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Preface

These are my own solutions to the problems in Introduction to Quantum Mechanics, 2nd ed. 1 have made every
effort to insure that they are clear and correct, but errors are bound to occur, and for this I apologize in advance.
I would like to thank the many people who pointed out mistakes in the solution manual for the first edition,
and encourage anyone who finds defects in this one to alert me (griffith@reed.edu). I'll maintain a list of errata
on my web page (http://academic.reed.edu/physics/faculty/griffiths.html), and incorporate corrections in the
manual itself from time to time. I also thank my students at Reed and at Smith for many useful suggestions,
and above all Neelaksh Sadhoo, who did most of the typesetting.

At the end of the manual there is a grid that correlates the problem numbers in the second edition with
those in the first edition.

David Griffiths

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.



CHAPTER 1. THE WAVE FUNCTION

Chapter 1

The Wave Function

Problem 1.1
(a)

()? =217 =
() = % > iPNG) = i [(142) + (15%) + 3(16%) + 2(222) + 2(24%) + 5(25%)]

1 6434
= ﬁ(196 + 225 4 768 + 968 + 1152 + 3125) = BV 459.571.

Jj A =7-0)
4 14—21=-7
15 | 15—21=—6
(b) 16 | 16 —21 = —5
22 22-21=1
24 | 24—21=3
25 | 25 —21 =4

o? = % Z(Aj)QN(j) = 1—14 [(=7)+ (=6)>+ (=5)* -3+ (1)*- 2+ (3)*- 24 (4)* - 5]

1 260
= (49436 +75+2+18+80) = = =[18.57L.

o =+18.571 = |4.309.

(7 — (j)* = 459.571 — 441 = 18.571.  [Agrees with (b).]
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CHAPTER 1. THE WAVE FUNCTION

Problem 1.2
(a)

2
4 2
45 3\/5

(b)

T4
x

ol 1 1
le—/xi mdm:l—m(w}) _:1——h(\/a—\/x—,).

x4 = (x) + 0 = 0.3333h 4+ 0.2981h = 0.6315h; z_ = (x) — 0 = 0.3333h — 0.2981h = 0.0352h.

P =1-+0.6315+ v0.0352 = | 0.393.

Problem 1.3
(a)

oo
1= / Ae e dr Tetu=x— a, du =dzx, u: —00 — 0.

1:A/ eCau= AT = la=
oo A T

(b)

(x) = A/ ze M@= gp — A/ (u+ a)e_kuzdu
=A [/ e du + a/ e‘Auzdu} =A (0 + a\/§> =
@ =d [ are N

o0 2 o0 2 o0 2
= A{ uZe M du—|—2a/ ue M du+a2/ e A du}
— 00 — 00
[ T ™

— 00

[N}
>
[\
>
>
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CHAPTER 1. THE WAVE FUNCTION

(c)

p(x)

Problem 1.4
(a)

‘A|2 /a 2 |A|2 /b 2 2 ) 1 z? 1
1= de+ 27— a)2de =420 = (2
a? J, * x+(b—a)2 a( @) dz = |4 a? \ 3 0+(bfa)2
b—a b 3
= AP |2 =APRD = |A=4/2
AP 5+ 252] = 1arg = b
b
(b) .
A
a b X

(c) At

(d)

B L e R POy o
(e)

<x>:/:z:|\11|2d:17: A|2{ai2/0ax3dx+ﬁ/abm(bx)2dx}

3 (1 4\ |@ 1 2 3 4N |b
:g{ﬁ (%) +—<b2x——2bx—+x—>

o (b—a) 2 3 4
- ﬁ [a®(b = a)” + 2% — 8b%/3 + b — 2a%H 4 8a”b/3 — o]
—a

— 3 f — a2 4 ga?’b = ;(b‘g’ —3a%b 4 2ad%) =
4b(b —a)? \ 3 3 4(b — a)?

2a+b

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
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6 CHAPTER 1. THE WAVE FUNCTION

Problem 1.5

(a)
oo —2Xz\ |*° Al?
1= [10fde = 2P [ ds—2/ap (e > - AE

0

(b)
() = /x|\I/|2d:17 = \A|2/ ze Mol dy = [Odd integrand.]

— 00

e 2 1
2 2 2 —2Xx
<x>=2|A|/0 x“e d$:2)\[ }:ﬁ

(c)

o? = (@) — (2)? = —; o=—| |U(x0)]? = |APe P = Ne VI = \emVZ = 024310

Probability outside:

0o 00 —2\zx o
2/ 0 |2de = 2|A|2/ e~y = 2 <e )‘ = e P = | V2 = 0.2431.

—2)

Problem 1.6

For integration by parts, the differentiation has to be with respect to the integration variable — in this case the
differentiation is with respect to ¢, but the integration variable is z. It’s true that

0

Ox 0 0
S @lV) = S o U = a0,

but this does not allow us to perform the integration:

b b
5' 2 o a 2 2 b
/ax&m dz—/a @l W)z # (2!

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
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CHAPTER 1. THE WAVE FUNCTION 7

Problem 1.7
From Eq. 1.33, d<p> —ih [ % (\Il*g—‘i’) dx. But, noting that gz; = W and using Eqs. 1.23-1.24:

* . 2117 * - . 2 .
0 (\I’*a_\ll)zallf oY \11*8 (0@)2[ th 0*0 EV\II*} oY \P*a [zhalll L

a\" )" o Y\ o) T | Tam e T oz "V or |2maaz " h
ih [ 030 020* U] i LU0
::§;z{m 97 02T ax}‘+ {V“” oV 5@<”“”ﬂ

The first term integrates to zero, using integration by parts twice, and the second term can be simplified to
Vg gy 2L gV = —|p29Y S

Problem 1.8

Suppose W satisfies the Schrodinger equation without Vy: ih%—‘f = ;‘; g; + VW¥. We want to find the solution
Uy with Vo: ihd%e — — 12 8% 1 (v 4 V)w,.

Claim: Uy = Ve~ Vot/h,
Proof: ih% = iha—‘ye_iv"t/h + ihW (—%) e~ Vot/h — [ 5; %1 + V\I/} —Vot/h 4 Yy e tVot/h
20 (V4 Vp)W.  QED

This has no effect on the expectation value of a dynamical variable, since the extra phase factor, being inde-
pendent of z, cancels out in Eq. 1.36.

Problem 1.9
(a)

oo 1 h 2am\
1:2MF/ etems Iy = 2] AP = APy 5o A:(am) |
0

2am 7h

(2am/h) /ﬁ)

(b)

ov ov 2amx 0% 2am ov 2am 2ama?
o aw; = U; - Ul ) =— 1- .
at = Y R a2 h ( ”ax) h ( h )
Plug these into the Schrodinger equation, ih%—‘f = 7%%27\3 + VU
K2 2am 2ama?
VW =1ih U4+ ——— 1— \VJ
(—ia)¥ + 50 ( h ) ( h )

2 2
= [ha — ha (1 - av;;x )] U =2 a’ma®¥, so ‘ V(z) = 2ma’z?.

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
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8 CHAPTER 1. THE WAVE FUNCTION

(c)
(x) :/ x| 2da : [Odd integrand.]
e 2 1 wh h
2:2A2/ 272amz/hd :2A2 \/ _ )
(=) = 0 ve v =2 |22(2am/h) 2am | dam
d(z
) =m _[0]
ho 0%
2\ __ * = — _ 2 *2 =
<p>—/\Il <28x> Vdz h/\ll axde
2
:—ﬁZ/\I/* _2am 1- 2ama V| dx = 2amh /\\Il|2dxf 2am/:v2|\ll|2dx
h h h
_ 2am , 5\ 2am h \ 1\
= 2amh (1— - (x )) = 2amh (1 - 4am) —2am7i<2> =|amh.
(d)

02 = () — () = = |oe =T 02 = (%)~ ()? = amh = [0, = Vamh.
am

0z0p = 1/ ﬁ\/ amh = % This s (just barely) consistent with the uncertainty principle.

Problem 1.10
From Math Tables: 7 = 3.141592653589793238462643 - - -

PO =0 P

=2/25 P(2)=3/25 P(3)=5/25 P(4) =3/25
@) | ps)=3/25 P6

=3/25 P(7)=1/25 P(8)=2/25 P(9)=3/25

In general, P(j) = %

o —

(b) Most probable: Median: 13 are < 4, 12 are > 5, so median is

Average: (j)=5[0-041-2+2-3+3-5+4-3+5-3+6-3+7-1+8-2+9-3]
= L0+2+6+15+12+15+18+7+16+27 = 18 =[4.72.]
() () =50+1%-2+22.3+32.54+42.345%.34+6%-3+7>-1+8%-2+9%2.3
= L[0+2+12+45+48 + 75+ 108 + 49 + 128 + 243] = 70 =[28.4. |

0% = (j%) — (j)? = 28.4 — 4.722 = 28.4 — 22.2784 = 6.1216; o = 1/6.1216 =|2.474.

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
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CHAPTER 1. THE WAVE FUNCTION

Problem 1.11

(a) Constant for 0 < 0 < 7, otherwise zero. In view of Eq. 1.16, the constant is 1/7.

1) i 0<8<m,
p(0) = { 0, otherwise.

p(B)
1/m

0
—T/2 0 L 3n/2

(b)

= [of course].
0 2

1 [ 1 /03\|" |=2
6%y = 2do == [ — =|—
% 7T/0 7T<3>0 3
2 2 2
S N S S P
o° = (0% — (9) 3 1 o | Wik

(c)

(sinf) = %/Oﬂsinede == (—cosb)|g = %(1 —(~1)) =

S

1
™

1 [" 1
(cost) =+ [ costdt =~ Gno)f; =[0.]
T Jo

™

) 1/” ) 1/” 1
= — = — 1/2 =|-.
(cos® 0) = cos” 6 df = (1/2)do 5

[Because sin” § + cos? @ = 1, and the integrals of sin® and cos? are equal (over suitable intervals), one can
replace them by 1/2 in such cases.]

Problem 1.12

a) x =rcost = dr = —rsin . e probability that the needle lies in range 18 p = =db, so the
0 d infdf. Th babili hat th dle lies i dé i 0)do 71Td6 h
probability that it’s in the range dx is
1 dx 1 d dx

x
xr)dr = — — = — = .
plz) mrsing  we /1 (x/r)2  7Vr? — a2

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
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10 CHAPTER 1. THE WAVE FUNCTION

AP

\J

-2r -r T 2r
1 .
— L i —r<az<n ,
| plx) = ¢ mVrE-a? , [Note: We want the magnitude of dz here.]
0, otherwise.
Total: [", #\/szdx =2 \/f_xzdx =2sin7! 2| =2sin7' (1) =25 =1V

(b)

de = @ [odd integrand, even interval].

-4 e

2 2 "
2 |-gva s et (2)]
m r

<x2>_E/rx_2d$_
oo VrP—a

o? = (2?) — (2)* =r?/2 = |0 =1/V2.

To get (x) and (z?) from Problem 1.11(c), use x = rcos @, so (x) = r(cosd) = 0, (x?) = r?{cos® 0) = r?/2.

Problem 1.13

Suppose the eye end lands a distance y up from a line (0 < y < 1), and let  be the projection along that same
direction (—! < z < l). The needle crosses the line above if y +x > [ (i.e. @ > 1 —y), and it crosses the line
below if y + x < 0 (i.e. < —y). So for a given value of y, the probability of crossing (using Problem 1.12) is

_y ! - :
P = [ oty + /l_yp<w>dx=%{/_l vl \/%—xdx}

= 1 {Sin_1 (f) ‘_y + sin™? (%) ‘l } = 1 [— sin™!(y/1) + 2sin" (1) —sin ' (1 — y/l)}

T 11— I—y T

I L)

Now, all values of y are equally likely, so p(y) = 1/, and hence the probability of crossing is

pP= %/Ol [w _ sin~? (%) _ sin~? (l_Tyﬂ dy = %/Ol [ —2sin™" (/)] dy

= il [ﬂ'l -2 (ysinfl(y/l) +ZW)‘;} —1_ %[lsinfl(l) =1-1+ % _

™

S

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
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CHAPTER 1. THE WAVE FUNCTION 11
Problem 1.14
(a) Pt f W (z,t)%dz, so “a :fa 21|?dx. But (Eq. 1.25):
owPr o ovr  JU* 0
> Ull=—-—==
ot o ox oz o¢ /(@0
dPa
b — / oy (@ t)dw = — [J(z,0)]]> = J(a,t) — J(b,t).  QED
Probability is dimensionless, so J has the dimensions 1/time, and units
(b) Here U(z,t) = f(x)e™", where f(z) = Ae=om="/h 5o GO = feiatdl piat — pdf
and \I/*%—‘i’ = f% too, so | J(x,t) =0.
Problem 1.15
(a) Eq. 1.24 now reads % = 2177; 6;12 + 5 Ly*@* and Eq. 1.25 picks up an extra term:
0 ) 1 2
2 = 2|2V — ————— i — D) =--- — |2
9w +h\|<v V)=t LR 4 - 1 ) L,
and Eq. 1.27 becomes 22 = —2L [* |@|2dy = -2 P, QED
(b)
ap 2T _2r — “ore/n _h
= hdt:>1nPf ht+constant:> P(t) = P(0)e | so|T=ox
Problem 1.16
Use Eqgs. [1.23] and [1.24], and integration by parts:
d [~ >0 > [0V oA 2%
— Uiy da = UiW,) do = Ly, + 03 d
dt/_OOle 8t( 2) /_m(at 2t 18t>x
o —ih 0?W% i ih 0?0y 4
= VU | U+ 0] [ ——— — VU d
/_Oo{<2m5‘ +ﬁ ) 2+ 1(2m 0x2 h 2)] v
ih [ (0% 0%V,
- C oy, prZ 22
2m ( Ox? ' Ox2 ) d
ih oy |~ oV 0¥y oWy | oV 0¥y
= —— - —dr— V]— dr| =0. QED
Ox - /Ooc?a: ox ox OOJF/OO@@" Ox Q

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
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12 CHAPTER 1. THE WAVE FUNCTION

Problem 1.17
(a)

a a 3 5712
1= \A|2/ (a® — x2)2dx = 2|A\2/ (a* — 2a%2® + 2*)dz = 2|A|? [a‘lx — QaQ% + %]
a 0

2 1 16 15
=2|A%d® (1 —3 + g) = 1—5a5|A|27 so| A=/ 1605

0

(b)

(x) = / x| U2 dr = (Odd integrand.)
(c)

(p) = E_’A2/ (a2 _ x2) di (a2 — x2) dr = (Odd integrand.)
¢ a \x_\{__’

Since we only know (x) at t = 0 we cannot calculate d(z)/dt directly.

(d)

15 x3 x5 27
—9_ " gt _942 4
16a5 {a 3 T 7}
154?35 —42+15 a*
8 3-8-7 8

(x?) = AZ/ 22 (a2 — J:Z)Qda: = 2A2/ (a4x2 —2a%z* + xG)dm
0

a

a

_ B (o2 !
0_8a5(a)<3 5+7)

a2

7

8
7

(e)

a 2 a
<p2> = —A2h2/ (a2 — x2) %(a2 — :102) dr = 2A2h22/ (a2 — xg)dx
e x 0

4a2 3 |2a2°

15R2 (a3_ a3> 1502 2 |5 R

0 4ab 3

(f)

@
7 VT

(g)

5 h? 5h
Y I L L

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
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CHAPTER 1. THE WAVE FUNCTION 13

(h)

_i.\ﬁfz_ [5,_ JWOR &,
= 7 Ve TV T VT2 2

Problem 1.18

L > d = T < h—2
3mkgT 3mkpd?’

(a) Electrons (m = 9.1 x 10731 kg):
(6.6 x 10734)2
T : : —11.3x 10° K.
= 3(9.1 x 10731)(1.4 x 10—23)(3 x 10~10)2 X

Sodium nuclei (m = 23m, = 23(1.7 x 10727) = 3.9 x 10725 kg):

(6.6 x 10734)2
T ~[3.0K.
S 3B.9x 10-20)(1.4 x 10-2)(3 x 10-10)2

(b) PV = NkgT; volume occupied by one molecule (N =1, V =d*) = d = (kgT/P)"/>.

B2 P 2/3 h2 p2/3 1 h2 3/5
T<— | —— = TP < T T < — [ — P25,
< 2mkp <k:BT> < 3m k%/3 < kg \3m

For helium (m = 4m,, = 6.8 x 10727 kg) at 1 atm = 1.0 x 10° N/m?%:
_ 1 (6.6 x 107342\ ¥/° (1.0 x 10%)2/5 —
(1.4 x 10-23) \ 3(6.8 x 10~27) ' e
For hydrogen (m = 2m, = 3.4 x 10727 kg) with d = 0.01 m:

(6.6 x 10734)? -
r —[31x104 K.
< 3(34x 10-27)(14 x 10-B)(10-2)2 2110

At 3 K it is definitely in the classical regime.

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
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14 CHAPTER 2. THE TIME-INDEPENDENT SCHRODINGER EQUATION

Chapter 2

Time-Independent Schrodinger
Equation

Problem 2.1
(a)
\I/(ﬁ,t) _ ,L/}(x)e—i(Eo—&-iF)t/h _ ,(/)(x)eFt/he—iEot/h — ‘\I/|2 — |’L/J|2€2Ft/h.

[ e opde =t [ g

—o0 —o0

(e2Tt/") must

The second term is independent of ¢, so if the product is to be 1 for all time, the first term
also be constant, and hence I' =0. QED

(b) If ¢ satisfies Eq. 2.5, —% dmz + Vi = Ev, then (taking the complex conjugate and noting that V' and

E are real): _%8;/;:@* + Vy* = Ey*, so ¥* also satisfies Eq. 2.5. Now, if ¥; and 5 satisfy Eq. 2.5, so
too does any linear combination of them (¢35 = c191 + catb2):

I 0 B9 9P
Tom @ TV T o <Cl 2 T2 ) + V(ergr + catp)
h2 d2 h? d2
=a ¢1+V1/11 +e2|—5— ¢2+ Vipy
" 2m da?

= c1(EY1) + ca(Evpz) = E(c1yr + 021/J2) = Ev3.

Thus, (¢ + ¢¥*) and i(¢p — ¢¥*) — both of which are real — satisfy Eq. 2.5. Conclusion: From any complex
solution, we can always construct two real solutions (of course, if ¢ is already real, the second one will be
zero). In particular, since ¢ = [(¢ + ¢*) — i(i(¢) — ¥*))],% can be expressed as a linear combination of
two real solutions. QED

(c) If ¢(z) satisfies Eq. 2.5, then, changing variables  — —x and noting that 92/9(—z)? = 6% /022,

2 TUCD 4 v (—app(-2) = By(-a);
so if V(—z) = V() then ¢)(—z) also satisfies Eq. 2.5. It follows that ¢4 (z) = w(m) + ¢ (—z) (which is
even: ¥y (—x) = ¥4 (x)) and ¥_(z) = ¥ (z) — Y(—=z) (which is odd: ¥_(—x) = —_(x)) both satisfy Eq.

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
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CHAPTER 2. THE TIME-INDEPENDENT SCHRODINGER EQUATION 15

2.5. But ¢(z) = 1 (¢4 (z) +1¥_(x)), so any solution can be expressed as a linear combination of even and
odd solutions. QED

Problem 2.2

Given ‘;2715 = %—T[V(x) — E, it E < Vi, then ¢ and ¢ always have the same sign: If ¢ is positive(negative),
then ¢” is also positive(negative). This means that ¢ always curves away from the axis (see Figure). However,
it has got to go to zero as * — —oo (else it would not be normalizable). At some point it’s got to depart from
zero (if it doesn’t, it’s going to be identically zero everywhere), in (say) the positive direction. At this point its
slope is positive, and increasing, so ¥ gets bigger and bigger as x increases. It can’t ever “turn over” and head
back toward the axis, because that would requuire a negative second derivative—it always has to bend away
from the axis. By the same token, if it starts out heading negative, it just runs more and more negative. In
neither case is there any way for it to come back to zero, as it must (at £ — o00) in order to be normalizable.

QED

s

\/

LY

Problem 2.3

Equation 2.20 says ‘%ﬁ = —2mEy: Eq. 2.23 says ¢(0) = ¥(a) = 0. If E =0, d*y/dz* =0, so ¢(z) = A+ Bu;
Y(0)=A=0=1%=DBux;(a) =Ba=0= B=0,s0%=0. If E <0, d*/dz? = k%), with k = /—2mFE/h
real, so ¥(z) = Ae"* + Be™"*. This time ¥(0) = A+ B =0 = B = —A, so ¢y = A(e"® — e "%), while
P(a) = A (e"‘“ — ei"a) = 0 = either A =0, so 1 = 0, or else e"* = e~ "% 50 €2"* = 1, s0 2ka = In(1) = 0,
so £k = 0, and again ¢ = 0. In all cases, then, the boundary conditions force ¢ = 0, which is unacceptable
(non-normalizable).

Problem 2.4

2 a
(z) = /:r|z/)|2d:c = —/ z sin® (n_wz) dx. Let y = n—ﬁx, so dx = ialy; y:0— nm.
a Jo a a nmw

2 nm

:z(i)z/mySiHdey: 2a |y= ysin2y cos2y
a\nw/) Jy n2m? 4 8

2 2,2 ) 1
= ngig {nz’ - Cosgmr + g] = (Independent of n.)

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
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CHAPTER 2. THE TIME-INDEPENDENT SCHRODINGER EQUATION

2 a 2 3 nm
(x?) = —/ 22 sin? (Mm) de = = (—) / y? sin® y dy
a fo a a\nm/ Jo

_ 242 y_37 y_?’il sin2yfyCOS2y "
6 8 0

(nm)? 4 4
_ (725:33 [mg)i% - n7rcoz(2nﬂ')} [ E } ﬁ}

(p) = me = (Note : Eq. 1.33 is much faster than Eq. 1.35.)

0= [v (L) vde = a2 [ (500
) s (2

ﬁ

nrh\ 2 nmh
=) -0 = (") ¢ o =20 =

The product 0,0, is ‘ smallest for n = 1; | in that case, 0,0, = \/7 —2=(1.136)h/2 > h/2. V

Problem 2.5

(a)

(b)

|2 = W20 = [AP (¥} + ¥3) (1 +b2) = [APT1 + P + 3 + ieba).

1= / UPdr = |A] / (1] + 050n + 50bs + ol = 2| AP = [ A = 1/v2.

[¢16—1E1t/h + ¢26—1E2t/h:| (but ? _ an)

1 \/5 |: . ™ —iwt <27T ) i4wt:| 1 —iwt |: : ™ : 27 —3iwt
= ——14/— |sIn (—x) + sin x|e =| —=e sin (—x) +sm | —x]e .
2V a a a Va a a

2 : : 2
{Sinz (zl‘) + sin (zx) sin (_ﬂ-x> (e*BZwt + e?nwt) + sin2 (_Wx>:|
a a a @
1 2 9
== {sin2 (zx) + sin? (_Wx) + 2sin (Za:) sin (_ﬂx> Cos(3wt)] .
a a a a a

S
—
&
~
S~—
s

I

Q|
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CHAPTER 2. THE TIME-INDEPENDENT SCHRODINGER EQUATION

(c)
(z) = /x|\Il(a:,t)|2da:

1 [ 2 2
= —/ x [Sin2 (Ex) + sin? (—Wx> + 2sin (Ex> sin <—7rx> cos(3wt)} dx
aJo a a a a

a 2 s (2w 2 @ 2 a
.o (T _ |z" zsm (Tx) _cos (Tf) _a” _/ . 9 2_7r
/0  sin (ax)dx— [4 PPy 8(r/a)2 0— o | 2 sin ax dx.

2

[a—z(cos(ﬂ) — cos(0)) — ;?(cos(?m) - cos(0>)] = —“—Z (1 - é) = ‘S%z'

a®  a®>  16a®
4 4 72

a” o 16a® cos(Swt)] - % [1 - 9372 cos(3wt)].

2
Amplitude: 93—2 (g) = 0.3603(a/2); angular frequency: | 3w = ——
T

(d)

(py=m——=m (E) < 32 ) (—3w) sin(3wt) = % sin(3wt).

2/ \ on?

(e) You could get either ‘ Ey, = 72h?/2ma® ‘ or ‘ By = 21% 12 /ma?,

with equal probability | P, = P, = 1/2. ‘

5m2h2 _

1

it’s the average of Ey and FEs.

Problem 2.6

From Problem 2.5, we see that

U(z,t) = ﬁe*m [sin (T2) + sin () e~3tei?];

a

a a

W (z,t)]* =| L [sin® (Z) +sin® (EZ2) + 2sin (Z2) sin (Zz) cos(3wt — ¢)];
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18 CHAPTER 2. THE TIME-INDEPENDENT SCHRODINGER EQUATION

and hence | (z) = % [1 — 2% cos(3wt — ¢)]. | This amounts physically to starting the clock at a different time

(i.e., shifting the ¢ = 0 point).

If ¢ = g, so U(xz,0) = A[th1(x) + itha(x)], then cos(3wt — ¢) = sin(3wt); (x) starts at g.

It ¢ =, so ¥(z,0) = A (x) — a(a)], then cos(3wt — ¢) = — cos(3wt); () starts at (1 + %)

Problem 2.7

Y(x,0)
Aa/2

Y

(a)
a/2 a 3

1:A2/ xQda:+A2/ (a—x)de:A2[—

0 a/2 3

_ A (@ N A 23
3 12 Va3

a/2 (a —x)3

o 3

a/2:|

8 8

(b)
29 a/2 a
C":\/gﬁ{/ T sin (%x)dx—l—/ (a — x)sin (%33)0!93]
0 a/2
2\/6{Ka>2 _ (mr ) ra (mr ) a/2
:—2 —_— Sin —X — — COS —X
a nm a nm a
_26[(a 'L (o @ ey @ e
T a2 nm 2 T 2 T n 2
2

2
2v/6 /aZ . (nﬂ' 4V6 . <n7r> { 0, n even,
=727 _—sin|— | = =

(—1)(n=D/2.4Y6 p qq.

(nm)2>

46 /2 1 212p2
So | U(x,t) = F_{\/; > (_1)(n_1)/2p sin (Z—WCE) e Ent/h | where B, = .

2ma?
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CHAPTER 2. THE TIME-INDEPENDENT SCHRODINGER EQUATION 19

(c)

P= el = 250 = [0.9855 ]

(d)

173

96 m2h% [ 1 1 1 1 48h% 72 67>

H) = ’p,=——— = — = )
(H) Z|Cn| " 14 29ma? m2ma? 8§ ma?

w2/8

Problem 2.8
(a)

ISHE N

0, otherwise.

A 2; a/2
\I’(x,()):{ » 0<z<a/Z 1:A2/ dz = A%(a)2) = | A
0

(b) From Eq. 2.37,

c = A\/g/oa/2 sin (g:p) dx = % [f% cos (gx)}

Py =|er? = (2/m)? = 0.4053.|

Problem 2.9

. B [ n [ 2?2 23
* _ 2 o — 2 <o
/\Il(x,()) HY(z,0)dz = A m/o z(la—x)de=A - (a 5 3)

A2h—2 (a3 a3> B @hQ a® 5k

2 3

m a®m 6 ma?

(same as Example 2.3).
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20 CHAPTER 2. THE TIME-INDEPENDENT SCHRODINGER EQUATION

Problem 2.10
(a) Using Egs. 2.47 and 2.59,

174 ..
ayiby = ( h— + mwx) (—7:;;) e~ B
1/4 mw w2 1 mw\ 1/4 Cmw 2
( ) [ ( ) 2x + mwx] e 22 = (—) 2mwze” 2n T,
2h 2hmw \ Th

1/4 d _mw 2
(ay )t = 2hmw ( ) <h% + mwx) xe 2h

mew 1/4 /2 mew
( [ (1 — J;m—Qx) + mwxﬂ e BT — (E) ($$2 — 1) e~ B’

2h
Therefore, from Eq. 2.67,

1 2. | 1 rmwNYt2mw , _mw 2
T X e

(c) Since 1y and o are even, whereas 91 is odd, [ 9§¢1dz and [ 31)1dz vanish automatically. The only one
we need to check is [ 93 da:

/ 2 me 42
/¢2¢0 de — \/_ m;;/ ( mw 2 1) z° o
T
mw .2 2 o mw .2
_ /M(/ fwd_ﬂ/ g zdx)
T
/ 7rh Qmw h | 7wh
( mw  h 2mw )_O v

(b)

Problem 2.11

(a) Note that v is even, and ¢; is odd. In either case |[¢|? is even, so (z) = [=z|¢|?dz = Therefore
(p) = md(x)/dt = (These results hold for any stationary state of the harmonic oscillator.)

From Eqs. 2.59 and 2.62, ¢y = ae~¢/2, 4 = 2age /2. So

n = 0:

B 2 h 3/2 poo 2 1 h ﬁ h
2y _ 2 2 —£2/2 — A2 2,-¢ — (=2 )\ ME
(%) = « [mm e dzr =a (mw) [mf e d¢ ﬁ(mw) 5 py
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CHAPTER 2. THE TIME-INDEPENDENT SCHRODINGER EQUATION 21

R R s

ffmhw/ 2 1) €12 = @(ﬁﬁ)_ %

= =2
n=1
> > 3/2 oh 37 | 3n
2y _ 9.2 262 -2 _ 4, g0 _ _
(%) =2« /_Oox e de = 2072 ( ) / e S dE = NN 5
<p2> = _h22a2 % /Oo 56_52/2 d_2(€e_£2/2) dé—
h ) dg?
_ 2mwh [, o e, 2mwh VT 3mhw
o IRGEE S I SR CV RS O R R
(b) n=0:
=4/ (z?) = 1/ Vp P2 = | miw
I mwh  h ) . o
0a0p =\l5 A\ "5 =5 (Right at the uncertainty limit.)v’
n=1
3h 3mhw h_h
Oy = Yo Op — aggop—3§>§ v
(c)
1 ihw (n=0) ) Lhw (n =0)
(T) = 2—<P2> = i (V)= §mw2<x2) =
" §hw (n=1) Shw (n =1)
shw (n =0) = Eq
(T)+(V)=(H) = , as expected

Problem 2.12
From Eq. 2.69,

[ h h
T = 2mw(a++a—)7 p:Z Tgw(a’-‘r*a—%
SO
[ h
<CC> = %/1/}:((14_ +a_)wn dl‘

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they

currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the

publisher.



22 CHAPTER 2. THE TIME-INDEPENDENT SCHRODINGER EQUATION

But (Eq. 2.66)
a’+'(/}n =vn+ lwn-i-h a—wn = \/ﬁ’(/)n—l-

So
(x) =1/ % {\/n + 1/¢2¢n+1 dzr + \/ﬁ/z/):bwn_l dw} = @ (by orthogonality).
(p) = m% = z? = %(mr +a )= %(ai +aja_ +a_ag +a*).
(x2> — % /q/;;(ai +ara_+a_ay +a2_)z/)n. But
aiwn :a-l-g\/n"i'lwn-‘rl) = Vn+1vn+2¢n+2 = (n+1)(n+2)wn+2'
ata_, = a4 \/ﬁwnfl) = \/ﬁ\/ﬁ% = np.
a_asth, =a_ (\/n + 1¢n+1) =v/n+1)vn+ 1y, =n+1)Y,.
a2—wn =a- (\/51/%—1) = \/ﬁ\/ n—1n_2 =V (n - 1)n¢n—2-
So
h h 1\ &
(x?) = CTo [0+n/|1/1n|2d:c+(n+1)/|¢n|2dﬂc+0] = %(Qn—kl) = (n+§>%.
p? = 7hﬂ21w (ay —a_)? = 7h?721w (af_ —aya_ —a_ay + a2_) =
(p?) :—hmTw[O—n—(n-i-l)—FO] = hmTw@n—i-l) = (n—k%)mfw.
(@) = /2m) =| 5 (4 5 )
0p =/ (22) — (2)2 = n+% %; oy =V (p2) — (p)2 = n+%\/m; 0,0, = <n+%)h2 g v

Problem 2.13
(a)

1:/wwmwwww/@mﬁﬂwmﬁuw%+mwﬂm

= |A2(94+0+0+16) = 25|A* =| A =1/5.
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CHAPTER 2. THE TIME-INDEPENDENT SCHRODINGER EQUATION 23

(b)

W(a,t) =  [Buo()e B/ 1 ay (2)e= ] = 2 [Bun(e)e Y2 + g (w)e 512

(Here 1o and v are given by Egs. 2.59 and 2.62; E; and E> by Eq. 2.61.)

1 . . . _
W (z, 1) = o [977[}3 121 et/ 2e=31t/2 | 12w0wleﬂwt/263wt/2 4 167/’%}

= 2—15 (99§ + 1697 + 24¢1; cos(wt)] .

(z) = % {9/&/}3 dx + 16/m1/)f dx + 24 cos(wt) /;m/)o?/q da:} .

But [a¢fdx = [z¢?dz =0 (see Problem 2.11 or 2.12), while

fmw [2mw mw mw 2 /rmw > e
/x’(/}()wl dqj = E T/xe 5h xee L xde _ ; (T> [m 1‘26 E ;czdx
3
2 /mw 1 h h
7r( h ) v (2 mw) 2mw

So

24 h d 24 [mwh

() = 5\ 2mw cos(wt); | (p) = ma<$> =735 5 sin(wt).

(With 42 in place of ¢ the frequency would be (E; — Ep)/h = [(5/2)fw — (1/2)Aw]/h = 2w.)
Ehrenfest’s theorem says d(p)/dt = —(0V/dx). Here

d 24 h 1 v
dip) =——1/ %w cos(wt), V= imexZ = — = mw’r,

SO

so Ehrenfest’s theorem holds.

(d) You could get| Ey = 3hw, |with probability |co|? =|9/25, |or | Ey = 3hw, | with probability |c1|? =|16/25.

Problem 2.14

The new allowed energies are E, = (n + 3)hw' = 2(n + $)hw = hw,3hw,5hw,.... So the probability of
getting Lhw is The probability of getting hw (the new ground state energy) is Py = |cg|?, where cq =
J ¥(z,0)¢q dz, with

1/4
mw)1/4 _mw g2 m2w) /  m2w 2
e 2n e )

(w,0) = (@) = (2 g, %(@f:(ﬁ
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24 CHAPTER 2. THE TIME-INDEPENDENT SCHRODINGER EQUATION

So
> mw 1 2h 2
_ g /%/ ogea? oy [Ty (1] 20 21/4\ﬁ,
0 wh 7006 ’ * wh v 2V 3mw 3
Therefore

2
Py = g\/5 = (.9428.

Problem 2.15

1/4 2 mw mw | h > 2
e ¢ /2 _ [hed B 3
Yo = (ﬂ'h) , S0 P = 2\/ 7rh/ 2\/ wh mw_/go €

Classically allowed region extends out to: %mw 3 =FEy= %hw, or xg = \/m, so & = 1.

\/_/ Cag = 2(1 — F(v/2)) (in notation of CRC Table) =

Problem 2.16
5—1

—E. ;o B R _ _—2(5-3 __1
n=5j=1= a3 = W —§a1,]—3:>a5—W(3+)2)a3——3a3—15a1,]—5=>a7—0So
H5(€) = a1€ — 30183 + £ a18° = 9 (15€ — 20€% + 4€°). By convention the coefficient of £° is 2°, so a; = 15- 8,

and | Hs(€) = 120€ — 16053 + 3255 (which agrees with Table 2.1).

n==6:7=0= a = 7(0121(ﬁ62é)a0 = —6ag; ] =2 = a4 = 7(2;21(ﬁ;i)2)a2 = —%ag = 4dap;j =4 = ag =
%0}4 =—2a;=—Lap; j=6=as=0.S0 Hg(&) = ap — 6ao&? + 4ao&* — £&8ag. The coefficient of &8

is 26,50 20 = —&ap = ap = —15-8 = —120. \Hﬁ(g) = —120 + 720€% — 480¢* + 64¢5.

Problem 2.17
(@)
2
e =€ () o = ) = (2 e

(&) ¢ = Llavagnee] = [aes (-2 ae)-29)]e € = (12t s

4
(i) e ¢ = % {(125 - 8§3)e—52] = {12 — 24€2 4 (12¢ — 853)(—25)} e=¢ = (12 — 48¢2 4+ 16¢4)e ¢

3 4
H3(¢) = -3 (%) et = Hy(&) = €S’ (%) e = ‘ 12 — 48¢% + 16¢%. ‘
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(b)

Hs = 2¢Hy — 8Hz = 26(12 — 48¢% + 16¢%) — 8(—12¢ + 8¢3) = ] 120€ — 160€3 + 32¢°. ]

Hg = 26Hs — 10H, = 2£(120€ — 16063 + 32€°) — 10(12 — 48¢2% + 16¢%) = \ —120 + 720€% — 480&* 4 64£6.
(c)

dd—f? =120 — 480&% + 160¢* = 10(12 — 48¢% + 16¢*) = (2)(5)Hy. v/

dg‘i = 1440¢ — 1920€3 + 384€5 = 12(120€ — 160€> + 32€%) = (2)(6)Hs. v/
(d)

d

I(e*zmzé) = (=22 + €)™+ setting z = 0, | Ho(€) = 2¢.
z

d 2 — 224226\ _ d —22422¢

= {— 24 (—-2z+ 25)2] 67z2+2z£; setting z = 0,

(%)3 (e H22¢) = %{ [ —24(—22+ 2§)2] e—zz+zzf}

= {2(—2z +26)(=2) + [ -2+ (—22+ 25)2] (—2z + 25)}e—z2+225;

setting z = 0, Hy(&) = —8¢ + (—2 +4€%)(2¢) =

(6) = =2+ 4€2.

Problem 2.18

Ae*® 4 Be~*® — A(cos kx + isin kx) + B(coskx — isinkz) = (A + B) cos kx + i(A — B) sinkz

= Ccoskz + Dsink, with|C = A+ B; D =i(A - B).|

1kz —ikx
Ccoskx—l—Dsinkx:C< +€ )

lk?l _ —lk?l 1 ) 1
( ) = 5(C—iD)e + (C +iD)e e

1
= Ae™™ 4 Be 7T with | A = (C—ZD); B = §(C+iD).
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Problem 2.19
Equation 2.94 says ¥ = Aei(’”*%t), SO

2i_h (\Ifﬁ\l’* i 3\11) \A|2 { i(ko—BE2 ¢ (_ik)e—i(kz—g—’fft) e (kz——t)(lk)ei(k$—g—’fft)}

4 ox ox

ih hk
= |AP(=2ik) =| —| AP
AR (-2ik) = | 4]

It flows in the positive (x) direction (as you would expect).

Problem 2.20
(a)

> an . . > bn . i
(E) = by + Z 2_2 (eznﬂw/a - efznﬂ'x/a> + Z ? (eznﬂ'z/a te znﬂw/a)
n=1

n=1

:bo+zl<(;—;?+%”) ’"”/“JFZ(——JF ) e~inm/a,

Let
co = bo; cn 2%(—ian+bn), forn=1,2,3,...; cn E%(ia_n—kb_n), forn=-1,-2,-3,....
Then f(x Z cne™™ /e QED

n=—oo

(b)

f( ) 7zm7rz/adl,7 Z Cn/ i(n— m)Tr:L’/adx But fOI‘?’L#m,

n=—oo

a B ei(nfm)Tr _ efi(nfm)ﬂ' (_1)nfm _ (_1)n7m

iln—m)r/a - iln —m)r/a =0

a i(n—m)rz/a
/ ez(nfm)mr/adx _ 6
i(n—m)m/a

—a —a

whereas for n = m,

/ etn—m)mz/a g, :/ dr = 2a.

