)(s + 2:084 � 4:272j), the feedback gains are calculated using the
Ackermann�s formula or equating �c with det(sI�F+GK). The result using Matlab�s
place command is,

K = [�101:2 14:18 � 0:2796]:
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(c) The estimator gains with �e(s) = (s+ 10)3 are calculated using the Ackermann�s formula
or equating �e with det(sI� F+ LH). The result is using Matlab�s acker command,

L = [2:98 32:5 5850:6]T :

(d) The compensator transfer function can be obtained from (using Matlab�s ss2tf),

Dc(s) = �K(sI� F+GK+ LH)�1L =
0:2398(s+ 5:60)(s� 3:06)
(s+ 23:4� j22:1)(s� 9:98) :

Notice that the compensator is unstable.

(e) For reducing order estimator using and matching coe¢ cients of det(sI � Fbb + LFab) = 0
where,

F =

24 0 1 0
31:33 0 0:016
�31:33 0 �0:216

35 ;G =

24 0
�0:649
8:649

35 ;
and coe¢ cients of �e(s) = (s+ 10)2 will yield (or using Matlab�s acker command),

L = [19:8 5983]T :

(f) The reduced order compensator is,

Ar = Fbb�LFab�(Gb�LGa)Kb;

Br = ArL+ Fba�LFaa�(Gb�LGa)Ka;

Cr = �Kb;

Dr = �Ka�KbL;

Dcr(s) = Cr(sI�Ar)
�1Br +Dr:

These calculations yield (using Matlab�s ss2tf),

Dcr(s) =
2055(s+ 5:58)(s� 3:69)
(s+ 48:2)(s� 21:4) :

(g) The frequency responses of the two compensators follow.
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Frequency response of the compensator.
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Frequency response of the reduced order compensator.

16. A 282-ton Boeing 747 is on landing approach at sea level. If we use the state given in
the case study (Section 10.3) and assume a velocity of 221 ft/sec (Mach 0.198), then the
lateral-direction perturbation equations are,2664

_�
_r
_p
_�

3775 =
2664
�0:0890 �0:989 0:1478 0:1441
0:168 �0:217 �0:166 0
�1:33 0:327 �0:975 0
0 0:149 1 0

3775
2664
�
r
p
�

3775+
2664
0:0148
�0:151
0:0636
0

3775 �r;

y = [ 0 1 0 0 ]

2664
�
r
p
�

3775 :
The corresponding transfer function is (using Matlab�s ss2tf),

G(s) =
r(s)

�r(s)
=

�0:151(s+ 1:05)(s+ 0:0328� 0:414j)
(s+ 1:109)(s+ 0:0425)(s+ 0:0646� 0:731j) :

(a) Draw the uncompensated root locus [for 1 + KG(s)] and the frequency response of the
system. What type of classical controller could be used for this system?
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(b) Try a state-variable design approach by drawing a symmetric root locus for the system.
Choose the closed-loop poles of the system on the SRL to be

�c(s) = (s+ 1:12)(s+ 0:165)(s+ 0:162� 0:681j);

and choose the estimator poles to be �ve times faster at

�e(s) = (s+ 5:58)(s+ 0:825)(s+ 0:812� 3:40j):

(c) Compute the transfer function of the SRL compensator.

(d) Discuss the robustness properties of the system with respect to parameter variations and
unmodeled dynamics.

(e) Note the similarity of this design to the one developed for di¤erent �ight conditions earlier
in the chapter. What does this suggest about providing a continuous (nonlinear) control
throughout the operating envelope?
Solution:

(a) The root locus (using Matlab�s rlocus command) and Bode plots (using Matlab�s bode
command) are shown on the next two pages. From the �gures, we see that a classical lag
network could be used to lower the resonant gain.
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Problem 10.16: Root locus for Boeing 747 problem.
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Problem 10.16: Bode magnitude plot for Boeing 747 problem.
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Problem 10.16: Bode phase plot for Boeing 747 problem.

(b) The symmetric root locus 1 + kG(s)G(�s) = 0 is shown below using Matlab�s rlocus
command.
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Problem 10.16: Symmetric root locus for Boeing 747 problem.

With the closed-loop poles of the system on the symmetric root locus at �c(s) = (s +
1:12)(s+ 0:165)(s+ 0:162� j0:681), the controller feedback gains are (using Ackermann�s
formula or matching the coe¢ cients or using Matlab�s place command),

K = [0:0308 � 2:122 0:112 � 0:034]:

Similarly, the estimator gains with the estimator poles at �e(s) = (s+5:58)(s+0:825)(s+
0:812 � j3:4) are found using Ackermann�s formula or matching the coe¢ cients or using
Matlab�s place command. The estimator gains are,

L = [154 6:75 39:53 973:98]T :

(c) The compensator transfer function is given by,

Dc(s) =
�38:25s3 � 111:5s2 � 215:1s� 136

s4 + 8:36s3 + 24:02s2 + 78:17s+ 53:80

=
�38:247(s+ 0:94479)(s+ 0:9851� j1:6713)

(s+ 6:2987)(s+ 0:85187)(s+ 0:60319� j3:1086) :

(d) The compensated Bode plot is shown below using Matlab�s bode command. Because the
phase is always less than �180�, we would expect the system to be very robust with respect
to gain changes. The phase margin also indicates good robustness.
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Problem 10.16: Bode magnitude for compensated system.
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Problem 10.16 Root locus of compensated system for Boeing 747: Detailed view.