So all terms except n = m are zero, and

a

@ ) 1 .
f(x)e—zmwm/a = 2ac¢,,, SO ¢, = 2_/ f(x)e—lnﬂ'.’t/adx. QED
—a a

—a

(c)
1 )
Z \/ 5 g F(k)e™ = N > F(k)e™ Ak,

n=—oo
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where | Ak

IS

is the increment in k from n to (n + 1).

b=y 2on 3o | f@e s = o [ e e

(d) As a — oo, k becomes a continuous variable,

f@) = Ykl F(k) = —— / T @)t da

E/_OOF N

Problem 2.21
(a)

—2ax |°°

1:/ \\I/(x,O)\2dx:2|A|2/ e e = 2| AP
0

— 00

R

(b)
ok \/_/ ealzlg—ikz g \/2_/ a\r\ (cos kx — isinkz)dx.
™

The cosine integrand is even, and the sine is odd, so the latter vanishes and

ax zka: +e—ika:) dx

o(k) = 2—/ W cos kx dx = \/ﬁ/ -

ik—a)x —(ik+a)x
/ (ik—a)z + e*(ikJra)x)dx _ A |:e( ) n e (tk+a) :|
Vor Vor | ik—a @ —(ik+a)

B -1 n 1 A —ik—a+ik—a a 2a
T Vor\ik—a  ik+a) Vor —k2 —q? IV on k24 a2

oo

(c)

1 [a3 e 1 ; hk? a3/2 o 1 : hk?
N )= —— 94/ — 2<k177t)d/€ — / Z<kx77t>dk.
(IEa ) /_271' o [m k2 T a2€ 2 - . k2 n aze 2

(d) For large a, ¥(z,0) is a sharp narrow spike whereas ¢(k) = /2/ma is broad and flat; position is well-

defined but momentum is ill-defined. For smalla, ¥(x,0) is a broad and flat whereas ¢(k) = (1/2a?/7)/k?
is a sharp narrow spike; position is ill-defined but momentum is well-defined.
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Problem 2.22

(a)
0o . 1/4
1= \A|2/ 2% g = |AP s | A= (2—a> .
o 2a s

oo 0o 1 1 oo
/_OO e—(ar2+br)dx _ /_OO e—y2+(b2/4a)% dy \/_ b2/4a - e_dey — \/§€b2/4a.
1 ° 2 . 1 20\ /4 \/? 2 1 R
k)= ——A —aa? —ikeg, _ 1 (29 T k40 _ ey
#(k) V2r /_ooe ‘ v V2r <7r) a’ (27ra)1/4e

1 > —k%/4a i(kz—hk>t/2m)
\Il(x,t) \/—_W/Doe € dk

(b)

e—[(ﬁﬁ»iht/Qm)kz—izk]
1/4  _ax? that/m
_ 1 N o %2 /A s int/2m) _ (2_61) /% g=aa®/(1+2ihat/ ).
V2r(2ma)l/4 [ L+ iht/2m @ 1+ 2ihat/m
a

(c)

2 —az?/(14i0) ,—ax?/(1—i0)
Let 0 = 2hat/m. Then |¥|* = = < . The exponent is

™ /A +i0)(1—1h)

~ax? ax® o (1—i0+1+140) —2ax |\I/|2 2a e—2ax®/(146%)
(14+40) (1—1i0) 1+i0)(1—i0) 1+6% T Jite2
2
Or, withw = 1—|C—l—02’ W] = \/jwe_mzﬁ. As t increases, the graph of |¥|? flattens out and broadens.
\ T
¥1>

A

() = /jo z|U|2dx = @ (odd integrand); (p) = m% =

2 —2w z? 1 2 2 /OO * dQ\I/
. = — U*——dx.
\/7 / de \/> aw? \ 202 | 4w? ) h oo dx? de
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1/4

2a 1 a
Write ¥ = Be_b’cz, where B = | — and b= —.
( T ) V1416 1410

qu 2 2
v _pd (—bee—bm ) = —9bB(1 — 2bz?)ebe".

dx? dx
R o2 a a 2a

U~ — — _9bB 2 1 -9 2\, —(b+b™)z=. b b* = _ —9 2'
da2 |BI%( z")e P ot T+i0 10 1xe2 Y

2 1 2 d> 2
|BI* = \/ S S \/jw So U*— = —Qb\/jw(l - 2bx2)6_2w2m2.
T 1+ 62 s dx? T

2 (o)
(p?) = 2bh? \/;w/ (1- 2bx2)672“’212dx

2 T 1 T b
_ 2 /1“2 0 I S — 2 v
= 20h \/;w (\/ 2w? 2b4w2 V 2w? ) 26h (1 2w2) '

b a 1+ 62 (1—i0) 1440 a
But 1— — =1—(—— = = =_
R <1+i9> ( 2 ) %

- 2 2 2b’

1
(p?) = 2bh2% = Op = —; o, = hv/a.

(e)

N |

1
Oz0p = %FL\/EZ g\/l + 02 = g\/l + (2hat/m)2 > —. v

Closest at at which time it is right at the uncertainty limit.

Problem 2.23

(a)

(=2) =3(-2)* +2(-2)—1=-8—-12—4—1=|-25.
(b)

cos(3m) +2=—-1+2=|1]
(c)

@ (z = 2 is outside the domain of integration).
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30 CHAPTER 2. THE TIME-INDEPENDENT SCHRODINGER EQUATION

Problem 2.24

Ifc>0,y:oo%oo.}

1
(a) Let y = c, so do = dy. {Ifc<0 Y i 00 — —o0.

%o ¢ /2 Fw/0)d(y)dy = LF(0) (> 0); or
/ f(z)dé(cx)dx = {
e e LT I W/od(y)dy = =1 72, F(y/e)d(y)dy = =2 f(0) (e < 0).
i - = i _ [ L x. So o(cx) =
In either case, [w f(x)6(cx)dx = |C|f(0) —[m f(x )|c|6( x)dz. So 6(cx) P’ |5( z). v

(b)

/ f(x)%dw = f0’ — / j—fgdx (integration by parts)

— o)~ [ Lo = f(00) - 1(0) + 7O = 1O = [ o

So df/dx = 6(x). v [Makes sense: The 6§ function is constant (so derivative is zero) except at z = 0, where
the derivative is infinite.]

Problem 2.25

() = VI ol /m2 _ Vma e*m“““’/jﬂ7 (x >0),
h P e (<o)

(x) = 0 (odd integrand).

> > oma_ [ K2 \® h2
2\ _ 2 2 2_—2max/h? _ _ . _
- dr = 27 dz = %9 - .= .
(@) /_0033 ] h? e h? <2ma) om2a2’ 7 V2ma
_ma fmw/fi2 (z > 0) 3
/ € ) x - /
i = v " = ma [—H(x)e_mm/h2 + 9(—x)emo‘$/r‘2} .
dx h mao emaz/h2 (.’E < O) h
52 ; <

2 v/ 3 2 2 2 2
M . ( ma) |:_6(x)e—maz/h +%9(x)e—max/h _6(_m)emo¢z/h +@9(_x)emaz/h:|

de? h h?

= (Y [rasta) + T e

In the last step I used the fact that §(—x) = d(z) (Eq. 2.142), f(x)d(x) = f(0)d(z) (Eq. 2.112), and 6(—x) +
O(x) =1 (Eq. 2.143). Since dip/dx is an odd function, {p) = 0.

<p2> — _h2/ ¢d2¢ . V;na (_Vm‘) /oo e—ma|z\/h2 [_25($)+ %e—mzﬂw\/hz} dx

h
_ (ma ma (% amanpn g | g (MO _ma BE ] man?
_(h){Q 2712/06 dx}‘%h)[l h22ma_(h)'
Evidently
mao © h? \/— >
op = — 030 — = -
p h’ p = \/_ma ﬁ
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Problem 2.26

Put f(z) = d(z) into Eq. 2.102: F(k) = \/% /OO S(z)e*edy = \/%

o f(x) §(x)ﬁ/ooﬁekdk%/ e*dk. QED

— 00

Problem 2.27

(a) "

(b) From Problem 2.1(c) the solutions are even or odd. Look first for even solutions:

Ae™"r* (x < a),
P(x) =< B(e" +e ") (—a <z < a),
Aer® (x < —a).

Continuity at a : Ae™"* = B(e" +e7"%), or A = B(e** +1).

di 2mao
Di ti derivati t A— = ——+r :
iscontinuous derivative at a, A—- = P(a)
A —RKa ra —RKRa QmaA —kKa A 2Ka 2maA,
—KkAe™ " — B(ke™ — ke )2—? e " = A+ B(e —1):m ; or
2ma 2ma 2ma 2ma
2K _ _ 2K 2K _ 2K
B(e a-l)—A(m-l)—B(e a+1)(h2[{_1):>e “—1—6 a(ﬁ_:l) ﬁ_l
2mao 2mao 2k 2k
1= _ —2ka. 7V _ 1 —2fia’ —2Kka _ 7V 1.
h2k + n2r ¢ " ma te or e mao
This is a transcendental equation for x (and hence for F). T'll solve it graphically: Let z = 2ka, ¢ = ah;w
so e”% = ¢z — 1. Plot both sides and look for intersections:

/e ie
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32 CHAPTER 2. THE TIME-INDEPENDENT SCHRODINGER EQUATION

From the graph, noting that ¢ and z are both positive, we see that there is one (and only one) solution

(for even ¢). If a = ;fn—a, so ¢ = 1, the calculator gives z = 1.278, so x? = fQ%E = (;;)2 = F =

S0 (1) = —0204 ().

Now look for odd solutions:

Aer* (x < a),
P(x) =< B(e" —e ") (—a <z < a),
—Ae"® (x < —a).

Continuity at a : Ae™"* = B(e" — ™), or A = B(e** —1).

2 2
Discontinuity in ¢’ : —kAe " — B(ke" + ke ") = 7_2”;0‘1467,@@ = B(e* +1)=A <_hn21a - 1> )
K
2ma 2ma 2ma
2Ka . 2Ka _ _2ka
=l ‘U(m‘1>—e (m”%m“’
2ma 2ma _y,., Wk —2ka | —2ka W’k —z
e e e R
| 1/c 1/c z

This time there may or may not be a solution. Both graphs have their y-intercepts at 1, but if ¢ is too
large (a too small), there may be no intersection (solid line), whereas if ¢ is smaller (dashed line) there
will be. (Note that z =0 = x = 0 is not a solution, since % is then non-normalizable.) The slope of e~*
(at z = 0) is —1; the slope of (1 — ¢z) is —c. So there is an odd solution < ¢ < 1, or a > h%/2ma.

Conclusion: ‘ One bound state if a < h2/2ma; two if a > h2/2ma. ‘

v v
-a a  x a X
Even Odd
o h_2 o 1 [ Bven: e™* = %z -1 =2=221772,
- ma T 271 0dd: e7F=1-3z = z=159362.

E = —0.615(h*/ma?); E = —0.317(h*/ma?).

2

== c=2 Only cven: e F=2z—1=2=0.738835; |E = —0.0682(h*/ma?).
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Problem 2.28

Ae*® 4+ Be~*T (1 < —aq)
=1 Ce™* 4 De=™* (—q <x <a) y. Impose boundary conditions:
Fetkz (x > a)

(1) Continuity at —a : Ae’*® + Bet** = Ce~a 4 De*® = B4 + B = 3C + D, where 3 = e~ 2,
(2) Continuity at +a: Ce*® + De~a = Fethe = F = C + 3D.

(3) Discontinuity in ¢’ at —a: ik(Ce™ " — De'*®) — jk(Ae~*e — Be'ha) = —2ma(fe—ika 4 Beiha)
= B3C — D = B(y+ 1)A + B(y — 1), where v = i2ma/h%k.

(4) Discontinuity in ¢’ at +a: ikFe*® — ik(Ce*® — De~ke) = —2ma (peike)

= C-pD=(1-7)F

add (2) and (4) : 20=F+(1—-7vF =20=(2-9)F.

To solve for ¢’ and D, { subtract (2) and (4) : 28D = F — (1 —4)F = 2D = (v/3)F.

{ add (1) and (3) : 20C =BA+B+6(y+1)A+B(y—1) =2C = (v+2)A+ (v/B)B.
subtract (1) and (3): 2D =0A+B - p3(y+1)A—B(y—1) =2D=—0A+(2—7)B.

Equate the two expressions for 2C : (2 —v)F = (y+2)A + (v/3)B.
Equate the two expressions for 2D : (v/8)F = —yS8A + (2 — v)B.

Solve these for F' and B, in terms of A. Multiply the first by 5(2 — ), the second by 7, and subtract:

(B2 —=7)’F = B4 -7)A+~7(2-7)B]; [(V/BF =-By*A+~(2—-7)B].

4
(2—7)2—~%/B*

= [5(2—7)2—72/5]F=5[4—72+W]A:4ﬂ,4:>%:

I’k 2

j ; F 4
Let g=i/y = e’ ¢ =4ka, soy = é, (% =e . Then: — = J

A (2g—1i)2+ed
Denominator: 4g? — 4ig — 1 + cos ¢ + isin ¢ = (49> — 1 4 cos ¢) + i(sin ¢ — 4g).
|Denominator|* = (4g* — 1 + cos ¢)* + (sin ¢ — 4g)?

= 169" + 14 cos? ¢ — 8¢ — 2cos ¢ + 8g° cos ¢ + sin? ¢ — 8¢ sin ¢ + 164>
= 169" + 8¢ + 2 + (8¢* — 2) cos ¢ — 8gsin ¢.

8g* Rk
h =
(8g% + 492 + 1) + (492 — 1) cos ¢ — 4gsin ¢’ W = e

and ¢ = 4ka.

NS
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Problem 2.29
Fe="* (x> a)

In place of Eq. 2.151, we have: ¢¥(z) = ¢ Dsin(lz) (0 < z < a)
—¢(=z) (¢ <0)

Continuity of ¢ : Fe™®* = Dsin(la); continuity of ¢’ : —Fre™** = Dl cos(la).

Divide: — x =lcot(la), or — ka = lacot(la) = /23 — 22 = —zcot z, or | —cot 2 = \/(20/2)? — 1.

Wide, deep well: Intersections are at m, 27, 37, etc. Same as Eq. 2.157, but now for n even. This fills in the
rest of the states for the infinite square well.

Shallow, narrow well: If zy < 7/2, there is no odd bound state. The corresponding condition on V; is
272
0

8ma?

= no odd bound state.

Vo <

Problem 2.30

1= 2/ 2 =2 <|D|2/ cos®lz dx + |F|2/ 6_2’“da:>
0 0 3

€T 1 e 1 > a sin2la e 2Ka
=2||ID? (2 + = sin2l F]? [ ——e 2 =2||D]? (= FJ? )
{' | (2+4lsm x>0+| | ( 2 ¢ P+ =3 ) HIFP =,

sin(2la) = cos®(la) >
+ .

But F = De" cosla (Eq. 2.152), so 1 = |D|? (a—i— 57
K
Furthermore x = [tan(la) (Eq. 2.154), so

ot cosla
[sinla
1

D=

1= D2 (aJr 2sinlacosla  cos® la) _pp

. 2 2
21 + s la (sin”la + cos la)]

e® cosla

1 1
o (as 1) T [po e
ltanla> D] K Va+1/k Va+1/k

= |D|? (a +
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Problem 2.31

Equation 2.155 = 2o = £v/2mVy. We want o = area of potential = 2aVp held constant as a — 0. Therefore

Vo =355 20 = %\/Zm% = %\/maa — 0. So zp is small, and the intersection in Fig. 2.18 occurs at very small
z. Solve Eq. 2.156 for very small z, by expanding tan z:

tanz & z = +/(20/2)2 — 1 = (1/2)4/ 28 — 2.

Now (from Eqs. 2.146, 2.148 and 2.155) 22 — 2% = k2a?, so 2° = ka. But 22 —2? = 2 < 1 = 2 = 2y, so ka = 23
But we found that zy = %\/maa here, so ka = h—lzmaa, or k = . (At this point the a’s have canceled, and
we can go to the limit a — 0.)

omE 2.2 2
Tm = % = —2mFE = mhg B = 7% (which agrees with Eq. 2.129).

2
InEq.2.169, Vo > E= T =1+ 42"‘,0 sin® (22/2mVp) . But Vo = £, so the argument of the sine is small,

and we can replace sine by e: 771 =1+ X—g (%)2 2mVo =1+ (2aVO)2 27?2‘115' But 2aVy =o,s0 Tt =1+ 27;‘13‘;,
in agreement with Eq. 2.141.

Problem 2.32
Multiply Eq. 2.165 by sinla, Eq. 2.166 by %cos la, and add:

C'sin?la + Dsinlacosla = Fet*@ginla

ik
Ccos?la — Dsinlacosla = %Fe“m cosla

} C = Fetke [Sinla—i— i

cos Za} .

Multiply Eq. 2.165 by cosla, Eq. 2.166 by % sin la, and subtract:

-3 o 2 — ika 9 X
C'sinlacosla + D cos®la = Fe'* cosla } D:Fe”m{ :

ik
. . RS cosla — —sinla| .
Csinlacosla — Dsin?la = %Fe“m sinla ]

Put these into Eq. 2.163:

(1) Ae~*@ 4 Betha — _pethe {Sinla + ZT cos la] sinla + Fe'k® {cos la — ZT sinla] cosla

X ik ik
= Feke {cos2 la — ZT sinla cosla — sin® la — ZT sin la cos la}

= Fetke [cos(2la) - ?sin(Qla)] .

Likewise, from Eq. 2.164:

(2) Ae~ @ _ Betha — —%Fe“m (sinla + ZT cos la) cosla + (cos la — 17 sinla) sinla}

il ik ik
= —%Fe“m sinlacosla + 17 cos? la + sinla cos la — ZT sin® la}

= —%Feika sin(2la) + ?COS(QZ&)} = Fe'ke [cos(2la) — %sin(Zla)} .
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36 CHAPTER 2. THE TIME-INDEPENDENT SCHRODINGER EQUATION

Add (1) and (2): 24e~ e = Fetka [2 cos(2la) — i <§ + é) sin(?la)] , Or:

—2ikaA
= (confirming Eq. 2.168). Now subtract (2) from (1):
cos(2la) — bm(ma) (k2 +12) ) @)

; ; Ik in(2!

2Betke = Fetka [z (E - 7) sin(Qla)} = B = Z,sm2(kla) (I? = k*)F (confirming Eq. 2.167).

-1 Al? sm( la) o 12 ’ 2 sin(2la) Lo | o0
T = T = cos(2la) — Y (k*4+1%)| =cos (2la)+W(k +1%)=.
But cos?(2la) = 1 —sin*(2la), so

_ . (k2 4 12)? (k% —12)2
T = 1—|—sm2(21a)[ @R -1 = 1+Wsm2(21a).

—_————
(2k1)2 [k44-2k212 414 — 4k2l2]7 kl)2 (k4 —2k212414]= (k(22;ll)22)2.
V2mE 2m(E + V 2
But k= V2ME _ V2mE4 V) \/2mE+VO PRI NI\ -
h h h2

(k-2 (3 v

(2k1)? 4(2h_m)2 E(E + Vp) 4E(E+Vo)'

Tl =1+ Vioz sin? 2a 2m(E + V) |, confirming Eq. 2.169

~ TIB(E+ ) h ) S
Problem 2.33
Aeikx +Be—ika¢ (.’E < _a> \/7
V 2 -F

E < V,. Y=< Ce™ + De ™ (—a<x<a) k= 2;nE; ﬁ:%.

Feike (x> a)
(1) Continuity of ¢ at —a: Ae~ 2 4 Betka = Ce=® + Dera.
(2) Continuity of ¢ at —a: ik(Ae~ " — Be*?) = k(Ce™"* — Der®).
= 2Ae—ka — (1 - z—) Ce"a (1 n z%) Dere.

(3) Continuity of ¢ at +a: Ce®® + De™"¢ = Feika,
(4) Continuity of ¢’ at +a: k(Ce"® — De™"?) = jkFet*e.
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= 20" = (1 + —) Fetke,  2De™r = <1 - Z—) Fetke,

1
K K

—ika __ o E @ ika 6_2Ha ﬁ o ﬁ ika e2m1
2Ae —(1 k)(l—i—ﬁ)Fe 5 +(1+k><1 - Fe 5

F@ika . k R —2Kka . K k 2Kka
= {{1+Z<E—E>—|—l]e +[1+Z<E—E)+1}e }

F ika T 2 _ k‘2
_ 62 2 (6—2»@(1 T 62/@@) —I—Z'(I{ i ) (6250, _ e—2na)j| )
But sinhz = %, coshx = %, SO
F ika | 2 k2
- 62 4 cosh(2ka) +i(”k—)2 sinh(2/w)]
K

2 _ g2
_ oF¢ita (K7 — k7).
=2Fe [cosh(?na) +i o Sth(?lia):| .

T = 4 : = cosh®(2ka) + M sinh?(2ka). But cosh® = 1+ sinh®, so
F (2kk)? ’ ’
2 _ 122 V2 %
1 |1+ B k2 (oka) = |14+ 0 sinn? (2% am(Ve = B
+ [ + EIBE sinh*(2ka) + (Ve —B) sin . m(Vo ).
—_—

*

2
b AR2K% + kY + Y - 262%K% (K2 +K2)? (T—zE + 42m(‘,§%_E)) V2
where % = (QHIG)Q - (2[,#02 - 427};1_2E Qm(";g,E) = 4E(V0 — E)

(You can also get this from Eq. 2.169 by switching the sign of V; and using sin(if) = ¢ sinh 6.)

Aetkr 4 Be—ikz (x < —a)

E = V. =4 C+ Dz (—ra<z<a)
Fetkz (x > a)
h? d? d?
(In central region — ——d) + Vo = EY = —1/} =0, soy=C+ Dz.)
2m dx? dx?

(1) Continuous ¢ at —a : Ae~*? 4 Be*® = C' — Da.
(2) Continuous ¢ at +a: Fe™*® = C + Da.

= (2.5) 2Da = Fe*® — Ae~*e _ Betke,
(3) Continuous ¢’ at —a : ik (Ae~"*® — Be'*®) = D.
(4) Continuous ¢ at +a: ikFe'*® = D.
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= (4.5) Ae7?k* _B=F.

Use (4) to eliminate D in (2.5): Ae 2% 4+ B = F — 2aikF = (1 — 2iak)F, and add to (4.5):

, Al 2mE
2472 = 9F(1 — ika), so T~ ! = ‘F =1+ (ka)*>=|1+ T’; a’.
(You can also get this from Eq. 2.169 by changing the sign of V and taking the limit £ — Vj, using sine & ¢.)
E > V. This case is identical to the one in the book, only with Vi — —V4. So
Tl =1+ ‘/70281n2 2—a\/Zm(E - VW)
T T UAE(E— V) h o)

Problem 2.34

(a)
B Aetka + Be ik (1, < O) Y QmE. _ 2'rn(VvO - E)
) = { Fo—ra (> 0) where k = L= W

(1) Continuity of ¢p: A+ B =F.
(2) Continuity of ¢’ : ik(A — B) = —«F.

:$A+B@(AB):sA<1+Zk>B<1ﬁ>.
K K

2 )
|(1 +ik/k)|? 1+ (k/k)? B
A= h/P = T (7~

Although the wave function penetrates into the barrier, it is eventually all reflected.

B
R=|4

(b)

[ Aet*®  Bem (1 < 0) B
Y= { Feile (x> 0) where k =
(1) Continuity of ¢y : A4+ B = F.
(2) Continuity of ¢’ : ik(A — B) =ilF.

aomea(iE) - n ik

L=k (k=D (k-D*
- (1+k/1)2 a (k+1)2 o (k2 —12)2°

VemE  _ /2m(E Vo)
o h '

:A+B:§

B
=]

A

ro WVE-VE-T)!
_ = ,
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(c)
-_, ‘

From the diagram, T = P,/ P; = |F|?v;/|A|?v;, where P; is the probability of finding the incident particle
in the box corresponding to the time interval dt, and P; is the probability of finding the transmitted
particle in the associated box to the right of the barrier.

v, dt t

VE=TV, E—V, |F|?
But Z—: = TO (from Eq. 2.98). So T = T 0 ik Alternatively, from Problem 2.19:
hk hl Jo |FP1 |F|]? [E-V
4:—A2’ :—FQ' T:—t:— _— = | — 0_
Ji= A5 o= FI 7= 7| 7
For E < Vj, of course,
(d)
LIS 2k /1 2k
For E>Vy,, F=A+ B = A+A(,i ):A o
T

+1) (54+1)  k+1

(

p |EL_ (26 N1 4kl 4kk-1* | WEVE-V(VE-VE-Tp)
Ak \k+1) B (k+012 T R—12)2 V2 '
4Rl (R—D2 AR R -2k K242k (K412
L a1 A T ey E N (R e A
Problem 2.35
(a)
[ Aeth® + Be~ikT (1 < 0) _V2mE | _ (E+ V)
() = {Feﬂx (z > 0) where k = pa l= —

Continuity of p = A+ B=F .
Continuity of ¢' = ik(A — B) = ilF

A+B=§(A—B); A<1—§):—B(1+§>; EZ_GIIZ%)
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2
_( k>2_<\/_E+Vo—\/F>

’_ I+k VE+ Vo +VE

C(VTEVE-1\"  (VIT3-1\? [(2-1)\®
_<W> ‘(W) _(m) -

(b) The cliff is two-dimensional, and even if we pretend the car drops straight down, the potential as a function
of distance along the (crooked, but now one-dimensional) path is —mgaz (with 2 the vertical coordinate),
as shown.

1
9"

TV(X)

¥ "x
-V,

0

(c) Here Vy/E = 12/4 = 3, the same as in part (a), so R =1/9, and hence T' =|8/9 = 0.8889.

Problem 2.36
Start with Eq. 2.22: ¢(z) = Asinkx + B cos kx. This time the boundary conditions are ¢(a) = ¢¥(—a) = 0:

Asinka + Bcoska =0; —Asinka+ Bcoska = 0.

Subtract : Asinka =0= ka = jm or A =0,
Add : Bceoska=0=ka = (j— 3)mor B=0,

(where j =1,2,3,...).
If B=0 (so A#0), k= jr/a. In this case let n = 2§ (so n is an even integer); then k = nm/2a,
¢ = Asin(nmz/2a). Normalizing: 1 = |AJ* [*, sin?(n7wx/2a) de = |A]?/2 = A = V2.
If A=0 (so B#0), k= (j — 3)m/a. In this case let n = 2j — 1 (n is an odd integer); again k = nr/2a,
¢ = Bcos(nra/2a). Normalizing: 1= |BJ? [*  cos?(nmwz/2a)dx = |a|?/2 = B = V2.
h?k? n’n’h?

In either case Eq. 2.21 yields F = 5.~ = 3 (2a)? (in agreement with Eq. 2.27 for a well of width 2a).

The substitution z — (x + a)/2 takes Eq. 2.28 to

2 (rreta) 2 nme  onmy
\/; (a 2 > \/; (2a + 2> 1) 1>/2fcos(n;x) o)

So (apart from normalization) we recover the results above. The graphs are the same as Figure 2.2, except that
some are upside down (different normalization).

(— )"/2\/7511“1 (nre) (n even),

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.



CHAPTER 2. THE TIME-INDEPENDENT SCHRODINGER EQUATION

~ /NN
N VI

cos(mx/2a) sin(2mx/2a) cos(3mx/2a)

Problem 2.37

Use the trig identity sin 36 = 3sin@ — 4sin® @ to write

sind (T”) _ Zsm (w;) - %sm (?) So (Eq. 2.28): ¥(x,0) = A 4 {31/)1(55)

1
512 - 11/13(5”) :
Normalize using Eq. 2.38: |A|2g (% + %) = %a AP =1=|A= \/%.
So ¥(z,0) = \/11—0 [3¢1(x) — 3(x)], and hence (Eq. 2.17)

1

Ui, t) = (301 () B/ — iy (ayemiEot ]

SO
h )

w0 = 5 [%% + 2 — Ghrips cos (Mt)]

10 5 h

(@) = [ a0 = g a)s + g loha — Feos (ﬂt) | @t

where (z), = a/2 is the expectation value of = in the nth stationary state. The remaining integral is

T O RCy
o) () 22)- () () () ()

a 7l a

=0.

Evidently then,
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Problem 2.38

2n2p? 2 2
(a) New allowed energies: E,, = 2nm7(T42a)2; U(z,0) = \/;sm< ) Yn(x) = \/2—a sin (Z—Zm) .

en= 2 [ (Gosn () ae = 37 [ oo (G- 0) ) oo [(5 40) e

_ ! {bm [SLE - 1)77} _sin [EF + 1)777] } (for n £ 2)
V2a (5-1)7% (B+1) 7% 0
1 fsm[E-na] snlgene) _smlGEend[ 1
i\ (571 (G0 Gy
B 4\/§Sin[(% +1) 7r] B 0, if n is even
Toor (n? —4) o :I:m, if n is odd
a a
Co = ? ; 2 <§x) de = g/ﬂ %dm = % So the probability of getting E, is
1 if n =2
Pn:|cn|2: W’ if n is odd
0, otherwise

2h2
Most probable: Ey = il (same as before). Probability: P, = m

2ma?
72 h? 32
ext most probable: £y =| ——, | with probability P, =| — = 0. .
b) N bable: E ith probability P, 0.36025
8ma? 972
(c) (H)y= [U*HVdz = 2 fo sin ( x) (—%%;) sin (%w) dz, but this is exactly the same as before the wall
w2h?

moved — for which we know the answer:

2ma?’

Problem 2.39

(a) According to Eq. 2.36, the most general solution to the time-dependent Schrédinger equation for the
infinite square well is

— —i(n?m? ma?
t) = Z Cnthy (@)™ H 0 ™ h/2ma)t

2, 2 2, 2 2
Now "™ h _nr h4ma — 22, so p—i(n?n2h/2ma?)(t+T)
2ma? 2ma? wh

an integer, e~2™" = 1. Therefore U(z,t +T) = U(z,t). QED

(2.2 2y, . 2 . .
i(n“m“h/2ma )te i27n , and since n2 is

=€

(b) The classical revival time is the time it takes the particle to go down and back: T, = 2a/v, with the
velocity given by

2F 2
Ezimv2:>v: E:> T.=a Fm
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(¢) The two revival times are equal if
4ma® . 2m or B n2h? _ b
N E’ -~ 8ma? 4

7h

Problem 2.40
(a) Let Vo = 32h?/ma®. This is just like the odd bound states for the finite square well, since they are the
ones that go to zero at the origin. Referring to the solution to Problem 2.29, the wave function is

Dsinlzx, l=+2m(E+Vy)/h (0 <z <a),
k=vV-2mE/h (x > a),

and the boundary conditions at z = a yield
—cotz=1+/(20/2)? — 1

with
V2mVy 2m(32h2 /ma?)
Z0 = A a = i a=38
Referring to the figure (Problem 2.29), and noting that (5/2)m = 7.85 < zp < 3w = 9.42, we see that there

1
= |DJ? F — —sinlzcoslal ;
. 2 2

(b) Let
L = / IR |D|2/ sin?lx dz = | DJ? [E - = sinl:z:coslx}
0 0 2 2
e~ 2 o e—2ra
= |F|? .
2K 2K

2sin? la

a

are | three bound states. |

P E/ |Y)?de = |F|2/ e 2 dy = |F|? [—

But continuity at © = a = Fe™"* = Dsinla, so Iy = |D|* 5%

1=1+1,=|D]? {9 1 sinla cosla + sin” la] = i|D|2 [/ia ~ Psinlacosla + sin®la
2 2 2K 2K l

But (referring again to Problem 2.29) k/l = — cot la, so

(1+ ka)

2K

Normalizing;:

1
= 2—|D|2 [%a+cotlasinlacosla+sin2 la] =|D|?
KR

P—1l,— 2k sin?la _ sin? la'
14+ ka 2k 1+ ka
We can express this interms of z = la and zo: ka = /23 — 22 (page 80),

2 2

1 z z
= (—) = P= .
22(14 /22 —2?)

1
14 (20/2)2 -1 20
In the present case zp = 8 and z is the third solution

So |D|? = 2k/(1 + ka), and the probability of finding the particle outside the well is

sin?la = sin z = 5
1+ cot® z

So far, this is correct for any bound state.
(8/%)% — 1, which occurs somewhere in the interval 7.85 < z < 8. Mathematica gives

to —cotz =
z =7.9573 and | P = 0.54204.
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FinﬂRuot[Cot[z] == W (BSfzY~Z2 -1, [{=. ?_9}]
fz = 7.96732)

z~2 /(641 + V62 - z~2])

z2

64 (1 ++64-357)

X/ z->»7.957321523328964"

0. 542041

Problem 2.41
(a) In the standard notation ¢ = \/mw/hz, a = (mw/mh)'/*,
U(z,0) = A(1 — 26)%e /2 = A(1 — A€ + 4€2)e /2,
It can be expressed as a linear combination of the first three stationary states (Eq. 2.59 and 2.62, and
Problem 2.10):
vo(@) =ae 2 yi(a) = V2age T y(n) = (26— 1)e 2
V2

So W(x,0) = cotbg + c1tb1 + cotho = alco + V2&e1 + V2E%¢y — %02)6752/2 with (equating like powers)

av/2ey = 44 =y = 2\/§A/a,

av2c; = —4A = = —2\/§A/a,

alcog —ca/V2)=A =co=(A)a)+c2/vV2=(1+2)A/a =3A/a.

Normalizing: 1 = |cg|? + |e1]? + |ca]? = (8 + 8 + 9)(A4/a)? = 25(A/a)? = A = a/5.
3 2V2

Cc1 =

1 9 /1 8 (3 8 (5 fiw 73
H) = |2 Nhw=— | zhw | +—=(chw |+ —= [ zhw | = — 24 4 40) = | —hw.
(H) Z|c|(n+2) o5 (2 >+ ( >+ <2 ) £ (9T 24440) = o

3 ; 2v/2 ; 2v/2 ; ; 3 242 ; 2v/2 .
\Il(x,t) _ 5,(/)Oe—u.ut/2_ ;/_wle_gzwt/Z \5/_w2e_5zwt/2 e—zwt/Q lgwo _ \E)/_wle—zwt \E)/_w2e_gzwt

To change the sign of the middle term we need e~*? = —1 (then e=2“T = 1); evidently wT = =, or
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Problem 2.42

Everything in Section 2.3.2 still applies, except that there is an additional boundary condition: t(0) = 0. This
eliminates all the even solutions (n = 0,2,4,...), leaving only the odd solutions. So

1
E, = <n+§> hw, n=1,3,5,....

Problem 2.43

(a) Normalization is the same as before: A = (7‘1)1/4

(b) Equation 2.103 says

1/4
1 (2 o i
(k) = N <?a> /_0o emae” gilz ik gy [same as before, only k — k — ] = We_(k_l)2/4a.
U(z,t) = —_(2 1)1/4 /00 ¢~ (k=D /da gi(ka—hk?t/2m) g
Vor (27a o
1240~ [(Fa+idih )2 = (s o5 )]
_ L%e 12 /4a % (iz+1/2a)? /[4(1/4atiht /2m)]
V2 (2ma)t/ (7a +i2m)
1/4
_ (%) 1 o~ 1?/4a galia+1/2a)* /(1+2iaht/m)
™ v/ 1+ 2ihat/m

_ 2 _ [P0 1 gy, ol R S .
(c) Let 0 = 2hat/m, as before: |U|° = / ——=e e . Expand the term in

VIt

A . A

[] T (1—29)(zx+%> +(1+10)<—2x+%)1
1 o izl I o dzl I
1+ 62 Tt a Jr4a2 A a Jr4@2

, o izl 12 izl 1
it <:c a  4a? b o a * 4a?
xl 022 612 12

1 12 1
= -2 — 20— —222 + 20— — — 4+ —
14062 [ %+ 22 " ] [ R T T T g

I B A S
T 1462 2a 2a2’

2 a 2 2 2 2 2 2
2 _ “ —1?/2a ,— 2% (x—01/2a) l /2a _ < 2w (x—01/2a)
()" = \/;\/ 1162° e T e ’
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where w = y/a/(1 + 62). The result is the same as before, except © — (z — ﬂ) = (z— 2t), so | ¥ has
the same (flattening Gaussian) shape — only this time the center moves at constant speed v = fil/m.

(d)

o0
<x>:/ x|V (z,t)2dz. Let y =2 —60l/2a = x — vt, so x =y + vt.

—00

o 2
/ (y+ vt)\/jwem”zyzdy = ot.
o T

(The first integral is trivially zero; the second is 1 by normalization.)

R _d(x)
=\t () =m=> =[hl]

° 2 1
(x?) = / (y + Ut)z\/;wemzy2 dy = Tl 40 + (vt)? (the first integral is same as before).

5 L (HY’ = [ Y
<x>—4w2+ pll B (p?) = —h _OO\II dedx

1/4 . . 1
U = (2_(1) / 1 e_lz/4“6‘1(”7“/2‘1)2/(14-1'9) © ﬂ _ 2ia (zx—i— %)
T

Vi+if 0 T T (10
PV {2ia(ix—|—l/2a)] v 2fa [—4(12 (iz +1/20)>  2a
—2 — - @@= 7 =

du 1+i6 dr 1410 (1+i0)2  1+i6
402k [ 1\>  (1+i6)
2 _ . o Nl \112
w) = G50 /_OO (’x+2a) S R
462 h? > il \? 1—|—20
R 7 \IJ2
aa | g) + 5 e

%{/: 2w [2dy — 2<vt—> ylv|*dy
(o245 )

422 1 . 2 1 .
_[ +o_(m_ﬁ) , Axi0)

+

(14i6)2 | 4w? 2a 2a

da?h? 1462 —il 1P (1+i0)
BNESTIE {_ da [(%) (1“9)] R
__ah —(1—'9)+E(1+'(9)+2 _ o (1+i6) 5] - h2(a +12)
T 1t P T1+i0 ! @) TLEETE

SIS S € A C AN _ 1
s = (@) <x>_4w2+ m m _4w2:>a$_2w’
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o2 = (p*) — (p)? = K*a + K*I* — *I* = h%a, so |0, = h/a.

(e) o, and o, are same as before, so the uncertainty principle still holds.

Problem 2.44

Equation 2.22 = (x) = Asinkz + Bcoskz, 0 < z < a, with k = v2mE/h%.
Even solutions: ¢(x) = ¢(—x) = Asin(—kz) + Bcos(—kz) = —Asinkz + Bceoskz (—a <z <0).

1) continuous at 0 : B = B (no new condition).

CBOOIIE?;IB; ¥ discontinuous (Eq. 2.125 with sign of « switched): Ak + Ak = 2;{;"B = B = %A.
Y —0atx=a: Asin(ka)+ %Acos(ka) =0 = tan(ka) = —%.
. h2k
Y(x) = Al sinkr + —coskx | (0 <z <a); Y(—z)=1p(x).
mao
b1 2n 3% 5 ka
tan(ka) -k
From the graph, the allowed energies are slightly above
nm n?m?h?
ka=— (n=1,3,5,...) 0 |En> ——— (n=1,3,5,...).
a 2 (n )9y ) S0 ~ 2m(2a)2 (n )

These energies are somewhat higher than the corresponding energies for the infinite square well (Eq. 2.27, with
a — 2a). As a — 0, the straight line (—h2%k/ma) gets steeper and steeper, and the intersections get closer to
nm/2; the energies then reduce to those of the ordinary infinite well. As o — oo, the straight line approaches
horizontal, and the intersections are at nw (n =1,2,3,...),s0 E, — ”;22@2 — these are the allowed energies for
the infinite square well of width a. At this point the barrier is impenetrable, and we have two isolated infinite
square wells.

0Odd solutions: ¥(x) = —¢(—x) = —Asin(—kz) — Bcos(—kx) = Asin(kz) — Beos(kx) (—a <z <0).

1 continuous at 0: B=—-B = B =0.
Boundary conditions { ¢’ discontinuous: Ak — Ak = Z%%(0) (no new condition).

Y(a) =0= Asin(ka) =0 = ka = % (n=2,4,6,...).

n?m2h?

Y(x) = Asin(kx), (—a<z<a); E,= Sm(2a)? (

n=2,4,6,...).

These are the exact (even n) energies (and wave functions) for the infinite square well (of width 2a). The point
is that the odd solutions (even n) are zero at the origin, so they never “feel” the delta function at all.
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Problem 2.45

h2 d2,¢)1 d2w1
5 d? + Vi =Ey; = — 1/12 + Vip1ypo = Eviho h2 d22/11 i
2 12 2 2m d}? —¥ dx? 0
h* d d
1/)22 +Vipy = Epy = — ¢1 ¢2 + Vo = Exp1ahs
2m dx
dir dipo dio d% d21/)1 dipy dipo d?1hy d2¢1 d? ¢ . .
B _— _ —_— = — - = e _ . h T jQ
ut {wz L ] I do + g 72 Ir du 1 = ¢2 w1 Since this is
zero, it follows that wgﬂ — wl% = K (a constant). But ¥ — 0 at oo so the constant must be zero. Thus
1 1
¢2 d¢1 = ¢1 d¢2 d¢1 = dw2, so Intp; =Inty + constant, or ¢y = (constant)ys. QED
Y de s d
Problem 2.46
2 72 2 YmE
Py = E (where z is measured around the circumference), or v = —k%*), with k = n , S0
2m dx? dx? h

Y(z) = Ae’*® 4 Be~ ik,
But (x + L) = ¢(x), since x + L is the same point as x, so
AeikxeikL + Be—ikxe—ikL — Aeikx + Be—ikx
and this is true for all z. In particular, for z =0 :

(1) Ae*t 4 Be™*L' = A+ B. And for z = % :

Ae'™ 2Rl 4 BT /2=l — Aei™/2 4 BeT /2 or jAe™*T — iBe "L = iA —iB, so

(2) Aet*t — Bem* = A - B. Add (1) and (2): 24¢*L = 24.
Either A = 0, or else e’* = 1, in which case kL = 2n7 (n = 0,41,42,...). But if A = 0, then Be~*f = B,
leading to the same conclusion. So for every positive n there are two solutions: ¥ (z) = Ae'?"™@/L) and
Y (x) = Be~"?nm2/L) (n = (0 is ok too, but in that case there is just one solution). Normalizing: fOL [y |2de =

1= A= B =1/VL. Any other solution (with the same energy) is a linear combination of these.

1 , 9 2 2h2
_e:l:l(QTlﬂ'.’If/L); En — % (n:0’1,2,37...).
NG mL

The theorem fails because here 1) does not go to zero at oo; x is restricted to a finite range, and we are unable
to determine the constant K (in Problem 2.45).

Py (x) =

Problem 2.47

(a) (i) b =0 = ordinary finite square well. Exponential decay outside; sinusoidal inside (cos for ¢y, sin for
12). No nodes for 1)1, one node for 5.

(ii) Ground state is even. Exponential decay outside, sinusoidal inside the wells, hyperbolic cosine in
barrier. First excited state is odd — hyperbolic sine in barrier. No nodes for 11, one node for 5.
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A
/\/\ —(b/2-ll-3.) bl

(bta) b2 | b bita X b2 bhta X

(iii) For b > a, same as (ii), but wave function very small in barrier region. Essentially two isolated finite
square wells; ¢ and 15 are degenerate (in energy); they are even and odd linear combinations of the
ground states of the two separate wells.

/kk bl2 -(bl2+a) b/2

(bi2+a) b b2 bi2+a X

> v

(b) From Eq. 2.157 we know that for b = 0 the energies fall slightly below

232
B+ Vo= godis = & m2h?
(2 4 =_ "
e m(2a) _, ( Where h= oot
2+ 0™~ 2m(2a)2

For b > a, the width of each (isolated) well is a, so

w2hH2

Ei+Vor Ey +Vy = 5 = h (again, slightly below this).
2ma

Hence the graph (next page). [Incidentally, within each well, % = —%(Vg + E)%, so the more curved
the wave function, the higher the energy. This is consistent with the graphs above.]

(c) In the (even) ground state the energy is lowest in configuration (i), with b — 0, so the electron tends to
draw the nuclei | together, | promoting bonding of the atoms. In the (odd) first excited state, by contrast,

the electron drives the nuclei

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.



50 CHAPTER 2. THE TIME-INDEPENDENT SCHRODINGER EQUATION

EtVO
h +
B2tV
E l+VO
h/4 4,
b

Problem 2.48
(a)

o2 (1 i) [ o)

(b)

(c)

<H>=—h—2(—4‘/§>/\1/*5(x—g)dx—Nghgxp*(ﬁ)=2'3'52= Ll

m-a-a ma?

Problem 2.49
(a)

ov 2 - — 20w h . —iw
o (—%) [% (—2iwe™*") + % — 2ax(—iw)e t} U, so

ov 1 , 1 ,
iha = {—§ma2w26_2“"t + §hw + maxw%‘“”ﬂ .

O = [(-2) (2 — 2 )] W = "2 (o - ae ) w;

9%V mw mw ity OV mw mw\ 2 it 2
—2:——\11——<.’I}—G/6' ) = — (LIJ-CL@ ) v,
ox h h
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B2 92w 1 B2 2 ) 1
+ mwaQ\I/ - _ [_% 4+ (%) (x — ae_th)2:| )\ —+ §mw2x2\11

C2mor? | 2 2m h h
1 1 2/ 2 —iwt 2 —2iwt 1 2.2
= §hw—§mw (x — 2azxe + a“e )+§mww v

1 . 1 .
= [§hw + mazw?e ™t — imw2a262“’t} Y
L Ov . .
= zh—t (comparing second line above). v/
(b)
2 = mw e[ (oo (14t ) — 2 —2ame™) +( 2% 4 (14e ™2 )+t —2aze ") ]
7r

mw —%[2m2+a2+a2 cos(2wt)—4ax cos(wt)]' But a2[1 + COS(QW'L’)] — 2(12 COS2 wt, $o

mh
_ mwe—%[zz—Qar cos(wt)+a? cosz(o.)t)] _ mwef%(xfa coswt)?
mh mh

The wave packet is a Gaussian of fixed shape, whose center oscillates back and forth sinusoidally, with

amplitude a and angular frequency w.

(c) Note that this wave function is correctly normalized (compare Eq. 2.59). Let y = x — acoswt :

(x) :/x|\11|2dw:/(y+acoswt)\\l'|2dy:O+acoswt/|\lf|2dy:

= m % =[mawsinat ] T = —mau - gmeel = G =
(p) = m—= = |[=maw sin wt. g mew coswt. V = MW z” = — - = mws.

d d
(—d—v> = —mw?(z) = —mw?acoswt = %, so Ehrenfest’s theorem is satisfied.
x
Problem 2.50
(a)
ov [ mad . (E+ tmv?) v 0 D el ifex—ovt>0
o el Y g e <o)

We can write this in terms of the §-function (Eq. 2.143):

1, ifz>0 0
29(z)—1:{_17 ifz<0}’ &) a|x—vt|=—v[29(m—vt)—l].

L 0¥ [ mav 1
zha = {z . 20(x —vt) = 1]+ E + 5mv }\I! [%]
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ov _|_mad o+ ™| g
or h? Ox h
2|x7vt\ ={Lifz>vt; —1,if z < vt} =20(zx —vt) — L.
imv
0?w mo imu Qma 0
Dt { e [20(x — vt) — 1] + —} {—x@(xvt)} U,

But (from Problem 2.24(b)) 8@ (z —vt) =d0(x —vt), s

h? 0?0

5 ad(z —ovt)U
K2 _mao imv)?
=\ 5.1 72 [29(x—vt)—1]—|—7 +ad(z —vt) —ad(z —ovt) | U
K2 m2a2 m2v2 mv ma
—_
1

2
:{ T;;; +1mv 4 e h [26(x—vt) 1]}‘1’:ih85,_‘f (compare [%]). v

(b)

Mo _gm0 2 _
|\I/|2: ﬁe 2 ly‘/h (y:x—’ut)
ma [ 2 2ma 2
Check lization: 2 < —2may/hk dy = =1. v
eck normalization B /0 e Y 2 9ma

o v
(H) = / U*HUdx. But HV = ih%—t7 which we calculated above [¥].

— 00

2

) 1 1
= / {zmﬁav 20(y) — 1]+ E+ imUQ} |U2dy = | E + —mv?.

(Note that [20(y) — 1] is an odd function of y.) Interpretation: The wave packet is dragged along (at speed

v) with the delta-function. The total energy is the energy it would have in a stationary delta-function

(E), plus kinetic energy due to the motion (3mov?).

Problem 2.51

(a) Figure at top of next page.

d¢o d2'(/}0 _

I —Aa® [ sech(ax) tanh?(az) 4 sech(ax) sech2(am)} .

= —Aasech(az) tanh(ax);

(b)
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V(X)

ﬁ2 deO h2a2

2
Hqpy = o de? sech”(ax)1o
R 2 3 h*a® 3
= %Aa [— sech(az) tanh® (az) + sech’(az)] — - Asech®(ax)
= [— sech(ax) tanh® (ax) + sech’ (ax) — 2sech’ (az)]
h%a?
=5 Asech(ax) [tanh®(az) + sech®(ax)] .
inh” 0 1 sinh? 6 + 1
But (tanh? 6 + sech? §) = ~— - —1
ut (fan - sech™6) cosh? @ * cosh? § cosh? @ 50
h2 2 h2 2
— "% . QED Evidently |E = — 2%
2m 2m
2 [T 2 2 1 = 20402 a
1=A] sech”(ax)dz = |A|* — tanh(az) =-|AF=|A=,/-.
— a e @ 2
es

¥

(c)

d A .
% =i [(ik — atanh az)ik — a® sech” ax] e’
T 7 a
>y, A T : 2 2 2. 2 3 2 ik
7 = T {zk [(zk — atanh ax)ik — a® sech ax} — a“ik sech” ax + 2a° sech” ax tanh a:c} e,
T ) a
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K2 d? A —h%ik h2a?
“om d;ék + Vi, = Fra { le [—k2 — iak tanh az — a* sech? ax] + © iksech? ax
1203 2,2 .
- sech? ax tanh az — sech? az(ik — atanh ax)} etk
m m

A ikx h2

= - € — (z’k3 — ak?tanh az + ia%k sech? az + ia%k sech? ax
ik +a 2m
—2a° sech? ax tanh ax — 2ia®k sech? ax + 2a° sech? ax tanh ax)
Aeikx h2 h2k2

= — Kk*(ik — atanhax) = = EvYy. QED
ik +a 2m (i atanh az) 2m Vi Vi Q

which represents a transmitted wave.

T ‘
As x — +o00, tanhaz — +1, so wk(x)—uél(l, a) etk
ik+a

27 —ik —a ik —a 7
C\—ik+a) \ik+a)

ik—a
ik+a

R=0. T =

Problem 2.52

(a) (1) From Eq. 2.133: F+ G = A+ B.
(2) From Eq. 2.135: F — G = (1+ 2i8)A — (1 — 2i8) B, where 8 = ma/h?k.

Subtract: 2G = —2ifA+2(1 —if)B= B =

1 —116 (iBA + G). Multiply (1) by (1 — 2i8) and add:

. o ! , 1 (g1

(b) For an even potential, V(—z) = V(z), scattering from the right is the same as scattering from the left, with
T < —x, A~ G, B~ F (see Fig. 222) F = SllG-l-SlQA, B = 551G+ S92A. So S11 = SQQ, So1 = S1a.
(Note that the delta-well S matrix in (a) has this property.) In the case of the finite square well, Eqs. 2.167
and 2.168 give

) 1212y . o
s 6727,1611 i { 2kll€ ) sin2la e 2ika g
. k2 l2 . ) . k2 2 .
cos 2la — z% sin 2la cos 2la — z% sin 2la

g~ 2ika i —k%) sin 2la 1
S - '(k2+l2) . 2kl '(127]62) . .
cos2la — i~ sin 2la 1 i~ sin 2la

Problem 2.53
(a)

1 S 1
B=5811A+5:G=G= —(B - SHA) = My A+ MysB = My = —i, Moy = —.
S1o S12 S12
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S 511529 — 5125 S
F =5A4 S39B = 57A+ ﬂ(B —Snud) = *( 1o -2 21)A +°2B= My A+ My2B.
512 512 512
det S 522 1 — det(S) 522
My =——2 Myp=22 M= — : ly:
= 11 512 , 12 512 512 ( _511 1 Converse y

1 1

G = My1A+ MyB = B = M—H(G — M21A) = S11A+ 51,G = S11 = _M—Z; Sio = M—22
M Mi1 Moy — My M- M

F =M A+ MjyB=MjA+ —2(G— My A) = (M Moo = MioMon) 4 Mz g 44606
MQQ M22 M22

det M M12 1 —M21 1
Gy = dtM g M g 1 .
T My TP My, Moo (det(M) WP

[It happens that the time-reversal invariance of the Schrodinger equation, plus conservation of probability,
requires May = M7, May = M7, and det(M) = 1, but I won’t use this here. See Merzbacher’s Quantum
Mechanics. Similarly, for even potentials S1; = Sag, S12 = Sa1 (Problem 2.52).]

Moy | det(M)|? My, | 1
R =|Snl?=||=—| ,|T, =|51]* = R, = |Spwl? =||—=| ,|T, =[S’ =| ——.
1= |Sul V| |1 |S21] My | |S22] Vo | |S12] RSE
(b)
A C F
—> —> —>
«— <« <«
B D G
X

M, M,

(5)=m2(5)- (5) = () s (5) =t (3) = (3) v a=nwan. e
|

Continuity of 9 : Aetke 4 Bemika = Feika 1 Qe—ika
Discontinuity of ¥’ : ik (Fe“m — Ge‘ika) —k (Ae““‘ — Be‘ika) = — 22’2(1@[1(@) = —2%”—2“ (Ae”w + Be‘“‘”‘“) .

(c)

¥(z) = Aet*® + Be~*e (r < q
T FetRt + Gem T (x> a

o —

(1) Fe?ke + G = Ae%ka 4 B.

(2) Fe*™ @ — G = Ae**e — B +i222 (Ae** + B).
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Add (1) and (2):

_ . 2 . .
2P = 242 1T (At 4 B) = F = (14 ins ) A+ izsre "B = My A+ My, B.

3
2

So My = (1+if8); Mip = iBe 2 3 =

2

St
o

Subtract (2) from (1):

2G = 2B — 2ife*** A — 2iB = G = (1 — i) B — i3e*** A = My A + My B.

. . . —2ika
So My = —ife?™ @ My, = (1—if). |M= (S;@;@a ’(516_ Z. 5)) .

(d)

(1 +iB) ipe ke . . . ) (1 +iB)  iBe*ika
M; = (—iﬁe%k“ (1-i8) )’ to get Mo, just switch the sign of a: Mg = _ife=2ika (1_ig) )"

[1+2iB+ B2 (e*ka —1)]  2iB[cos 2ka + (sin 2kal] )

M= M:M, = <2i6[cos 2ka + Bsin2ka) [1 — 2if + F2(e~ ke — 1)]

" [Mysl?

T [ 20+ B - D] - 206 4 B e 1)
—1—2i8+ e 4k _ 32 L 9i3 4 432 4 2iFPeYika _ 233 4 gPetika
_ 32— 2igBetika | 9igB 4 gA(1 — elika _ o—tika 4 q)
— 14 20% 4 B2(etka | o~tikay _ 9ig3(clika _ o~dika)y | 9gt  gd( dika | —dikay
=14 203% + 262 cos 4ka — 2i3°2i sin 4ka + 23* — 2% cos 4ka
=1+ 28%(1 + cos 4ka) + 433 sin4ka + 26*(1 — cos 4ka)
=1+ 482 cos? 2ka + 83> sin 2ka cos 2ka + 43* sin? 2ka

1
T =
1+ 402(cos 2ka + [ sin 2ka)?

Problem 2.54
T’ll just show the first two graphs, and the last two. Evidently K lies between 0.9999 and 1.0001.
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Plot[Evaluate[u[z] /. Plot[Evaluate[u[z] /.
HDSolve[{u' "[x]-{x"2 - 0.9)+u[x] --0. u[0] --1. ll])Snlve[{u' "[x]-{x~2 - 0_9999)»u[x] -- 0, u[D] =-1,
u'[0] == 0}, u[x]. {x, 10°%, 10}, u'[0] == 0}, u[z]. {z. 10%, 10}. HarSteps -> 10000]].
HaxSteps -» 1uuuu]], {x. 0, 10}, {x. 4, 5.5}, PlotRange -» {-1. 10}];
PlotRange -> {-10. 10}]: 10
10
g
7.5
5 3
2.5
4
2 [ & 2 i0
-2.59 2
-5
-7.5 4.2 44 48 4.8 g 5.2 5.4

Plot [Evaluate [u[x] {.

Plot[Evaluate[u[z] /. WDSolve[{u' ' [1]- (x*2 - 1.0001)%u[x] == 0. u[0] == 1.
HDSDIVE[{H' ‘[x]-{x"2 - 1.1)«u[x] == 0, u[0] -1, u'[0] == 0}, ufx]. {x, 10%, 10}, HaxSteps -» 1uuuu]],
u'[0] == 0}, ul[x]. {x, 108, 1I]}, {x. 4, 5.5}, PlotRange -> {-10, 1}]:
HaxSteps -> 10000]]. {z. 0. 10},
PlotRange -> {-10. 10}]:
10 -
7.5
5 -4
2.9 -6
2 4 & 8 10
-2.5 =8
-5 =10
-7.4

Problem 2.55

The correct values (in Eq. 2.72) are K = 2n + 1 (corresponding to E,, = (n + 4)hw). I'll start by “guessing”
2.9, 4.9, and 6.9, and tweaking the number until I've got 5 reliable significant digits. The results (see below)
are ‘ 3.0000, 5.0000, 7.0000. ’ (The actual energies are these numbers multiplied by %hw)
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Plot[Evaluate[u[z] /. [Plot[Evaluate[ulx] /.
H])Sulve[{u' "[x]-(x"2 - 2.9)%u[x] -0, u[0] :- 0. H‘I)Solve[{u' "[z]-{x*2 - 3.00001) *u[x] -- O,
u* [0] == 1}, ufx]. {z. 1078, 10}. uf[0] == 0. u'[0] == 1}. u[x]. {x. 108, 10}.
HaxSteps -> 10000]]. {x. 0. 5}. Hax5teps -> 10000]]. {x. 0. 5.5}.
PlotRange -» {-1. 5}]: PlotRange -> {-.5. .7}]:
5
ne
4
0.4
3
0.z
]
q 1 ] 3 4 5
-0.2
1 2 3 4 5 0.4
-1
Plot[Evaluate[u[z] /. Plot[Evaluate[u[z] /.
H])Sulve[{u' "[x]-(x"2 - 2.99999) % u[x] -- 0. H'I)Solve[{u' "[z]-{x"2 - 4.9)*xu[x]:=0, u[0] =21,
u[0] == 0, u'[0] == 1}, u[z]. {z. 10, 10}. u'[0] == 0}, ulx]. {z. 10%, 10},
HarSteps -> 10000]]. {x. 0. 5.5}. HaxSteps -> 10000]]. {x. 0. 4}.
PlotRange -> {-.1. .?}]; PlotRange -3 {-1_.56, 1_2}];
1
0.e
0.5 0.5
0.4
0.3 1 2 3 4
0.z -0.5
0.1
-1
1 2 3 4 5
-0.1 -1.5
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Plnt[Evaluate[u[x] 7. Plot[Evaluate|u[x] /.
H'I)Sulve[{u' "[x]-{x"2 - 4.99999) »u[x] -- 0. H'I)Sulve[{u' "[x]-{x*2 - 6.9)yxu[x] =0, u[0] =0,
uf0] == 1, u'[0] == 0}, ulx]. {z. 10° 10}, u'[0] :-1}. u[x]. {x. 107, 10].
Hax5teps -> 10000]]. {x. 0. 6}. HaxSteps -> 10000]]. {x. 0. 4.5}.
PlotRange -» {-1.5. 1.2}]: PlotRange -> {-1. .5}]:
1 0.4
0.2
n.s
1 2 3 4
1 2 4 5 [ 0.2
-0.5 -0.4
-0
=i
-0.2
-1.5 -1
Plot[Evaluate[u[x] /. Plot[Evaluate[u[x] /.
HDSolve[{u’ '[x]- (x~2 - 5.00001)«u[z] -- O, HDSolve[{u’ '[1]-{x"~2 - 6.99999) »u[z] -- 0.
u[0] == 1. u' [0] == 0}, u[x]. {r. 107  10]. u[0] == 0. u’[0] == 1}. ulx]. {z. 10®, 10].
HaxSteps -> 10000]]. {x. 0. 6}. HarS5teps -> 10000]]. {x. 0. 6.5}.
PlotRange -> {-1.5. 1.2}]: PlotRange -> {-1. .5}]:
1 0.4
0.z /_\
n.s
1 2 3 4 5
1 2 4 5 & 0.2
—0.5 =04
-0
-1
-n.2
-1.5 -1
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Plut[Evaluate[u[x] I
H‘DSulve[{u' "[x] -{x~2 - 7. 00001} *u[x] -=-0,
u[0] == 0. u'[0] == 1}. u[x]. {x. 107°_ 10}.
HaxSteps -> 10000]]. {x. 0. 6.5},
PlotRange -> {-1. .56}]:

W e W

Problem 2.56

The Schrodinger equation says —%w” = E1, or, with the correct energies (Eq. 2.27) and a = 1, 9" + (nm)%) =
0. I'll start with a “guess” using 9 in place of 72 (that is, I'll use 9 for the ground state, 36 for the first excited
state, 81 for the next, and finally 144). Then I'll tweak the parameter until the graph crosses the axis right
at x = 1. The results (see below) are, to five significant digits: ‘9.8696, 39.478, 88.826, 157.91.‘ (The actual

energies are these numbers multiplied by h?/2ma?.)
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Plot[Evaluate[u[x] /.
H'DSolve[(u' "[x]+ (9 +u[x] == 0, u[0] ==0, u'[0] ==1}.
ulz]. {x, 10%, 1.5}, HaxSteps -» 1[I[Il]l]]],
{r. 0. 1.2}, PlotRange -> {-.5. .5}]:

-0.2

-0.4

Plot[Evaluate[u[x] /.
H'DSolve[(u' '[x] + {9.86959) xu[x] :- 0, u[0] =-
u'[0] =1}, ulxl, {x. 107, 1. 008},
HaxSteps -> 10000]]. {x. 0.99999, 1.00001),

PlotRange -> {-. 00001, .00001}]:
0. 00001
Sx107
0.99999  0,999995 1.00001  1.00001
P
—0. 00001

Plot[Evaluatef[u[z] /.
ll'DSolve[{u' '[x]+ {B1) »u[x] -- 0, uf0] =
ufx]. {x. 10, 1.5}, HazSteps -> 10000]].
{1. 0. 1.2}, PlotRange -3 {-.15. .18}]:

0,05

=003

Plut[Evaluate[u[x] .
H'DSolve[{u' '[x] + {88.82630) xu[x] -0, u[0] ==
w'[0] =1}, ufz]. {x. 10® 1 005).
HaxSteps -> 10000]]. {x. 0.99999, 1.00001},

PlotRange -3 {-. 00001, .00001}]:
0.00001
5107
0.99999 0999995 100001 100001
-5x107F
—0.00001

0. u'[0]=-1}.

Plot[Evaluate[u[1] /.
]I'I)Solve[{u' “[x] + (36) *u[x] == 0. u[0] ==0, u'[0] -=1}.
ulx]. [x, 108, 1.5], HaxSteps -» iﬂl]l]l]]],
{1. 0. 1.2}, PlotRange -> {-.5. .5}]:

Plot[Evaluate[u[1] /.
]I'I)Solve[{u' “[x] + (39.47803) »u[x] :- 0, u[0] ==
w'[0] -1}, ulz], {z. 10, 1.005}.
HaxSteps -> 10000]]. {x. 0.99999, 1.00001},

PlotRange -> {-. 00001, .00001}];
0. 00001
Sx107
0.99999  0.999995 1.00001  1.00001
-5x107
-0.00001

Plot[Evaluate[u[1] /.
ll])Solve[{u' "[x] + {(144) »u[x] == 0, u[D] == 0, u'[0] == 1}.
u[z]. {z. 10, 1.5}, HaxSteps -» 10000]].
{r. 0, 1.2}, PlotRange - {-.1. . 1}];

S ANANYS
S RVARYA

Plot[Evaluate[u[x] /.
HDSolve[{u' '[x] + {157.9129) «u[x] ==
u'[0] 1}, ufx]. {z. 10, 1_005},
HaxSteps -> 10000]]. {x. 0.99999. 1.00001}.

0, uf0] -- 0,

PlotRange -> {-. 00001, .00001}]:
0. 00001
S0
0.99999 0999995 t.oooo0l {00001

S 07"

-0, 00001
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Chapter 3

Formalism

Problem 3.1

(a) All conditions are trivial except Eq. A.1: we need to show that the sum of two square-integrable functions
is itself square-integrable. Let h(z) = f(x) + g(x), so that |h|?> = (f +9)*(f +9) = |fI> + 91>+ f*g+ 9" f

and hence "
/\h|2dsc:/|f\2d1‘+/|g|2d3:—|—/f*gdz+ (/f"gdm)

If f(x) and g(x) are square-integrable, then the first two terms are finite, and (by Eq. 3.7) so too are the
last two. So [ |h|*dz is finite. QED

The set of all normalized functions is certainly not a vector space: it doesn’t include 0, and the sum of
two normalized functions is not (in general) normalized—in fact, if f(x) is normalized, then the square
integral of 2f(x) is 4.

(b) Equation A.19 is trivial:

(9lf) = / 9(a) dm—</ e dx) = (flg)"

Equation A.20 holds (see Eq. 3.9) subject to the understanding in footnote 6. As for Eq. A.21, this is
pretty obvious:

(F1(blg) + clh)) /f (bg( )+ch()dar—b/fgdx+c/fhdw—b<f|9>+c<f|h>

Problem 3.2
(a)

! 1

o 2w+l

1
<f|f> = /0 372” dr = #xmﬂrl (1 _ O2v+1> )

2v+1

Now 02¥*+1 is finite (in fact, zero) provided (2v + 1) > 0, which is to say, |v > —%. If (2v+1) < 0 the

integral definitely blows up. As for the critical case v = —1, this must be handled separately:
! 1
(f1) :/ Ifldzzlnx|0:1nl—ln0:0+oo,
0
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So f(z) is in Hilbert space only for v strictly greater than -1/2.
(b) For v =1/2, we know from (a) that f(z) is in Hilbert space:
Since zf = x3/2, we know from (a) that it is in Hilbert space:
For df /dx = 2z71/2, we know from (a) that it is not in Hilbert space:

[Moral: Simple operations, such as differenting (or multiplying by 1/x), can carry a function out of Hilbert
space.]

Problem 3.3
Suppose (h|Qh) = (Qh|h) for all functions h(z). Let h(z) = f(x) + cg(x) for some arbitrary constant ¢. Then
(@l@fﬁ = <(f+cg)|Q(f+09)> = <Ji\@f> c(f1Qg) + ¢ <A\ £+ 1el*(91Qg);
(@hlh) = (Q(f + co)|(f + cg)) = (QFIf) + c(Qflg) + c*(Qglf) + e (Qlg)-
Equating the two and noting that <f|Qf> = (Qf|f) and <g\Qg> = <Qg|g) leaves
c(f1Qg) + ¢ (91Qf) = ¢(Qflg) + ¢ (Qalf)-

In particlar, choosing ¢ = 1: A A R R
(F1Qg) + (9lQf) = (Qflg) + (Qglf),
whereas if ¢ = i: R R R X
(f1Qg) — (9lQf) = (Qflg) — (Qglf)-
Adding the last two equations: X R
(flQg) =(Qflg). QED

Problem 3.4
(a) (fI(H + K)g) = (f|Hg) + (f|Kg) = (Hflg) + (K flg) = (H + K)flg). ¢
(b) (flaQg) = a{f|Qg); (aQflg) = a*(Qf|g)- Hermitian <
(c) (fIHKg) = (Hf|Kg) = (KHf|g), so HK is hermitian & HK = KH, or | [H, K] = 0.
(d) (fleg) = [ f*(zg)dz = [(xf)*gdz = (iflg). v
<ff1g>=/f*< 252 dd22 +V>gd:v———/f &g dx—f—/f*ngx.

Integrating by parts (twice):
S o] 2 *
+ / @f gdz.
— 00

> dig dg |~ > df* dg dg|™  df*
*_d _ * _ A - * _
/_oofdx‘zx sl /_ood:z:dmx U I . da?

But for functions f(z) and g(x) in Hilbert space the boundary terms vanish, so

oo d2g [ee) 2f*
/ f*ﬁ dzx = / gdx, and hence (assuming that V(z) is real):
oo dx

dx?
R 00 h2 d2 R
g = [~ (-t ave) gar= .

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.



64 CHAPTER 3. FORMALISM

Problem 3.5
(@) (flzg) = [ f*(zg) dz = [(af)*gdz = (xf]g), so|aT = a.]
(flig) = [ f*(ig)dz = [(=if)"gdx = (~iflg), so il = —i.]

Y9 :[mf*ﬁdx:f*g oo—/oo (%) gdx = —(zflg), so <%> =-=.

(b) ay = \/ﬁ(—zp + mwz). But p and x are hermitian, and it = —4, so (a4 )" = 2;mw (ip + mwz), or
(@) = (a),
(c) (fI(QR)g) = (QTfIRg) = (R'Q"flg) = {(QR) flg), so (QR)T = RTQT. v
Problem 3.6
) B 27 2 27 27 df* dg 27 df* 27 27 d2f*
i = [ rGhae=rog - [ Gaa= gl -+ e

As in Example 3.1, for perlodlc functions (Eq. 3.26) the boundary terms vanish, and we conclude that <f|Qg> =

(Qflg), so Q is hermitian:
Of = af = ddj; = af = fa(9) =[Ac=V7.]

The periodicity condition (Eq. 3.26) requires that ,/g(27) = 2n7i, or /g = in, so the eigenvalues are

‘q =-n2 (n=0,1,2,...). ‘ The spectrum is ‘doubly degenerate;

(the plus sign or the minus sign, in the exponent), except for the special case n = 0, which is not degenerate.

Problem 3.7

(a) Suppose Qf = qf and Qg = qg. Let h(z) = af(x) + bg(x), for arbitrary constants a and b. Then
Qh = Q(af +bg) = a(Qf) +b(Qg) = alaf) +blag) = qlaf +bg) = gh. v

d’f d? d d%g d? d

b _— = — Ty = — Y = 7 = _— — T = — (—e ) = T = .

(b) dx?  da? (e%) dx () =e" =1, de?  da? () dx (-e) = 9
So both of them are eigenfunctions, with the same eigenvalue 1. The simplest orthogonal linear combina-
tions are

sinhz = (e“’—e*“"):%(f—g) and coshm:%(ez+efz)=%(f+g).

N —

(They are clearly orthogonal, since sinh 2 is odd while cosh z is even.)
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Problem 3.8

(a) The eigenvalues (Eq. 3.29) are 0, £1,+2,..., which are obviously real. ' For any two eigenfunctions,
f=A,7 and g = A e 7? (Eq. 3.28), we have

eila—d")e ?

i(q—q')

’ _ AAy [ei(qff/)27T _ 1} _

27
—A*A / el4Pe=1'¢ go — A* A, = -
<f‘g> q“q o ¢ qq l(q—q’)

0

But ¢ and ¢ are integers, so €/(4=9)27 = 1 and hence (flg) = 0 (provided ¢ # ¢’, so the denominator is
nonzero). v

(b) In Problem 3.6 the eigenvalues are ¢ = —n?, with n = 0,1,2, ..., which are obviously real. v For any
two eigenfunctions, f = A,e*™? and g = Ay et™ % we have
27
27 } o, +i(n'—n)¢ A*A., o,
— A*A., Fing Fin'é 4 ZA*AIe— — 4T | Fin —n)2w _ g —0
<f‘g> q*q /0 € € (b q*-q :l:’l,('n,, 7,”) . Zl:l(n/ 7,”/) e

(provided n # n'). But notice that for each eigenvalue (i.e. each value of n) there are two eigenfunctions
(one with the plus sign and one with the minus sign), and these are not orthogonal to one another.

Problem 3.9
(a) ‘Inﬁnite square Well‘ (Eq. 2.19).

(b) |De1ta—function barrier | (Fig. 2.16), or the finite rectangular barrier (Prob. 2.33).

(c) |Delta—function we11| (Eq. 2.114), or the finite square well (Eq. 2.145) or the sech® potential (Prob. 2.51).

Problem 3.10
From Eq. 2.28, with n = 1:

papr(z) = %%\/gsin (gz) = %i\/gg coS (gz> = {z%ﬁ cot (gzﬂ P1(x).

Since p); is not a (constant) multiple of ¢, ¥ is not an eigenfunction of p: It’s true that the magnitude
of the momentum, /2mE; = 7h/a, is determinate, but the particle is just as likely to be found traveling to the
left (negative momentum) as to the right (positive momentum).

Problem 3.11

mwo\Yt e s 1 mw\ Yt o mew .2
\Ilo(l‘,t) = <_) P e—wt/Q; q)(p’ t) _ 2ﬁh<ﬁ) e—zw/2/ e—zpw/ﬁe—Tﬁw dz.
\% —o0

From Problem 2.22(b):

1 mw\* 2nh _ 2 1 2 ,
d — [ed —iwt/2 [ 2710 —p*/2mwh _ —p°/2mwh 72wt/2'
(P, 1) \/ﬁ( 7Th> ¢ mw - (7rmcuh)1/4e €
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2

2 . . D

e P /Mm@l \aximum classical momentum: o = E=
m

[®(p,t)]> = hw = p = Vmwh.

N =

Tmwh

So the probability it’s outside classical range is:

—vVmwh ) vmwh
P:/ |<I>|2dp+/ |<I>|2dp:1—2/ |®|%dp. Now
mwh 0

— 00

vVmwh vVmwh
1 [ 2 h
/ |®|2dp = / e=P"/muwh dp. Let z=4/——=p, sodp= il P
0 mmwh Jo mwh 2

12 1
= Nir /o e " 2dz = F(V2) - 3 in CRC Table notation.

P=1-2 {(F(\/i) - %] —1-2F(v2)+1=2 {1 fF(\/i)} = 0.157.

To two digits: (compare Prob. 2.15).

Problem 3.12
1
V2mh

() :/\Il*mllldx:/[\/;T_h/e_ip/””/h@*(p',t)dp’]x[\/;r_h/e“m/h@(p,t)dp] d.

From Eq. 3.55: ¥(x,t) =

/ eim/h@(p, t)dp.

, d .
But ze*/" = —ihd— (e”’m/h), so (integrating by parts):
P

. hd . . ho
ir/hg gy = [ =2 (/M) d :/ we/h) 2 Zo(p, t)|dp.
x/e p /idp(e )P dp e i o (p,t)|dp

So (z) = ﬁ /// {e_ip,f”/h@*(p',t)eim/h { - ?(%@(p, t)] }dp'dpda:.

Do the x integral first, letting y = x/h:

1 —ip’x/h ipx/h 1 i(p—p')y ’
— = — = — Eq. 2.144
o e e dzx 5 e dy=46(p—-19p), (Eq ), 8O

@ = [[o w050 -3 L owo|ata = [0 e0] -5 ewn]m qep
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Problem 3.13
(a) [AB,C]=ABC —CAB = ABC — ACB+ ACB—-CAB = A[B,C]+[A,C|B. v
(b) Introducing a test function g(x), as in Eq. 2.50:

hdg hd hdg B . dg\ . .,
n _nt% o n _nt2d n n29 ) — ihnz® .
=" plg == 1 dx idx(w 9) == idr 1 (n:v g+ dz vne g
So, dropping the test function, [z", p] = ihnz™~t. v
_ hdg hd,,. .hdg h(df  .dg\ . df i
() f,plg = idr i dx(fg) T lde (dmg+ fd:r o Zhdacg = f.pl= mdx' Y

Problem 3.14

2
P 1
o=+ V| =—[z.p’] +[2.V]; [2.p°] =2p® —p’z =2p® — pap + prp — p’x = [z, plp + plz, D).
2m 2m
p? 1 ihp
Using Eq. 2.51: [z,p?] =ihp+ pih = 2ihp. And [z,V] =0, so |z,o— + V| = -—2ihp=—.
2m 2m m
The generalized uncertainty principle (Eq. 3.62) says, in this case,

020y > (i@@)z - (£<p>)2 = ou0m > 2 |(p)|. QED

2im 2m

For stationary states oy = 0 and (p) = 0, so it just says 0 > 0.

Problem 3.15

Suppose Pf, = A fn and Qfn = fin fn (that is: f,,(z) is an eigenfunction both of P and of Q), and the set {f,,}
is complete, so that any function f(x) (in Hilbert space) can be expressed as a linear combination: f =" ¢, f,.
Then

P,Q1f = (PQ—QP)Y cafu=P (3 cattntn) = Q (X cadnfu) = 3 cattndnfu = 3 cansinfn = 0.

Since this is true for any function f, it follows that [P, Q] = 0.

Problem 3.16

av i, . a 1
= plias—iale) + (¥ = (<o + 0+ L) ) .
dv  a i(p) a z? i(p)
oo Up) mw=2(_-Z Up) .
T h( x+ (z) + ; dx = 1n > 5 + (z)x + P + constant
2 .
Let constant = — (a;}ha + B (B a new constant). Then In¥ = —%(.ﬁ —(z))* + %1‘ + B.

U — o or(z—(@)? ilp)a/h B _ Ae—a(w—(@)Q/%ei(p)w/h’ where A = 5.

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.



68 CHAPTER 3. FORMALISM

Problem 3.17

(a) 1 commutes with everything, so

E(W\‘P) = 0| (this is the conservation of normalization, which we origi-

nally proved in Eq. 1.27).

d
(b) Anything commutes with itself, so [H, H] = 0, and hence E(H ) = 0] (assuming H has no explicit time

dependence); this is conservation of energy, in the sense of the comment following Eq. 2.40.

(c) [H,x] = —% (see Problem 3.14). So diz) . (—M> = () (Eq. 1.33).

m

dt h m
() [H,p] = [% —&—V,p} Vg = mfl—‘; (Problem 3.13(c)). So % - %(m@—z» - _<g—‘;>.

This is Ehrenfest’s theorem (Eq. 1.38).

Problem 3.18

1

1 ,
U t) = (e B e B, Y=

\/§ [(H2’IZJ1)€_E1t/h + (H2’ll)2)€_iE"t/h:|.

Hiy = By = H*y = EyHipy = B2y, and H?y = E3tby, so

(H2> _ %<(wle—iE1t/h + wze—iEgt/h)|(E%wle—iE1t/h + ngze—iEgt/ﬁ)>
_ %(<,¢}1|w1>eiE1t/hE%e—iE1t/h + (i |tha) BNt 2 iEat/
¥ (ol )2 BRI L ()P e ) = (7 4 ).
Similarly, (H) = 3(E1 + E2) (Problem 2.5(e)).
oy = (H?) — (H)* = %(E% + E3) — i(El + Ey)? = i(ZEIQ +2E2 — E} — E? — 2E,E, — E3)

1 1
(E} —2E\E, + E3) = Z(E2 - E)% |opg= 5(E2 — Ey).

R

|~

(@2) = = [(Wr]a? 1) + (|2 |2) + (r]a?[eh)el Br= BN 4 (4|22 |y, el BBV,

|\ WVm) = — zosin| —a |sin | —a |dex = — x“ | cos — " xz ) — cos
ol 2 9 nmw mr N4 1 9 n—m n+
a Jo a a a Jo a
a k 242 k 31/ k|2 k ‘
Now / z2 cos (—m:) dx = {% cos (—m;) + <i> Kﬂ) — 2] sin (—71'3:)}
0 a k*m a km a a

0

")) o

=3 cos(k) k27r2( 1)*  (for k = nonzero integer).
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2@2 (_1)n—m (_1)n+7n 2a - 4nm
| |Ym) = S5 | — 7| = )T s
w2 | (n—m) (n+m) s (n?2 —m2)
o (rlahin) = (alelin) = — 2% Neanwhile, from Problem 2.4, (%) = a? [ — 1
T = T = — . nwhile, from Problem 2. T =a’|- — —|.
1 2 2 1 97'('2 ) ) n n 3 2(n7T)2
1 (| 11 16a” [ :
a2\ 2 2 i(Ba—By)t/h | —i(Ea—Eq)t/h
s () = o5 g 2[5~ g~ | LB e m
2005( Ez;El t)
Ey,—FE 4 —1)7w2h? 2h
2 W L ( ch)L;Th = 2377;a2 = 3w [in the notation of Problem 2.5(b)].
212 2 2
(x?) = % [g - 8—75r2 - 93? cos(3wt)} From Problem 2.5(c), (x) = g [1 - 93? cos(3wt)}
274 4 4 2\ ?
So 02 = (2?) — ()2 = % {g — % - % cos(3wt) — 1 + 96? cos(3wt) — (93?) COSQ(Su}t):|-
211 5 32\? d 8h
02 = QZ {g ar=he <W> c082(3wt)} And, from Problem 2.5(d): % =3z sin(3wt).
B2 (d(z)\”
Meanwhile, the energy-time uncertainty principle (Eq. 3.72) says o%02 > “\a ) Here

1 a?f1 5 32\? 3\?[1 5 32\?
2 22— 2% 12 2 [ 2= 2 _ 2( 2 L - 2
OHO, = 4(377lw) 1 [3 e (97r2) cos (3wt)] (hwa) (4) [3 2 <_97r2> cos”(3wt) | .

2 2 2 9

— wt) = | — 2aw

: (dﬁlt>> (ggghz> sin’(3t) (382> (wa)? sin? (3ut), since —— = 22
ma

ma 0
So the uncertainty principle holds if

3\2[1 5 32 \2 8 \°
1 3752 \oq2 cos? (3wt) 3.2 sin® (Bwt),

which is to say, if

1 5 32\% 48\%  , 32\?
- —— > —_— S _—— S = _ .
3 Ar? ~ <97T2) cos” (3wt) + (3 37T2> sin”(3wt) <97T2>

. ) 1 5 32 2 .
Evaluating both sides: 3T e 0.20668; (9?) = 0.12978. So it holds. (Whew!)
Problem 3.19
From Problem 2.43, we have:
hl dixy n | 5, 1 1+ 62 2hat 1, 1o, )
@) m" | Tt m’| 7" T quw? da | i (H) 2m ) 2m (a+1)
P2

We need (H?) (to get o). Now, H = —, so

2m

1 1 > 1 o0 )
H2=—4=—/ 4D (p,t)|2dp, where (Eq. 3.54): ®(p,t) = / —r/hy (1 1) da.
(H=) 4m2(p> i _oopl (p,t)|*dp, where (Eq ): @(p,t) Vol (z,t) dx
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2
From Problem 2.43: ¥(z,t) = (—

Al
il

[See Prob. 2. 22(a) for the integral.|
< o—12/dagpt/2an, | T(L+0) _sPaiio

4ah
\/1+19 a
1/4
e pasie
€ 4ag2ah e 4ah2 .
\/ﬁ 20471'

‘(I;(]Lt)l 1 1 —l /2a pl/ah —p?/2ah? _ —€ﬁ<l2—2%+272) _ #e—(l—P/ﬁ)z/Qa_

V2arm e W 2am h2am

Q

1/4
) 1 o= b palizt )7/ (1+i0)

V140

[\

P o . . 1 \2 . Zl
- /4a/ e~ ipe/fgaliatsz) /(1+i0) gy Lot gy = g — -
V1+i0 s 2a

So B(p.1) = )
) —l2/4aepl/2ah /C>O e—ipy/he—ayQ/(l-H'Q)dy.
142 S

| Sy

]

1 (o)
(phy = FL\/%/ p4e_(l_p/h)2/2adp. Let % —l=2z s0p="nhz+1).
1 2
= i (z+1)*e™* /2%dz. Only even powers of z survive:
hv2am

e} h4
(4 + 62212 + 1Y) e /20dz = 3(2a )\/ +612( %) foam + 1v/aar

h
B vV 2am vV 2am

4
=h'(3a® + 6al®> +1*). - (H?) = 4h—(3a +6al® +1%).
2 2 2 h2 2 2 4 2 2 4 h4 2 2 ! 2

hia 1 2hat\?] R4 a 2hat \ >
2 2 2
ohot = gto 2 g [1+ () | = 5 (1o ) 1+ ()
472 2 2 2
>ﬂ:h—<@> f (d< >) , S0 it works.