(e) Because a similar compensator stabilizes both cases, we would expect one compensator to
be satisfactory over a wide range of �ight conditions.

17. (Contributed by Prof. L. Swindlehurst) The feedback control system shown in Fig. 10.96 is
proposed as a position control system. A key component of this system is an armature-controlled
DC motor. The input potentiometer produces a voltage Ei that is proportional to the desired shaft
position: Ei = Kp�i. Similarly, the output potentiometer produces a voltage E0 that is proportional
to the actual shaft position: E0 = Kp�0. Note that we have assumed that both potentiometers have
the same proportionality constant. The error signal Ei � E0 drives a compensator, which in turn
produces an armature voltage that drives the motor. The motor has an armature resistance Ra, an
armature inductance La, a torque constant Kt, and a back-emf constant Ke. The moment of inertia
of the motor shaft is Jm, and the rotational damping due to bearing friction is Bm. Finally, the gear
ratio is N : 1, the moment of inertia of the load is JL, and the load damping is BL.

1. (a) Write the di¤erential equations that describe the operation of this feedback system.

(b) Find the transfer function relating �0(s) and �i(s) for a general compensator Dc(s).

(c) The open-loop frequency-response data shown in Table 10.2 were taken using the armature
voltage va of the motor as an input and the output potentiometer voltage E0 as the output.
Assuming that the motor is linear and minimum-phase, make an estimate of the transfer
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Figure 10.96: A servomechanism with gears on the motor shaft and potentiometer sensors.

function of the motor,

G(s) =
�m(s)

Va(s)
;

where �m is the angular position of the motor shaft.

(d) Determine a set of performance speci�cations that are appropriate for a position control
system and will yield good performance. Design Dc(s) to meet these speci�cations.

(e) Verify your design through analysis and simulation using Matlab.
Solution:

(a) First of all, we describe the motor dynamics in more detail. This is illustrated below.

Problem 10.17: DC motor.

The �gure de�nes a few additional variables not mentioned in the problem statement: ia
is the armature current, vb is the back emf, and �m is the angular position of the motor.
Using Kirchho¤�s voltage laws we can write,

va � vb = Raia + La
dia
dt
: (1)
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Table 10.2: Frequency-response Data for Problem 10.17.

Frequency
���E0(s)Va(s)

��� (db) Frequency
���E0(s)Va(s)

��� (db)
(rad/sec) (rad/sec)
0.1 60.0 10.0 14.0
0.2 54.0 20.0 2.0
0.3 50.0 40.0 �10.0
0.5 46.0 60.0 �20.0
0.8 42.0 65.0 �21.0
1.0 40.0 80.0 �24.0
2.0 34.0 100.0 �30.0
3.0 30.5 200.0 �48.0
4.0 27.0 300.0 �59.0
5.0 23.0 500.0 �72.0
7.0 19.5

The torque of the motor, T is proportional to the armature current. Thus,

T = Ktia: (2)

The back emf, vb, is proportional to the angular speed. Hence,

vb = Ke
d�m
dt
: (3)

At the point of contact of the gears, we assign an equal and oppositely directed force F .
(Since we do not know this force, we will eliminate it momentarily). Using Newton�s law
of motion, we have

Jm��m +Bm _�m = T � Frm; (4)

JL��o +BL _�o = �Fro; (5)

where rm is the radius of the gear connected to the motor shaft and ro is the radius of the
gear connected to the output shaft. The minus sign on both terms arises because of the
de�ned directions for �m and �o. And from the gear ratio information, we have

ro = Nrm =) �m = �N�o (6)

(b) First, we will �nd the transfer function from va to �o (the plant) and then we will �nd the
closed loop transfer function. From the gear ratio information, we can combine Eq. (4)
and (5) to eliminate �m.

�NT = �NKtia = (N
2Jm + JL)��o + (N

2Bm +BL) _�o; (7)

��o = � (N
2Bm +BL)

(N2Jm + JL)| {z }
=�

_�o �
NKt

(N2Jm + JL)| {z }
=�

ia: (8)

Next, we combine Eq. (1) and (3) to get,

dia
dt

= �Ra
L
ia +

NKe

L
_�o +

1

L
va: (9)
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Thus, if we de�ne that state x = [�o _�o ia]T , we have,

24 _�o
��o
_ia

35 =
24 0 1 0
0 �� ��
0 NKe

La
�Ra

La

3524 �o
_�o
ia

35+
24 0

0
1=La

35 va:

The output equation is y = [1 0 0]x. This state space realization can then be converted
to transfer function form. We �nd,

G(s) =
�(s)

Va(s)
=

��=La
s
h
s2 + (�+Ra=La)s+ (

Ra�
La

+ �NKe

La
)
i :

And so the closed-loop transfer function is,

�o(s)

�i(s)
=

KpG(s)Dc(s)

1 +KpG(s)Dc(s)
:

(c) The �gure on the next page shows three straight lines �t through the frequency response
data. From this information, we can estimate the transfer function of the plant, G(s).
From the �gure, the poles appear to be located at ! = 5 rad/sec and ! = 70 rad/sec.
Keeping the sign convention from part (b), we have,

G(s) =
��=La

s(s+ 5)(s+ 70)
:

The gain, �=La, is determined by picking a particular value of !, say ! = 1, comparing
the calculated transfer function with the frequency response data. We �nd,

G(s) =
�35700

s(s+ 5)(s+ 70)
:
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Problem 10.17: Straight line �ts to frequency response.

(d) For a positioning system, we would like to keep the overshoot small, less than 1% (say).
And we also like a reasonably fast rise time. For this plant, let�s try to obtain !n = 6
rad/sec (for the dominant roots). Which translates, using the rule of thumb for a dominant
second order system, to tr = 1:8=6 = 0:3 sec.

(e) Both of the time domain speci�cations are met using a double lead compensator,

G(s) = 50
(s+ 9)2

(s+ 200)2
:

The corresponding step response is shown on the next page using Matlab�s step command.
It has an overshoot of 0:68% and a rise time of 0:2681 sec.
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Problem 10.17: Step response of position control system.

18. Design and construct a device to keep a ball centered on a freely swinging beam.
An example of such a device is shown in Fig. 10.97. It uses coils surrounding permanent
magnets as the actuator to move the beam, solar cells to sense the ball position, and a hall-
e¤ect device to sense the beam position. Research other possible actuators and sensors as
part of your design e¤ort. Compare the quality of the control achievable for ball-position-
feedback only with that of multiple-loop feedback of both ball and beam position.

Solution:

See Text Figure 10.97.

19. Design and construct the magnetic levitation device shown in Figure 9.2. You may wish to
use LEGO components in your design.

1. Solution: see K. A. Lilienkamp and K. Lundberg,�Low-cost magnetic levitation project kits
for teaching feedback system design,�Proceeding of the American Control Conference, pp. 1308-
1313, 2004.
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Figure 10.97: Ball-balancer design example.
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Magnetic levitation system [see above Reference by K. A. Lilienkamp and K. Lundberg].

20. Run-to-Run Control : Consider the rapid thermal processing (RTP) system shown in Fig. 10.98.
We wish to heat up a semiconductor wafer, and control the wafer surface temperature accurately using
rings of tungsten halogen lamps. The output of the system is temperature T as a function of time,
y = T (t). The system reference input R is a desired step in temperature (700

�
C) and the control

input is lamp power. A pyrometer is used to measure the wafer center temperature. The model of
the system is �rst order and an integral controller is used as shown in Figure 10.98. Normally, there
is not a sensor bias (b = 0).
a. Suppose the system suddenly develops a sensor bias b 6= 0, where b is known. What can be done

to ensure zero steady-state tracking of temperature command R despite the presence of the sensor
bias?

1. (a) Now assume b = 0. In reality, we are trying to control the thickness of the oxide �lm
grown (Ox) on the wafer and not the temperature. At present no sensor can measure Ox
in real time. The semiconductor process engineer must use an o¤-line equipment (called
metrology) to measure the thickness of the oxide �lm grown on the wafer. The relationship
between the system output temperature and Ox is nonlinear and given by

Oxide thickness =
Z tf

0

pe�
c

T (t) dt;

where tf is the process duration, and p and c are known constants. Suggest a scheme
in which the center wafer oxide thickness Ox can be controlled to a desired value (say,
Ox = 5000 Å) by employing the temperature controller and the output of the metrology.

Solution:

Figure 10.98: RTP system.

(a) We just increase R by +b, i.e., replace R by (R+ b) to cancel the sensor bias.