— 4m? 4 \m dt

Problem 3.20

h | d{x)
2] dt |
uncertainty principle of Problem 3.14.

d h
But (p) = mﬂ, so o0 > —|(p)|, which is the Griffiths

F = Eq. 3.72 >
or () z, Eq says oo, > 7 5

Problem 3.21
P?|B) = P(P|B)) = P({a]B)|e)) = (a|B)(Pla)) = <a\ﬂ>@|a> = (a|B)|a) = P|B).

1
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Since P?|3) = P|B) for any vector |3), P? = P. QED [Note: To say two operators are equal means that
they have the same effect on all vectors.]

If |v) is an eigenvector of P with eigenvalue A, then P|y) = Al5), and it follows that P2|y) = AP|y) = A2|5).
But P2 = P, and |v) # 0, so A2 = A, and hence the eigenvalues of P are m Any complex) multiple of

|c) is an eigenvector of P, with eigenvalue 1; any vector orthogonal to |a) is an eigenvector of P, with eigenvalue
0.

Problem 3.22
(@) [(al = =it =202 +i(38; (8] = —i(1] +2(3]. |

(b) (alB) = (—i(1] — 2(2| +i(3]) (i[1) + 2I3)) = (=) (i) {1[1) + (i)(2)(3|3) =[1 + 2i.
(Blay = (—i(1] +2(3]) (1) — 2]2) — i[3)) = (—i)()(1|1) + (2)(—i)(3]3) = = (alB). v

(c)
A = (Ae)(B1) = () (=) = 1; Az = (Ue)(B[2) = (i)(0) = 0; A1z = (L)(B]3) = (I)(2) = 24
Aoy = 2la)(BI1) = (=2)(—i) = 2i; Az = (2|)(B]2) = (=2)(0) = 0; A2z = (2[a)(B]3) = (=2)(2) = —4;
Az1 = Bla)(B1) = (=i)(—i) = —1; Az2 = (3|a)(B]2) = (—4)(0) = 0; Az3 = (3|a)(B[3) = (—i)(2) = —2i.
1 0 2
A=1|20 0 -4 1t s not hermitian.
-10 -2

Problem 3.23
Write the eigenvector as |¢)) = ¢1]1) 4 ¢2|2), and call the eigenvalue E. The eigenvalue equation is

H) = € (1] =] 22|+ [1)(2] + 2)(1]) (e1]1) + e212)) = € (e1]1) + e112) = eal2) + eal1))
el(er +ca)[1) + (e — e2)[2)] = EE) = Eea]1) + eaf2)).

E E
e(cr +¢e3) =FEcy = ¢ = (— - 1) c1; €(lcy1 —co) =FEcy =1 = (— + 1) )
€ €

E E E\’

The eigenvectors are: ¢y = (£v2 — 1)e; = | [9hy) = ¢ {|1> + (V2 - 1)|2)} .

The Hamiltonian matrix is H=c¢ <} _11> .

Problem 3.24

a) = Y culea) = Qla) = Y euQlen) = 3 leala)gulen) = (Z qn|en><en|> ) = Q=3 qulea)enl. v

n
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Problem 3.25

1
1
ler) = 1; <61|€1>:/ ldr=2. So|le})=—=
-1

1 3

1 1 T
lea) = x5 (e]|es) = %ledx:(); (ea]ez) :/ 22dx = 5

—1

1 /! 12 2 !
_ 2; / — 2d = —=; ! = \/j/ 3d =0.
‘€3> x <61|€3> \/5 [1$ € \/53 <€2‘€3> 3 71'73 €L

So (Problem A.4): |e5) = |e3) —

12, 1
V23! 3
1 2 5 3
1 T 2 x x
- [ (oY a- (535
4 1 1
‘6/3>: —5 ralp = \/E §I27— .
8 3 2\ 2 2
1ot 3 ! 3 2
lea) = 2% (efles) = E/_lx?’dxzo; (ehles) = \/;/_1$4dx: \/; s
U 5 ' 3 5 1 3 " 3
(esleq) = 3 2% 3% dr =0. €)= |es) — (ehles)|e)) = m—x
-1
1 2 7 5 3
3 T 2-3x 9 x
"y 3
= —_— d p— —_— e — —_—
tealea) /_1(96 5x) ! {7 5 5+253}
oD T (3 _\/?§3_§
e =2\ \™ —57) =12 ev 37
Problem 3.26

(a) (Q) = (¥IQ¥) = (QTvl¥) = ~(Qul¥) = —(¥IQ¥))" = —(Q)*, s0 (Q) is imaginary. v/
(b) From Problem 3.5(c) we know that (PQ)! = QT P!, so if P = Pt and Q = QT then
[P,Q' = (PQ-QP) = QP - PTQ" = QP - PQ = -[P,Q]. v
If P=—Ptand Q = —QF, then [P,Q]f = QTPT — PIQ! = (=Q)(-P) — (-P)(-Q) = —[P, Q).

So in either case the commutator is antihermitian.

2 12 18 8

DT R A v T
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Problem 3.27
(@) [

(b) ‘ by (with probability 9/25) or by (with probability 16/25). ‘

(c) Right after the measurement of B:

e With probability 9/25 the particle is in state ¢; = (31 + 41)2)/5; in that case the probability of
getting ay is 9/25.

e With probability 16/25 the particle is in state ¢o = (4401 — 31p2)/5; in that case the probability of
getting a; is 16/25.

9 9 16 16 337
h 1 ility of i s ——+—+— =|— =0.5392.
So the total probability of getting a; is 95 9% + 55 25 6o% 0.539

[Note: The measurment of B (even if we don’t know the outcome of that measurement) collapses the wave
function, and thereby alters the probabilities for the second measurment of A. If the graduate student
inadvertantly neglected to measure B, the second measurement of A would be certain to reproduce the
result a;.]

Problem 3.28

2 i 2 252
\I/n(l',t) = \/jsin (EIL‘) e—zEnt/h’ with E, = 7127772
“ ma

1 < 1 2 _. @ . nmw
o, (p,t) = e/, (,1) do = \/je_lE"t/h/ e~ Pr/Pgin (=2 dx
(p.1) \/27rh/_oo (1) 2nh V a 0 (a )
— 1 e*iEnt/ﬁl /a |:6i(n7r/a7p/h)x . ei(fnﬂ'/afp/h)x} dr
0

IS

vrha 2t
_ 1 e—iET,,t/hl |: ei(nﬂ/a—p/h)x B ei(—nﬂ/a—p/h)x :| @
Vrha 2i Li(nm/a—p/h) i(-nm/a—p/h)]],
_ -1 e—iEnt/h [ei(nﬂ—pa/h) -1 N e—i(nﬂ'-l—pa/fi) _ l:l
2wrha (nw/a —p/h) (nm/a+p/h)

L [C Gl
W rha (nm — ap/h) (nm + ap/h)
L Ja _ig.m 2nm

“2\ 7 om)E — (ap/h)2 (et -]

—iEnt/h _
| jem_ne T [1 _ (_1)ne*wa/h]_
h (nm)? — (ap/h)?

Noting that

cos(pa/2h)  (n odd),

1— (-1 nefipa/h _ e*ipa/Qh eipa/Zh — (=1 nefipa/2h _ Qefipa/Zh
(=) [ (=1) ] isin(pa/2h) (n even),
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we have
11 (p, )2 4ra  cos®(pa/2h) 16ma  sin®(pa/2h)
1(p, = —— 5, = .
h [72 = (pa/h)?)? h[(2m)2 - (pa/h)?)?
Mathematica has no trouble with the points p = +nnh/a, where the denominator vanishes. The reason is that

the numerator is also zero there, and the function as a whole is finite—in fact, the graphs show no interesting
behavior at these points.

|®2(p7 t)|2

|(I)1|2 |(D2|2
) o ) Anmwa [ 2 cos?(pa _ @
o = [ a2 s (et § % 1t 2=

Anh? [ x? Ank?

where

Tn(@) = { sin?(nmz/2), if n is even.

The integral can be evaluated by partial fractions:

_ [ cos*(nmx/2), if nis odd, }

a2 _1[1+1+1_1]:>
212 4|@@-12 (@+12 (@-1) (z+1)

neilLemmnens [ gmmtees [ arphee [ armhe ]
For odd n:

| a5 ao= [ oo [Fwrv]ay= [ s (") ay

—c0 —o0o

For even n:
e 1 o (MTE <1 . ,rnm <1 nry
—rpsin? () de= [ —sin? [ 1}05:/—'2(—)(1.
/_oo(z:tl)kSHl(Q) x /_ooyksm 2(y1F) Y _Ooyksm 5 Y
In either case, then,
1 /> 1 5 /nmy nr [ sinu nm?
I, = — sin (—)dy:— ——du=—.
Y 4
Therefore

P*)

B Anh? B Ank? n_7r2 B (mrh
a

2
2 nT g —) (same as Problem 2.4).
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Problem 3.29

1 oo . 1 ni )
®(p,0) = e Py (3,0) doy = ——n 127/ A—p/h)z g,
Vorh [oo 2vnmwh\ J_nx
1 ei(27r//\—p/h):v ni 1 ei27rne—ipnk/h) _ e—i27rneipn/\/h)

2V/nrhX (2T /A —p/h)|_.\  2v/nmhA i(2m /X —p/h)

| /X sin(npA/h)
|V onr (pA—27h)°
_ b sin?(npA/h)

1
U 2= _— (—n\ A): @ 2= N
|W(z,0)] TN (—nA <z <nd);  [2(p,0)] e (ph — 27h)?2

|2 ||
A

-\ A x 27th/A P

The width of the |¥|? graph is | w, = 2n\.| The |®|? graph is a maximum at 27h/\, and goes to zero on either

27h 1 27h
side at % (1 + 2—), SO | wp = L)\ As n — o0, wy — oo and w, — 0; in this limit the particle has a
n n

well-defined momentum, but a completely indeterminate position. In general,

2mh
WeWy = (QnA)% =drnh > h/2,

so the uncertainty principle is satisfied (using the widths as a measure of uncertainty). If we try to check the
uncertainty principle more rigorously, using standard deviation as the measure, we get an uninformative result,

because 2 (apA/F)
A [0 5sin(npA/h
2 2
= d —
w’) mr/ (pA — 2mh)? P

(At large |p| the integrand is approximately (1/A?)sin?(npA/h), so the integral blows up.) Meanwhile (p) is
zero, so 0, = 00, and the uncertainty principle tells us nothing. The source of the problem is the discontinuity
in ¥ at the end points; here p ¥ = —ihdV¥ /dx picks up a delta function, and (¥|p?¥) = (p ¥|p ¥) — oo because
the integral of the square of the delta function blows up. In general, if you want o, to be finite, you cannot
allow discontinuities in W.

— 00

Problem 3.30
(a)

o0 1 o 1 1 x 1 z\ ]|
1= |A]? —d :2A2/ —  _dr=2AP—— | —— + ¢ _1(—)
Al /_OO @2 +a2)2 A y @ra2e™ A5 22y az Tty .
1 91 1 o 9 _ 2a
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(b)
2 [ 95
=] gl
00 2 2
2:2142/33—.L =2 z= =%
(x%) ; (a2+x2)2dx [Let y 2 @ a\/y, dx 2\/ydy}
2a% [ yl/? 2a2T(3/2)T(1/2) 24> 2
LT, TN 2 WA (]
T Jo (1+y)? T r'?2) T 1
or = V(@) — ()> =[a.]
(c)
D(p,0) = A /OO e~ipz/h ! dz. [But e /" = cos (E)—isin (E) and sine is odd.]
’ V2rh J— oo 22 4+ a2 h h/’
_ 24 /00 0082(]317/?) dr — 24 (lef\p\a/;v: \/§€|p|a/h.
V2rh Jo x°+a V2rh \2a h
o] o] —2pa/h\ |*°
2gp— ¢ ~2lpla/h g, — 22 (€ _
A h(—Qa/h)o Lo
(d)
a [T o
(p) = E/ pe=2IPle/m dp =[0. ]
> 2a (h\° | K? h
2 :22/ 2o—2pa/h o ) o - 2\ _ ()2 — )
) ), P° =722 22| TP = V)= V2a
h h R
(e) O'wUp:CLE = \/55 > 5 v

Problem 3.31

i

h
ih av
~P." Pproblem 3.17(d) = [H,p] = ih"—-. So
m dx

d
Equation 3.71 = a(xp) = —([H,zp]); Eq.3.64 = [H,zp| = [H,z|p+ z[H,p]; Problem 3.14 = [H,z] =

)

av p? av av

d i| ih ) — (x%> = 2T) — (x%> QED

- = ) ikl ——)| =2
@\ T | T ke =2
In a stationary state all expectation values (at least, for operators that do not depend explicitly on t) are
time-independent (see item 1 on p. 26), so d{xzp)/dt = 0, and we are left with Eq. 3.97.
For the harmonic oscillator:
2 2 dV 2 14 2,2
¢S - =MW = o = W' =2V =2T)=2(V)=(T')= (V). QED
x x
In Problem 2.11(c) we found that (T) = (V) = 1hw (for n = 0); (T) = (V) = 3hw (for n =1). v
In Problem 2.12 we found that (T) = £ (n+3)hw, while (z?) = (n+3)h/mw, so (V) = imw?(z?) = 3 (n+3)hw,
and hence (T') = (V') for all stationary states. v’

2m

1
V:§mw
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Problem 3.32

U(z,t) = %(1/;1@*”31”’7 +appe ) (U, )| (2,0)) = 0=

1. , . ,
5 (elElt/th Y1) + 61E1t/h<¢1|¢2> + €ZE2t/h<T/12|1/J1> + 61E2t/h<¢2|¢2>)
_ %(eiElt/h 4 FaUR) Z 0, or ¢HER/h = _iBt/h o BB ] _ i
Thus (B2 — Ey)t/h = m (orthogonality also at 3w, 57, etc., but this is the first occurrence).
t I 1 I
SAt=—=———. But AE =0y = =(F2— E1) (Problem 3.18). So AtAE=—-. V
™ E2 — E1 2 2

Problem 3.33

- N _ e . . [asln) =vVn+1n+1),
Equation 2.69: z = 5 (ay +a-), p=i 5 (ar —a_); Eq.2.66: { a |n) = Viln—1).
leln’) = 1/ =2 (nl(as + as)n') = ) oo [VATF T aln’ + 1) + Vil (nl — 1)
2mw 2mw
[ h — [ h —
= o ( v/ +1 5n,n’+1 +vn/ 5n,n’71) = a_ (\/ﬁén’,nfl +vn/ 5n7n’71)-
2mw 2mw
hw
(nlpln') =| iy 75 (Vi Gt = Vi G-

Noting that n and n’ run from zero to infinity, the matrices are:

0v10 0 0 0 0 —v1 0 0 0 0
VI 0O V20 0 0 Vi —v2 0 0 0
x— " 0 Vv20 V3o o pog/mw 0 V2 0 —v3 0 0
2mw | 0 0 V3 0 V4 0 ’ 2 0 0 V3 0 —vV4 0
0 0 0 v4 0 V5 0 0 0 V4 -5
Squaring these matrices:
1 0 VvV1-2 0 0 0
B 0 3 0 vV2-3 0 0
2=%\/Wo 5 0 V34 0 i;
0 V23 0 7 0 V4.5
-1 0 VvV1-2 0 0 0
b 0 -3 0 V23 0 0
PP=———1|V1-2 0 -5 0 V34 0
0 v2-3 0 -7 0 V4.5
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So the Hamiltonian, in matrix form, is

H= _P2 mw2x2
2m 2
-1 0 V1-2 0 0 0
oo 0 -3 0 V23 0 0
= V12 0 -5 0 V34 0
0 vV2:3 0 -7 0 V45

1 0 Vi-2 0 0 0 1000

0 3 0 V23 0 0 0300

hw : hw 10050
+[viz o 5 0 V3a 0 =%

0 V2.3 0 7 0 Vi 0007

It’s plainly diagonal, and the nonzero elements are H,,,, = (n + %)ﬁw, as they should be.

Problem 3.34

Evidently W(z,t) = cotbo(z)e ™ Fot/ M 4 ey (2)e B/ with |eol? = || = 1/2, 50 cg = €% /V/2, ¢ = €% /V/2,
for some real 6y, 6.

(p) = |eol®(Wolprbo) + ler | (W |pbn) + chere™ BBV lpapy ) + ¢ coet Er =B R ey |pypg).

But E; — Ey = (%hw) — (%hw) = hw, and (Problem 2.11) (vo|pvo) = (¢1|py1) = 0, while (Egs. 2.69 and 2.66)

(wolpwn) = i1/ 2 ol — a i) = iy [(ulv/B) — {wol VT = i) T (o) = iy

1 7190 1 101 —iwt . hmw 1 7201 1 100 iwt . hmw
= (& —1 —_— —— (& 1 —_—
W =5 "R \ a0 R V72
_ % hZLw _—i(wt—01+60) _|_ei(wt—01+60 / sm (Wt + 0 — 7).

The maximum is | \/fimw/2; | it occurs at ¢t = 0 < sin(fg — 1) = —1, or 61 = 0y + /2. We might as well pick
90 = 0, 91 = ’]T/27 then

_efiwt/2 (¢0 + iqblefiwt) )

) ) _ 1
U(x,t) = [ eTWt/2 o)y oim/2 3wt /2
( ) '(/)O ’lﬁl \/i

Sl
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Problem 3.35

h h h .
() () = {afra) =\ 51— (al(as +a)a) = /5 ({a_ala) + {ola_a}) = |\ 5o (a+ o).
2 h 2 2
2" =5 (a3 +ara_ +a—ay +a). Buta_ay =la_,a4]+ara_ =1+aja_ (Eq. 2.55).
h
=5 (af_ +2apa_ +1+ a2_) .
(x?) = i<o¢| (a2 +2ara- +1+a)a)= _h ((a® ala) + 2(a_ala_a) + (a|a) + (ala® a))
2mw + e - 2mw T I -
_ h *\2 * 27 _ h *\2
=5 [(@")? +2(a)a+14a”] = T 1+ (a+a")?].
. [hmw . [hmw . [hmw .
(1) = (alpo) = iy " (ol 0y —a_)a) = it/ " ({a_ala) — {ala_a)) =| ~iy/ "2 (0 o).
p? = _hmTw (a+ —a4G_ —aG_Q4 —|—a%) = _hn;w (ai —2a4a_ —1+ a%) .
9 hmw 9 9 hmw ,, o B
) = —T<a| (a3 —2a4a- —1+a’)a)= - ((a® ala) — 2(a_ala—a) — (aa) + (ala® a))
= _hmTw (@) =2(a")a— 14 = hmTw [1—(a—a")?].
(b)
h
2 2\ 2 _ *\2 *\2]
o = () — @) = 5 [+ (ot a’) — (ata’)] = 5o
hmw hmw h hmw R
2 _ g2y gn2 W _ 2] mw _ . j_nh  fhmw R
ap—<p> (p) 5 [1 (o —a™)* + (« a)] 5 0z0p ST 5 5 QED
(c) Using Eq. 2.67 for ¢,:
1 mpola) = - ) = _qn _
tn = (Ynlor) = ﬁ((%) Yola) = ﬁ(%“af) @) = T (vola) = Nk v
oo o0 2n R 3
(@ 1=3 el - ||Z'“T O S PNy
o0 © n 00 —iwt\"
) — eiBnt/hypy QT al?/2 i Dty —iwt/2 (046 ) —lal?/2)y
(©) ) = 3 ene ) = 32 G o e Dt il 52 Ko

Apart form the overall phase factor e~ /2 (which doesn’t affect its status as an eigenfunction of a_, or
its eigenvalue), |a(t)) is the same as |«), but with eigenvalue a(t) = e “*a. v

(f) Equation 2.58 says a_|¢) = 0, so it is a coherent state, with eigenvalue
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Problem 3.36

1 2T 2
(a) Equation 3.60 becomes |z|* = [Re(2)]? + [Im(2)]* = [g(z + z*)} + [Z(Z - z*)} ; Eq. 3.61 generalizes to

P> |5 (o) + W] + |5 (i - tal)]
But (f|g) — (g|f) = ([A, B]) (p. 111), and, by the same argument,

(Flg) + {(glf) = (AB) — (A)(B) + (BA) — (A)(B) = (AB + BA —2(4)(B)) = (D).

So 040 > — ((D)?+(C)?*). v
(b) If B=A, then C =0, D=2 (A? - <A)2); (D) = 2 (<A2> - <A>2) = 20%.  So Eq. 3.99 says

o%0% > (1/4)40% = 0¥, which is true, but not very informative.

Problem 3.37

First find the eigenvalues and eigenvectors of the Hamiltonian. The characteristic equation says
(a—FE) 0 b
0 (¢c—E) 0 |=(@—E)c—E)a—E)-b(c—E)=(c—E)[(a—E)*-b*] =0,
b 0 (a—E)
Either £ = ¢, or else (a — E)? =0 = FE = a4 b. So the eigenvalues are

Fi=c¢, FEy=a+4+b, E3=a-—b.

To find the corresponding eigenvectors, write

a0b « «
0cO G|=E,|0(
b0a 0% 0

ax+by = ca = (a—c)a+by = 0;
cB = cf (redundant) ;= [(a—c)*=b*]a=0.
bao+ay=cy = (a—c)y+ba = 0.

So (excluding the degenerate case a — ¢ = £b) o = 0, and hence also v = 0.

(2)
ax+by = (a+b)a = a—vy =0
cf=(a+b)B = B =0
ba+ay = (a+b)y  (redundant).

Soa=~vand g =0.
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81

(3)
aa+by = (a—b)a = a+vy = 0;
¢f = (a—b)p = B =0
ba + ay = (a —b)y (redundant).

Soa=—yand §=0.

Conclusion: The (normalized) eigenvectors of H are

0 1 1 1 1
[si)=1|1], Is2)=—7 0], Iss)=—5| 0
0 V2 \1 2\-1
(a) Here |S(0)) =s1), so
A 0
‘S(t)) _ 67¢E1t/h|81> —|e—ict/h [ 1
0
(b)
1
IS(0)) = —= (Is2) +s3)) -
V2
1 : ’ 1
S(H)) = — —iEst/h + —iEst/h _ _Z(a_,.b) L
SO = 5 (7" M) + 7 M) ) = '
1 et/ g ibt/h cos bt/h
— _e—iat/h 0 _ e—iat/h
e ibt/h _ pibt/h —isin bt/h
Problem 3.38
(a) H:
1 0 0
E1 = hw7 E2 = E3 = Qhw; |h1> = 0 , |h2> = 1 , ‘h3> 0
0 0 1
A:
—a A 0
A —a ( 0 | :a2(2)\—a)—(2)\—a))\2:0:>‘a1 =2\ ax =\, ag = —A\.
0 0 2\—a
010 « « A0 = axa
Al100 Bl=alb]| = Aa = af
002 y y 2\y = ay

1 1
0 + e—i(a—b)t/ﬁ_
1 V2
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(1)
AB =2 a = [ = 2a, 0
Aa =200 = a = 20, a=p=0; [lai)={0
20y = 2)y; 1
(2)
A=A = (8 =a, 1 1
Aa = A\3 = a = 0, lag) = — (1
22Xy =My = 9=0 2 \o
(3)
AB=—-da = 0 =—q, 1 1
20y = =Ay; = v = 0. V2 0
B:
(2u—5b) 0 0
0 —b p|=0*2u—b)— 2u—bu*=0=|by =2u, by = p, bz = —p.
0 ©w —b
200 o o 2ua = ba
pl001] | B=b|B|=4 w =0b8
010/ \v v pB = by
(1)
2ua = 2po;, 1
py =2uB =y =28, B=y=0 |[b1)=(0
pp = 2uy = f =2y 0
(2)
2ua = pa = a =0, 1 0
py = pB = v =p, Ibz>=ﬁ 1
pe =y = B =1 1
(3)
2ua = —pa = a =0, 1 0
py = —pf = v = =05, |b3>=% 1
pB = —py; = = —. -1
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(b)

100 c1
(H) = (S(0)|H|S(0)) = hw (¢} ¢ ¢5) {020 [ea | =|hw (ler]* + 2[ea]? + 2]es]?) .
002 c3
010 c1
(A) = (S(0)|A[S(0) =A(ct c5 c5) [100] [ea | =|A(cfea + cher +2]es]?)
002 c3
200 C1
(B) = (8(0)|B|S(0)) = (c{ c c§) 001 co | =|p (2\cl|2 + cies +c§02).
010 c3

(c)

|S(O)> = Cl|h1>+62|h2>+03‘h3> =
|3(t>> — cle—iElt/h|hl> + c2e—iE2t/h|h2> _|_c3e—iE3t/h|h3> — Cle—iwt|hl> + CQe—int|h2> +Cg€_2i“)t|h3>

‘ 4 1 0 0 4 cre™?
— e—21wt Clezwt 0 + ¢ 1 + 5 0 _ e—QlUJt o
0 0 1 C3

H: |hy = hw, probability |c1|?; hy = hs = 2hw, probability (|ca|® + |e3?).

iwt
ci1€e
A: (a1]S(t))y = e ** (0 0 1) o = MWy = ‘ probability |c3)?. ‘
cs
A 1 Cleiwt 1 ‘ ‘
A (S0 = 10 (e | = e e )
13 1 *  —iwt * iwt 1 2 2 * —iwt * iwt
probability = 5 (cie +¢3) (c1e™t + o) = 5 (Jer? + |ea|? + cfeze + c5ere™t).
. 1 Cleiwt 1 - -
az =—A,| (as|S(t)) =e *'— (1 -1 0) 2 = —e 2" (e —¢g) =

V3 o) v

1 A A 1 , ,
probability = 3 (cie ™" —¢3) (1€t —c2) = 5 (le1? + |c2|® — cfeae™ ™" — chere™?).
Note that the sum of the probabilities is 1.

- Cleiwt v
B: (b1]S(t)) = 7" (1 0 0) Co = e ?@!c; = | probability |c;|*.
cs
2iwt L cret! L ot
bo=pu,| (bo]SHt)=e "“"— (011 c =—e (et c3)=>
(b2l S(t) #0011 - 7% (e2+ c3)
e 1 * * 1 2 2 * *
probability = 3 (] +65)(c1+e) = 5 (lex]?® + |e2|® + cfea + cher) -
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2iwt L ( ) et L it
bs = —pu, | (b3|S(t)) =e = 01 -1 ) =—e ™ (cg—c3) =
V2 o V2

3 (Je2* + |es|?> — ches — ciea)

Again, the sum of the probabilities is 1.

1
probability = 3 (c5 —c3)(ca—c3) =

Problem 3.39
(a)

oo n
1 d
Expanding in a Taylor series: f(x + zq) = Z o xg (%> f(x).

hd d i = -
But p = T SO o % Therefore f(x + xo) nZO ( ) fz) = 61”0/&}0(95)-

(b)

U(z,t+1t) = Z%t(} <2> U(z,t); zhaa—\lj = HU.
n=0 "

[Note: Tt is emphatically not the case that ih% = H. These two operators have the same effect only when
(as here) they are acting on solutions to the (time-dependent) Schréodinger equation.] Also,

aN>. 0 ov )
<zhat> \I/—zh&(H )= (zha—) =H"Y,

provided H is not explicitly dependent on t. And so on. So

(x,t+to) = Z Etg (- %H) U = emiH/hy (g p),
n=0

(c)
(@i1o = (U@, t +10)|Q(2, p, t + 10) [V (2, t + o))

But U(x,t+tp) = e*th"/h\IJ(:z:,t), 0, using the hermiticity of H to write (e*th“/h)T = ¢HTto/N .

(@410 = (U@, )]/ PQ(, p, t + to)e /MW (2, 1)).

If tg = dt is very small, expanding to first order, we have:

(@) + %dt (W (x,1)] (1 + %dt) {Q(x,p, t) + %dt] <1 - %dt) |0 (x,1))
*
* = Q)+ e~ har) + Ghar = @+ it qlar

9Q

=(Q)¢ + %([H, Qdt + (7).
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L d@) i Q
g = QD+ (50). QED

Problem 3.40
(a) For the free particle, V() = 0, so the time-dependent Schrodinger equation reads

ov h? 0%Ww
__ Y= zp:v/h
i = =5 ax2' U(x,t) = \/_ B(p,t)dp =
ov 5'<I> 0w
- zp:r/ﬁ ~ = ipx/h
ot ¢— P B m/ ( ) e 5o
0P P2
11’1/5 zpz/h
Vor [h&f]d V2rh / [m }dp

But two functlons with the same Fourier transform are equal (as you can easily prove using Plancherel’s

theorem), so

aq) 2 1 <2 .
i =L o | —qo=—"2 g = |Bpt)=eP2m0g(p 0).

o 2m | @ 2mh
(b)
2 2a 1/4
U(z,0) = Ae @ ™ A= <—> (Problem2.43(a)).
™
1/4 poo
1 2 ) ) 1
000 = o () e = e o),
1 2 ] 1 2
i) e — = —(l—p/h)*/4a ,—ip“t/2mh. d t 2_ - —(l—p/h) /2a.
(c)

* 2 1 > l h)?/2
/ p|®(p,t)]>dp = \/%h/ pe~I=P/M)7/20 gy

— o0

[Let y = (p/h) —1, sop="h(y+1) and dp = hdy.]

S
I

= y + e —v*/2a gy, [but the first term is odd]

V2ma

2hL [ _ 2 27il /
— eV /20 qy = - [as in Problem 2.43(d)].
V2ma Jo

[e'e] 1 o0 h2 [e'e]
) =/ p|@(p,t)|* dp = \/%h/ pPe (- ”/h’m“dp:m/ (y% + 2yl + 12)e V" /20 dy

27:[/2 [ee] [e']
— [/ er_yz/Qa dy + 12 / oY’ /2a dy]
2ma [ Jo 0

% [2\/77 (\/93 +z2\/?] —[(a+2)12| [as in Problem 2.43(d)].

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the

currently exist.
publisher.



86 CHAPTER 3. FORMALISM

(d) H = f—m; (H) = ! (p?) = h—(12+a) = L<p>2+M. But (H)o = i<p2>0 _Ia (Problem 2.22(d)).

T om 2m 2m 2m 2m 2m

1
So (H) = %(p>2 + (H)o. QED Comment: The energy of the traveling gaussian is the energy of the

same gaussian at rest, plus the kinetic energy ({p)?/2m) associated with the motion of the wave packet
as a whole.
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CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS

Chapter 4

Quantum Mechanics in Three
Dimensions

Problem 4.1
(a)

[z,y] =zy —yz =0, etc., so|[r;, ;] =0.

_hO (hOFN _hO (ROFN (0% O
Pas Pl = i 0x <23y> i Oy (z@x) =h <8x8y Oyoz =0
(by the equality of cross-derivatives), so m

wapalf = (m% - %W)) _h (x% o f) _inf,

1 1

so [z, pg] = th (likewise [y, py| = ih and [z, p.] = ih).

h 0 0 h 0 0 0
[y, pa)f = <ya—£ - —(yf)> == <y6—£ - ya—g) =0 (Sincea—z =0). So [y,p] =0,

i Ox
and same goes for the other “mixed” commutators. Thus ‘ [ri,p;] = —[pj, i) = Phds . ‘
(b) The derivation of Eq. 3.71 (page 115) is identical in three dimensions, so ke ﬁ([H, x]);
0= [ L4 Vo] = S 4 4 4201 = oo
y L] = 2m y L _2mp¢ py pz7l' _2mp1a'r
= L palpes 2]+ [par 2lp2) = o [(—iB)pa + (—il)ps] = —it
= om Pz Pz, 2y L|Px) = om Pz PDz] = mpm~
d ) h 1 d 1
" % = % (—ZE@J) = E(p;) The same goes for y and z, so: % = E(p)

87
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dlpa) _ @

dt

h

2

(Hopaly: [Hop,] = [p— Vip,

2m

ox

(ih) <€;_V> = <8_V> . Same for y and z, so: @
x

ox

} =[V,ps] = @ha—V (Eq. 3.65)

dt

= (—=VV).

(c) From Eq. 3.62: 0,0,, > '%([x,pd)’ = ‘%zh = . Generally, |0,,0p, > §5ij.
i i
Problem 4.2
) 2 (0% 0% 0% . .
(a) Equation 4.8 = o (@ + T + @) = FE% (inside the box). Separable solutions: ¢(z,y,z) =

X(x)Y (y)Z(z). Put this in, and divide by XY Z:

1 d*°X

X da? +

LEX 17 2m
Y dy?  Zdz2 k2

The three terms on the left are functions of x, y, and z, respectively, so each must be a constant. Call the
separation constants k2, kz, and k2 (as we’ll soon seen, they must be positive).

PX
dz?

Solution:

X(z) = A sink,x + B, cosk,x;

. — 2y
—KIX; S =k =

)

by d2Y d*Z

Y2 22

= —k2Z,

2

: h 2 2 2
with FE = %(km +ky + k).

Y(y) = Aysinkyy + By cos kyy;

Z(z) = A,sink,z+ B, cosk,z.

But X(0) =0,s0 B, =0; Y(0) =0, so B, =0; Z(0) =0, s0 B, =0. And X(a) =0 = sin(kya) =0 =
ky =ngm/a (ny =1,2,3,...). [As before (page 31), n, # 0, and negative values are redundant.] Likewise
ky =nym/a and k, =n,m/a. So

x,y,z) = Az Ay A, sin Mm sin ym sin Mz , F
4 v a a ? a

h? m? 2 2 2

We might as well normalize X,Y, and Z separately: A, = A, = A, = \/2/a. Conclusion:

Y(z,y, 2)

(

2

3/2
) . (’I’Lxﬂ' ) . (nyw )
sSin | —X ) SIn —y
a a

S

(7
a

—Z

)

w2 h?

2ma?

2 2 2. _
(ng +ny +n2); na,ny,n. =1,2,3,. ..
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89

(b)

Nz My n. (n2 —l—nz +n?)
1 11 3
Energy Degeneracy
1 1 2 6
1 2 1 6 T2 h2
2 1 1 6 By =3, 5 d=1
2%2
1 2 2 9 =k
FEy = d=3.
2 1 2 9 2= 05 3
2 21 9
m2hH2
B3=9—5; d=3
113 11 2m
1 3 1 11 -
h
31 1 1 Ei=112". 4=3.
2ma?
2 2 2 12 272
=l
Es =12 d=1
° 2ma?’
1 2 3 14
1 3 2 14 2h2
5 1 3 14 Eg=14y—5; d=6.
2 31 14
3 1 2 14
3 2 1 14

(c) The next combinations are:

E7(322), E‘g(élll)7 E‘g(?)?)])7 E10(421), E11(332), E12(422), E13(431), and

E14(333 and 511). The degeneracy of Ej4 is Simple combinatorics accounts for degeneracies of 1
(ng =ny =n;), 3 (two the same, one different), or 6 (all three different). But in the case of E14 there is
a numerical “accident”: 3% 4 32 4 3% = 27, but 52 + 12 + 12 is also 27, so the degeneracy is greater than
combinatorial reasoning alone would suggest.

Problem 4.3

Eq. 432 =Yy =

1
vVamr

[5 1 d
Y} =— =3.3° ?Pl(cosf); Pi(z)=+1- IQ%PﬂI);

P
—~
&
S—
I
=~
)
N
Q
=
N———
[\
—
8
[ V]
|
—
SN—
[V}

Pi(z) =1 ,xzi

dzr

82 1
2 2

ool

] = /1 —223x; Pj(cosf) = 3cosBsin.

d 2 _ 1y
. [2(z® — 1)22] = 3 (2% — 1+ z(22)]

DN | =

P{(cosf); Eq. 427 = PJ(z) = Py(z); Eq. 428 = Py(z) =1. |V = —.

(3962 — 1) ;

Yy

15 .
- —5 €' sin 0 cos 6.
81
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90 CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS

™ 2m
Normalization: // [YY|? sin 6 df dp = 4i {/ sin9d9} [/ d¢] = %(2)(2@ =1V
7 0 0 ™

™ 2m ™
// [V, |? sin @ df dop = 15 / sin? @ cos® Gsinﬁdﬁ/ do = 15 / cos? (1 — cos? ) sin § df
8 0 0 4 0

s

B E _cos39 L cos® 0
N 3 5

0

™ 2m
Orthogonality: / YOO*YQ1 sin 6 df d¢p = _\/% ;—i [/0 sin&cos&sin@d@} [/0 ewdqﬁ} =0.v

(sin® 6)/3]7 =0 (ei) /i[37=0

Problem 4.4

de A 1 A 1 A d do d
— = 2) == = . Theref — [sinf— )| = —(A) =
do  tan(6/2) 2 sec™(0/2) 2 sin(0/2) cos(8/2)  sinf ETE (sm@ de ) d0( )=0
: d (. ,dO© )
With | =m =0, Eq. 4.25 reads: 7o \sin HE =0. So Aln[tan(0/2)] does satisfy Eq. 4.25. However,

©(0) = AIn(0) = A(—o00); O(m) = Aln (tan g) = Aln(oo) = A(c0). ’@ blows up at # = 0 and at § = .

Problem 4.5

(2l + 1) L eil(b]DII(COSQ). }pll(l,) _ (1 _ x2)l/2 <%>l B(l.)

Y= 04 (20)!

1 /d\ 1 d\*
A =g (5:) @ =0 s0 Rl = gi-a2 (1) @ -1

Now (22 —1)! = 22 4 .. | where all the other terms involve powers of  less than 2I, and hence give zero when
differentiated 2/ times. So

1 d\? d\" (21)!
l — _2\1/2 21 no_ ) I _ _a2\/2
P (x) —21“(1 x®) (_dm) x*. But (_dm) 2" =nl, so P S (1 —az)=.

2A+1) 420! 1+ 01, .\
oyl — (1) ( ilp . 1|2 e .
Y= N ey OO = g s 5" sinf
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CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS 91

V2 = \/gezmﬂf(cose); P2) = (1 — 22) (%)2133(@; Py(z) = ﬁ (%)3 (22 — 1),

Py = ! 4 : [6z(z* —1)%] = 1d [(z? = 1)? + 42 (2® — 1)]
°T8.3.2 \de 8 dx
= % [4z(2® — 1) + 8z(2® — 1) + 4a® - 22] = % (2° —z +22° — 22+ 22%) = % (52 — 3z).

P3(z) = % (1—a?) (%) (52° — 3z) = % (1—2%) % (152* — 3) = %(1 — 2%)30z = 15z(1 — 2?).

d
Yi= % él{)e%b cosfsin’ = i\/gezw sin? 6 cos 6.
Check that Y} satisfies Eq. 4.18: Let ll—' (2%771)' (—%)l =A,50 Y}!=A(e"sind).
88_12 = Ae®l(sin §)' ! cos 6, sin@aa—}gl =l cos BY};
sin&% <sin986—};ll) =lcosf Gmo%) —Isin® Y} = (1 cos® § — Isin® 0) Y} %2;;/ = —1%Y}.

So the left side of Eq. 4.18 is [[2(1 — sin®#) — Isin® § — (2] V]! = —1(I+1)sin® § Y}, which matches the right side.

1 /105 ;
Check that Y satisfies Eq. 4.18: Let B = T\ 20 Y? = Be??sin? 6 cos .
T
y2 . Y2 ;
68—93 = Be?? (2 sin @ cos? § — sin® 0) ;  sin 0% (sin 0%—5’) = Be*? sin 0% (2 sin? 0 cos? # — sin? 0)

= Be*®sind (4 sin 6 cos® § — 4sin® 0 cos 6 — 4 sin® 6 cos 9) = 4Be*? sin? 6 cos 0 (0082 0 — 2sin® 9)

02Y?

= 4(cos? § — 2sin? ) Y7 952

= —4Y?. So the left side of Eq. 4.18 is

4(cos® 0 — 2sin? 0 — 1)Y2 = 4(—3sin*0)YZ = —1(1 + 1)sin® 0 Y,

where [ = 3, so it fits the right side of Eq. 4.18.