(b) Since there is a direct relationship between the temperature and oxide thickness, we could
use the results of metrology to adjust the reference temperature until a desired thickness is
obtained. We can do one �run�and measure the oxide thickness. Let us say, the metrology
yields an oxide thickness of 5050 Angstrom (50 Å higher than desired). We would then
lower the temperature, R, and try again. This is called �run-to-run�control and a linear
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static model can be used to provide the control adjustments. In e¤ect, we will be �closing�
the loop on metrology with a discrete integrator [1]. The recipe is adjusted from �run-to-
run�using the following simple algorithm based on the attributes of the product produced
in the previous run or runs [1]. Let k = 1; 2; :::, denote the run number, rk the recipe
variable used during run k, yk the product quality attribute (oxide thickness) produced at
the end of run k, and ek the normalized product quality error, de�ned as,

ek = yk(icenter)� ydes(icenter);
ek(icenter) = Ox(icenter)� 5000: (1)

where ydes(icenter) is the desired center oxide thickness at the center wafer node, icenter.
The simplest choice for run-to-run control is to correct the previous recipe by an amount
proportional to the current error. Thus, for run k = 1; 2; :::, adjust the recipe according
to,

rk = rnom + uk

uk = uk�1 � �ek�1 u0 = 0: (2)

where rnom is the nominal recipe, uk is the correction to the nominal recipe for run k, and
� is the control design gain. � is determined experimentally as follows. We would step
up R and measure the associated change in Ox, i.e., perturb R by �R and measure the
associated output perturbation �Ox. Therefore,

� =
�R

�Ox

is the control design gain. It is important to emphasize that (1)-(2) constitute the complete
run-to-run algorithm. Also (2) has the same form as a gradient descent optimization
algorithm. It is possible to choose the run-to-run control gain matrix � and to analyze the
algorithm under a variety of assumptions about how uk e¤ects ek [1]. It can be shown that
most of the widely used run-to-run algorithms are in the form of (2) for di¤erent choices of
�. For more details see Reference [1].
Reference:
[1] R. L. Kosut, D. de Roover, A. Emami-Naeini, J. L. Ebert, �Run-to-Run Control of
Static Systems,� in Proc. 37th IEEE Conf. Decision Control, pp. 695-700, December
1998.

21. Develop a nonlinear model for a tungsten halogen lamp and simulate it in Simulink.
Solution:
Discovered in 1959, a tungsten halogen bulb is similar to an ordinary incandescent bulb with the

�lament made from tungsten but the �ll gas is a halogen compound, usually iodine or bromine. A
schematic of the lamp is shown below. The idea behind the use of the halogen is to re-deposit the
evaporated tungsten molecules back onto the �lament. The Tungsten atoms evaporate o¤ of the
hot �lament and condense onto the cooler inside wall of the bulb. However, halogen reacts with the
tungsten and re-evaporates the deposited tungsten which reaches the hot �lament again. This process
is known as the �halogen cycle�, and extends the lifetime of the bulb. In order for the halogen cycle
to work, the bulb surface must be very hot, generally over 250�C. The bulb is made from quartz.
Tungsten halogen lamps are now commonly used in rapid thermal processing (RTP) in semiconductor
manufacturing [1].
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Problem 10.21: Schematic of a tungsten halogen lamp.

Consider the following physical parameters for the lamp,

total emissivity � �= 0:4;

density � = 19300 [kg=m3];

speci�c heat c �= 150 [J=kgK] (at T = 1000K);

electrical resistivity �e = 21:9� 10�8 [
m] (at T = 1000K);
Stefan-Boltzman constant � = 5:67� 10�8 [W=m2K4]:

Lamp design is based on a speci�cation of maximum temperature, maximum applied voltage, and
maximum delivered power. Using the following notation,

d = �lament diameter; [mm];

L = �lament length; [m];

T = �lament temperature; [K];

Tmax = max imum �lament temperature; [K];

T1 = ambient (room) temperature; [K];

Te0 = temperature at which resistivity �e is speci�ed; [K];

V = normalized lamp voltage (0 � V � 1);
Vmax = maximum applied voltage; [V ];

Pmax = maximum power; [W ];

I = current; [A];

the electrical resistivity is given by the relationship [3],

�e = �e0

�
T

Te0

�1:2
: (1)

For example at Te0 = 1000K, we �nd �e0 = 21:9�10�8 
m. Employing the energy balance technique
[1] leads to the equation,
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1

4
�d2L�c _T = � ���dL(T 4 � T 41) +

�d2V 2max

4�e0L
�
T
Te0

�1:2V 2: (2)

It is interesting to note that if we specify the maximum radiant power desired, Pmax; then the
�lament diameter, d, and length L, of the �lament are speci�ed for a given Tmax and Vmax: From Eq.
(2), in the steady-state, _T = 0; and with V = 1,

Pmax =
�d2V 2max

4�e0L
�
Tmax
Te0

�1:2 = ���dL(T 4max � T 41); (3)

and we can solve Eqs. (2) and (3), for d and L as follows. Equation (3) can be written as,

�
d2

L
= �dL; (4)

where,

� =
�V 2max

4�e0

�
Tmax
Te0

�1:2 ; (5)

and,
� = ���

�
T 4max � T 41

�
; (6)

are prescribed. Then, the �lament diameter, d, is simply related to �lament length, L, by,

d =
�

�
L2: (7)