Problem 4.6

/11 b(@)Fy(@)de = QILZ'QVLZ” /11 l(%)l (a® — 1)l] [(%)l/ (2 — 1)l/] dz.
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92 CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS

If I # I, we may as well let [ be the larger of the two (I > I’). Integrate by parts, pulling successively each
derivative off the first term onto the second:

22t [ Pyt = [(%)l_l(af"—l)l] [(%)l (xz_ly'] 1

-1

_/11 K%)H (x2—1)l] [(%)m (;«2—1)1’] dz

1 d U+l ,
(z% —1)! <d_> (2% — 1) da.
x

= ... (boundary terms)...+ (—1)! /
-1

But (d/d;v)lurl (22 — 1)V = 0, because (22 — 1) is a polynomial whose highest power is 2I’, so more than 2/’
derivatives will kill it, and I’ 4+ > 2I’. Now, the boundary terms are of the form:

4y (22 — 1)} AR (22 — 1)V
(&) (&)

Look at the first term: (22 —1)! = (22 — 1)(2® — 1)...(2? — 1); [ factors. So 0,1,2,...,] — 1 derivatives will
still leave at least one overall factor of (z2 — 1). [Zero derivatives leaves | factors; one derivative leaves | — 1 :
d/dz(r?—1)" = 2lz(22—1)""1; two derivatives leaves [ -2 : d?/dx?(2x?—1)! = 2(x?—1)!""1+21(1—1)22% (22 —1)! 2,
and so on.] So the boundary terms are all zero, and hence fil P(z)Py(z)dz = 0.

This leaves only the case [ = I’. Again the boundary terms vanish, but this time the remaining integral does
not:

+1
,n=1,23,...,L
—1

e? [ (B = (~1) / @y (di)l (27— 1)l da

1 -1 X

(d/dz)?' (x2)=(21)!

= (=D} (21)! /1 (2% — 1)'dz = 2(21)! /01(1 —2?)ld.

-1

Let # = cosf, so dv = —sinfdf, (1 —x?)=sin’0, 6:7/2— 0. Then

1 0 /2
_12 l T = sin 200 in — in 20+1
/0(1 )'d /m( 0)* (—sin 0)do /O (sin 0)2+1df
(2)(4)---(2)) (2111)2 (2111)2

T OE)G) I+ 1-2-3----20+1) @+

! 1 211)2 2 ! 2
/ [P(2)]2dx = . 2(20!(;—4—)1)! b So /_1 P(z)Py(x)dx = 2l——|—16ll" QED

Problem 4.7
(a)

ni(z) = —(—x)

1d (cosx) cosz sinz

z dx x 2 x
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CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS 93

= (1) e (1) ()

d {1 —xsinz—coszx d (sinx n Ccos T
=—2—- — | =2— g
dr \ z 2 de \ 22 3

x?cosz —2xsinz  —alsinz — 3z%cosx
=T 1 + 6
T T
cosT sinx sinx 3cosz 3 1 3 .
= —2 5~ —5 s =|— |5 — = )cosz— 5 sinx.
T T T T T T

(b) Letting sinz =~ x and cosz =~ 1, and keeping only the lowest power of x:

1 1 1
ny(z) ~ 2 + e et As x — 0, this blows up.

1
ng(z) ~ — <i — —) — ix ~ _3 which again blows up at the origin.

Problem 4.8
(a)

w= Arjy(kr) = A [sin(kr) 3 COS(/-W‘)] _ % {sin(k’r)

- cos(kr)} .

k2r k (kr)
du A [Kk?*rcos(kr) — ksin(kr) cos(kr)  sin(kr)
_— = — i k - A - i .
il { )2 + Esin( 7’)} { T or)? + sm(kr)}
@ _ [—K?rsin(kr) — kcos(kr) B k312 cos(kr) — 2k2r sin(kr) + kcos(kr)
dr? (kr)? (kr)4
sin(kr)  cos(kr)  cos(kr) sin(kr)
- o T 2y )
2 2 1
—Ak|(1- LI P .
[ g e+ (g = gay ) )
2 2 2mE
With V =0and [ =1, Eq. 4.37 reads: M L= Y — _k2u. In this case the left side is
dr2  r2 h?

Ak {(1 - ﬁ) cos(kr) + ( (ki)g - ﬁ) sin(kr) — ﬁ (Slzlk(f; ) _ cosuw)ﬂ

_ sin(kr)
kr

= Ak {cos(kr) } = —k*u. So this u does satisfy Eq. 4.37.
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94 CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS

(b) Equation 4.48 = ji(z) = 0, where z = ka. Thus %32 — €52 — 0, or For high 2 (large n,
if n =1,2,3,... counts the allowed energies in increasing order), the intersections occur slightly below

z=(n+ 1m.

..E

21.2 2.2 2,2 2
:hk hez hem (n—l—l) QED

om  2ma?  2ma? 2

tan z

2 32 52> %

Problem 4.9

For r < a, u(r) = Asin(kr), with k = y/2m(E + Vp)/h. For r > a, Eq. 4.37 with [ = 0,V = 0, and (for a bound
state) E <0 =

d2u 2m 2 . KT —KT
W:—ﬁEu:/{ u, with K =vV—-2mE/h = u(r) = Ce™ + De™ """

But the Ce™ term blows up as r — 00, so u(r) = De™"".

Continuity of u at r = a: Asin(ka) = De™ "

. 1 1 K
Continuity of v" at r = a: Akcos(ka) = —Dre "® }dwlde. k tan(ka) = e T cotka = k

V2mVpa? [h? — 22 2mV
Let ka = z; % = mVoa?/ = Let 20 = 7;: %a. | —cotz=+/(z0/2)% — 1.| This is exactly the
z

same transcendental equation we encountered in Problem 2.29—see graph there. There is no solution if zp < 7/2,
which is to say, if 2mVpa?/h? < 72 /4, or Vya? < 72h?/8m. Otherwise, the ground state energy occurs somewhere
between z = 7/2 and z = m:

h2k2 2 h2 h2 2 h2 2
E+V0:—a: 2 so —,/TQ<(E0+V())<—7T2
2ma

— 2z recise value depends on V).
2ma? 2ma? 8ma (p P 0)

Problem 4.10
R3o (n=3,1=0): Eq. 4.62=v(p) =3, cjipl.

_ 201
Eq. 4.76 = ¢; = o)

Co — —200; Coy =

r 1 _ 1r _, r 2 r\2
Eq. 4.73:>p:3—a; Eq. 4.75:>R30:;pe ”v(p):;?)—ae /3a 00—26054—300 (S_a)]
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CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS 95

mo=| () -5 0+ 7 ()]

— _ . _ 2<3_3) _ _ Lry3 —r/3a _ Co 2 —r/3a
R3s (n=3,1=2): ¢y = ———2¢9 =0. R32—;<—) e (co) = (27a3)re )

Problem 4.11
(a)

Eq. 431 = / IR|%r2dr = 1. Eq. 4.82 = Ry = (C—O) (1 - i) e /% Letz=".
0 2a 2a a

co\2 o zZ\2 _, cda [ 1 _ cta 24 a
1:<%) a3/0 (1—5) e z2dz:% | <z2—z3+124>e dz:% 2_6+I zicg.

Eq. 4.15 = 900 = RogYy. Table 4.3 = Y = —.

1 21 N 1 R
-'-¢200=E a%(l_Q_a)e /20 = | 4hgge = —(1——)6 /2a

(b)
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96 CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS

Problem 4.12

(a)
Lo =¢e" . L1 =¢e"— _L):e*[e_l—e_zx}:
Ly =¢€" i : (e_xe) = egci (2956_”” — e_xacg)
2 dx dzx
=¢e" (2671’ —2ze™ + e %% — 21’67‘1’) =
2
(x) 7953 em(%) (7 —x 3+3xex)
m( T3 32e" — 33026_’”—1—61;6_’”)
=e" ( e 23 + 32%e " + 622" — 12z¢ % — bxe * + 66751‘,)
:\6—18x+9x — ot
(b)

d\" d\°
L:(z) =¢€° (%) (z7e ) =e" (%) (728" —zTe™)
=e” (%)5 (42:8567‘70 — 728%™ — 728" + {E767$)
=e* <%)4 (2103:4 TE —420%e" — 84aPe " + 14ale ™ + Tafe " — 3376796)
a\>
=" (%) [840953@—-7” (210 + 630)z e ™"

+ (126 + 126)x°e ™" — (21 + 7)abe™* + x7e””]

d 2
=¢" (%) (2520z% ™" — (840 + 3360)z°e "

+(840 + 1260)z*e ™" — (252 4 168)z°¢ ™" + (28 + 7)z%e ™% — e~ ")
d
=e” <%) [50403;696 (2520 + 12600)2%e ™" + (4200 + 8400)z3e~*

— (2100 4 2100)z* e~ + (420 4 210)x%e ™" — (35 4+ 7)ale ™" 4 27"

=e® [5040(@ — (5040 + 30240)ze ™" + (15120 + 37800)z%e "
— (12600 + 8400 + 8400)x*e ™" + (2100 + 2100 + 3150)z*e ™"
— (630 + 252)z°e™® + (42 + T)abe " —aTe™™
= 5040 — 35280 + 5292022 — 294002> + 73502 — 88227 + 492 — 2.
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d 5
Ly =— (%) (—8822° + 4925 — z7)

=—[-882(5-4-3-2)+49(6-5-4-3-2)x—7-6-5-4-327]
=60 [(882 x 2) — (49 x 12)z + 422°] = 2520(42 — 14z + 2?).

v(p) = 2520(42 — 28p + 4p?) =| 5040 (21 — 14p + 2p?) .

(c)
= 2(3 - 5) 2
Eq. 4.62 = v(p) = jgocjp]. Eq. 4.76 = ¢; = 0 Co = —3Co
24 -5 1 2 2(5 -5 .
Co = C ——=C1 = —Cp, C3 — Co =
Tem T T P e)E)
2 Co 2
— o 2 = =|—(21—-14 2 .

v(p) = co 3COP+ 91 0P 21( p+ P) v
Problem 4.13
(a)

1 —r/a . n 1 n_—2r/a 2 : Am > n+2_—2r/a
P = 7ra3€ /a, bo<r>:$/re /(7‘ bln@drd@dgb):@o P22/ gy,
4 [ 5 or/a 4 a\t 3 2 4 (% 4 or/a 4 a\® 2

<T>:$/o roe /d7’:a—33!(§>:§a7 (r>:$0 re /dr:$4!(§):3a.

(b)
1

@) = 0] (2 = 50%) =[]
(c)

211 = RnY)' = — L ire_r/% sinfe’®  (Problem 4.11(b))

! Vma 8a? ' '

1 1
(x?) = — W / (TQe*T/a sin? 9) (r2 sin? 6 cos? gb) % sin @ dr df d¢
ma (8a

1 e3¢} T 2m
= = / rbe=r/a dr/ sin® 0 d9/ cos® ¢ do
64ma® J, 0 0

! (6!&7) <212345> <%.27T) :

~ 64mad
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98 CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS

Problem 4.14

1 4 4
Y =——e "% P=|pP4rr?dr = —e 2% dr = p(r)dr; p(r) = —r2e ¥/,
/3 a3

a3l a3
dp _ 4 —2r/a 2 2 —2r/a o 8r —2r/a r - —

Problem 4.15

1 . )
E (% 11e” B2 —1671E2t/h) -

From Problem 4.11(b):

. E h2
(Y211 +Y21-1) e PN By =% =

1
4 8ma?’

(a) W(r,t) = 7

1 1 —r/2a _: T —1% i —r/2a _: :
w211+¢21_1:—ﬁ&77’6 /2 Sln9(€¢—€ ¢):—m7”6 /2 smesm¢.
7 )
U(r,t) = —— re"/?%ing sinqﬁeﬂE?t/h.
V2mada?

(b)

(V) = /|\1;|2 fil Pr = ! — ¢ /(7”26”/“ sin? @ sin® d)) 17"2 sin @ dr df d¢
dmeg T (27a)(16a%) dreg T
1 hz 0o 5 T 2w h2 4
=—([—— “r/ag '39d9/ in?¢pdp = — la®) ( =
o ( maQ)/O re r/o sin ; sin” ¢ d¢ P P— (3la?) 3 (m)

h? 1 1
ol i §E1 = 5(713.6eV) = —6.8¢V | (independent of t).

Problem 4.16

\E.(2)=2°B,; E\(Z)=Z2Ey; a(Z)=a/Z; R(Z)=Z"R.|

Lyman lines range from n; = 2 to n, = oo (with ny = 1); the wavelengths range from

1 1 3 4 1 1 1

1
1 1 s 1 s -
For Z =2 )\1 = E = m =228 x 10"°m | to )\2 = ﬁ =13.04 x 10 m, ultraviolet.
1 4
ForZ=3: M\ = R =11.01 x10"® m|to Ay = R =[1.35 x 1078 m, | also | ultraviolet.

Problem 4.17

M 2
m SOe

r ' 471'6()

(a) |V(r)=-G — GMm translates hydrogen results to the gravitational analogs.
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CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS 99

so |a, = ———
e2 Jm’ 9 GMm?

_ (1.0546 x 10734 Js)? -~ ‘ 9.34 % 10~ 138 1
"~ (6.6726 x 1011 m3/kg - 52)(1.9892 x 1030 kg)(5.98 x 1024kg)2 = :

4 h? h?
(b) Equation 4.72: a = < WeO) —

1
(c¢) Equation 4.70 = | E,, = — {%(GMm)ﬂ =
1 M M 2 1 GM
E.==-mv® -G m. But G ;n:mv = —mo? = m,so
2 To r2 T 2 21,
GMm m 1 GMm?2 T T
E, = — :7{_ M 2}_ o =2 =,/
¢ 2r, 2h2 (GMm) n? -n nz e ag " ag

[ 1.496 x 1011
r, = earth-sun distance = 1.496 x 10 m = n = 531 % 10-T% = 2.53 x 10™.

(d)

AR — G?M?*m? 1 1 1 1 R
B 2h2 (n+1)2 n2]"  (n+1)2 n2(l+1/n)2 " n? n)’
1 1 1 2 2 G?M?*m?
So [Wl)z ‘ﬂ ~ o (1‘;‘1) = APE T

(6.67 x 10711)2(1.99 x 103%)2(5.98 x 1024)3 “ he
AE = =12.09x107*J.| E,=AE =hv=—.
(1.055 x 10-34)2(2.53x74)3 x P YT
A= (3 x 10%)(6.63 x 1073)/(2.09 x 107*") = 9.52 x 10" m.

But 1 ly = 9.46 x 10*® m. Is it a coincidence that A ~ 1 ly? No: From part (c), n? = GMm?r,/h?, so
ch h?n3 2mh3 GMm?r,\*? r3

A= — =c27h =c =c|2m :
AE G2M?m3 G2M?m3 h? GM

But (from (¢)) v = \/GM/r, = 27r,/T, where T is the period of the orbit (in this case one year), so

T = 2my/r3/GM, and hence (one light year). [Incidentally, the same goes for hydrogen: The
wavelength of the photon emitted in a transition from a highly excited state to the next lower one is equal

to the distance light would travel in one orbital period.]

Problem 4.18

(fIL1g) = (f|Lzg) £ i(f|Lyg) = (Lsflg) £ i(Ly flg) = (Le FiLy)flg) = (Lxflg). so (Li)' = L.
Now, using Eq. 4.112, in the form L+ L4 = L?> - L?2FhL,:
(M L=La fi") = (f"[(L? = L2 F L) f°) = (f"] [P + 1) = K*m® F h%m] f]")
=1+ 1) —mmE D] =211+ 1) —m(m £ 1))
= (L f{M L f™) = (AT SEHAP SN = (AP PO = AP
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100 CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS

Conclusion: | A" = hy/I(1 + 1) — m(m + 1).

Problem 4.19
()

(L2, x| = [2py — ypa, @] = [2py, 2] — [yps, 2] = 0 — y[ps, 2] = ihy. v/

[Lz,y] = [xpy — yYpesy] = [2py, Y] — [Ypa, y] = x[py,y] = 0 = —iha. v
[L.,z] = [xpy — YD, 2] = [xDy, 2] — [YP2,2] =0—-0=0. V

[L2:pa] = [Py — YPa, D] = 2Dy, D] — [YP2, Pe] = pylz, pa] — 0 = ihpy. v
[L2.py] = [2py — Yp2, py] = [2Dy, Py] — [YP2: Py = 0 — Paly, py] = —ihps. v

[Lzapz] = [mpy - ypampz] = [Cﬂpy7pz] - [ypxapz] =0-0=0.V

(b)
[L27 Lz] = [LZa Yyp> — Zpy] = [Lmypz] - [Lzazpy] = [szy]pz - [Lzapy]z

= —ihxp, + ihpyz = ih(zps — xp,) = thL,.

(So, by cyclic permutation of the indices, [L,, L] = thL,.)

(c)

[Le,r%] = [Lsy@®) + [Layy®] + [La, 2%] = [Las 2]z + 2L, 2] + [Lay yly + y[La,y] +0
= ihyx + zihy + (—iha)y + y(—iha) =

[szp2] = [szpi] + [Lzapz] + [meg] = [szpw]pz + Pz [szpw] + [Lzapy]py +py [Lzapy] +0
= ihpype + paihpy + (—ilhpa)py + py(—ilips) =

(d) It follows from (c) that all three components of L commute with 2 and p?, and hence with the whole
Hamiltonian, since H = p?/2m + V(vr?). QED
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CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS 101

Problem 4.20

(a)
. d{L, 1 1
Equation 3.71 = <dt ) = ﬁ<[H, L.]). [H, L] = %[pQ,Lx] + [V, L,].
The first term is zero (Problem 4.19(c)); the second would be too if V' were a function only of r = |r|, but
in general
[H, L] = [V,yp. — zpy] = y[V,p:] — 2[V,p,]. Now (Problem 3.13(c)):
V,p.] = zh%—‘: and [V, p,] = ma@—‘y/ So [H, L,] = yihaav Zlhaﬁ—‘gj = ih[r x (VV)],.
L
Thus < dtx> = —([r x (VV)],), and the same goes for the other two components:
W = (e < (-vV)) = (). QED
(b)

ov

If V(r) = V(r), then VV = B

L
7, and r X 7 =0, SO%:O. QED

Problem 4.21
(a)

L L_f = —h%" (% +icot 9%) [e‘”’ (— —icot 9—)]
92
_goie) e |O°F of
el G ( 96 aaaqb)}

. i %_ 8f —id 0% f _ 82f
—|—zcot0[ e <89 ic 8¢ +e 89600 —ic 8q52

92 92 2
_ f of °f of of o°f o*f
= h<892+zcsc 96¢ C0t0898¢+ 989 i cot? 06¢+ C0t06¢89+ 08¢2
2 2
= —h? [6892+c0t9% +cot29%¢2+ i(csc? 6 — cot? ) ¢] f, so
9? 0 0? 0
_ 2 Y il 29~ -
Ly L_ = -« <892+Cot989+cot 98¢2+28¢)' QED
(b) Equation 4.129 = L, 7;88¢ Eq. 4112 = L2 = L, L_ + L? — hL,, so, using (a):
02 9% 9 0? R\ 0
2 _ 32 9 29 2 (7
L* = —-h (692+cot980+cot 8¢2+ ¢> h 907 h( )
0? 0 02 0 1 02
_ 32 9 2 9
= —h <692+cot989+(00t 9+1)8¢2+z 96~ ) (802+cot9 sm203¢2>
_ 2| L9 9 1
= —h [sin@@@ smeae +sin205¢2 . QED
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102 CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS

Problem 4.22
(a) | L, Y} = 0| (top of the ladder).

(b)

l 1 o ! v} _ ! ilg
LY, =hlY) = _8_¢Yl =RlY;, so o =4lY}, and hence Y}' = f(6)e"?.
i

[Note: f(6) is the “constant” here—it’s constant with respect to ¢ ... but still can depend on 6.]

l: ol ilep _ il ilop _
LY/ =0= he <89+ZCOt9_8¢> [f(0)e™?] =0, or 75 +ifcotfile 0, so
df af af /COSG B )

da—lcotOf:> 7 —lc0t9d9:>/ 7 =1 Sinad9:>1nf—lln(sm9)—|—constcmt.

lnlen(sin19)+K:>1n< fl > =K= fl = constant = f(0) = Asin’ .
sin” sin’ 6

Y} (6, p) = A(e' sin 6)".

(c)
1:A2/sin2losm9d9d¢:2m2/ Sin@+D) g g = opaze 246 (21)
0 1:3-5----(2l+1)
246 21)2 (2111)2 1 [@+1)
—gpaz— =4mA® A=
T 2345 @y @y 9L F1]] _—_

the same as Problem 4.5, except for an overall factor of (—1)!, which is arbitrary anyway.

Problem 4.23

. 1 .
L Y] = he' (% + icot 9%) l—\/ 8_75r sin 0 cos Gew]

15 . , 0 ;
= —/ = he'® | (cos? § — sin? ) + ic_os sin @ cos 0 ie'®

81 sin 0

1 - 1 )
=— —57162“1’ (C082 6 — sin? § — cos? 9) = —5h (e’¢ sin 9)2

8 8

2 2 o _ L J15 g . 2
=hv2-3-1-2Y; =2hY;. YQ:Z 2—(6 sinf)” .
™
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CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS 103

Problem 4.24

(a)
1 L?
H=2(-mv?)=mv? |Ll= 2% mu = amv, so L? = a?m?v?, and hence = —.
2 2 ma?
But we know the eigenvalues of L? : h2l(I + 1); or, since we usually label energies with n:
h? 1
E, = L;L) (n=0,1,2,...).
ma

(b) "(/)nm (0,6) =Y, (0, $), | the ordinary spherical harmonics. The degeneracy of the nth energy level is the

number of m-values for given n:

Problem 4.25

(1.6 x 1071%)" 2.81 x 10715
. = - = 2. m.
"¢ 4n(8.85 x 10-12)(9.11 x 10-31)(3.0 x 108)2

Lzlhzlw: gmr2 (E>:gmrv SO
2 5 T 5

55 (5)(1.055 x 10734) —[5.15 x 10" ms.

YT dmr T (4)(9.11 x 10-31)(2.81 x 10-19)
Since the speed of light is 3 x 108 m/s, a point on the equator would be going more than 100 times the speed

of light. This doesn’t look like a very realistic model for spin.

Problem 4.26
(a)

0) (09 (07

2
[S2,5,] = SuS, — 5,54 :% K
0 h* (20 0 , 0 _
i ] T4 <o —22') =ih (0 _1) =ihS.. v

0
1

R0 (=i
4 0 —1 0 1

10 .

OpOyp = 01 =1=o0y0y=0,0,, soojo;=1forj=uzy, orz.
i 0 . 07 . 01 .
O'IO'y: 0 —i = 10,; O'yO'z: i 0 = 104} 0,0, = 10 :ZO'y,

(=i 0 o (0 — o (0 -1 .
oo =\ ¢ ;= 025 00y = | _, 0 )= 0z 020: = | 0 )= 10y.

i
v

(b)

Equation 4.153 packages all this in a single formula.
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Problem 4.27

(a)
X'x=1AP9+16) =25|A> =1=| A =1/5.
(b)
1h 01\ /3i h 4 h
ot _ Ao LAY _ . N
() = XTSax = 55 (=31 4) <1 o> (4> = =5 (=31 4) <3Z) = 50(12z+121)7
1h 0 —i\ (3i h —4i 12
(Sy) = x"Syx 252( 3i 4) (2 0)(4) 50( 3i 4)(_3) O( 12 - 12) 25
1h 10 (3 h 3 h 7
—_ = _—__(=3i 4 =_— (=3 4 = _(9— =|——h.
(S.) =x"S.x 252( 3i )(0 _1> <4> 50( 3i )(_4) 50(9 16) 5Oh
(c)
2 2 2 hQ . 2 2 2 h2 h
(S2) = <Sy> =(S%) = T (always, for spin 1/2), so o5, = (S;) — (Sz)" = T -0, |og, = 3
2 =(82)—(S,)? f 12 2h2 I (625 — 576) 19 4 “h
g = — = — — — = — — = — = —Ah.
s v v =g\ 25 2500 2500 |7 T 50
h2 7\° h2 576 12
2 2 2 2 2
=(S%) —(S.)2 =" — [ = = — (625 —49) = ——h?, = Zh.
05, = (5:) = (8 = 3 <5o> 2500 020 ~49) = 55557 | 75 = 55
(d)
i e =P T right ot th tainty limit). v/
05,08, = 5 5ol 2 3lW =355 right a e uncertainty limit).
12 7 h
05,05, = %h %hz §|<Sx>| =0 (trivial). v/
12, h?h ho12
= — . — > — = - s — 1 1 1 1 .
05,08, 25h 5 = 2|<Sy)| 5 25h (right at the uncertainty limit). v/
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105

Problem 4.28

(8= 1 (a* v7) <‘1) é) (g) S (2) e

= hRe(ab").

R, o (0 —i a\ _h, ., ., b
=R (1)) -4 (2)
= g(—ia*b +iab™) = gi(ab* —a*b)|= —hIm(ab")
h 10 h h, . A
() = 5 (a” ¥7) (o _1) (b) =5 (0" v) (_“b> = 3@ a=50) =| S(lal* = |b).
22 EO0)-E6) -5 w20
4 \10/\10 4 \01 20 2w~ 4 \io
R (1 0\ (1 0 h? B2
=2 (0 0) (5 0) =" sl =sh=(sn="
<SQ>+<SQ>+<S2>=§h2—5(5—|—1)h2:l(l+1)h2:_h2_
’ v o 2'2
Problem 4.29
(a)
h(0—i\ |-x —ih/2| ., B2 ~h
Sy §(z' 0)’ inj2 -\ ’—A mivaind Kk
5(00) (5) =25 (5) = -9 =t0s loF 4R =12 loP +IaP =15 0=
w_ L1 (1 w _ 1 (1
-5 (0) - ()

(b)

ey = (xﬂ.y))Tx: % (1 —i) <Z> = %(afib);

1 1 1
_ (v _ ay _ Y.
c_ = (X_ ) X = 7 (1 1) (b) \/i(a—kzb),
P, + 725[((1 +ib*)(a — ib) + (a® — ib")(a + b))
1
=5 [la|* — ia*b + iab* + [b]> + |a|® + ia*b — iab™ + [b]*] = |a|* + [b]* = 1. v/

(of course).

h 1
+5, with probability §|a —ib|2.

h 1
—g with probability 3 la + ib|?.
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h2
(c) T with probability 1.

Problem 4.30

4

S, =S-7#=5,sinfcos¢ + S, sinfsing + S, cos
_h 0 sin 6 cos ¢ n 0 —isinfsin ¢ " cosf 0
" 2 | \sinfcos ¢ 0 i sin @ sin ¢ 0 0 —cosf
_h cosf sinf(cos¢ —ising)\ _|h [ cosf e sinf
2 \sinf(cos ¢ + isin @) —cos 6 T 12 \e?sinf —cosh )
h — heo—id g 2 2

(50080 =A) 5esind ’:—h—COSQH—i—/\Q—hZSian:O =

Bei?sing  (—Zcosf —\)

22 2 h?
A :Z(sm 0 + cos 9)zzz> A = £ | (of course).

hof cos® e ®sinf) (o) | h(«a b o iy (EL —cosh)
§<ei¢sin9 —cos@)(ﬂ>_i§ (ﬂ>:>acosﬁ+ﬁe sinf =+a; (=ce g «o
., sin(6/2
Upper sign: Use 1 — cosf = 2sin? g, sin @ = 2sin g cos g. Then § = e“ﬁwa. Normalizing:
cos(0/2)
.2
2 2 . 2;, 51 (0/2) 2 1 _ Q b s Q (r) _ cos(0/2)
L= la™+5" = o |+COSQ(9/2)|Q‘ =l cos?(0/2) ATy f=¢Tsin 2| X+ T e sin(6/2) )
. 0 cos(0/2) cos?(0/2)
L : Use 1 0 =2cos’® =, f=—e 1=la]?+ =)o) = |a]?——.
ower sign: Use 1+ cos cos” 7, Ié; e 0/2)" |ov| Sn2(9/2) || || 5n2(0)2)

| i g
Pick a = e~ sin(0/2); then B = —cos(d/2), and X7 = <€_C§:(19(%)2)) .

Problem 4.31

1 0 0
There are three states: x4+ = 0|, xo=|1], x-= 10
0 0 1
10 0
S.x+ =hx+, Sexo=0, S;x— =—-hx—, = 1S.=hA[00 0 |.| From Eq. 4.136:
00 -1
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010 000
Six+ =0, Sixo = hv2x+, 5+X:h\/§X0} =v2r|001],S_=v2r[100
S X+ = hv2x0, S—x0 =vV2x—, S_x- =0 000/ 010
010 0-10
1 h 1 ih
Se==(S4++S_)=|—=(101], Sy==06+-S)=|—=[10 -1
2 \/5 010 2 \/5 01 O

Problem 4.32
(a) Using Egs. 4.151 and 4.163:

@ _ (@i _ 1 cos gerBot/2\ 1 O ivBot/2 | i & _iyBot/2
€y =X+ X_7§(1 1) <sin%26—”30t/2 —%{008567 ot/ —|—sm§e v 0/}.

Pil) (t) — |C$«)‘2 _ 5 |:COS %efszgt/Q +sin — szgt/2:| |:COS szgt/2 + sin %efszgt/2:|

1 o o o a .
=5 [COS2 3 + sin? 0) + sin 5 cos 5 (e"rBot ef“’BUt)]

1 1
=3 [1 + 2sin % cos % cos('yBot)] =3 [1 4 sin «cos(yBot)] -

V2 i

(y) (W)t 1 \ (cos e Bot/2 1 [ QX ivBot/2 i X _iyB t/2:|
= 1 2 € — vBo YBo .
Xy x = 7 (1 —i) <51 261‘YBot/2 7 cos —e isin —e ;

1
(b) From Problem 4.29(a): XS}’) - (1> '

1 , .
PJ(ry) (t) = |C$J)|2 = 5 [COS %e‘”BOt/Q + isin — 5 ”Bot/ﬂ [cos 56”30”2 — isin %e‘”Bot/2]

% % . .
cos® —|—sm — +251n—cos 5 (e”Bot —e ”Bot)}

[ 2 2
-5

1
3 [1 — sinasin(yByt)] .

1-2 sm — cos % sm(’yBot)}

(c)

G _ (1), . _ cos §e'1Pot/2 Bot/2,  p) (1) = 6D =] cos? @
Xy = (0>, i) =(10) < %264730,5/2 —0052 eBot/2 (1) = || =] cos 5

Problem 4.33
(a)

Boh
H=-B-S=—vBycoswt S, = 7 20 cos wt ((1) 01> :
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(b)
a(t)) : 1
t) = , with «(0 0) = —
0= (5 0 = 50) = 5
0 ) B Boh
zha—;(:zh(g) =Hyx=— P08 coswt ((1) 0) ( ) —WTOcoswt <_aﬂ>.
B B By sinwt
=1 750 coswt o = _a —q (120 coswtdt = Ina = W 03w + constant.
2 2 2 w
a(t) — Aei(’yBo/Z.u) sinwt; a(O) — A= L7 S0 a(t) — iei(wBo/Qw)sinwt'
V2 V2
. X "yBO 1 i o) sin w 1 ei(’yBo/2w) sin wt
8 =—1i (T) coswt f = [(t) = ﬁe (vBo/2w) Lolx@) = 75 <e—i('yB9/2w)sinwt
(c)
1 ei(’yBO/%J) sinwt 1 7 w) sin w —1 w) sin w
C(_x) = X(_;C)TX = 5(1 - 1) < —i(yBo/2w) sinwt) =5 [6 (rBo/2) f—e (rBo/2) t]
e 2
B x xT . B .
—isin | L sinwt|. P () = |c(_)\2 =[sin? | 222 sinwt | .
2w 2w
B
(d) The argument of sin? must reach 7/2 (so P =1) = % = g, or | By = ™.
w v

Problem 4.34

(a)

S110) = (S + 5P) (114 11) = Z=[(S= 1) L+(S- D 1+ 1 (S D+ L(5- ).

But S_ =14, S_ |=0 (Eq. 4.143), so S_|10) = T[hu +0+04+h 1] =V2h|l=V2h1—-1).v/
(b)

5210 0) = (51 + S&) (11 = 11) = 2= (82 1) 4 =(S D) 141 (S D= L (= ).

$410 0) = 7(0 BT 4R 1T —0) = 0; S_[00) = ji(hu—ow—hu):o./
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(c)
§°011) = [(S0)? 4 (57 4 25082 11
= (S 1) 1+ 1 (5% 1) +2[(Sa 1)(Se 1)+ (S 1Sy 1) + (8= 1)(S: 1]
3 h h
1 51 5 T

. 3., h ko ih b
SEG RS AT RN R R

2
= gif 142 (% TT) = 2% 11=2h%[1 1) = (1)(1 + 1)A?|1 1), as it should be.

S21 1) = [(S<1>)2 +(S®)% 4280 . s(2>] 1l

= % H +34i2 LLA2[(S2 1)(Se 1)+ (Sy 1)(Sy 1)+ (S. 1)(S. 1]

e () (1) + () (2 0) o (20 (4]

3.9 h? 2 2
=5 L4270 L=207 [|= 2071 —1). v

Problem 4.35

(a) 1/2 and 1/2 gives 1 or zero; 1/2 and 1 gives 3/2 or 1/2; 1/2 and 0 gives 1/2 only. So baryons can have
‘spin 3/2 or spin 1/ 2‘ (and the latter can be acheived in two distinct ways). [Incidentally, the lightest

baryons do carry spin 1/2 (proton, neutron, etc.) or 3/2 (A, 7, etc.); heavier baryons can have higher
total spin, but this is because the quarks have orbital angular momentum as well.]

(b) 1/2 and 1/2 gives ‘ spin 1 or spin 0. ‘ [Again, these are the observed spins for the lightest mesons: 7’s and

K’s have spin 0, p’s and w’s have spin 1.]

Problem 4.36
(a) From the 2 x 1 Clebsch-Gordan table we get

[31) = \/%D 21 —1)+ \/§|2 1)1 0) + \/%D 0)[1 1),

so you might get ] 2h (probability 1/15), h (probability 8/15), or (probability 6/15). ]

(b) From the 1x 3 table: [10)|5 —3) = \/§|% —%H—\/g% —1). So the total is 3/2 or 1/2, with [({+1)h?* =

15 3
15/4h? and 3/4h?, respectively. Thus you get ZFLQ (probability 2/3), or ZhQ (probability 1/3).
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Problem 4.37

Using Eq. 4.179: [52, 8] = [sW* 8] 4+ [s@* 5V 4 2[sW . 8@ M) But [$2,8,] = 0 (Eq. 4.102), and
anything with superscript (2) commutes with anything with superscript (1). So

(57,50 = 2 {SPS, 5] + 5P, SV + 5P [sL), 511

—2 {471551)5;2) + z‘hS;US;?)} — 2iR(S™M x S@);.

(52, 8] = 2iR(S{V S — S SR)), | and [52,81)] = 2iR(SD) x S(?)). Note that [52,8()] = 2ih(S® xS1W) =
—2ih(S(1) « S(Z)), 0 [527 (S(U + S(2))] 0]

Problem 4.38
(a)

h2 0? 0? 0?
(a%*a%*%) + ome? (2 +y° + 2%) ¥ = By

Let ¢ (z,y,2) = X(2)Y (y)Z(2); plug it in, divide by XY Z, and collect terms:

R 1 dPX +1 2,2) | K 1 d*Y +1 N h21d22+1 22\ _ g
mee 2mY dy? sy’ omZd2 2" )T

The first term is a function only of z, the second only of y, and the third only of z. So each is a constant
(call the constants E,, Ey, E,, with E, + E, + E, = E). Thus:

R d?X 1 9 R d*Y 1 5, h2d2 1 9
2mdx2—|—2mwxX E,. X; 2mdy —|——mwa:EyY; d2—|— —mw?2?Z = E.Z.

Each of these is simply the one-dimensional harmonic oscillator (Eq. 2.44). We know the allowed energies
(Eq. 2.61):

Ey = (na + §)hw; Ey = (ny, + %)hw, E,=(n,+ %)hw, where ng, ny,n, =0,1,2,3,....

So E = (ng +ny +ny + 2w =|(n+ 3)hw,| with n = ng + ny +n..

(b) The question is: “How many ways can we add three non-negative integers to get sum n?”

If ny = n, then ny, =n, = 0; one way.
If n, =n—1, then ny, =0,n, =1, orelse ny, = 1,n, = 0; two ways.

If ng =n—-2, thenn, =0,n, =2, orny, =1,n, =1, or ny, =2,n, =0; three ways.

(n+1)(n+2)

And so on. Evidently d(n) =1+2+3+ -+ (n+1) = 5
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Problem 4.39

h? d%u 1 9 9

B +1)

r2

o ]u:Eu.

B2 mw UL+ 1)
2m h &2

h? d? 1 h
Following Eq. 2.71, let £ = %r. Then — %%d—fg [— 2 ¢? = Eu,

X 1 2F
u [52 + W+ K} u, where K = T (as in Eq. 2.73).

gt T &
2u 2
At large &, @ s €%u, and u ~ ( )e=¢/2 (see Eq. 2.77).
2
At small &, % = l(lg%l)u, and u ~ ()€ (see Eq. 4.59).

So let u(€) = ¢+1e=8"/2y(¢).  [This defines the new function v(¢).]

ffé (1+ 1)l /2y — €H42678/2y 4 ghH1e=€ /2y
2 2 2 2 2
% =11+ 1) e 20 — (14 1) e 2o+ (14 1)le /20 — (14 2)H e 8 /2y

+ §z+3e—52/2U . §l+2e—§2/2vl + (l + 1>§le—g2/2v/ . §l+2e—§2/2v/ + €l+1e—§2/2v//
= llbe=e Mo — (24 3)¢ e -52/% + BT 21 4 )¢l e 2
. 25”2@_52/%’ + §l+1e_52/2v” _ v +W K§l+1 —¢£? /2y
Cancelling the indicated terms, and dividing off 5”16’52/ 2 we have:

v 4+ 2 <l%—§> (K—20—3)v=0.

Let v(¢) = Za]fj, sov = Zjajfjfl; Z §(j — 1)a;&872. Then
j=0 3=0 j=2
Z i(j —1a; 721 2(1+2) Z]ajfj 2—22](1 &4 —21—3)Zaj§j =0.
j=2 j=1 j=1 7=0
In the first two sums, let j — j 4+ 2 (rename the dummy index):
DG +2)G + Dajyat? +20+1) > (5 + 2)aj428 722]%9 (K — 21— Zajgﬂ =0.
7=0 7=0 7=0
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Note: the second sum should start at j = —1; to eliminate this term (there is no compensating one in £~1) we
must take a; = 0. Combining the terms:
> (2§ +2l+3 - K)

|+ 2)(j +2 2+ (K —2j — 21— 3)aj] = 0, 50| a4z =
[(G+2)(J+20+3)aji2+ ( J I =3)a;] =0, so0|aji2 (j+2)(j+2l+3)aj

Jj=0
Since a; = 0, this gives us a single sequence: ag,as,ay4,.... But the series must terminate (else we get the
wrong behavior as £ — 00), so there occurs some maximal (even) number jmax such that a;, . ., =0. Thus

1
K = 2jmax + 21 + 3. ButE:EMK, soE—(gmax—I—l—i—g)hw Or, letting jmax +1 = n,

E,=(n+ %)hw, and n can be any nonnegative integer.
[Incidentally, we can also determine the degeneracy of E,. Suppose n is even; then (since jmax is even)
1=0,2,4,... ,n. For each [ there are (2] + 1) values for m. So

n n/2 n/2 n/2

din)= > (2+1). Letj=1/2 thendn)=) (4j+1)=4> j+» 1
j=0 j=0 j=0

(n+1)(n+2)

5 , as before (Problem 4.38(b)).]

~ G ey =

Problem 4.40

(a)

d

E(P-m <[Hr p).

D‘IN

Mw

3 3
[H,r-p] =Y [H,rip] =Y ([H,rilpi +ri[H,pi]) ( [p? npl+n[sz])-
=1

i=1 =1

[pj(—idi;) + (—ihdi;)p;] = —2ihp;.

Mc,o

3 3
p Tz Zp]pjarz Z Dj pj)rl pj)’rl]pj)
j=1 j=1 1

J

(Problem 3.13(c)). [H,r-p] =Z[QL —2ih) pzpz+7“z( g;/ﬂ

[V.pi] = zha
i=1 m

or;

2

:ih<—%+r-VV). :llt(r p) = (%—rVV)z?(T)—(r-VV).

d
For stationary states E(r -p) =0, s0 2(T) =(r-VV). QED

(b)
e2 1 e 1 ez 1
\% = V= —r=r-VV =
(r) CAdmegr ;Y 47eq 2l T v 4meg

But (T) = (V) = E,, so (T) — 2(T) = E,, or (T) = —E,; (V)=2E,. QED
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(c)

Problem 4.41

(a) V-J= i (V- VO* + (VAU — VI VI — §F(V20)] = 2’—5 [U(V20*) — U (V2D)] .