Using Eq. (3), (4), and (7), and the maximum radiant power is related to the �lament length by,

Pmax =
�2

�
L3: (8)

Using Eq. (8) together with Eqs. (5) and (6), we can then solve for the �lament length , L, as,

L =

�
Pmax�

�2

� 1
3

=

264 Pmax�V
2
max

4�e0

�
Tmax
Te0

�1:2
�2�2�2 (T 4max � T 41)

2

375
1
3

: (9)

This can be simpli�ed further by assuming that the maximum �lament temperature is much higher
than the ambient temperature, T 4max � T 41; so that,

L �=

264 Pmax�V
2
max

4�e0

�
Tmax
Te0

�1:2
�2�2�2T 8max

375
1
3

: (10)

We can solve for the �lament length and diameter in terms of the given quantities Pmax, Vmax,
and Tmax as well,

L _ P
1
3
maxV

2
3
maxT

�3:07
max ; (11)

d _ P
2
3
maxV

� 2
3

maxT
�0:93
max :
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Figures (a), (b), and (c) on top of the next page show plots of the functional relationship between
�lament diameter and length as a function of the maximum power, Pmax, maximum temperature,
Tmax, and maximum voltage, Vmax, respectively as well as the nominal operating point corresponding
to Pmax = 200W , Tmax = 3000K, and , Vmax = 120V . Figure (a) shows that increasing Pmax requires
increases in both the �lament diameter and length. As seen from Figure (b), increasing the maximum
temperature, Tmax, requires decreasing the �lament length but is relatively insensitive to the �lament
diameter. Figure (c) shows that increasing the maximum voltage, Vmax, requires increasing the
�lament length but decreasing the �lament diameter. Figures (a), (b), and (c) on the bottom of the
next page show the same relationships as in the top �gure but in terms of the normalized diameter,

d
dnomin al

, and normalized �lament length, L
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Problem 10.20: Lamp design parametrs.
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Problem 10.21: Lamp design parameters: normalized.

Assume the nominal operating temperature is denoted by T0. Re-writing Equation (2) in terms of
the normalized temperature, we have 

_T

T0

!
= �4��T

3
0

�cd

"�
T

T0

�4
�
�
T1
T0

�4#
+

V 2max
4�e0�cL

2T0

V 2�
T
Te0

�1:2 : (12)

Let us de�ne the normalized temperature, x = T
T0
;and re-write Eq. (12) as the nonlinear �rst-order

system,

_x = �A(x4 � x41) +B
V 2

x1:2
; (13)

where,

A =
4��T 30
�cd

;

B =
V 2max

4�e0�cL
2T0

:

Linearizing Equation (13) about the nominal (normalized) temperature, we �nd the �rst-order
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linear dynamic model for the lamp as,

_x = �4Ax30x�B
1:2

x2:20
V 2; (14)

which means that the lamp time constant is,

� =
1

4Ax30
�=

�cd

16��T 30 x
3
0

: (15)

In terms of lamp current, we have,

I =
�d2Vmax

4�e0L
�
T
Te0

�1:2V: (16)

Equation (15) implies that fast lamp response requires high �lament temperature and low �lament
diameter. Typical values for the lamp �lament time constant range from 0.5 to 2 seconds.

The output of the lamp may be considered to be current, normalized �lament temperature, or
radiative power,

ylamp =

24 I
x

Pmax

35 : (17)

A nonlinear simulation for the lamp model may be implemented in Simulink as shown on the next
page. The results of the simulation show the temperature and current response of the lamp to a step
voltage command input as shown. The �gure shows the fast lamp �lament temperature response with
a time constant of 0.07 seconds, and also shows that the current initially surges but quickly drops to
a steady-state within approximately 0.3 seconds.
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Problem 10.21: Simulink diagram for lamp model.
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Problem 10.21: Lamp response to a step voltage command.
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22. Develop a nonlinear model for a pyrometer. Show how temperature can be deduced from the

model.
Solution:
Temperature measurement can be done by a variety of methods including thermocouples, resistive

temperature detectors (RTDs), and pyrometers [1]. A pyrometer is a non-contact temperature sensor
and measures the Infrared (IR) radiation which is directly a function of the temperature. It is
known that objects emit radiant energy proportional to T 4 where T is the temperature of the object.
Among the advantages of pyrometers are that they have very fast response time, can be used to
measure the temperature of moving objects (e.g., a rotating semiconductor wafer), and in vacuum for
semiconductor manufacturing.
The single-wavelength pyrometer measures the total energy emitted from a surface at a given

wavelength. To understand the operation of a pyrometer, we need to review some concepts from
radiation heat transfer [2-3]. The emissivity of an object, �, is de�ned as the ratio of the energy �ux
emitted by a surface to that from a black body at the same temperature:
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� =

R
��Ib�(T )d�R
Ib�(T )d�

; (18)

where,

� = total emissivity,

�� = spectral emissivity,

T = absolute temperature, K;

� = wavelength of radiation, �m;

Ib� = spectral black body intensity.

The frequency, �, is given by,

� =
c0
�0
;

where,

c0 = speed of light in vacuum = 2:998� 108m=s;
�0 = wavelength of light in vacuum.

The Plank�s law of radiation states that the spectral radiance of a blackbody, or spectral intensity,
Ib� , in a dielectric medium as a function of the wavelength and temperature is,

Ib�(T ) =
2h�3n2

c2o(e
h�
kT � 1)

; (19)

where,

h = Planck0s constant = 6:626� 10�34Js;
k = Boltzmann0s constant = 1:3806� 10�23J=K;
n = real refractive index (n = 1 for most gases),

and the frequency and wavelength are related by,

� =
c

�
; (20)

where c is the speed of light in the medium and is given by,

c =
c0
n
:

After some manipulation, we can re-write Eq. (19) as [2],

Ib�(T ) =
2hc20

n2�5(e
hc0
n�kT � 1)

: (21)
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The total black-body radiation intensity, Ib, is obtained by integrating over all frequencies or
wavelength [2]

Ib(T ) =

Z
I�b(T )d� (22)

=
n2�T 4

�
:

The black body emissive �ux is given by,

q�b(T ) =
C1

n2�5(e
C2
n�T � 1)

; (23)

where,

C1 = 2�hc20 = 3:7419� 10�16; W=m2; (24)

C2 =
hc0
k
= 14388 �mK:

Integrating over all wavelengths �, we obtain the total black body emissive �ux [2],

qb(T ) =

Z 1

0

q�b(T )d� (25)

= n2�T 4;

where � is the Stefan-Boltzman constant, � = 5:67� 10�8 W=(m2K4):

The temperature may be determined from Eq. (19) as,

T =
C2
�

1

ln(1 + ��C
I )

; (26)

where,

C =
C1

�5
: (27)
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Problem 10.22: Schematic of temperature measurement using pyrometry.

The �gure on the bottom of the previous page shows the schematic of temperature measurement
of a semiconductor wafer using pyrometry where, for this particular application, response time and
view angle are very important. A two color pyrometer is also used for applications where absolute
temperature measurement is important. The measurement can then be used for feedback control
purposes, e.g., pyrometers are now routinely used in control of rapid thermal processing (RTP) systems
in semiconductor manufacturing [4].
References:
[1] Fraden, J., Handbook of Modern sensors: Physics, Designs, and Applications, Springer, 1996.
[2] Ozisik, M. N., Radiative Transfer and Interactions with Conduction and Convection, Wiley-

Interscience, 1973.
[3] Siegel, R. and J. R. Howell, Thermal Radiation Heat Transfer, Second Ed., Hemisphere Pub-

lishing Corp., 1981.
[4] A. Emami-Naeini, et al., �Modeling and Control of Distributed Thermal Systems,�IEEE Tran.

Contrl. Syst. Tech., pp. 668-683, September 2003.
23. Repeat the RTP case study design by summing the three sensors to form a single signal to

control the average temperature. Demonstrate the performance of the linear design, and validate the
performance on the nonlinear Simulink simulation.
Solution:
A linear model for the system was derived in the text as,

_T = F3 T+G3 u; (28)

y = H 3T+ J3 u;

where y = [Ty1 Ty2 Ty3]T and,

F3 =

24 �0:0682 0:0149 0:0000
0:0458 �0:1181 0:0218
0:0000 0:04683 �0:1008

35 ; G3 =

24 0:3787 0:1105 0:0229
0:0000 0:4490 0:0735
0:0000 0:0007 0:4177

35 ;
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H3 =

24 1 0 0
0 1 0
0 0 1

35 ; J3 =

24 0 0 0
0 0 0
0 0 0

35 :

The three open-loop poles are computed from Matlab and are located at �0:0527;�0:0863; and
�0:1482: Since we tied the three lamps into one actuator and are only using the average temperature
for feedback, the linear model is then:

F =

24 �0:0682 0:0149 0:0000
0:0458 �0:1181 0:0218
0:0000 0:04683 �0:1008

35 ; G =

24 0:5122
0:5226
0:4185

35 ;

Havg =
�
1
3

1
3

1
3

�
; J = [0] ;

resulting in the transfer function,

G(s) =
Tyavg(s)

Vcmd(s)
=

0:4844(s+ 0:0878)(s+ 0:1485)

(s+ 0:1482)(s+ 0:0527)(s+ 0:0863)
:

We may try a simple PI controller of the form,

Dc(s) =
(s+ 0:0527)

s
;

so as to cancel the e¤ect of the slower pole. The linear closed-loop response is shown as well as the
associated control e¤ort The system response follows the commanded trajectory with a time delay
of approximately 2 sec and no overshoot. The lamp has its normal response until 75 sec and goes
negative (shown in dashed) to try to follow the sharp drop in commanded temperature. As mentioned
in the text, this behavior is not possible in the system as there is no means of active cooling and the
lamps do saturate low. There is no explicit means of controlling the temperature nonuniformity using
the PI controller.
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Problem 10.23: Linear closed-loop RTP response for PI controller.
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Problem 10.23: RTP Linear response for PI: control e¤ort.