2m m

v h?
But the Schrédinger equation says zh%—t = —2—V2\I/ + VU, so
m

2y = 27 (g — 5 2¥ 2gr = 27 (g 4 ;2%
VAU = S (VO —ihe ) VAU = S (VO i

*

) . Therefore

v.y o them [\1/ (V\p* +iny ) _ (V\D—ih%—\f)}

2m h? ot
) ov* ov 0 0
AR U ) = —= (V') = —— V|2, v
' ( o © 8t) ot (V) = v
(b) From Problem 4.11(b), Py, = fiire*’“/% sin fe'®e~F2t/"  n gpherical coordinates
’ ’ Vma 8a? ' ’
ov 10V - 1 oY .
o= T g 27
v 6‘7’r+7’59 +rsin98¢ ¢, so
VW3 = LU (1 - L) e~/ sin fetPe B2t/ M L 7120 cos it B /R §
Vma 8a? 2a r
1 . . - N ;| 1
— e /20 Sinﬂie“ﬁe_mzt/hd) = (1 — L) 7+ cot 06 + L o —¥oq1.
rsin 0 2a sinf " | r
Therefore
ih r A (N r A i 4] 1
= P li-Y g B —(1——)A— S T
J 2m [( 2a>T+COt99 sin9¢ 2a) " cotf6 sin 6 }rl 211
ih (—2i) o h 1 1 r2e7/%sin?g . h Y
= — \I] = — — = r/a 3 9 .
2mrsin9| 2u1l7¢ m mwa 64at rsin 6 ¢ 64mmad sinf¢
h 2 —r/a N 2 : A 2 ) 5.0 :
(¢) NowrxJ= ree sm@(rxgb),whlle <r><¢):f¢9andz~9:fs1n0,so
64mma®
h —r/a o
rxJ,= Wrze /%sin? 6, and hence
h 2 —r/a . 2 2 o3
L,=m (r e sin 0) r°sin @ dr df d¢
64mma®

h [e’e) 4 / T 3 27 h 5 4
647ra5/0 rie dr/o sin® 0 df ; d¢o = ( a ) 3 (2m)
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as it should be, since (Eq. 4.133) L, = fim, and m = 1 for this state.

Problem 4.42
(a)

1 —r/a 1 1 —ip- —r/a :
w:me / :>¢(p):W\/ﬁ/e pr/he=r/ar2 gin O dr d6 dep.

With axes as suggested, p - r = prcosf. Doing the (trivial) ¢ integral:

27 1 > —r/a T —1ipT cos .
¢<p):Wﬁ/@ re=r/ l:/o e~ 'preo 9/h81n9d9:| dr.

/77 e—z‘p'rCOSQ/ﬁ sinfdo = i e—iprcoSe)/ﬁ‘7T _ i (eipr/h _ e—ip'f/ﬁ) _ %sin (Zﬁ) )
0 pr 0 pr pr

1 1 2n [ . pr
- - =7 —r/agin (o
o(p) 3 (@ p /o re”"/%sin ( : ) dr.

/OOO re~"/%gin (%) dr — 2% {/OOO re-T/agirr/hg,. /OOO 7,er/aez‘pr/hdr]
_l[ 1 - 1 ] 1 (2ip/ah)2
R e LA

__ (@p/ha®
[1+ (ap/h)?]

BN EE S S S B £ RN N
¢(P)—\/;a3/2 ™ b (14 (ap/h)2° |7 (h) [1+ (ap/h)?)*

(b)

oo 1 2a 3 oo P2
2 By — 4 2|p|%dp = dn— | = g dp.
/|¢| P W/O p-l| dp %2(5) /0 [1+ (ap/R)2* i

) 2
From math tables: /0 (77117332)4 do = %m—w?’ SO

[ e GV 8 C) =500 Jiven-2Gr5() -
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(c)
2 2 13 1 (20’ e p! )
(p*) = /p |p]° d°p = . (€> 47r/0 de. From math tables:
< gt A _3/ _42a3hsﬂ' h_3_h2
| gt = (g5) m " so <p2>—;<f> (‘) ﬁ(‘) -l
(d)

1 1R w2l e\ m [\
T = 2 = —— = — — _ = —_— — _E
o 2m w’) 2ma?  2m B4 (47‘1’60) 2h? <4ﬂ'eo>

which is consistent with Eq. 4.191.

Problem 4.43
(a) From Tables 4.3 and 4.7,

4 1 7\ 2 15 ) 1 1
— 1 = - (L —r/3a | _ . id| | 2 —r/3a
391 = R3Ys5 = R17/30 a2 (a) e l \/ - sin 0 cos fe ] = —ﬁ a2 ¢

sin 0 cos fe'®.

(b)
/|w|2d3rf g 7/(7’46*2”/3“5111 6 cos? 9>r sin @ dr df d¢
a
271'/ pBe=2r/3a dr/ (1 — cos? ) cos® fsin 6 df
0 0
3a c0839 cos® 07 |"
6! — — +
2 5 1,
3" [2 2] 3.5 4
— 2 G.5.4.3.000 |2 2135 4
3847 27 [3 5} 115 v
(c)

> 4\* 11
<Ts> :/0 7’8|R32|27’2d7’: (8_1) 30 a7/ 7,8+6€72r/3adr

Finite for .
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Problem 4.44
(a) From Tables 4.3 and 4.7,

1 1 r\3 _ [ 35 . . 1 _r . ;
Y433 = R43Y33 = 263 /3E a3l (5) e~ "/4a (— 64—7rSlIl390089631¢> = —76144\/%(19/2136 /4a 6in3 P39

(b)

1 —Tr a 3 1
(ry = /7’|1/J|2d3r: m/r (7’66 /20 &in® 9) 2 sin 0 dr df d¢

2T

_ ; > 9 _—r/2a /ﬂ- s 7
= (6144)27ra9/0 rie dr | sin’ 6 df ; do

1 o1 (2246
= (61407 rad [9!(2a)"] <23.5.7> (2m) = [18a.]

Ta

(c) Using Eq. 4.133: L2 + L2 = L* — L? = 4(5)h? — (3h)* = ‘ 11A2%, with probability 1.

Problem 4.45

(a)
ar 4 8 2 ’
P:/\w\2d3r:i3/ e—2r/ar2dT:_3 _ET26—2r/a+a_e—2r/a _r
mas Jo a 2 4 a 0
2 22 ’ b b
— _ <1+_+_2> 6—27’/(1 1_ <1+_+2 2) —2b/u
a a 0
(b)
1 2
le—(1+6+—62)6_€"“1—<1+6+§€2>(1—64———5)
2 e e & & 1 1 1
~1-1 i i =8 —+=
+e€ 2+6 €te 5 2—|—2 6(6 5 2)
BYCZANEEYIAN
“6\a) [3\a)’
(c)
1 1 4 /b\°
- s Pr-mb—=-|(-
[ (0)] 7ra3:> mb ma® 3 \a v
(d)
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Problem 4.46

1 2Un —
(a) Equation 4.75 = Ry(—1) = —p"e"v(p), where p= ;—a; Eq. 4.76 = ¢, = ((17; (2:) co=0
So U(p) = Cp, and hence Rn(nil) — Nnrn—le—r/na7 where Nn — (nc;)n
o0 o0 2n+1 n
1= / |R|2T2d7’ — (Nn)2/ 7‘2n6_2T/nad7’ — (Nn)2(2n)' @ ; N, = 1 2
0 0 2 na na(2n)!

(b)

(rt :/ |R|?r! 2dr = Nﬁ/ p2ntle=2r/nagy.
0 0

(ry = (%)277’“(2#71)!(2714— 1)!<%>2n+2 = <n+ %)na-

(c)
op = {r?) —(r)* = Km %) (n +1)(na)? — (n + %)2(71@)2}

1 1 1 . _ )
=5 (n g0 = g O | = et

Rio R3p R6 25
a r 6a r

650a r

1 X
=0= (n—1)r" 2e7m/na - —yn=lemr/ne — () = = pa(n — 1).

Maxima occur at:
dr na

Problem 4.47

Here are a couple of examples: {32, 28} and {224,56}; {221, 119} and {119, 91}. For further discussion see
D. Wyss and W. Wyss, Foundations of Physics 23, 465 (1993).

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.



118 CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS

Problem 4.48
(a) Using Eqs. 3.64 and 4.122: [A, B] = [2?, L.] = x[z, L,] + [z, L.]z = x(—ihy) + (—ihy)z = —2ihzy.

2
1
Equation 3.62 = c%40% > [Z—l(—%h) (;vy)] = (zy)? = ‘ oaop > hl{zy)|. ‘

(b) Equation 4.113 = (B) = (L,) = mh; (B?) = (L2?) =m?h?; so op=m?h?>—m?h?® =

(c) Since the left side of the uncertainty principle is zero, the right side must also be: | (zy) = 0, | for eigenstates
of L.

Problem 4.49

(a) 1=|A2(1+4+4) =942

A 4
(b) g , with probability g; —g, with probability 3. | (S.) = Sh 4 (ﬁ) _| 2

(c) From Eq. 4.151,
x x T
& - ()

& = (x) x =

h 1 h 134 h 2h
2 with probability 1—2; —3 with probability % (Sz) = 1—35 + % (—§> =5

(d) From Problem 4.29(a),

T 11 1—2¢ 1 1-—
(y): () = (1 — — 1—92i—2) = . (Z/)QZ _
C+ (X+> 3 2( Z)( 2 > 3\/5( ¢ Z) 3\/51 C+ ‘ 9.9 18
1
3

T 1 1—2¢ 1 1 1 1
W _ (@ _ ; vy _ _ 9 N . ()2 _ _
c’ = (X7 ) X = (1 Z) ( 9 ) = 3\/5(1 21 + 2i) 33 [e] : .

h 1 h 1 17h 1 h 4h
3 with probability 1—;; 5 with probability TR (Sy) = 1rh + — (—> =|—.

Problem 4.50

We may as well choose axes so that a lies along the z axis and bis in the 2z plane. Then Sél) = S,gl), and SZEQ) =
cos S +sin6 52 (0 O|S¢(11)Sl§2)|0 0) is to be calculated.

1
S0 0) = % 5M (cosh 53 + smas;?))} (1L =11
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&!H

[(S: T)(cosbS, | +sinfS, |)— (S, |)(cosfS, T +sinb S, 7))

() [t (< ) ()] = (<20) font (1) im0 (21)] } o . 105
%2 {COSGT( TL+ 11 +sm07(TT + Ll)} " [0080|O 0) +sin0% (1 1) +1 — 1>)] .

2 2
0 (SIS = (0 0[S S5V |0 0) = %<o 0| {— cos 0|0 0) + sin@%(ﬂ 1)+ - 1>)] = —% cos 0(0 0[0 0)

h2
(by orthogonality), and hence <S,§1)Sé2)> =~ cos 6. QED

Problem 4.51

(a) First note from Eqgs. 4.136 and 4.144 that

Syls m) = + 2 [Sils m) + 5|5 m)]

[\/ss—&— m(m+1)[s m+1) + /s(s + 1) — m(m —1)|sm—1>}

2%[\/5(3—1—1) m(m+1)[s m+1) — /s(s + 1) —m(m —1)|sm—l)}

Now, using Eqs. 4.179 and 4.147:

S2[s m) = [(5<1>)2+ (5@)%4-2(58" 5 + 550 5 +S§”s§2>)] [ |

#2) (14 1) (Scsa = 5) + (S)13 1) (Sl m— £)+ (513 B) (S:lsa m = 3)) |}

+B{ (S213 = 1Y) Jso m+ 2+ 3 — 1y (8%]s2 m+ 1))

#2[ (8ol = 1) (Scoa m D)+ (5 = 1) (St )+ (S} = ) (Sow m )]}

#2313 = D3 (Vforlor D~ (= B+ Blsa o+ 3
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+\/32(52 +1) = (m— L) (m— 3)[sy m— g>>

+(2)14 - (Vsloa + D= = Dlont Blsa m+ )

~sa(sn + 1) = (= m = sz m - %>> + 313 Phlm = 3)ls2 m %>H

r2 413 %>%(¢s2<s2 S = ot Dt Dlow m+ 3]+ yaloa + 1) = (ot D= Plsa 1)

~foaloa 1) = m+ D= Plssm— 3)) + (F) 15 = D + plsa mo+ ||

A[ 2(sa+ 1)+ \/ (s2+1)— —l—%:s(s—i—l)A7
or
B [sa(s2 + 1) + \/ (s2+1)—m?+1 =s(s+1)B,
Alsa(s2+1) = s(s+1) + +B\/82 sp+1)—m?+ 3 =0, A(a+m) +Bb=0
"\ Bla—m) +4b=0
B[sa(sz +1) —s(s +1) + +A\/S2 so+1)—m?+1 =0, (a—m) +Ab=

where a = sa(so+1) —s(s+1)+ 1, b= \/52(52 +1) —m? + . Multiply by (a — b) and b, then subtract:
A(a? —m?) + Bb(a —m) = 0; Bb(a—m)+ Ab?> =0 = A(a® —m? —b?) =0 = a® — b2 = m?, or:
[s2(s2+ 1) —s(s+ 1)+ %]2 —sa(s2+ 1) +m? — 1 =m?,

[82(52+1)*S(S+1)+i]2:s§+32+i: (52+%)2, S0

sa(sa+1) —s(s+1)+ ==+ (s2+3); s(s+1)=sa(s2+1)F (s2+3) + 1

Add % to both sides:

2 s5+s—s—3+3 =5
sts+i=(s+3) =ssa+ ) F(s2+3)+3=
s5+ 82+ 82+ 5+ g = (s2+1)°

1
gy — 1
5+%=:|:52 :>s::5:82—l:{2 2,

1 1 so+ %
sty=F(s2+1) =s=F(s2+1)—5=4¢"" 2
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But s > 0, so the possibilities are | s = so £1/2.| Then:

1 1 1
a:s§+32—<52i§) <82i§+1)+1
1

2

1 1
=s5+s 83T %27 %2F 5%~ 1 F5

b= 245y s ) —m?= +1 g S +i-
= S5 So 4 m= = S9 2 m= = S9 B m S92 5 m|.
,~_A[;c(32+%)+m]=¢A(52+%:Fm):—Bb——B\/32+ +m) (s2+ 3 —m)
= Ay/sas++Fm==B/so+1+tm. But|A?+|B?=1, so

so+1Fm |A? 1 1 (252 +1)
Al + A2 2 _ Ll mAs, 4= =72 T A2
AP IR (Z ) = o [P et et e = T o

N [sotm+ 3 B*:tA\/82+%:Fm*:t/82¥m+%
259 +1 /82+%im 2589+ 1

+1 1 +1
- TRF;=F (2t
g - T2 F 52735

(b) Here are four examples:

(i) From the 1/2 x 1/2 table (s; = 1/2), pick s =1 (upper signs), m = 0. Then

1 1 1 1
li0+1L 1 1 o041 1
— 2 2 . — 2 2
A= FES v & B = 1 = 3

(ii) From the 1 x 1/2 table (s = 1), pick s = 3/2 (upper signs), m = 1/2. Then
1+14+1 2. . 1—i4L g
A= =L BB -4
(iii) From the 3/2 x 1/2 table (s3 = 3/2), pick s = 1 (lower signs), m = —1. Then
A= J2tlHs _ V3. pg_ _ [i-l+3 _ 1

3+1 2 3+1 — 2
(iv) From the 2 x 1/2 table (s2 = 2), pick s = 3/2 (lower signs), m = 1/2. Then

_ 2_‘""2 _ 2. _ 243 +2 3
A= 4+1 57 B = -V 4+1 5°

These all check with the values on Table 4.8, except that the signs (which are conventional) are reversed
in (iii) and (iv). Normalization does not determine the sign of A (nor, therefore, of B).

Problem 4.52

[l

Equation 4.136 =

N

==

|
co o

ol

S5 =0, 813 H=VENI D, S F=2F D, Suj 3= VB
SIS VBT Y, S3H=omd g S8 o= VAN . 513 ah =0
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122 CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS

0v30 0 0000 0 V3 0 0
o020} - ,|v3ooofl o 1 R lV3 0 2 0
So S+_h000\/§’5*_h 0200’51_2(S++S*)_2 0 2 0 V3
0000 0 0v30 0 0 vV3 0
\_//g\\_/fgg A2 0 V3 2 0
=-Al2 A V3 -V3l0 -)AV3
0 2 -Av3 0 V3 -\ 0 V3 -\
0 0 V3 -\

= —A[-X3 430+ 4] = VB [VBX —3VB] = X - TAP - 3X2 + 9 =0,

or MM —10A2+9=0; (A2-9)(A2—1)=0; A= =£3,£1. So the eigenvalues of S, are | 37, +h, —1n, —3h.

Problem 4.53

From Eq. 4.135, S.|sm) = fim|sm). Since s is fixed, here, let’s just identify the states by the value of m (which
runs from —s to +s). The matrix elements of S, are

Snm = (n|Sz|m) = hm(n|m) = hmé, ,.

It’s a diagonal matrix, with elements mh, ranging from m = s in the upper left corner to m = —s in the lower
right corner:

s 0 0 0

0s—1 0 0

From Eq. 4.136,

Silsm)=hys(s+1)—m(m+1)|s(m=E1)) =h/(sFm)(stm+1)]s(m=1)).

(S )nm = (n|Sy|m) = hy/(s —m)(s +m + 1) (n|m + 1) = kb, 116, (m+1) = Mbny (m1)-

All nonzero elements have row index (n) one greater than the column index (m), so they are on the diagonal

just above the main diagonal (note that the indices go down, here: s, s —1, s —2 ..., —s):
0b, 0 O 0
00bs—1 O 0
00 0 bs—o 0
Sy =h . .
00 0 O - b_gi1
00 0 O -0
Similarly

(S )pm = (n|S_|m) = A/ (s +m)(s —m + 1) (n|m — 1) = hb,, 6, (m—1)-
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CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS 123

This time the nonzero elements are on the diagonal just below the main diagonal:

0o 0 0--- 0 O
bs 0 0--- 0 O

S _p|0br0-- 0 0
0 0 0« b_ypy 0

To construct S, = (S +S_) and S, = 4 (S; — S_), simply add and subtract the matrices S, and S_:

0 b, 0 0 - 0 0 0 by 0 0 -~ 0 0

by 0 by O -+ 0 0 by 0 by O -~ 0 0

0 bs_r 0 by_s 0 0 0 —bsy 0 bso-- O 0
s —"lo 0 boo 0 0 0 |. g0 0 -bo o 0 0
) . DV . . .

00 0 0 0 b_si 0 0 0 0 0 bt

00 0 0 bosi1 O 0 0 0 0 “b_si1 O

Problem 4.54
LY = h/I(1+ 1) —m(m + 1)Y;"*"  (Eqs. 4.120 and 121). Equation 4.130 =

o [ O 0 ; ,
he'? (— +icotf— ) Be'™? P (cos 0) = hy/1(1 + 1) — m(m + 1) B" el (m+1e pmtl(cos g).

ol O¢
d
B <d9 m cot 0> "(cos0) = /11l + 1) — m(m + 1) B/ P/ (cos 0).
cos T d _dx d d d
— . — _ = — — 2
Let = cosf; cotl = e m =i smedx 11—z I
b {‘ 1‘5”2@‘”1@}3 () = =Bi" = |(1 = @*) 7~ + maPl"| = - B P
-1
= VI +1) —m(m+1)B" T prtt = |Btt = B
= Vil ) (=) : VIA+ 1) —m(m+1)

Now l[(I4+1)—m(m+1)=(l—-m)(l+m+1),so
-1 -1 —1 1
S = B" = B = ———=B}; B = By
! Vi—mVititm ' N Y s R AR Y s Wi BNV ED N EDI DR
-1 -1
B} = BY, etc.
[ Y Ut nid-ni-2)
Evidently there is an overall sign factor (—1)™, and inside the square root the quantity is [(I + m)!/(l —m)!].

(I —m)!
(I +m)!

Thus: | B" = (-1)™

C(1) | (where C (1) = BY), for m > 0. For m < 0, we have

-1 1
= 2 = = BY.  ete.

—BO
By ﬁ (z+2)(z_1)Bl Viru+nii-1 "
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124 CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS

Thus B; ™ = B", so in general: B" = (=1)™ ((llllrlml‘)!lC(l). Now, Problem 4.22 says:

1 20+ 1), ;
Y = 20 (;)(ew5 sinf)! = Ble?®P!(cosf). But
! 77

! l _ g2)i/2 21 |
Pll(x) =(1 —,7;2)l/2 (%) % (%) (x2 _ 1)1 _ % (%) (le —)= %(1 _ xQ)l/Q,

(20!

20)!
so  Pl(cosf) = %(sin 0)!. Therefore
L@+ lw(l) /21+1 2l+1
oV (e'?sinf)" = Bje S (sinf)! = B! = 21 T
1 20+ 1 @+ 1) (I — m))!
l _ l _ l m __ l+m
But B; = (—1) mC(l), so|C() = (-1) pat and hence |B]" = (-1) \/ T

This agrees with Eq. 4.32 except for the overall sign, which of course is purely conventional.

Problem 4.55
(a) For both terms, I = 1,s0 h%(1)(2) =|2h?, P =1.

1 2
(b) O, P = g, or h7 P = g
(c) 3712 P=1.
I 1 I 2
d) |z, P=<|or|—=, P=<.
2 3 2 3

5l $)I10) +\[|é%|11 =%[ 313 5) — 5l %>]+\/§[%|g%>+\/g|%%>}
8 3 1
=(@F)EN+GE 2. Sos=jors —52 P=g|or|gf% P=3
() Ly P=1
27 T
(2)
1 V2 i} )
o = 1R P{ PP (o) + 57 1002 (o) +02 () | + v o) |
1 v — —
- ? |2 L2 11 1 -r/ 3 2 3 .,
= — Y 2Y —_ . .. o r/a | 2 2_ T 1 4 4.
3|R21| (Y17 +2[v7?) 3 24 @3 a2t 1 €08 0+ gy Sin 0| [Tables 4.3, 4.7]
1 2 —7”/ 3 9 . 9 1 Y
= s ¢ g (cos” 0 sin® 0) = | omgr e,
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CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS 125

(h)

1
rler/a = re~r/e,

1 2 012 2.2 1 2 1
- YOI2g - - -
5/t /' p[7sint0dde = F|ln|” = 3+ 55 7245

Problem 4.56
(a) Equation 4.129 says L, = h 0 3o this problem is identical to Problem 3.39, with p — L. and o — ¢.

B
(b) First note that if M is a matrix such that M? = 1, then
iM¢ . Loovnie Lo s : Lo 13
e =1+ZM¢+§(ZM¢) +§(ZM¢) +---=1+2M¢—§¢ —ZM§¢ +e

:(1_%¢2+%¢4_...)+2M(¢—%qf)?’ﬁ-éqﬁ_...):cos¢+il\/|sin¢.

So R = ¢™+/2 = cos I +io, sin I (because 02 = 1 — see Problem 4.26) = io, =|i <(1) (1)) :

Thus Ry, =1 ((1) (1)) <(1)> =1 <(1)) = 4ix—; it converts “spin up” into “spin down” (with a factor of 7).

(c)

:i‘n'cr/4: E . Z:L ; :i 10 (0 —1 :L L1
R = '™ COS4+20ysm4 \/§(1+wy) 51101 +1 i 0 5\—11)

Rx+ = % (_11 1) (é) = \/% (_11> = %(M —x-) =x" (Eq. 4.151).

What had been spin up along z is now spin down along z’ (see figure).

z

(d) R =€ = cosm +io,sinT = rotation by 360° changes the sign of the spinor. But since the sign
of x is arbitrary, it doesn’t matter.

()
N2
(0-1)* = (03N + oyny + 0.0;) (00 + oyny + 0.17)
2. 2 2.2 2,2
= 0,0y +oyny +oin; +ngny (0.0 + 0y0y) +nen (0,0, + 0.0,.) +nyn. (0,0 — 0.0y).
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2

2 _
But o3 =0, =

2:

(0 -7)

0?2 =1, and 0,0y + 00, = 0,0, + 0,0, = 040, + 0,0, =0 (Problem 4.26), so

¢

n? + nz +n2=1. Soel@™M/2 = cog ¢ +i(o - 7)sin 3 QED

Problem 4.57
(a)
[q1, 2] =
[p1,p2] =
[q1,p1] =

lq2, p2] =

[1: + (az/h) Dy, T — (a2/h) py] =0, because [z, p,] = [z, z] = [py,py] = 0.
[pe — (B/a*) y, p. + (R/a*) y] =0, because [y,ps] = [y, y] = [ps, p] = 0.
(h/a*) y] = = ([z,p2) — [Py, ¥) = % [ih — (—ih)] = ih.

[:U — (a2/h) Py, Pz + (h/a2) y] (lz,ps] = [Py, y]) = ih.

[:U + (a2/h) Dy; Pz —

NP NN =N

DN = N =

[See Eq. 4.10 for the canonical commutators.]

(b)

9 s 1| 5 a? a?\’ 9 , a? a2\’ 9 2a
hh—%R=5 | +E(xpy+pyx)+ ) Pyt +%(Ipy+py$)— 7o) Pyl T R Py
1 h h? h % oh
pl—p§=§[pi—§(pmy+ypx)+ ) Vi ey tups) - ;) yﬂ = =3P
h a?
So 5z (ai —43) + 57 (P = P3) = 2Py — ype = Lo
(c)
u 12+122a22+th()
= - —mw e’ = — — 2% = H(z,p).
om? T2 ol T 942 P

Then H(q1,p1) =

2

2 h a FL
2 2 H H 2 2
= —_ —H N z — .
P 2a2q1 1, (QQ7p2) —thz + —2 2(]2 = 2; L Hl — H2

a

2h

(d) The eigenvalues of Hy are (ny + 3)h, and those of Hy are (ng + §)h, so the eigenvalues of L. are

(n1+ %)ﬁ —(ng + %)h = (n1 — n2)h = mh, and m is an integer, because ny and ny are.
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Problem 4.58

From Problem 4.28 we know that in the generic state y = (Z) (with |a|* + |b]? = 1),

(la? = B2), () = MRe(ab®), (S,) = —hIm(ab); (52) = (52) = .

<Sz> = 4

[NV

Writing a = |ale’®, b = [be!?, we have ab* = |a|[b|e!®a=?) = |a||ble?®, where 0 = ¢, — ¢y, is the phase
difference between a and b. Then

(S.) = hRe(|a|[ble’®) = hla||b| cos O, (S,) = —hIm(|a|[ble?’) = —h|a||b| sin 6.

h? h? ,
0%, =(92) = (S.)? = T R?|al?|b]? cos® ;0% = (Sh) — (Sy)? = T 7i%|a)?|b|? sin? 6.

x

hQ
We want agwagy = Z(SZ)Q, or
K2 K2 K2 2
7 (L= 4laP[p? cos®0) - (1 — dlal*bf? sin® 0) = - = (|af* - b]2)”.

1 — 4fal*[b]* (cos® § + sin® 0) + 16]a|*|b|* sin? @ cos? 6 = [a|* — 2a|?|b]* + |b]*.
1+ 16a|*|b|* sin® 0 cos® 0 = |a|* + 2[al?[b]* + |b]* = (|a|® + |b|2)2 =1 =lal*/b|*sinf cosf = 0.

So either # = 0 or 7, in which case a and b are relatively real, or else § = £7/2, in which case a and b are
relatively imaginary (these two options subsume trivially the solutions a = 0 and b = 0).

Problem 4.59
(a)

. d{r) i
h Eq. 3.71: 0 = Y([H, x)).
Start with Eq. 3.7 o h<[ ,r])
H:L(p—qA%(p—qA)Jrqw:L[p2—q(p-A+A-p)+q2A2}+qso~
2m 2m
(H.a] = - [p.x] — Lo A+ A-p).a]
’ 2m "’ 2m T

p°, 2] = [(P2 + P} + p2), 2] = [P}, %) = Pa[pas @] + [Pas #]Pe = pu(—ih) + (—ih)py = —2ihp,.
[p : A,x] = [(pzAz +pyAy +pZAZ),:C] = [pzszm] = pm[Ama x] + [pm,x]Az = —ihA,.

[A b, x] = [(A:cpac + Aypy + Azpz)a 17] = [Aacp:cv 93] = A:c[px, 13] + [Axa «’L’]px = —ihA;,.

_l 4 oipgy iR . __the
[H,x]—%(—Qthw)—%(—ZzhAl.)— m(pw qAz); [H,r]= m(p qA).

M~ L p—qa). QED
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(b)

We define the operator v = %(p —qA); % = %([H,VD + <(r;_‘t’>7 g_: = _%86_?

1 ., m. 1
H=gmv” +qp = [Hv]= " v] +dlp, vl [p,v]= —p,p]-

m
Oy ih

=ih— (Eq. 3. =1 = —Vo.
[o,pa] = il (Eq. 3.65), 50 [0, p] = ihVp, and [p,v] = Ve
[v?,0.] = [(vF + U; +02),0,] = | svvm] + [02, 0] = vylvy, ve] + [vy, va]vy + va[vz, V2] + [vs, v]vs.

[vyvvm] = %[(py - qu)v (P2 — qu)] = _% ([Ayﬂpz] + prvAm’])

qg (.,0A,  0A, 1hq ihq
- _ Y _in =2 A) =——B,.
m? (Z or oy m? (VxA), m?

1 q
[Vz,v2] = W[(pz —qA.), (px — qAL)] = ] ([Az, pz] + [Pz, Axl)
q (..0A, . 0A, ihq ihg
9 ihq ihg

U] = 2 (—vyB, — B,vy + v, By + Byv,) = 2 [—(vxB),+ (B xv),].

1
[v?,v] = :n—g [(B xv)—(vxB)]. Putting all this together:

M:i<[@ih—q(Bxv—va)+%V¢]>—i<a—A>~

dt h 2 m2 m" Ot
(%] m%g((va)(va))+q<ché;—?>g((vava»Jrq(E). Or, since

1 1
vxB-Bxv=—[p-gA)xB-Bx(p-qA)]=—[pxB-Bxp/ - L[AxB-BxAl.
m m m
[Note: p does not commute with B, so the order does matter in the first term. But A commutes with B,

so B x A = —A x B in the second.]

m%zq(E) %(pr—Bxp) 2<A><B>. QED

_ 4
m
(c¢) Go back to Eq. %, and use (E) = E, (vx B)=(v) xB; (Bxv) =B x (v) =—(v) x B. Then

m% =q(v) x B+¢E. QED
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Problem 4.60
()

i ik

E=-Vo=|-2K:h| B=VxA=|0/oc 0joy 0/0: = Bok.]

—Boy/2 Box/Q 0

(b) For time-independent potentials Eq. 4.205 separates in the usual way:

L ( VvV — A) (h qA>1/J+q<,m/1 Evy, or
2m )
h2 iqh q>
VA4 o[V (AY) + A (V)] 45— A%+ qpp = By, But V-(AY) = (V- A +A-(VY), so

K2 iqh

7 _
—5 VA4 5 - [2A- (V) + V- (AY)] + (%A2 + qso) Y=Ly

This is the time-independent Schrodinger equation for electrodynamics. In the present case

By ( 0y O 2 _Bi o o 2
A =0 - — Af=—" = K2z2°.
Va0 awe =P (o500 (2 y?), =K
h 0] 0 h? qBo ¢’B2
But L,= - ——2——L Kz2*| ¢ = Ev.
u (ay y8m> 0 — 5V zw+[8m (2 + ) +¢K=*| v = Ev
Since L, commutes with H, we may as well pick simultaneous eigenfunctions of both:  L.¢¥ = mh,
where m = 0,+1,42,... (with the overbar to distinguish the magnetic quantum number from the mass).

Then

K2 By)? Boh
{—2—V2+(q—0)(»’62+y2)+q1(z2}¢= (E+q . m) v.
m 8m 2m

Now let wq = ¢Bg/m, ws =+/2Kq/m, and use cylindrical coordinates (r, ¢, z):

R [10 [ oY 0%y 0% 2 o, 1 o] 1_
2m [;E( 8r)+r2 0¢? + ]—i_[gmwl (= +y)+§mw22:|1/)— (E+§mhw1>w.

ho o 9% 1, 1
But Le = 550 o T TR T TR

R(r)®(¢)Z(z) :

h? 1d ( dRY m’ d*Z 1 1
—-— |®Z — oZ o—— OZ =|E+ -m Z.
Qm[ rdr(rdr> —R®Z+ R d2}+<8m wiT +2mwz>R ( +2m77w1>R

n2h?) = —m2y. Use separation of variables: (r,¢,2) =

Divide by R®Z and collect terms:

K21 d [ dR\ m2] 1 5, R1d8Z 1, 1
S e (i =(E+ -mhw; ).
{ 2m [err (rdr) r2 ]+8mw1r}+{ 2mZdz2Jr Pl 22} ( tom 1>

The first term depends only on r, the second only on z, so they’re both constants; call them FE, and F,:

R? [1d [ dR m?2 1 hd*Z 1 1
—— |=— |r— ) = = R|4+-mw?r?R = E,.R; - 2Z=E.7Z; E=E,+E.——mhuw.
2m [rdr <r d?") r2 ]+8mw1r ' Tomdz 2" w2 ’ * g
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The z equation is a one-dimensional harmonic oscillator, and we can read off immediately that E, =
(ng + 1/2)hws, with ng = 0,1,2,... . The r equation is actually a two-dimensional harmonic oscillator; to
get E,, let u(r) = /r R, and follow the method of Sections 4.1.3 and 4.2.1:

U dR ' U d dR
R= % glv. v v P r U a "

g dr o 2 Vru 2\/_ dr < dr) Vi
1d dR u”’ U R /d 1w 1 m2 u 1 2,2 U U
—— |\ ==t =3 s |\—F=T3 =" mwir’— = E,—
rdr \' dr o 4rd/? om \r  4r:r 12 Jr VT N

h2 d?u 1 u 1
62 () 2] e

This is identical to the equation we encountered in Problem 4.39 (the three-dimentional harmonic oscil-
lator), only with w — w;/2,E — E,, and I(l + 1) — m? — 1/4, which is to say, [> + 1+ 1/4 = m?, or
(I+1/2)> =m?, or | = |m| — 1/2. [Our present equation depends only on m?, and hence is the same for
either sign, but the solution to Problem 4.39 assumed [ + 1/2 > 0 (else u is not normalizable), so we need
|m| here.] Quoting 4.39:

E = (jmax + L +3/2)hw — E, = (jmax + |m| + 1)hw1/2, where jmax =0,2,4,... .

) :jmax + |ﬁl| —+ l)hwl/Q+ (TLQ —+ 1/2)%2 7777]1&]1/2 = (711 —+ %)hwl —+ (Tlg —+ %)hu)g,

where n1 =0,1,2,... (if m >0, then n1 = jmax/2; if m < 0, then ny = jmax/2 — Mm).

Problem 4.61

(a)

(b)

=VxA'=VxA+Vx(VN)=VxA=B.

[V x VA =0, by equality of cross-derivatives: (V x V), = 9 <Q) _9 (@) =0, etc.]

Oy \ 0z 0z \ Oy
OA’ OA OA 0 0A
r_ o - _ ey o ¥ — _ _ 7
E' =—-Vop 5 Vo +V ( 815) 5 8t(VA) Ve ey E.

A
[Again: V (68—15) = %(VA) by the equality of cross-derivatives.]

Pv —gA — q(VA)} MM = ¢(VA)e N M 4 éeiqA/ﬁwf — gAY — (VAN M
2 1

= EeiqA/hV\IJ — quiqA/h\Il.
1

2
[—ﬁv —qA - q(VA)} el g — (Ev —qA - q(VA)> Pem/ﬁw — qAe My
(3 1 1
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=-n %(VA V)i gy | (g p )iy g2(A g A)eiod g
1

~ Deiar/np () — Leiah/h(A . vT) 4 g2 A2eiad/ Iy
1 1

— @em/h(w V) 4 ¢?(A - VA)el N g
1

= "N [—R2V20 +ihg(V - A)T + 2igh(A - VT) + ¢ A>T ]
—igh(VA) - (V¥) — ¢*(A - VAU + igh(VA) - (VI) + ¢*(A - VA) T}

2
= elah/n <i—iV — qA> v
i

1 h ’ ? / / igA/h 1 h ’ OA
So: |— | =V —qA'| +q¢| ¥ =€ — | =V—qA| +qp—qg| ¥

2m \ i 2m \ i ot

. ov oA 0 / ov’
. _ JigA/R [ Y E YO T igA/h s

[using Eq. 4.205] e (m 1, qf> ih- (e \11) ih"-. QED
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Chapter 5

Identical Particles

Problem 5.1
(a)

(m1 + mg)R = Mmiri] + Mmolre = Myt + mg(rl — I') = (m1 + mg)rl — Mar =

r1:R+Lr:R+ir.\/
myp + ma my
(m1 +mo)R = my(ra + 1) + mors = (Mg + ma)rs + mir = 1o = R — ™ _r-tyv
mi + meo mo

Let R = (X,Y,2), r = (x,y, 2).

(V1) _i_@_Xi+8_m3
Ve = 951~ 0x, 0X | Oy Ox

(om0 gy _n o
= <m1 +m2>6X + (1)8$ - Mo (VR)z + (Vr)z7 SO V1 = mzvR+vr' \/
0 _9X06 0z 9
drs  Oxe 0X = Oz Oz

_ ma2 0 0 _ M _ ‘ K B
a <m1 +m2)8X (1)81‘ o (VR)z = (Vi)a,  s0 VQ—mIVR Ve v

(VQ)QJ =

(b)
Vi =V (Vi) =V - LT%VMZJ + Vﬂ/’]

=Ly <iva + VM/J) 4V, (ivw + vw)
mo ma

ma

2
(i> V2 + 21 (Y, VR)o + V2.
m mo

2
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Likewise, V31 = (%) 2 — 2 (V -Vr)+ V.
1

h2
S Hyp = ———Viy — —V 5% + V(r1,r2)9
2ma
K2 2 2 2 1
:——( vz =H Ve Vet v2 2v§%——“vr.vR+—v$)¢
2 \mims; mim mamj mMom mo
K2 2 1 1 1 1
e B (L )W( e LYzl v - 2o
2 |mims \ mo mi my ma
2
But (i_'_i) :—m1+m2 :lj SO /1, (i_’_i) = M = mims 1 .
mi ma mimsa 1% mimg \ M2 mi mimsa m1m2(m1 + m2) my + ma

L w—h—2v2w+V< Y= Ev. v
2(m1 —+ m2) R o '
(¢) Put in ¥ = ¢,.(r)¥r(R), and divide by ¥, g:
B h? V24 } [ B 1
2(my + ma) 1/)R f 2 vy

The first term depends only on R, the second only on r, so each must be a constant; call them Er and
FE,., respectively. Then:

— V2, +V(r)| = E.

h2

h2
—————V?Yr = ErYr;| |—5-V?¢ +V(r)¢y = By, | with |Egp+ E, = E.
2(my + ma) 2u

Problem 5.2

AFE A — M M
(a) From Eq. 4.77, E; is proportional to mass, so E11 = Tm = m,u g m(?;]—& ) ~

The fractional error is the ratio of the electron mass to the proton mass:

9.109 x 10731 k
Wm—wki = 5.44 x 10~*. The percent error is | 0.054% | (pretty small).

. . A(1/A) AR Ap (1/A%) AN AN
b) From Eq. 4.94, R is proportional tom,s0 ——— = — = —=—~—"—"F+~— = ———.
() 7 R SR V) VR
So (in magnitude) AAN/A = Au/u.  But  p = mM/(m + M), where m = electron mass, and M =
nuclear mass.

m(2my)  mmy, _ mmy, (2m + 2m, —m — 2m,)
m+2m, m+m, (m+my,)(m+2m,) P b

2
_ memy _omp

(m+my)(m+2m,) m+2m,
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134 CHAPTER 5. IDENTICAL PARTICLES

AN A
2A_28_ n ~ , SO | AN = ﬂ/\h , where Ay is the hydrogen wavelength.
A I m+2m,  2m, 2my,
1 1 1\ 5 36 36
R[22 ) ZR=2 2 =22 - 2 11 —6.563x 10 " m.
)\ (4 9) 36 5R  5(1.097 x 107) o
9.109 x 103!
AN = . (6.563 x 10-")m = 1.79 x 10" m. |

~ 2(1.673 x 10—27)

(c) u= erm = %, so the energy is half what it would be for hydrogen: (13.6/2)eV =
m-+m

(d) p = —2"—; R u,so R is changed by a factor MpMy_ Mp +Me - _ (1 —|—me),
my +my, mp+m,  mpme me(my +my)

with hydrogen. For hydrogen, 1/A = R(1-1/4) = 2R = A =4/3R = 4/3(1.097x10") m = 1.215x10~" m,

and A o 1/R, so for muonic hydrogen the Lyman-alpha line is at

1 (1.673 x 10727 4 206.77 x 9.109 x 10731)

206.77 (1.673 x 10727 4 9.109 x 10—31)

mpm

as compared

A= w(mw x 107 "m) =
mu(my +me)

—[6.54 x 10710 m.|

(1.215 x 10~ "m)

Problem 5.3

The energy of the emitted photon, in a transition from vibrational state n; to state ny, is
E, = (n; + $)hw — (ny + 3 )hw = nhw, (where n = n; —ny). The frequency of the photon is

E k
y="2 " P The splitting of this line is given by
h 2r 2w\l u
1 1 kA 1 A
Av= |V ——=Apu S e el
2 2u3/2 22\ u p 2
Now 2
1 -1 1
= MnTle T > A= (——2Amc> = M—QAmc.
MptMe oo+ o (LJFL) me me
Me mhp

1 pA 1 (A
Av=:vt mc:—y( e/ Me)

2 T )

Using the average value (36) for m., we have Am./m. = 2/36, and m./mp = 36/1, so

s 1 -
=50 136)” = (36)(37)”_
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Problem 5.4
()

1 :/|wi\2d3r1d3r2
=14 / [tha (r1)hp(r2) £ P (r1)¥a (r2)]” [Wa(r1)¥s(r2) £ ¥p(r1)¢a(r2)] d°r1d’ry

e [ / (1) Py / [ (1) PPy / ba(r1) (1) d%ns / U (r2) "t (r2)Prs

£ [ vaien [vu ot + [luePen [vaePen]

=|AP1-14£0-040-0+1-1) =2(A? =|A=1/V2.