Next we design a state-space based controller. As in the text, we use the error space approach for
inclusion of integral control and employ the linear quadratic gaussian technique of Chapter 7. The
error system is, �

_e
_�

�
=

�
0 Havg

0 F

� �
e
�

�
+

�
J
G

�
�; (29)

where,

A =

�
0 Havg

0 F

�
;B =

�
J
G

�
:

and e = y � r; � = _T with � = _u. For state feedback design, the LQR formulation of Chapter 7
is used

J =

Z 1

0

fzTQ z+��2gdt;

where z =[e �T ]T : Note that J has been chosen in such a way as to penalize the tracking error, e,
the control, u, as well as the di¤erences in the three temperatures�therefore, the performance index
should include a term of the form,

10
�
(T1 � T2)2 + (T1 � T3)2 + (T2 � T3)2

	
;



10085

and hence minimizes the temperature non-uniformity. As in the text, the factor of ten is used as
the relative weighting between the error state and the plant state. The state and control weighting
matrices, Q and R, are then,

Q =

2664
1 0 0 0
0 20 �10 �10
0 �10 20 �10
0 �10 �10 20

3775 ; R = � = 1:

The following Matlab command is used to design the feedback gain,
[K]=lqr(A,B,Q,R).

The resulting feedback gain matrix computed from Matlab is,

K = [K1 : K0];

where,

K1 = 1; K0 =
�
0:7344 0:9344 0:3921

�
;

which results in the internal model controller of the form,

_xc = Bc e; (30)

u = Cc xc �K0 T;

with xc denoting the controller state and,

Bc = �K1 = �1; Cc = 1:

The resulting state-feedback closed-loop poles computed using Matlab�s eig command are at
�0:5395 � 0:4373j;�0:1490; and �0:0879. The full-order estimator was designed with the same
process and sensor noise intensities used in the text as the estimator design knobs,

Rw = 1; Rv = 0:001:

The following Matlab command is used to design the estimator,
[L]=lqe(F,G,H,Rw,Rv).

The resulting estimator gain matrix is,

L =

24 16:142
16:4667
13:1975

35 ;
with estimator error poles at �15:3197;�0:1485; and �0:0878: The estimator equation is,

_̂
T = FT̂+Gu+L(y�HT̂): (31)

With the estimator, the internal model controller equation is modi�ed as in the text

_xc = Bc e; (32)

u = Cc xc �K0 T̂:
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The closed-loop system equations are given in the text,

_xcl = Acl xcl +Bcl r; (33)

y = Ccl xcl +Dcl r;

where r is the reference input temperature trajectory, the closed-loop state vector is xcl = [TT xTc T̂
T
]T and

the system matrices are,

Acl =

24 F GCc �GK0

BcH 0 0
LH GCc F�GK0�LH

35 ; Bcl =

24 0
�Bc
0

35 ;
Ccl =

�
H 0 0

�
; Dcl = [0];

with closed-loop poles (computed with Matlab) located at �0:5395� 0:4373j;�0:1490; �0:0879;

�15:3197;�0:1485 and �0:0879 as expected. The closed-loop control structure is as shown in text
Figure 10.85.

The linear closed-loop response and the associated control e¤ort are shown. The commanded
temperature trajectory, r, is a ramp from 0�C to 25�C with a 1�C/sec slope followed by 50 sec soak
time and drop back to 0�C. The system tracks the commanded temperature trajectory �albeit with
a time delay of approximately 2 seconds for the ramp and a maximum of 0:0216�C overshoot. As
expected the system tracks a constant input asymptotically with zero steady-state error. The lamp
command increases as expected to allow for tracking the ramp input, reaches a maximum value at
25 sec and then drops to a steady-state value around 35 sec. The normal response of the lamp is
seen from 0 to 75 sec followed by negative commanded voltage for a few seconds corresponding to fast
cooling. Again, the negative control e¤ort voltage (shown in dashed lines) is physically impossible as
there is no active cooling in the system. Hence in the nonlinear simulations, commanded lamp power
must be constrained to be strictly non-negative. Note that the response from 75� 100 sec is that of
the (negative) step response of the system.
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Problem 10.23: RTP linear (average) temperature tracking response.
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Problem 10.23 RTP linear (average) : control e¤ort.