(b)

1= ‘A|2 / [Qwa(rl)dja(lé)r [Qwa(rl)wa(rQ)] d31‘1d31‘2

— AP [ [ale)Pens [ [0alra)Pass = alaP

Problem 5.5
(a)

hQ 2 h2 2
%%%%_Eq’b (for 0 < z1, 29 < a, otherwise ¥ = 0).

P = g {Sin (%xl) sin <2ﬂ:2> — sin <2ﬂ:1> sin (%Q)}

% = ? _— (§)2sin (%) sin (27;332) + (2%)2sin (27?1) sin (%)_
=V () (e () () (B Yo ()
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136

d?y  d*y T 2 21\ 2 72
(dac2 + dx2> a (5) * (7) V= _5§w’
W2 (&2 o\ SrR? 5r2h?
- ==+ —= E ith F= =5K.
(dm% dx3 ) 2ma? oma2 ¥ =P W 2ma? b v

(b) Distinguishable:
‘1#22 = (2/a)sin (27x1 /a) sin (2722/a), with Fay = SK‘ (nondegenerate)

(doubly degenerate).

Y3 = (2/a)sin (rxq/a)sin (372 /a) . B -
2/a) sin (37z1/a) sin (rz2/a) } , with B3 = E51 = 10K

a1 = (
Identical Bosons:
‘1/)22 = (2/a)sin (27x1/a) sin (2722 /a), Fay = SK‘ (nondegenerate)

Y13 = (V2/a) [sin (721 /a) sin (3729 /a) + sin (37z1 /a) sin (7x2/a)], E13 = 10K | (nondegenerate).
Identical Fermions:

Y13 = (V2/a) [sin (Z21) sin (2222) — sin (2220) sin (Z£2)], Ey3 = 10K | (nondegenerate).

Vo3 = (V2/a) [sin (2222) sin (2722) — sin (2221) sin (2222)], Ep3 = 13K | (nondegenerate).

Problem 5.6
(a) Use Eq. 5.19 and Problem 2.4, with (z),, = a/2 and (z?),, = a® (% - (M)Q)

1 1 1 1
a a _| 2
2840 g5 ()

(o1 = 22%) =0 (3 - i) + @ (& = )

— %foaxsin () sin (22z) do = f()am {cos (@x) B

(b) <w>mn =
(e e () ()i (222

-1 _a
a (m—n)m

(rtye)cos (2m) — (Y sin (s )] O

2
(cos[(m + n)w] — 1)} .

1 {( a )2 (cos[(m —n)m] — 1) — (m>

~a (m—n)m
But cos[(m + n)n] = (=1)"*", so
T a [(_1)m+n B 1] 1 B 1 _ %, if m and n have opposite parity,
T g2 (m—n)?2  (m+mn)? 0, if m and n have same parity.
1 1 1 1 128a2m?2n?
2y _ | 2
SOEq. 5.21:><(£L'1—£K2)>— a |:6—2—ﬂ_2<ﬁ+m>:|—m

(The last term is present only when m, n have opposite parity.)
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(¢) Here Bq. 521 = (21 — 22)2) = | a? [5 b (

1 1 )] 128a2m?n?
6 272 2

n2 ' m? 74(m2 — n2)4’

(Again, the last term is present only when m, n have opposite parity.)

Problem 5.7
(a) ‘w(xl’xm%) = (1) Yp(22)Ye(73). ‘

ﬁ [Wa(@1)p(x2)1he(23) + Va(21)e(22)n(23) + Vp(21)a(22)Ye(23)

(0) Yl@r,@2,25) =1 VD Yo(a b (3) + o1 ) (2) o (25) + o1 ) (w2 0 ()]

Tela(@1)tp(z2)ve(23) — Ya(w1)ve(z2)p(23) — Yy(@1)va(@2)ye(s)

(©) Wlonma, ) = e (r2)ba(3) — te(wa ) (wra )b (s) + e (2 b (2 n)]

Problem 5.8

w :A[w(r17r2ar37"' 7I'Z) i1/’(r2,1'1,1'37~-~ ,I'Z) +w(r2ar37r17"' 7rZ)+etC']7

where “etc.” runs over all permutations of the arguments ri,ro, ... ,rz, with a 4+ sign for all even permutations
(even number of transpositions r; < r;, starting from ry,re,... ,rz), and + for all odd permutations (+ for
bosons, — for fermions). At the end of the process, normalize the result to determine A. (Typically A = 1/v/Z!,
but this may not be right if the starting function is already symmetric under some interchanges.)

Problem 5.9

(a) The energy of each electron is E = Z?E;/n? = 4E,/4 = E; = —13.6eV, so the total initial energy is
2 x (—13.6) eV= —27.2 eV. One electron drops to the ground state Z2E;/1 = 4E1, so the other is left

with 2FE; —4FE; = —2E; =|27.2 eV.

(b) He™ has one electron; it’s a hydrogenic ion (Problem 4.16) with Z = 2, so the spectrum is

1/A=4R (1/71?r — 1/n?), where R is the hydrogen Rydberg constant, and n;,n; are the initial and final

quantum numbers (1, 2, 3, ... ).

Problem 5.10

(a) The ground state (Eq. 5.30) is spatially symmetric, so it goes with the symmetric (triplet) spin configura-
tion. Thus the ground state is orthohelium, and it is triply degerate. The excited states (Eq. 5.32) come
in ortho (triplet) and para (singlet) form; since the former go with the symmetric spatial wave function,
the orthohelium states are higher in energy than the corresponding (nondegenerate) para states.
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(b) The ground state (Eq. 5.30) and all excited states (Eq. 5.32) come in both ortho and para form. All are

quadruply degenerate (or at any rate we have no way a priori of knowing whether ortho or para are higher
in energy, since we don’t know which goes with the symmetric spatial configuration).

Problem 5.11
(a)

2 —4(r1+r2)/a
1 _ 8 e 3 3
<7‘1—7’2>_(7T—113> /[/\/7“2—&—7‘2—27‘ 0 dr2]dr1
1 ) 172 COS U9

¢

2 — 2179 cos O

(o) T .
¢=2r / = Aritra)/a l / e sin b, dagl r3 drs
0 0 r{+r

*

™

1

——\/1? 4+ 712 — 2r173 cos O
r1ir2

1
= [\/r%—i-r%—&—%ﬂ“g—\/r%—&—r%—errQ}
0 172

- 1 - 2/7’1 (7’2 < 7’1)
= gl il = {5 2 S0

1 ™1 o0
& = dre 4/ [—/ T%e“’”z/adrg +/ 7‘26_4T2/ad7“2] .
1 Jo 1

L™ 5 ary 1 a9 _4rpa @ (O\2 4 drg
il T2/ gy — — |2 ro/a _(_) ro/a 2 4
s rae 9 = 47"26 + 5 \1 e

2
_ ary —4ri/a a —4ri/a
= —€ + —e .
.4 16

0,3 ary CL2 a3 ary a2
— 4 = o—4ri/a it I S ary a4 _8ri/a
¢ 7T{sme +{ 8 32m | 4 +16]e
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(b)

2 2
m (o) =3B = Jssev) = [3ev.

47eq 2

rl>|<'.ﬂ

Vo~ e? 1 |5 e? 1 _
ee~4ﬂ_€0 |’I”1—7‘2| - 4471’60@

Eo + Vee = (—109 + 34)eV = which is pretty close to the experimental value (=79 eV).

Problem 5.12
(a) Hydrogen: (1s); helium: (1s)?; lithium: (1s)(2s); beryllium: (1s)?(2s)?;
boron: (15)%(25)2(2p); carbon: (15)%(25)2%(2p)?; nitrogen: (15) (2 ) (2p)3;

2 6

oxygen: (15)%(2s)2(2p)*; fluorine: (15)2(2s)2(2p)°; mneon: (1s)?(2s)%(2p)°.
These values agree with those in Table 5.1—mno surprises so far.

(b) Hydrogen: 251/2; helium: 'Sp;  lithium: 2,5'1/2; beryllium 1Sy. (These four are unambiguous,
because the orbital angular momentum is zero in all cases.) For boron, the spin (1/2) and orbital (1)

angular momenta could add to give 3/2 or 1/2, so the possibilities are |2P3 /2 Or 2P /2- | For carbon, the
two p electrons could combine for orbital angular momentum 2, 1, or 0, and the spins could add to 1 or 0:
‘ 180,381, Py, 3Py, 3P;,3 Py, ' Dy,3D3,3 Dy, 3Dy ‘ For nitrogen, the 3 p electrons can add to orbital angular
momentum 3, 2, 1, or 0, and the spins to 3/2 or 1/2:

281 /2,%83/2,2 P12, 2 P32, P12, P32,  P5 /5,2 D3 5,2 D5 o,
“D12,*Ds)2,*Ds5/2,* D7 9,2 Fs5 5,2 F3 9, *F3 5, *Fs5 5, *Fr 5, 4 Fy 5.
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Problem 5.13

(a)
(b)

(c)

(d)

Orthohelium should have lower energy than parahelium, for corresponding states (which is true).

Hund’s first rule says S = 1 for the ground state of carbon. But this (the triplet) is symmetric, so the
orbital state will have to be antisymmetric. Hund’s second rule favors L = 2, but this is symmetric, as
you can see most easily by going to the “top of the ladder”: |22) = |11);]||11)3. So the ground state of
carbon will be § = 1, L = 1. This leaves three possibilities: 3P»,3P;, and 3P,.

For boron there is only one electron in the 2p subshell (which can accommodate a total of 6), so Hund’s
third rule says the ground state will have J = |L — S|. We found in Problem 5.12(b) that L = 1 and

S =1/2,s0 J =1/2, and the configuration is | 2P .

For carbon we know that S = 1 and L = 1, and there are only two electrons in the outer subshell, so
Hund’s third rule says J = 0, and the ground state configuration must be m

For nitrogen Hund’s first rule says S = 3/2, which is symmetric (the top of the ladder is |3 2
330113 3)2/3 3)3). Hund’s second rule favors L = 3, but this is also symmetric. In fact, the only
antisymmetric orbital configuration here is L = 0. [You can check this directly by working out the
Clebsch-Gordan coefficients, but it’s easier to reason as follows: Suppose the three outer electrons are in
the “top of the ladder” spin state, so each one has spin up (|% %}), then (since the spin states are all the
same) the orbital states have to be different: |11), |10), and |1—1). In particular, the total z-component of
orbital angular momentum has to be zero. But the only configuration that restricts L, to zero is L = 0.]

The outer subshell is exactly half filled (three electrons with n = 2, I = 1), so Hund’s third rule says
J=|L—-S8|=10-32| =3/2. Conclusion: The ground state of nitrogen is |*S5/5. | (Table 5.1 confirms
this.)

Problem 5.14

1S =2 L=6;J=38](15)°(25)°(2p)°(35)°(3p)°(3d)"* (45)*(4p)° (4d)'"(55)* (5p)®(4£)'*(65)".

definite (36 electrons) likely (30 electrons)

Problem 5.15
Divide Eq. 5.45 by Eq. 5.43, using Eq. 5.42:

Eiot/Nqg _ B*(37°Ng)°/® 1 2m BE
Ep  10m®mV2/3 Nqh*>(3m2Nq/V)2/3 |5
Problem 5.16
h? Ng N  atoms moles gm Ny
Ep = —@Bpn)¥3. p="F == = = —2 . d, where N, is Avogadro’
(a) Er Zm( o) o % v ol X om X volume i , where N4 1s Avogadro’s

number (6.02 x 10?3), M = atomic mass = 63.5 gm/mol, d = density = 8.96 gm/cm?.

(6.02 x 1023)(8.96 gm/cm?) 22, 3 28 /13
= = .4 ]_ == .4 ]. .
p (6355 gm) 8.49 x 10**/cm 8.49 x 10%°/m

(1.055 x 10734J - 5)(6.58 x 10716V -5) _ , 08 | 3v0:
Er = 49 x 1 /3 =|7.04 eV.
. o e (352 8,49 x 10% )
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(b)

1 6 oy o UV 14.08 5 U _3

50 it’s v=(5.25x 107%) x (3 x 10%) =| 1.57 x10° m/s. |
(c)

7.04eV
862 x 10-50v/K Lot x 10
(d)

2)2/32 2)2/3 (7. 10-34)2
GBr)7 s Br) 71055 X W077) g 1o 02815/3N /n? = 13.84 % 101 N/m?. |

5m 5(9.109 x 10—31)
Problem 5.17
. (372)2/312 [ Ngq 5/3 AU o B Vdp _ i -5 V-5/3-1 _ 5AV*5/3 B 5P
 5m 1% N - dv 3 3 3

For copper, B = 2(3.84 x 10!°N/m?) = ‘ 6.4 x 10*° N/m?. ‘

Problem 5.18
(a) Equations 5.59 and 5.63 = ¢ = Asinkx + Bceoskx; Asinka = [e”(“ — cos k‘a]B. So

Asinka A ;
= Asinkz + ————————coskr = ——————['F*
v st (e'Fe — coska) oS R (e'Fae — cos ka) le
AeiKa
ea — coska’

sin kx — sin kx cos ka + cos kx sin ka]
= C{sinkx + e " *sin[k(a — )]}, where C =

(b) If 2 = ka = jm, then sinka = 0, Eq. 5.64 = cos Ka = coska = (—1)) = sinKa = 0, so & =
cos Ka +isin Ka = (—1)7, and the constant C involves division by zero. In this case we must go back to
Eq. 5.63, which is a tautology (0=0) yielding no constraint on A or B, Eq. 5.61 holds automatically, and

Eq. 5.62 gives
. . 2ma :
kA= (~17k [A(-1)) —0] = Z5-B=B=0. So

Here 1 is zero at each delta spike, so the wave function never “feels” the potential at all.

Problem 5.19

We're looking for a solution to Eq. 5.66 with =10 and z S m: f(2) = cosz + 1022 — 1,
z

h2k? K222 2 2.62768)?
Mathematica gives z = 2.62768. So FE = o 277;2 = ;_ﬂ% = % eV ={0.345 eV.
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Problem 5.20

Positive-energy solutions. These are the same as before, except that « (and hence also 3) is now a negative
number.
Negative-energy solutions. On 0 < z < a we have

2
% = ;-;;2,,7[)7 where k= —ﬁ = 1/}(1‘) = Asinh kxz + B cosh kzx.

According to Bloch’s theorem the solution on —a < x < 0 is

—2mkE

Y(z) = e " [Asinh k(z + a) + B cosh k(z + a)] .
Continuity at z =0 =
B =¢ " [Asinhka + Bceoshka], or Asinhka = B [’ — coshka] . (1)

The discontinuity in ¢’ (Eq. 2.125) =

rkA—e K [Acosh ka 4+ Bsinh ka] = 2;7;—2QB, or A[1—e % coshra| = B 2};@_: +e Faginhka|. (2)
Plugging (1) into (2) and cancelling B:
(e — cosh ka) (1 — e "% cosh ka) = 2};1: sinh ka + e~ "% sinh? ka.
e’ _ 9 coshka + e K% cosh? ka — e~ K sinh? ka = h2: sinh ka.

. . 2
et 4 e=Ka — 9 cosh ka + ma
h2k

. mo
sinh ka, |cos Ka = coshka + 72 sinh ka.
K

This is the analog to Eq. 5.64. As before, we let 3 = maa/h? (but remember it’s now a negative number), and
this time we define z = —ka, extending Eq. 5.65 to negative z, where it represents negative-energy solutions.

In this region we define

inh
f(2) :coshz+6Sln z

(3)

In the Figure I have plotted f(z) for 3 = —1.5, using Eq. 5.66 for postive z and (3) for negative z. As
before, allowed energies are restricted to the range —1 < f(z) < 1, and occur at intersections of f(z) with the
N horizontal lines cos Ka = cos(2rn/Na), with n =0,1,2... N — 1. Evidently the first band (partly negative,
and partly positive) contains N states, as do all the higher bands.

> .

1
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Problem 5.21

2
Equation 5.56 says K = - = Ka = 277%; at the bottom of page 227 we found that n=0,1,2,... ,N — 1.
a

Each value of n corresponds to a distinct state. To find the allowed energies we draw N horizontal lines on
Figure 5.6, at heights cos Ka = cos(2mn/N), and look for intersections with f(z). The point is that almost all
of these lines come in pairs—two different n’s yielding the same value of cos Ka:

N=1=n=0= cos Ka=1. Nondegenerate.

N=2=n=0,1=cosKa=1,—1. Nondegenerate.

3=>n=0,1,2=cosKa=1, —%, —1L. The first is nondegenerate, the other two are degenerate.

N 2

N=4=n=0,1,2,3=cosKa=1,0,—-1,0. Two are nondegenerate, the others are degenerate.

Evidently they are doubly degenerate (two different n’s give same cos Ka) except when cos Ka = +1, i.e., at

the ‘top or bottom of a band. ‘ The Bloch factors ¢ lie at equal angles in the complex plane, starting with

1 (see Figure, drawn for the case N = 8); by symmetry, there is always one with negative imaginary part
symmetrically opposite each one with positive imaginary part; these two have the same real part (cos Ka).
Only points which fall on the real axis have no twins.

sin(Ka)
A

n=2

n=1

n=0) cos(Ka)

n=7

Problem 5.22
(a)

3
1 2 . OTxTA\ . Trxp\ . 17Tmze . STxA\ . 17Trxp\ . TTxc
Y(xa,xp,20) = — - sin sin sin — sin sin sin
V6 a a a a a a a
. (771'96,4) . (17#%3) . (57?3;0) . (7773:,4) . (57Tx3> . (1771'360)
+sin sin sin — sin sin sin
a a a a a a
(1771'10,4) . (57mc3> . (77mcc> . (177ra:A> . (77mc3> . <5mcc)]
sin sin — sin sin sin .
a a a a a a

+ sin

(b) (i)

o= (V2] [ (5o () o ()]
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(i)

3
1 2 . (T4 . [TXB\ . 1972
Y = ﬁ (\/%) {sm( " )sm( " )sm( " )
L /TN . 19tz . /mzce . 19tz 4\ . /7mxB\ . [TxC
-+ sin (—) Sin S1n ( ) -+ sin S ( ) S1n ( ) .
a a a a a a

{ . <57rwA> . (77mc3) . (177mcc) . (57rxA> . <177rx3) . <77r:vc>
sin sin sin sin sin sin
a a a a a a
. (77r A) . (1777333) . <5mcc> . (77m:,4) . (57mt3) . (177mcc)

+sin sin sin + sin sin sin

a a a a a a

(177rmA) . (57Tx3) . (77rxc> . <177rx,4> . (77rx3> . (57mcc>]
sin sin + sin sin sin )
a a a a a a

(iii)

+

Problem 5.23
(2) Enyngns = (N1 +no+n3+ 2)hw = Jhw = ny +no+n3 =3. (ny,n2,n3=0,1,2,3...).
2 2

State Configuration # of States

nq o ns (No,Nl,Ng...)
0 0 3
0 3 0 ‘ (2,0,0,1,0,0....) ‘ Possible single-particle energies:
3 0 0
o 1 2 Eo = hw/2: Py =12/30 = 4/10.
0o 2 1 Ey =3hw/2: P, =9/30 = 3/10.
1o 2{[(1,1,1,000...)] 6] Ey = 5hw/2 : Py = 6/30 = 2/10.
1 2 0 E; =Thw/2: P3 =3/30 =1/10.
2 0 1
2 1 0
11 1 ‘ (0,3,0,0,0 ...) ‘

Most probable configuration: ‘ (1,1,1,0,0,0 ...). ‘

Most probable single-particle energy: | Ey = %hw

(b) For identical fermions the only configuration is ‘(1,1,1,0,0,0 ...) (one state), | so this is also the most

probable configuration. The possible one-particle energies are
By (Py=1/3), By (PL=1/3), E»(P,=1/3),
and they are all equally likely, so it’s a 3-way tie for the most probable energy.

(c) For identical bosons all three configurations are possible, and there is ‘one state for each. | Possible one-
particle energies: ‘EO(PO =1/3), E1 (P =4/9), Ex(P2 = 1/9), E3(Ps = 1/9). | Most probable energy:
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Problem 5.24

Eq.5.74= Q=6 H ]\;ln! (distinguishable),
Here N = 3, and d,, = 1 for all states, so: %! 1 )

Eq. 5.7 = @Q = ]_:[1 N = N (fermions),

Eq.5.77= Q = 1 (bosons).

(In the products, most factors are 1/0! or 1/1!, both of which are 1, so I won’t write them.)
1
Q=6x—= (distinguishable),

3!
Configuration 1 (N7 = 3, others 0): — 1 « 1 — @ (fermions)
31 (=2)! ’
Q= (bosons).
1 1
Q=6 1>< e 2_i = (distinguishable),
Configuration 2 (N5 = 1, N13 = 2): - s :
nfiguration 2 (N5 13 ) Q= Tt 21! —@ (fermions),
Q= (bosons).
1 1
Q=6 xla kT 1: (distinguishable),
Configuration 3 (N, = 2, Nig = 1): _ R ~
onfiguration 3 (N 19 )] Q= 1)1 X Ti01 _@ (fermions),
Q= (bosons).
1 1 1 . .
Q=06x TR TR T @ (distinguishable),
Conﬁguration 4 (N5 = N7 = N17 = 1) Q — L X L X L — (fermions),

0!~ 1!0! — 1l0!
Q= (bosons).

All of these agree with what we got “by hand” at the top of page 231.

Problem 5.25

N =1 :- can put the ball in any of d baskets, so ways.

- could put both balls in any of the d baskets : d ways, or
N =2:< - could put one in one basket (d ways), the other in another(d — 1) ways—but it
doesn’t matter which is which, so divide by 2.

Total: d + 3d(d—1) = 3d(2+d — 1) = 3d(d + 1) | ways.

- could put all three in one basket : d ways, or
- 2 in one basket, one in another : d(d — 1) ways, or
- 1 each in 3 baskets : d(d — 1)(d — 2)/3! ways.

2
[
w

Total: d+ d(d—1) +d(d —1)(d — 2)/6 = d(6 + 6d — 6 + d — 3d + 2) = Ld(d® + 3d + 2)
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_[ddr @]

6

- all in one basket: d ways, or

- 3 in one basket, 1 in another: d(d — 1) ways, or
N =4:< -2 in one basket, 2 in another: d(d — 1)/2 ways, or

- 2 in one basket, one each in others: d(d — 1)(d — 2)/2, or
- all in different baskets: d(d — 1)(d — 2)(d — 3)/4!

Total: d+ dld—1)4+dd—-1)/2+d(d—1)(d—-2)/24+d(d—1)(d—2)(d—3)/24
= 5:(24 +24d — 24 + 12d — 12 4 12d? — 36d + 24 + d* — 6d*> + 11d — 6)
d(d+1)(d+2)(d+3)
24

dd+1)(d+2)---(d+N—-1) (d+N-1)! |(d+N—-1
N! ~ N!(d—-1)! '

Proof: How many ways to put IV identical balls in d baskets? Call it f(N,d).

- Could put all of them in the first basket: 1 way.

- Could put all but one in the first basket; there remains 1 ball for d — 1 baskets: f(1,d — 1) ways.
- Could put all but two in the first basket; there remain 2 for d — 1 baskets: f(2,d — 1) ways.

ways.

= 5 d(d® 4+ 6d* 4+ 11d + 6) =

The general formula seems to be f(N,d) =

- Could put zero in the first basket, leaving N for d — 1 baskets: f(IN,d — 1) ways.

Thus: f(Na d) = f(oad_1)+f(lad_1)+f(27d_1)+ : +f(Nad_1) = Zj\;o f(.]ad_l) (Where f(oad) = 1)
It follows that f(NV,d) = Z;V:_Ol fU,d=1)+ f(N,d—1) = f(N—-1,d)+ f(N,d—1). Use this recursion relation
to confirm the conjectured formula by induction:

(d " x . 1) - (d ;Zi; 2) (d " JZX . 2) - (J\(fd+1])\!7(d_2)i)! (CleT(c]zV _2;) !

(d+ N —2)!

@d+N-1)! [(d+N-1
- NId- )(N td-1)= _< )'/

Ni(d—1)! d—1

It works for N =0 (dgl) =1l,and ford=1: (%) = 1 (which is obviously correct for just one basket). QED

Problem 5.26

A(z,y) = (22)(2y) = 4zy; maximize, subject to the constraint (z/a)? + (y/b)? =

bAL (xy)

T
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oG 2 \x Az
_ 2 2 _ _ _
G(x,y,/\):4acy+)\[(x/a) + (y/b) —1]. %—4y+?—0:>y——ﬁ.
2\ 2 A A2
% =4z + b—Qy =0=4z = 2 (—%) Sdr=_gpr=r= 0 (minimum), or else A = £2ab.
2abx b . . .
So y = Foz = T~ We may as well pick z and y positive, (as in the figure); then y = (b/a)z (and
A= —2ab). oG 0:>( ) ( 1 (of course), sox—Q—i-%—l or 3302—1 or x = a/v/2, and hence
N E)N a? = a202 T a27 7 N ’

y="ba/(aV2) =y=0/vV2. A=4 =|2ab.

= 1

)
2

Problem 5.27

(a) In(10!) = In(3628800) = 15.1044; 10In(10) — 10 = 23.026 — 10 = 13.0259; 15.1044 — 13.0259 =
2.0785; 2.0785/15.1044 = 0.1376, or |14%]

z | %
20 | 5.7
100 | 0.89
(b) The percent error is: In=!) = zl?(z) RN 100. 50 | 1.9
In(=!) 90 | 0.996
85 | 1.06
89 | 1.009

Since my calculator cannot compute factorials greater than 69! I used Mathematica to construct the table.
Evidently, the smallest integer for which the error is < 1% is

Problem 5.28

V (o9}
Equation 5.108 = N = 32 / k*n(e) dk, where n(e) is given (as T — 0) by Eq. 5.104.

72 Jo
Fms 3 27.2
i Rk OmE
So N = 2‘;2 /0 K dk = 2‘7:2 n?l)ax where kpax is given by ﬁ = 1(0) = Ep = kpax = %
N = ‘2/53 (2mEr)®/?.| Compare Eq. 5.43, which says
W (. o Ne\*? @mER)*? . ,Ng v ”
EF 2m 31 VvV , OT T =37 77 or N = —37T2qh3 <2mEF> .

Here ¢ = 1, and Eq. 5.108 needs an extra factor of 2 on the right, to account for spin, so the two formulas agree.

Vh2 Kmax 4 VHEZ kb v 5
: _ max _ /2
Equation 5.109 = Eyo; = - ; k*dk = PP = FEior = 02 (2mERr)>/~.
VK2 5

Compare Eq. 5.45, which says Eio; = m—kaax. Again, Eq. 5.109 for electrons has an extra factor of 2, so
T2m

the two agree.
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Problem 5.29

(a) Equation 5.103, n(e) > 0 =

allowed energies e.

1 - (e —p)
- - (e—p)/kBT
ele—m)/ksT _q >0=e PE>1= kol >0=|e>u(T),| for all

h2
(b) For a free particle gas, E = 2—k2 — 0 (as k — 0, in the continuum limit), so u(T) is always negative.

n2 /111
(Technically, the lowest energy is 2—7T (l_2 + 2 + l_2> , but we take the dimensions [,[,[, to be very large
m T Yy z )

o2 (22 2m—p) kT _ |
always positive, and the only T dependence is in u(7T) and kgT. So, as T decreases, (h?k?/2m) — u(T)
must also decrease, and hence —u(T) decreases, or u(T) increases (always negative).

N 1 /°° k2 h2k2 N \/72kaTx1/2. Jikamx,m
h ’ ho 2
0

1 [ k>
in the continuum limit.) Equation 5.108 = N/V = —/ dk. The integrand is
0

(c) v =32 ke T ] dk. Let z = kT SO

N 1 [2mkgT 3/2 1 oo gl1/2 o0 g3/2-1
R it Z - d h de =T1(3/2 2).
vV or2 ( 12 > 2/0 v 1 O VRO /0 1 o =T6/2)6/2)

dk =

dx.

N T\ ok [ N \*?
Now T'(3/2) = V/7/2; ((3/2) = 2.61238, sov:2.612(mk3 ) 1L ( ) .

27 h2 ’ ¢ mkg \ 2.612V

(d)

N 1 0.15 x 10° kg/m”
N _ mass/volume _ X g/m 9.9 % 10% /m®,
14 mass/atom 4(1.67 x 10~27kg)

27(1.05 x 10734] - 5)2 2.2 x 1028\ >/
T = - 1 K.
© 4(1.67 x 10727kg)(1.38 x 10-2 J/K) \ 2.61m3

Problem 5.30
(a)

2mc 2mc h (27c)3
w =2V = ——, 50 dw = ——5dA, and p(w) - 72e3 )\3(627rhc/kBT/\ — 1).

A A2

p(w)|dw| = 8mh

1 2me - _ 1672he
\3(e2rhe/kpTA _ 1) ‘_— d)“ =p(\)d\=|p(\) = N5 (e2mhe/kpTx — 1)

(For density, we want only the size of the interval, not its sign.)

(b) To maximize, set dp/d\ = 0:

_ 2mhe/kpTA
0 — 1672he {)\6 5 e (2rhc/kpT) ( 1 )}

(e2mhe/kpTA _ 1) h A5 (e2mhe/kpTA _1)2 T2
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2mhe
i 5 QNEC/kBTA _ 1 — QWHC/kBTA .
(e )=e kT

Let @ = 2whc/kpT); then 5(e® — 1) = ze®; or 5(1 —e™*) = z, or 5e~* = 5 — z. From the graph, the
solution occurs slightly below z = 5.

orhe 1 (6.626 x 10734 J - 5)(2.998 x 10°m/s) 1

Mathemati s 2 = 4.966, 50 |Amax = e | =
avhematica says @ ) 50| Amax = 066 kg T (4.966)(1.3807 x 1022 J/K) T

2.897 x 1073 mK/T. |

Problem 5.31
From Eq. 5.113:

E o o0 W3 I
V B »A; p(W) dw = 7T203 A (ehw/kBT _ 1) dw. Let x = k‘B—T Then

E  h (kgT\* [>® a* (kpT)* (kgT)* 7 kL N
= = SB - T(4)¢(4) = 6T = T
v ( h ) /0 1= T W = s 655 = 5

72(1.3807 x 10~23 J /K)* ., )
_ T = 7. 1016 T*. QED
[15(2.998 > 10° /)3 (1.0546 x 10-34J - 5)3 7:566 > 107 Faa T Q
Problem 5.32
From Problem 2.11(a),
h 3h
(z)o = (x)1 =0; (2%)o = Gy (%)) = GY
From Eq. 3.98,
@or = [ wolain @) de = Olalt) = 1/ 31— (Vidoo + V051 1) = /5.
oo 2mw 2mw
h 3h 2h
Equation 5.1 — )Ny = — + 2 = =,
(a) Equation 5.19 = ((z1 — z2)")4 5t 5 0 i
2h h h
1 — 2 = — — — = —
(b) Equation 5.21 = ((x1 — z2)°)+ o 22mw —
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h 3h

Equation 5.21 = —x9)?)—
(c) Equation ((x1 — 22)*) —

Problem 5.33
(a) Each particle has 3 possible states: 3 x 3 x 3 =

(b) All in same state: aaa, bbb, ccc = 3.

2 in one state: aab, aac, bba, bbe, cca, ccb = 6 (each symmetrized).

3 different states: abc (symmetrized) = 1.

Total:

(c) Only abc (antisymmetrized) =

Problem 5.34
7T2h2 h2 2

Equation 5.39 = E,,_,, = ——
2m

My

A = 1,1, is the area of the well). Two electrons per state means

1 Nq [ 72 Ng\ /2
= (%> orhe = (”f) = (210)'/2,

where 0 = N¢/A is the number of free electrons per unit area.

PPk nh’o

2m

" EF
m

n2 ni k
LR I L
<lg+zg om

TNy TN
( z —y) Each state is represented by an

L 1,

intersection on a grid in “k-space”—this time a plane—and each state occupies an area 72/l,l, = 7% /A (where

~Y
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Problem 5.35
()

4 K2 (3n2Nq)%/3 (4 —2/3 2h2 (9 5/3
V= CaR? JoJ S L Vi et 7 = (20Ng)
gty %0 1072m (3” ) 15mmR2 (4” q)

(b) Imagine building up a sphere by layers. When it has reached mass m, and radius r, the work necessary
to bring in the next increment dm is: dW = —(Gm/r)dm. In terms of the mass density p, m = %mﬂ?’m
and dm = 4xr2drp, where dr is the resulting increase in radius. Thus:

4 d 1672
dW = —Ggﬂr3p47rr2p % = —Tﬂ-pQG?Adr,

and the total energy of a sphere of radius R is therefore

1672 R 1672 p* R® NM
Egrav = — 2 4 dr = ———G. But p= —
o 3 pG/O rdr 15 G ut p YRy S0

_167r2R5 9NZM> 3GN2M2

E grav —

15 16m2R¢ | 5 R
(c)
A B 2% (9 5/3 3 o
Fiot = i where A = Tommm (Zqu> and B= gGN M=.
Bow 24 B 9a=BR, s rR=22- 2" (9 5
iR~ R®  R2 - B 15mm \4" 3GN2M2
5/3 2/3
Ao () (22| (NN B2 | (9T a
9 4 N2 ] GmM? 4 GmM? N1/3
P (9_7r>2/3 (1.055 x 10734 J - 5)2(1/2)/3 N1/
4 (6.673 x 10~11 Nm? /kg?)(9.109 x 1031 kg)(1.674 x 10~27 kg)2
=|(7.58 x 10® m)N~1/3.
(d) Mass of sun:  1.989 x 10%° kg, so N = 1989 X 107 1.188 x 10°7; N~1/3 =9.44 x 10=20
CoT & T L6TAx 1027 ’ - '

R = (7.58 x 10%%)(9.44 x 1072%)m = | 7.16 x 10°m | (slightly larger than the earth).

(e)

h? 5 Ny 2/3 h? 97 2/3 )
From Eq. 5.43: FEp = o (37T 13 = omi? INq . Numerically:
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Er

(1.055 x 1034 J - )2 Ir o 11778 Y
_ ( 1188 x 10°7)=| = 3.102 x 107147,
309,100 x 10~ kg) (7.16 x 105 m)Z | 4 188> 1075 X

4
i L
or, in electron volts: Ep = 1602 x 10-19 eV =[1.94 x 10° eV.

Eest = mc? = 5.11 x 10° eV, so the Fermi energy (which is the energy of the most energetic electrons) is
comparable to the rest energy, so they are getting fairly relativistic.

Problem 5.36

(a)
Vo, heVo [FEo heV 3m2Ngq 1/3
dE = (hck)ﬁk dk’?Etot = ? o k°dk = WkF7 kF = % .
So B\ — he 302 Ng)4/3y—1/3
O Lot = m( T Nq) :
(b)

4 he o o s (AT TP e (9 4/3
=z Egeg = ——(372Ng)*/3 [ == =-—|(=7N :
V= gml = Faey = pop(3m N7 | 3 srr \1" 4

Adding in the gravitational energy, from Problem 5.35(b),

A B h 4/3 dE¢o A-B
EBiot = — WhereAE—c<§7qu> andegGN2M2. tt:_( ):0:>A:B,

R R’ 3r dR R?
but there is no special value of R for which FE}.; is minimal. Critical value: A = B(Eit = 0) =
he (9 AR
— | =7N = -GN?M?
3 < i q) 5G , or

N 15 e (he g 15 — (1055 x 1074 ] -5 x 2.008 x 10°m/s 3/2 (1/2)?
“ 16 G M3 | 16 6.673 x 1011 N - m2 /kg’ (1.674 x 10-27 kg)3

=[2.04 x 10°7.| (About twice the value for the sun—Problem 5.35(d).)

(c) Same as Problem 5.35(c), with m — M and ¢ — 1, so multiply old answer by (2)%/3m/M:
_ 95/ (9.109 x 10731)
N (1.674 x 10-27)

R = (1.31 x 10> m)(9.44 x 1072%) =12.4 km. | To get Er, use Problem 5.35(e) with ¢ = 1, the new R,

and the neutron mass in place of m:

7.16 x 106\” /9.11 x 10~31
_ 92/3 5 _ —
Ep=2 (1_24 v 104> (1.67 > 10_27> (1.94 x 10° eV) = 5.60 x 107 eV =[56.0 MeV.

The rest energy of a neutron is 940 MeV, so a neutron star is reasonably nonrelativistic.

R (7.58 x 10® m)N~1/3 = (1.31 x 10> m)N~Y/3. Using N = 1.188 x 10°7,
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Problem 5.37
(a) From Problem 4.38: E,, = (n+ 2)hw, with n =0,1,2,...; d, = 2(n+ 1)(n+2).
From Eq. 5.103, n(e) = e~ (c=W/ksT 50 N, = L (n+1)(n + 2)eln—3hw)/kpT g—nhw/kpT

oo 1 o0
N = Z N, = 56("*%ﬁ“’)/k5T Z(n +1)(n+2)z", where z = e~ "™/k2T  Now
n=0

n=0

1 > x > d x > 1 >
— no_ — n+1:>_ — N - 1™,
1-2z gx 11—z nz:;)x dx (1—:10) Z(n—l— @ :>(1—x)2 Z(n—i— e

n=0

2 00 d 9 o )
g = o 0 and hence (T ) = Dok D 2 = 2

11—z de \ (1 —2)2 1—72)3°
n=0 n=0
Z(" +1)(n+2)2" = - So N = en/knTo=fhofipr L
= (1 — x)3 (1 _ e—hw/kBT)?;

et/ksT — N(1- e*hw/kBT)%%h“/kBT; w= kBT[lnN +3In(1 — e’h“/kBT) + %hw/kBT].

oo 1 o0
E= ZNnEn = 5%6(“_%ﬁ”)/k3T Z(n +3/2)(n+1)(n+2)2". From above,

n=0 n=0

23/2 i 32 d 223/2 = n+1/2
TP =D+ D(n+22"2 = e =Y (n+3/2)(n+1)(n+2)a"2, or
n=0 n=0

> 1 d [ 2z°/? 2 312 32°3/2 3(1+z)
3/2)(n+1)(n + 2)2" = — — _ 2 _ .

;(n+ /2)(n+1)(n+2)x 172 do ((1—x)3> 2172 | (1= 2)3 + 1— ) 1— )

—hw/kpT
= %hwe(ufghw)/kBT i(’)il + (in /:Bi)i' But e(h—3hw)/ksT _ N(1— e /ksTy3 g

(1 + e*hw/kBT)

3
E = §th—(1 o)

= e W/ksT (0, so|E ~

SIS

(b) kpT << hw (low temperature Nhw | (p~ 3hw). In this limit, all particles

)
are in the ground state, Fy = %ﬁw

(c) kT >> hw (high temperature) = e "/*8T ~ 1 — (hw/kpT), so| E ~ 3NkpT

(1~ kpT [InN + 31In (hw/kgT)]) . The equipartition theorem says E = N#2kpT, where # is the number
of degrees of freedom for each particle. In this case #/2 = 3, or (3 kinetic, 3 potential, for each
particle—one of each for each direction in space).
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Chapter 6

Time-Independent Perturbation
Theory

Problem 6.1

) = | Zein ("5a) , so B = (I 1S) = 2 [Csi (") (o~ 5) an

2 nmwa 2 nmw 0 if n is even
1 _ == 2 (0 _ 2 (7 _ ) )
En = sn ( ) i ( ) { 2a/a, if n is odd. }

For even n the wave function is zero at the location of the perturbation (x = a/2), so it never “feels” H'.

(b) Here n =1, so we need

(W [H'|9Y) = 2?0[ /Sin (?m) ) (a: — g) sin (ga:) dx = 2§Sin (g) sin (%) = 2jasin (%) .

This is zero for even m, so the first three nonzero terms will be m = 3, m = 5, and m = 7. Meanwhile,

w2h?
E(1) — E’?n = W(l — m2), SO
1 (2a/a)sin(mm/2) o  2a2ma?® [ -1 1 0 -1
DS EY) — EY Um = T T T T T
m=3,5,7,... m

= M\/? 1sin S—Fx 1 sin 5—7rx + 1 sin 7—7T;v +

- 7m2h? Va |8 a 24 a 48 a
=2 9 i 3—7rac — 1sin 5—7rac + 1 sin 7—7Tx +

| m2R2 Y 2 a 3 a 6 a T
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Problem 6.2

(a) En=(n+ 3)h', where ' = k(1 +¢)/m=wVT+e=w(l+ fe— g + 156

En=(n+ $)hwvT+e=(n+ 5Hhw(l+ e — §e* +--).

(b) H = ik'2* — {ka? = $ka*(1+ € — 1) = e(3kx?) = €V, where V is the unperturbed potential energy. So

El = (2| H'|¢2) = e(n|V|n), with (n|V|n) the expectation value of the (unperturbed) potential energy
unperturbed state. This is most easily obtained from the virial theorem (Problem 3.31), but it
can also be derived algebraically. In this case the virial theorem says (T') = (V). But (T) + (V) = E,,. So

(V) =1E% = Z(n+ })hw; |E! = &(n+ 3)hw,| which is precisely the €' term in the power series from

in the nt"

— 2

part (a).