The nonlinear closed-loop system was simulated in Simulink as shown on the next page. In the
diagram, Gain4 =

�
1
3

1
3

1
3

�
. As in the text, the model was implemented in temperature units of

degrees Kelvin and the ambient temperature is 301K. The nonlinear plant model is the implementa-
tion of text Eq. 10.48. The voltage range for system operation is between 1 to 4 volts as seen from
the diagram. As in the text, a saturation nonlinearity is included for the lamp as well as integrator
anti-windup logic to deal with lamp saturation. The nonlinear dynamic response and the control
e¤ort are shown. Note that the nonlinear response is in general agreement with the linear response.
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Problem 10.23: Nonlinear closed-loop response: control e¤ort.

24. One of the steps in semiconductor wafer manufacturing during photolithography is performed
by placement of the wafer on a heated plate for a certain period of time. Laboratory experiments
have shown that the transfer function from the heater power, u, to the wafer temperature, y, is given
by

y(s)

u(s)
= G(s) =

0:09

(s+ 0:19)(s+ 0:78)(s+ 0:00018)

1. (a) Sketch the 180� root locus for the uncompensated system.

(b) Using the root locus design techniques, design a dynamic compensator, D(s), such that
the system meets the following time-domain speci�cations

i. Mp � 5%
ii. tr � 20 sec
iii. ts � 60 sec
iv. Steady-state error to a 1�C step input command < 0:1�C.

Draw the 180� root locus for the compensated system.

Solution:

The uncompensated root locus is shown in the following �gure.
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(a) First, convert the time domain speci�cations to s-plane speci�cations:

Mp � 5%) & > 0:707
tr � 20 sec) !n > 0:09
ts � 60 sec) � > 0:0767

(b) At this point there are several design methods one can use for this problem.
Method I: We know that a pure integrator will improve steady-state behavior and we
nearly have a pure integrator with the pole at -0.00018. Thus, we can cancel another
(stable) pole with a lead network zero, and place a fast lead pole to appropriately shape
the root locus. One possible lead compensator is

D(s) = Kc
s+ 0:19

s+ 1

We can display the compensated root locus and s-plane regions in RLTool in the fol-
lowing �gure.
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RLTool: Compensator I.

Choosing Kc = 2 gives us the closed-loop poles within the speci�cations at s = �0:24�
j0:28. The results from RLTool follows.



10094 CHAPTER 10. CONTROL-SYSTEM DESIGN: PRINCIPLES AND CASE STUDIES

Step Response

Time (sec)

Am
pl

itu
de

0 5 10 15 20 25
­0.5

0

0.5

1

1.5

2

0 5 10 15 20 25
­0.5

0

0.5

1

1.5

2

RLTool: Step response (y) and control e¤ort (u) for Compensator I.

Method II: We can cancel out the nearly pure integrator with our compensator zero, and
add a pure integrator. It is possible to achieve the time domain speci�cations with this
compensator. The compensator becomes

D(s) = K
s+ 0:00018

s

Applying the magnitude condition with the desired poles at s = �008� j0:08, we get

K = 0:12

We can display the compensated root locus and s-plane regions in RLTool in the following
�gure.
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RLTool: Compensator II.
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RLTool: Step response (y) and control e¤ort (u) for Compensator II.

25. Excitation-Inhibition Model from Systems Biology (Yang and Iglesias, 2005): In Dictyostelium
cells, the activation of key signaling molecules involved in chemoattractant sensing can be modeled by
the following third order linearized model. The external disturbance to the output transfer function
is:

y(s)

w(s)
= S(s) =

(1� �)s
(s+ �)(s+ 1)(s+ 
)

where, w is the external disturbance signal proportional to chemoattractant concentration, and y
is the output which is the fraction of active response regulators. Show that there is an alternate
representation of the system with the �plant�transfer function

G(s) =
(1� �)

s2 + (1 + �+ 
)s+ (�+ 
 + �
)

and the �feedback regulator�
D(s) =

�


(1� �)s
It is known that � 6= 1 for this version of the model. Draw the feedback block diagram of the
system showing the locations of the disturbance input and the output. What is the signi�cance of
this particular representation of the system? What hidden system property does it reveal? Is the
disturbance rejection a robust property for this system? Plot the disturbance rejection response of
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the system for a unit step disturbance input. Assume the system parameter values are � = 0:5 and

 = 0:2.

1. Solution: From the following �gure we have

Feedback loop representation.

Y (s)

W (s)
=

(1��)
s2+(1+�+
)s+(�+
+�
)

1 + (1��)
s2+(1+�+
)s+(�+
+�
)

�

(1��)s

=
(1� �)s

(s+ �)(s+ 1)(s+ 
)

The signi�cance of this particular representation is that it reveals the internal model, namely
the pure integrator. Hence the system is Type I with respect to disturbance rejection. It rejects
constant disturbances in a robust fashion. For � = 0:5 and 
 = 0:2, we have

G(s) =
0:5s

s2 + 1:7s+ 0:8

The disturbance response is shown in the following �gure.
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