Problem 6.3

(a) In terms of the one-particle states (Eq. 2.28) and energies (Eq. 2.27):

SO

2
Ground state: ¢ (x1,x2) = ¢1(x1)Y1(22) = . sin (%) sin (%

EY = 2E, =

m2h2

ma?’

First excited state: ¥9(x1,22) = % (1 (x1)Y2(x2) + (1)1 (22)]

V2 [ L /TTLN . <27rx2> . <27r$1> . [TTo
=|— |sln (—) sm| —— | +sin sin (—) H
a a a a a

(b)

Bl = (0 H'[¢?) = (~aVh) (3) /0 ’ /O " gin? () sin (722

4 “ 4 T 4
:—& sin’ (E>dx:—&g/ sin4ydy:—ﬂ-3§
0 ™

a 0 a T

Ey = (3| H'[v5)

o 2 @ . T . 27T{I?2 . 27T(E1 . X2
= ( aVO)<a2)//O {sm( o )sm( o )—I—sm( o )sm(
a 2
= —% {Sin (w_x) sin (27r_x) + sin (%—w> sin (W—xﬂ dxr
a Jo a a a a

a 2 T
= _& sin? (%) sin? (%) dr = _8 . g/ sin? y sin?(2y) dy
0

a 0 a ™
8V T 32V [T
=22 -4/ sin?ysinycos?ydy = — 22 [ (sin*y — sin®y) dy
m 0 T Jo

32Vo (3 5
-2 (- 5%) -]
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2 ma?’

) 5(:62 — Iz) dxl dSCQ

2
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Problem 6.4
()

(WO |H[yY) = %a/oa sin (?w) ) (33 — g) sin (%x) dr = 2704 sin (g) sin (%) 7

which is zero unless both m and n are odd—in which case it is +2a/a. So Eq. 6.15 says

5 22\* 1 o mHE
En = m;énzc)dd 7 m But Eq 2.27 says En = W'ﬂ , SO

0, if n is even;
2
B2 — <2a> 1 .

n 2m | — E ——, if nis odd.
2 _ 2)’
h m#n, odd (n m )

1 1 1 1
To sum the series, note that ———— = — . Thus,
(n2—m?) 2n\m+n m-n

1 1 1
for n = 1: 225 Z(m——l—lm>

171 . 1 n 1 n 11 1 1 1 1y 1
~2\4 6 8 2 4 6 8 2\ 2) 4
1 1 1
f =3 = - A —
R P o)
1,5,7,...
1 1+1+1+ +1 1 1 1 1 1 1y 1
6\4 8 10 2 8 10 6\ 6 36
In general, there is perfect cancellation except for the “missing” term 1/2n in the first sum, so the total
1 1 1 0 if n is even;
is o— (—5— | = — . Therefore: |E2 = ’ ’
® on ( 2n) (2n)? eretore " { —2m (a/mhn)?, if nis odd.
(b)
N 0 77/(,,0 1 2 :
H = iekx i (Y | H ) = §ek<m\x [n). Using Egs. 2.66 and 2.69:
2 h 2 2
(mla?n) = ——(m](a2 +ara— +a_ay +a2)n)

2mw

:%[ (n+ 1)+ 2){mln +2) + n(mln) + (0 + 1) (mfn) + /oo — 1) (min - 2)]
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So. form 2, (W8I108) = (3¢) (s ) [V T D00 T D 0v2 + v/l = 1) 0ea].

2mw

E? =

n

\? e VO D05 D 8uis +y/n00— D ns]
() = T Dot D

m#n

_ hw [(n+1)(n+2)0mnte +n(n—1) 6 n2]
16 Z (n i m)

m#n

_ Chw {("“)(”“) n(n—1) } _ S [—%(n—&-l)(n—i—Z)—i—%n(n—l)}

16 n—(n+2) n—(n—2) 16
_ e (—n2—3n—2+n2—n)—Egm(—4n—2)— —21hw n—i—l
ED ED T8 2

(which agrees with the €2 term in the exact solution—Problem 6.2(a)).

Problem 6.5
(a)
E} = (0| H'|¢%) = —gE(n|z|n) =[0] (Problem 2.12).

[(mlx[n)|?

From Eq. 6.15 and Problem 3.33: E? = (¢E)? Z ( Vi
n—m

m#n

(qE)2 h Z [Vn+1 5m,n+1 + \/E’ 5m,n—1]2 (qE)2 [(n+1) 5m,n+1 + n(sm,n—l]

 hw 2mw = (n—m) - 2mw? = (n—m)
E)? n+1 n E)? E)?
- égnu)ﬁ {n(— (:;—i-)l) n—(n-— 1)} B ginuz? [+ 1) +n]= _2(571(32'

h? d? 1
(b) —%d—;’é} + (Emszz — an:) 1 = Ev. With the suggested change of variables,

1 1 E\]? E
—mw?z? — qBz | = —mw? |z’ + q —qF |2 + q
2 2 mw? mw?

1 2 2 2, qF 1 Q(QE)2 / (qE)2 1 2 2 1
T +mwmm+§mw m2wt E mw? 2" 2 mw?
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So the Schrodinger equation says

R a1, 1 (¢E)?
-y - |E+=
2m dz'* * M v { * 2 mw? } ¥

which is the Schrodinger equation for a simple harmonic oscillator, in the variable z’. The constant on
the right must therefore be (n + 1)hw, and we conclude that

_ 1 1(gF)?
En = (n+§)m_§ mw?

The subtracted term is exactly what we got in part (a) using perturbation theory. Evidently all the higher
corrections (like the first-order correction) are zero, in this case.

Problem 6.6

(a)

(b)

WW2) = (g ¥l + B (a—vl + B_vd))

o (alva) + o B (Valty) + BLa (Yplva) + B1A- (ylvp)

afa_ +Bi6-. But Eq.6.22 = By = ay(EL — Wa)/Wap,  so

. (BY — Waa)(BEL —W,,) ot a_
<¢9r|¢0_> = Oé+Oé_ 1 + = W *W = - [|V[/ab|2 + (E_li,_ - Waa)(El - Waa):l .
ab ab b

The term in square brackets is:
[]=ELEY —Woo(EL + EL) + [Wy|> + W2,. But Eq. 6.27 = EL = 1[(W,q + W) £ /], where ¢/ is
shorthand for the square root term. So Ei + EL = Wy, + Wy, and

1 1
EJlrEl = 1 [(Waa + I/Vbb)2 - (\/)2} = Z [(Waa + I/Vbb)2 - (Waa - Wbb)2 - 4|Wab|2] = WaaWbb - ‘Wab|2~

Thus [ ] = WaaWep — |Wab|2 — Waa(Waa + Wbb) + |Wab‘2 + WaQa =0, so <¢3_|1/)0_> =0. QED

WS H'[92) = afa— (Yol H'|¢g) + oy B— (Vo H'[y) + B a— Wy H'|[v5) + B1.0- Wy H'[vp)
= Oéj_a—Waa + aiﬁ—Wab + /Bia—Wba + ﬂj—ﬂ—Wbb

(El - Waa) (EJlr B Waa) (Ei - Waa) (El - Waa)
=ala_ Waa Wa - 1 W a W,
QLo [ + Wap W + Wy W, + Wap W, Wor

X 1 1 (E—lﬁ- - I/Vaa)(E‘i - Waa)
=aja_ Waa+E_—Waa+E+—Waa—|—Wbb ‘Wb|2 .
(BY = W) (B = Waa)

Wap|? ’
WY H'|W2) = o a_[EL + E} — Wyq — Wi = 0. QED

But we know from (a) that so
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(c)
(WLIH'WL) = afax (Yol H'[vg) + oL B (ol H'[WR) + BLos (Wp | H'[vg) + B16x ¥y | H'[0p)

(Ejlz B Waa)
Wab

(EL — Wi)

W,
Woe + Wap

= |Oéi|2 Waa + Wab :| + |ﬁi|2 |:Wba

(this time I used Eq. 6.24 to express « in terms of 3, in the third term).

S WEH L) = losP(BL) + |82 *(BL) = (Jaxl® +[8£*) EL = EL. QED

Problem 6.7
(a) See Problem 2.46.
(b) With a — n,b — —n, we have:

Ve L/2 2, 2 Ve o0 2, 2 Ve
szwbb:—fo e~ v /e dm%—fo/ e~ v /a dx:—foa\ﬁ_r.
—L/2

— 0o

Wab =
L J_ 1)

6712/a2€—47rniz/de ~ _% /OO e*(x2/a2+4ﬂnim/l/)d$ — _%aﬁe*@ﬁna/[/)?.

(We did this integral in Problem 2.22.) In this case Wy, = Wy, and Wy, is real, so Eq. 6.26 =

v
El = Wao £ |Wa|, or EL= _ﬁ%a (1 - e—(zwna/L)z).

(BY — Waa) _

Wa b

+/7(Voa/L)e~ mme/L)?

(c) Equation 6.22 = § = « —/(Voa/L)e-CrnalD)?

= Fa. Evidently, the “good” linear

combinations are:

— _ 1 1 i2tnz/L 7i27rnz/L:| s 2 . 2mnx
Yy = ahp —atpp = 2V {6 e =14/ 7 Sin 17 and

2 2
Yo =, +ap_, = 7 cos ( WLMJ> Using Eq. 6.9, we have :
L/2

2 —22/a2 . 2mnx
B = el s = 2(-) [ e n( i )dx,

—L/2

2 L/2 2.2 2mTnx
EL =(y_|H'|p-) = Z(—Vo)/L/2e @7/a% cos? ( T ) dx.
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160 CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

But sin?f = (1 —cos260)/2, and cos?6 = (1 + cos26)/2, so
Vo [ _ 2,2 4mnx Vo X a2 9,9 4mnx
1o _ z%/a 1 ) - _ z%/a / z%/a .
E; T [ e { qicos< T )} dx T {/we dr F 3 e cos T dx

= —% {\/Ea ¥ aﬁe_(Q”"a/L)ﬂ = —ﬁ% {1 ¥ e‘<2ma/L)2] , same as (b).

(d) Af(z) = f(—x) (the parity operator). The eigenstates are even functions (with eigenvalue +1) and odd
functions (with eigenvalue —1). The linear combinations we found in (c¢) are precisely the odd and even
linear combinations of v,, and ¥_,,.

Problem 6.8

Ground state is nondegenerate; Egs. 6.9 and 6.31 =

2\° “ ™ T T a a 3a
1_ (2 3 s (T N 2 (T N\ oo (T _a _a _ 90
E = (a> a VO///Osm (ax> sin (ay) sin (az) o(x 4)5(y 2)6(2 1 )dx dy dz

— 8V} sin? (%) sin® (g) sin® (%T) = 8V, (%) 1) (%) -

First excited states (Eq. 6.34):

2
W = 8Vh /// sin? (§x> sin? (§y> sin? (%z) o(x — %)5(3; — %)5(2 - ??Ta) drdydz

=t () W =%,

3 3
Wy = 8V sin? (g) sin (g) sin(r) sin <77r) sin <Z7r) = 0.

W,e = 8Vp sin (%) sin (g) sin? (g) sin (37”> sin (%) = 8V} (%) 1)(1)(~1) (%) — 4V,
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(TN (T (TN . (3w
Whye = 8V sin <Z> sin <5> sin(7) sin (5) sin (Z) =
10-1 (1-X 0 -1
W=4Vp | 00 0 | =4VD; detD-N=| 0 -X 0 [=-A1-N?+A=0 =
~10 1 —1 0 (1-X)
A=0, or (1-XN?=1=1-A=4+1=X=0 or A=2.
So the first-order corrections to the energies are | 0, 0, 8Vj.
Problem 6.9
1 0 0
(a) I x1=1 0 |,|eigenvalue x2=| 1 |,]|eigenvalue x3=| 0 |,|eigenvalue
0 0 1
Vo(l—€¢) =X O 0
(b) Characteristic equation: det(H — \) = 0 Vo—A €W =0;
0 Vo [2Vh — Al
Vo1 =€) = Al[(Vo = M (2Vo = A) = (V0)?] = 0= |\ = Vo(1 —€). |
(Vo =N (2Vo —A) — (V)2 = 0= A2 = 3VpA + (2VF — V) =0 =
3Vo £ /IVE — 4(2V7E — 2V2 \% \%
\ = 20 VoV (2Vg —«€ 0):_0[3:|: 1-1—462}%—0[31(14—262)},
2 2 2
1% %
Ao = (3— \/1+462) AVl A= (3+\/1+4e2) ~ Vo(2+ €2).
(c)
-100 -100 0
H=ep| 001 |; Ej=(xs|H|xs)=€¢p(001)| 001 0
0 10 0 10 1
0
=eV(001) [ 1| =[0] (o first-order correction).
0
-100 0 0
" Hl 2
Egzzw; alH xs)=eo (100) | 0 01 | [o0]=evp(100)[1]=0,
m=1,2 3 m 010 1 0
0
(x2|H'|x3) =eV5 (01 0) [ 0 | =elh.
1

EY—ES=2Vy—Vo=Vo. So E2=(Vp)?/Vo= Through second-order, then,

Es=EY+E3 +E2=2Vo+0+€Vy=Vo(2+¢?) (same as we got for A3 in (b)).
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162 CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

(d)

—-100
Waa = (a|H'|x1) =€V (100) | 0 01

3
|

-100 0 0
Wbb=<X2|H’|X2>:eVO(010) 0 01 1 :eVO(Olo) 0] =0.
010 0 1
-100 0 0
Wabz(X1|H'|x2>=6VO(lOO) 001 1 zeVo(lOO) 0] =0.
010 0 1
Plug the expressions for W,,, Wy, and Wy, into Eq. 6.27:

1
Bl = 3 l:—GVQ +0+4/2VE + O} ( eVo £ eV) = {0, —eVp}.

To first-order, then, ‘El =Vo—eVo, Es=V,
we got in (b).

and these are consistent (to first order in €) with what

Problem 6.10

Given a set of orthonornal states {1/)?} that are degenerate eigenfunctions of the unperturbed Hamiltonian:

HZ/J? = Eowgo'v <¢0|1/}l> le
construct the general linear combination,

n

_ § 0

= ijwj.
j=1

It too is an eigenfunction of the unperturbed Hamiltonian, with the same eigenvalue:
n
HO,wO ZQJHO,(/}O EO Zaj,(/};) _ EO,wO'
j=1

We want to solve the Schrédinger equation Hi = Et for the perturbed Hamiltonian H = H® + \H'.
Expand the eigenvalues and eigenfunctions as power series in A:

E=E"+AE*+ NE>+ ..., =9+ ' + 22 +
Plug these into the Schrédinger equation and collect like powers:
(HO 4+ XH") (% + Mpr + X202 ) = (EC + AE + N2 E2 4+ )@+ Mt + 0% +..) =
HOWO 4 MN(HOWY + H'yO) + ... = B0 + MN(Ep! + E14°) +
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The zeroth-order terms cancel; to first order
HOY! 4+ H'¢O = EOpt 4 B0,
Take the inner product with w?:
(W H YY) + (0] |[H'y°) = E°WJlv") + EY () [y°).
But  (F|H') = (HOPY|p') = EO(P2|4"),  so the first terms cancel, leaving

(W51 H'Y) = B (47 |[v°).

Now use ° = Z oy,  and exploit the orthonormality of {1)}:
1=1

S a@fH ) = BV a(@flef) = B'ay,

=1 =1

or, defining

Wi = WOH' 1Y), | D Wi = E'au.
=1

This (the generalization of Eq. 6.22 for the case of n-fold degeneracy) is the eigenvalue equation for the matrix
W (whose jI'" element, in the {49} basis, is Wj;); E' is the eigenvalue, and the eigenvector (in the {19} basis)
is x; = a;. Conclusion: The first-order corrections to the energy are the eigenvalues of W. QED

Problem 6.11

m €2 21 1 1 2 2 1 a?mc?
F Eq. 4.70: E,, = — | — —=_Iml = aly D dh iy
(a) From Eq. 4.70 l2h2 (471'60) n? pme (hc 47‘(60) n2 2n2

(b) I have found a wonderful solution—unfortunately, there isn’t enough room on this page for the proof.

Problem 6.12

Equation 4.191 = (V) = 2E,,, for hydrogen. V = — ¢ L Ep=— |-~ )’ L So
d ' S yarogen.  dwegr’ T 2h2 \ dmeg '

e? /1 m (e \’| 1 1 me* \ 1 1
B v )= o n2 —)=|-—535) =5 =-—5 (Eq472). QED
dmeg <7“> [2712 <47T'50> ] n? ~ <T> <47T€oﬁ2> n?  an? (Eq. 4.72). Q
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Problem 6.13

X 6)! [(3a\”
In Problem 4.43 we found (for n = 3,1 =2, m =1) that (r°) = % <?a) .

|
s=0: (1) = %(1) : (of course). v

1 51 /3a\ " 1 2 1 1 1
= 1: (V=2 (2Z) =2.2 |~ Eq. 6.55 — = .
2 <r> 6!<2) 6 3a |9 (q S 324 9a>

L (AN _ A3\ 1 4 [ 2 Ba. 6.56 1 _ 2
== \r2/ "\ 2 T 6-5 942 | 13542 GRS G2y et a2 T 13502 )

1 31 (3a\"° 1 8 1 1 1
o3 (V=2 (22) = . - Eq. 6.64 = e
2 <7“3> 6! < 2 ) 6-5-4 2743 | 405a° ( 4008 S 5 (5/2)3 - 27 - a3 405a3>

For s = —7 (or smaller) the integral does not converge: (1/r”) = oo in this state; this is reflected in the fact
that (—1)! = oo.

Problem 6.14

—5 ! 5 [E* —2E(V) +(V?)]. Here E=(n+ l)m, v=lmet? o
mc

Equation 6. E} =
quation 6.53 = E, 5 5

1 1\* 1), 1 1
E! = e (n + 5) h2w? — 2 (n + 5) hwgmw2<x2> + 1m2w4<x4>] .
9 1, h
But Problem 2.12 = (z°)=(n+ =-)—, so
2" mw
2 2 4
1 1 1 1 mw
1_ 2 2 2 2 2 4y av| _ 4
E; R (n—|—§) I —(n+§) hw —l—zmw(x )]——802 (x%).

4 h2

From Eq. 2.69: 2~ = T2 (

ai +ara_+a_ay + a2_) (af_ +ara_+a_ay + a2_) )

52
4m2w?

(@) =

(n| (a%a® +ajra_aja_ +aya_a_ay +a_ajyara_ +a_aya_ay +a’al)|n).

(Note that only terms with equal numbers of raising and lowering operators will survive). Using Eq. 2.66,

h2

(o) = sl [ (V=1 n = 2)) + ara_(n|n) + ara((n+ 1) |n))
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CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY 165

+a_aq (nn)) +a_ay((n+1)n)) + (\/WM—FQ)}

(nl [Valn =1) (Vo =1) n)) +n (n[n)) + (0 +1) (n|n))

4m2w2

+n((n+1) 1)) + (0 + 1) (0 +1) [n)) + v+ D +2) (Ve + D +2) n) ) |

52

= o [ = D40’ (n+ Dt n(n+1) + (04 1) + (0 + 1)(n +2)]

ho\? ho\’
=(—) P =n+n?+n*+n+n®4+n+n®+2n+14+024+3n+2)=(—| (6n*>+6n+3).
2mw 2mw

pl=-__-._"
" 8c?2  4Am2w?

mw? h? 5 3 [ h%w?
: 2n+1)=|—— 2n® 4+ 2n + 1).
3(3n° +2n+1) 32<m02>(n +2n+1)

Problem 6.15

Quoting the Laplacian in spherical coordinates (Eq. 4.13), we have, for states with no dependence on 6 or ¢:

Py = (ﬁi).

Cr2dr dr

Question: Is it Hermitian?
Using integration by parts (twice), and test functions f(r) and g(r):

(flp*g) = 712/ fr2 - ( 2 g) Arr? dr = —4rh? /000 fdii (r‘zfl_i) dr
—4mh? {rzfg . —/OOO Z{Zﬁd }
etesil gl [ (7))

A7 k2 (erj_i _rzg%) oo

+ (P flg)-
0

The boundary term at infinity vanishes for functions f(r) and g(r) that go to zero exponentially; the boundary

term at zero is killed by the factor 72, as long as the functions (and their derivatives) are finite. So

(flp’g) = (°flg),

and hence p? is Hermitian.
Now we apply the same argument to

M fad1d (L
r2 dr dr |72 dr dr ’
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166 CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

integrating by parts four times:

g d[1d dg
— 4 —_— 2_ 5 1 2_
(flp°g) = 4mh /0 Tar {r dr LZ‘ dr (r dr)H v
d[1d dg
=4 h4 2f— | — =
AT fdr LQ dr (T drﬂ

L wa [ ()] )
0 0 drdr |r?2d dr
0

ol (B2 )2 2 [ R D3 (8)e)
_ d[1d (adg\]_df d [ ,dg dg
= [ [ (7)) - e () (4 )ﬂ

[~}

ﬁ
Sl

P
VRS

[]
&
N———
—_

i)
|- ()i () 2 lea (DN
()]

|- 5

= 4rht ﬁfi ii 2@
rT\r r 0

df d ( ,dg o df
a 4ﬂh4{$% ( dr) dr ( dr) dr}‘ + ' flg)

This time there are four boundary terms to worry about. Infinity is no problem; the trouble comes at r = 0.
If the functions f and g went to zero at the origin (as they do for states with I > 0) we’d be OK, but states
with [ = 0 go like exp(—r/na). So let’s test the boundary terms using

_/0“

3
| =

Il
N
3
L
—N
| —
=
M)
~
N
| —
ﬁl\?| —_

—
QJl\')
SIS
~

+

ﬁ

S

— 5=
ﬁl\')

S

| — |

w|’_‘

QU
—— =

fr)y=eT/ma g(r)=eT/ma,

In this case

7’2@ _ _i,r,Qefr/ma
dr ma

d 2dg 1 2 _

_ hatd — ) r/ma

dr (T dr) (ma)? (T mar) c
df d 2dg 1 —r/ 1 2 —r/
DA )y - _ - -r/na _9 r/ma
dr dr (T dr na® (ma)? (r mar) e

This goes to zero as r — 0, so the second pair of boundary terms vanishes—but not the first pair:

1d dg 1 2ma\ e
— = 1-— e
r2dr \\ dr (ma)? r

d |1 d [ 5dg 1 5 P
— = — 12 2 _ r/ma
dr LQ dr <T dr)} (ma)3r? [2(ma)” + 2mar — 7] e
d[1d dg 1
207 | = 2 229 — 2 249 _ .21 ,—r/ma_—r/na
" fdr |:7‘2 dr <r dr)} (ma)3 [2(ma)” + 2mar — 7] e ¢

This does not vanish as r — 0; rather, it goes to 2/ma. For these particular states, then,

4
(w0 la,

(flp*g) =

a
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or, tacking on the normalization factor,

8ht (n —m)

1
¥Yn00 = We_r/m7 (Y00 [P ¥moo) = — ——=75 + (P ¥noo|¥moo)s

a (nm)5/2

and hence p* is not Hermitian, for such states.

Problem 6.16
(a)

[L-S,L,) =[LySy + LySy + L.S.,Ly| = Sy [Lg, Ly] + Sy [Ly, Ly + S. [L2, Lg)

= 5.(0) + Sy (—ihL,) + S.(ihL,) = ih(LyS, — L.S,) = ih(L x S),.

Same goes for the other two components, so ‘ [L-S,L] =ih(L x S). ‘

(b) [L -8, 8] is identical, only with L < S: [ [L - S, 8] = if(S x L). |

(c) [L-S,J]=[L-S,L]+[L-S,S] =ih(LxS+SxL)=[0]

(d) L? commutes with all components of L (and S) , so | [L - S, L?] = 0.

(e) Likewise, | [L-S,5%] = 0.

(f) [L-S,J?]| =[L-S,L?] +[L-8S,5?] +2[L-S,L-S]=04+0+0=|[L-S,J%] =0

Problem 6.17

2mc?

2
With the plus sign, j =1+ 1/2 (I=5—1/2): Eq. 6.57 = E} = (En)® (4_71 - 3) .

J

Equation 6.65 = E. = (Ba)?n[iG+1) ~ (G~ 3)( +3) = §]
¥ me? (G—3)il+3)

ome2 (- )0

2mc?

A e G S G )]

En2 4 2
B =gty g = (o) (——."+3+.—”))
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E,)? [ 4
With the minus sign, j =1—1/2 (I=75+1/2): Eq. 657 = E! = ( )< n 3>.

Equation 6.65 = EL =

C2me® \j+1

me?

(B)2n[ji+1) =G +306G+3) -2
j

G+3G+D0+3)

_ (BG4 -2 -39 _(B)? -

me? (j+35)0G+D0+3)

2mc? i+

5" (5 _in

2

2n

me? (j+1)(j+3)

+<j+1)(j+%)} - (2%22‘2 {3 <j+1§7(;‘+%) [H2<j+%)]}

E,)? 4
1> . For both signs, then, Eflq = (En) (3 n ) . QED

2mc? 7j+%

Problem 6.18

EY —EY=hv=

A

,_ ¢ _300x 108 m/s

A 655%x10~"m

2mhe _

X

he=1.97 x 107 MeV-ecm; ) =

1

9

b

5

36
36 (27)(1.97 x 10711 x 106 eV - cm)

E1:>)\:——

5

(1356 V) =6.55 x 107° cm=

En)? 4
—[4.58 x 10 Hz.|  Equation 6.66 = E}, = (En) <3 n > :

2mc2 7j+%

Forn=2:1=0o0rl=1, soj=1/2or 3/2. Thus n = 2 splits into two levels :

j=1/2: Ey =

(Ey)?
2mc?

(-5)--

N | Ot

4

E 2 5 /1 2 FE 2 5 13.6 V2
(m2c)2 - 2( ) = ( V) = —5.66 x 10~ %eV.

2 me2  32(.511 x 106eV)

me?

1(Ey)? 1
(3 - §) = 75( 2)” _ 73—2(3.62 x107*eV) = —1.13 x 10~°eV.

Forn=3:1=0,10r2, soj=1/2,3/2 or 5/2. Thus n = 3 splits into three levels :

j=1/2: Ei =
j=3/2: FE3 =
j=5/2: F3 =

(E3)?
2mc?

(Es)?
2mc?

(Es)?
2mc?

(3
(3

(

12
1

o J—

)=

(B3)* 9 ( 1) () 1

T =5\ gz ) = g (362 10 %eV) = —2.01 x 10~ °eV.

3 E 2 1 — _—
3 (mil = 1 (3.62 x 10 4eV) =—0.67 x 107%eV.
2 (m?;)Q 162 (3.62 x 107 e V) = —0.22 X 1077 eV,
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There are siz transitions here; their energies are (ES + EX) — (EY + E3) = (EY — E9) + AE, where

Ej
[ S—
S
\\\\ -
\\ \\ ~ .
NN j=512
NN .
. .|.—3/2
=12
0
E,
I < -
~ N \\ - \17 \2 ‘37 _]23/2
~ Yy VY J=l/2
4 5 6

AFE = Ei — Fi. Let 8= (E1)?/mc? = 3.62 x 10~%eV. Then:

ar-[(4)-

ar-[(4)(
oo
ar-[(3)- ()
sr-[(-4)+(

1 5 389
AE = | ——= — = __—f3=>54 107
( 162>+<32)]ﬂ o5020 = 543310

864

—iﬂ 8= iﬂ =4.61 x 107 %eV.

1 1 o 65 . —6
_ﬁ>+<§)]ﬂ_mﬂ_9.08xlo eV.

29

=—3=236.45x10"%eV.
2885 36.45 x 1076 eV
119, 6

8= —8645 =49.86 x 10 %eV.

1

eV.

Conclusion: There are siz lines; one of them (5 — %) has a frequency less than the unperturbed line, the

2
3 3

other five have (slightly) higher frequencies. In order they are: 2 — 32;
frequency spacings are:

2 27

Vg — 11 = (AEQ - AEl)/Qﬂ'h = 3.23 x 109 Hz
vs—vy = (AE;—AFy)/2rh = 1.08 x 10° Hz
Vg — V3 = (AE4 - AEg)/Qﬂ'h = 6.60 x 109 Hz
vs—vy = (AEs—AEy)/2nrh = 323 x 10° Hz
Vg — Us = (AEG — AE5)/27Th = 1.08 x 109 Hz

5

2

%. The
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Problem 6.19

<+1)2 ) <_+1> . <a)2 <+1)1 1<a)2 (,+1) a2
— — ¢ = — — ~ — - — o —) —
75 775 it 75 2\j+1 TTY TG+ D)
(07 - « - «
~ . 1 - 1 a? - a?
n=G+P++ - nTUT)TUT) maghy oy
s e e
o o2 “n on(j+ L
”{1 2n<j+%>} Gtz
97 —1/2
o a? o? -1/2
1+ - z[1+$<1+ 1)}
n—(G+3)+\(i+3) —a? n(j+3)

13. 2
_ 3626V [1+ a_2 ( ' n _— §>] , confirming Eq. 6.67.
n J+3

Problem 6.20

1 e

Equation 6.59 = B = RW

L. Say L =h, r = a; then
1 eh
" 4reg mc2ad

(1.60 x 10719 C)(1.05 x 10734 J - 5)

47 (8.9 x 10712 C?/N - m2) (9.1 x 10-31 kg) (3 x 108m/s)” (0.53 x 1010 m)

So a “strong” Zeeman field is Beyxt > 10 T, and a “weak” one is Beyy <10 T. Incidentally, the earth’s field
(107* T) is definitely weak.

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.



CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

171

Problem 6.21
Forn=2,1=0 (j =

1) =[20% 1)
1
2) = 204 -
3)=]211 1)
1
4) =214~

1/2) or Il =1 (j = 1/2 or 3/2). The eight states are:

[, 2626 L 32
;>”7” wmwm}’”%‘z

[y, /262 0@+ 6], -2
1 95 = _1+ 5(1/2)(3/2) }_1+ 3/2 =2/3.

2
In these four cases, F,; = — 13.6 eV [1 + az <g - §>} =-34 eV(l + 3a2>.

5) =213 %)
6) =213 3)
7) =213 -
8) =215 -

4 1 4 16
[ 8262 -0+ 6] _ |, 52 _
g”[” T R TR
2
2)

272 1
In these four cases, E,; = —3.4 eV {1 + il (5 - §)] =-34¢eV <1 + —a2>.

The energies are:

E1 = —34eV
E2 = —34¢eV

E3 = —34¢eV

( )
( )
( )

Ey = =34¢eV (1+ 502) — 2upBext-
E; = —34eV ( )
Eg = —34eV ( )
Er = -34eV ( )
( )

Es = —3.4 eV
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172 CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

E M'BBeXt

»
>

5 (slope 2)

N
>

6 (slope 2/3)
34 (1+0%/16) eV
7 (slope -2/3)

8 (slope -2)

1 (slope 1)
3 (slope 1/3)

3.4 (1450%16) eV
4 (slope -1/3)
2 (slope -1)
Problem 6.22
E2 4n e2 B2mym
E} l s H/ H’ [ ) = _ = 2 .
s = (nlmums | (Hy + Ho Intmyms ) =  2mc? [l +1/2 } + 8megm?2c? 1(14+1/2)(1 + 1)n3ad
QETQL 2E1 E1 042
. o =\ )= F(13.6 eV). (Problem 6.11.)
S N Y G o (NG R VRS
8reom?2c2ad  2-4megm2c2(4megh?)3 | 202 \ 4meg dmeohe ) ’ '
13.6 eV 1 3 mymsg 13.6 eV 3 I+ 1) — mymg
El 2) i — 2= s ED
BT @ { (12 an ' z<z+1/2)(1+1)} FER {4n ESIE

Problem 6.23

The Bohr energy is the same for all of them: Fy = —13.6 eV/2? = —3.4 eV. The Zeeman contribution is the
second term in Eq. 6.79: 15 Bext (m;+2ms). The fine structure is given by Eq. 6.82: E}, = (13.6 eV/8)a?{---} =
(1.7 eV)a?{---}. In the table below I record the 8 states, the value of (m; + 2my), the value of {---} =

l(l+1) - s .
5 {(—l—)—mlm] , and (in the last column) the total energy, —3.4 eV [1—(a?/2){ - - }]+ (m;+2my) 5 Bext-

8 LIl+1/2)(1+1)
State = |nlmyms) (m;+2mg) | {---} | Total Energy

1) = [2001) 1 —5/8 | -3.4¢eV [1+ (5/16)a?] + j1pBext
2) = [200-1) —1 —5/8 | -3.4eV [1+ (5/16)a”] — jupBext
3) = [2111) 2 —1/8 | -3.4eV [1+ (1/16)a”] + 2upBext
4 = [21-1-1) -2 —1/8 [ -3.4 eV [14 (1/16)0”] — 2pupBexs
5) = 2101 1 —7/24 | -3.4 eV [1+ (7/48)a”] + 11 Boxt
6) = [210-1) -1 —7/24 | -3.4 eV [1 + (7/48)a?] — jip Bext
1) = [211-—3) 0 —11/24 | -3.4 eV [1 + (11/48)a?]

B) 21-13) 0 —11/24 | -3.4 eV [1 + (11/48)a?]
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Ignoring fine structure there are distinct levels—corresponding to the possible values of (m; + 2my):

Problem 6.24

Equation 6.72 = EL = ziBext (L +28) = %Bexﬁmsh = 2y Bexs (same as the Zeeman term in Eq. 6.79,
m m
13.6 eV

2 3
with m; = 0). Equation 6.67 = E,; = ——— [1 + a_2 (n - Z)] (since j = 1/2). So the total energy is
n n

13.6 eV 2 3
E=- ° |:1+04_2 (n__>:| +2msMBBext-
n 4

13.6 eV 3 13.6 eV 3
Fine structure is the o? term: Ef = — Yot (n-2) = SN A , which is the same as
n* 4 n3 4n
Eq. 6.82, with the term in square brackets set equal to 1. QED

Problem 6.25

E3 8 E} 8 E, a?
Equation 6. Ei =% (3- = 1 - ; —5 =—— (Problem 6.11
quation 6.66 = Ej, e (3 T 1/2> T2 <3 T 1/2> . 3 (Problem 6.11), so

By (o 8 13.6 oV 8 8
Bl = (= — = 2(3— = — )
57732 < 2 ) (3 j+1/2) 61 (3 j+1/2) 7<3 j+1/2>
8

For J = 1/2 (1/)171/12,1/1671/}8)711’35 = 7(3 - 8) = _5’7 Forj = 3/2 (w37¢47¢57w7)3Hf15 = ’7(3 - 5) = -7

This confirms all the v terms in —W (p. 281). Meanwhile, H. = (e/2m)Bext (L. +25.) (Eq. 6.71); 11, %2, 13,14
are eigenstates of L, and S.; for these there are only diagonal elements:

(Hl) = o

5 Bext (mu + 2ms) = (my +2ms)B; - (Hopu =05 (Hioe = =0 (Hl)ss =205 (Hi)a = —20.

This confirms the upper left corner of —W. Finally:

on ZH oL L (H!)ss = (2/3)8,
(L. +28.)|ys) = +h :§|1 0>|% %> <H;>ZZ = (1/3)8,
(L. +2S.)|we) = —hy/L10)]L L) (H.)mr = —(2/3)8,
— 2oyt o ny [ 70 (Hss = —(1/3)8,
(Lz +28:)l¥7) = —hy/5[1 0)5 — 3) (Hl)s6 = (H.)es = —(v2/3)B,
(Ls +2S:)[ys) = —hy /511 0)]5 — 3) (Hi)zs = (Hi)sr = =(V2/3)8,

which confirms the remaining elements.
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Problem 6.26

There are eighteen n = 3 states (in general, 2n?).

WEAK FIELD

13.6 eV o? 3 3 o? 1 1
Equation 6.67 = E3; — — I+ —(— — 2} =-151eV |14+ —(———2)].
driation % 9 { M (j+1/2 4)] ¢ { E (j+1/2 4”

Equation 6.76 = E! = 9B Bexy.

State [3 1 j m;) 9s(Eq. 6.75) | 1 (ﬁ - i) Total Energy
1=0,j=1/2 3011 2 1/4 —1.51 eV(1+ %) + ppBox
1=0,j=1/2| 1301 2 1/4 —1.51 eV(14 %) — pBex
l=1,j=1/2| 313 1) 2/3 1/4 —151eV(14+ < 3115 Bex
I=1,j=1/2|313-1) 2/3 1/4 —1.51 eV 1+T§ 2113 Bext
I=1,j=3/2|[3122) 4/3 1/12 151 ev( ‘f—;) 2415 Bexs
I=1,j=3/2 3131 4/3 1/12 —1.51 eV (1+ %) + 21pBexs
I=1,j=3/2|1313-1) 4/3 1/12 —-1.51 eVE ‘f—;; 213 Bext
I=1,j=3/2|313-3) 4/3 1/12 ~1.51 ev( ‘;—j) 205 Bext
1=2,j=3/2|3223) 4/5 1/12 ~1.51 eV (14 %) + SpupBex
1=2,j=3/2 13221 4/5 1/12 ~1.51 eV (14 %) + 2pupBex
1=2,j=3/2|323-1) 4/5 1/12 ~1.51eV(14 %) — 2upBex
1=2,j=3/2|323-3) 4/5 1/12 ~1.51eV(1+ %) — SupBeg
I=2 j=5/2|[3222) 6/5 1/36 151 ev( g—G) + 315 Boxt
1=2,j=5/2|13253) 6/5 1/36 ~1.51 eV(14+ %) + 2upBex
=2 j=5/2|3251) 6/5 1/36 —1.51 eV 1+% + 24 Bext
1=2,j=5/2|325-1) 6/5 1/36 —1.51 eV 1+% — 2B Bext
1=2,j=5/2|323-3) 6/5 1/36 —1.51 eV(1+ %) — 218 Bext
=2 j=5/2|[322-3) 6/5 1/36 —151 eV (14 5 ) = 3 Bext

STRONG FIELD

Equation 6.79 = —1.51eV + (m; + 2my) g Bext;

Equation 6.82 = 13'267eva2 {% - [m%} } — 151 ev%2 { {% — ﬂ } .
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CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY 175

1([Il+1)—mms 1
_ 2 = /s
Eiot = —1.51 eV(1 + o A) + (my + 2mg) g Bext, where A = 3 { {l(l+1/2)(l+ 0 4} }

These terms are given in the table below:

State |n I m; ms) | (my+ 2my) A Total Energy

1=013001%) 1 1/4 | =151 V(14 %) + i Bey
1=0|[300—1) ~1 1/4 | =151 eV (14 %) — upBey
I=1|13111) 2 1/12 | =151 V(14 %) + 245 Bex;
I=1|[31-1-1) —2 1/12 | =151 V(14 %) — 2upBex
I=1|13103%) 1 5/36 | —1.51 eV(1+ %2) 4 upBeg
I=1|[310-1) ~1 5/36 | —1.51 eV (14 32 ) — upBeg
I=1[31-11%) 0 7/36 | —1.51 V(14 7
I=1[311-1) 0 7/36 | —1.51 eV(1+ T
1=2|13221) 3 1/36 | —1.51 eV (1 + %) + 3ppBex
=2 32—-2-1) -3 1/36 | —1.51 eV (1 + %) — 3pupBex
=2 32113 2 7/180 | —1.51 eV (14 1) 4 25 Boy
1=2|132—-1-1) —2 7/180 | —1.51 eV (14 1) — 24 Boy
1=213201) 1 1/20 | =151 eV (14 %) + pBex
1=2|320-1) -1 1/20 | =151 eV (14 %) — upBex
1=2|32-11) 0 11/180 | —1.51 V(1 + Lla”

=2 321-1) 0 11/180 | —1.51 V(1 + He

=2 32-21) -1 13/180 | —1.51 eV (1 + 12} — 5B
1=2|322-1) 1 13/180 | —1.51 eV (14 22 4+ 5By

INTERMEDIATE FIELD
As in the book, I'll use the basis [n I j m;) (same as for weak field); then the fine structure matrix elements
are diagonal: Eq. 6.66 =

E2 12 E? 4 E10? 4 4
El=-3_(3-- =1 (1—-- == (- =37 (1-- )
2mc? ji+1/2) " 5dme jt1/2 108 j+1/2 j+1/2

13.6 eV
N = 3246 o®. For j=1/2, EL = —9v; for j = 3/2,EL = —3y; for j = 5/2, EL = —.

z
the same as before (p. 281), so the § terms in W are unchanged; recording just the non-zero blocks of —W:

B _ (By-28) 428 Bv+28) 4£p
(97 = B), (97 + ), (3 2/6’),(3’7+2ﬂ),< Vg (%%6))’( s (97+%ﬂ)>.

The Zeeman Hamiltonian is Eq. 6.71: H. = %(Lz + 25, )pupBexs- The first eight states (I = 0 and [ = 1) are
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176 CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

The other 10 states (I = 2) must first be decomposed into eigenstates of L, and S, :

£ =21 (v - 30)

=D =Rk-213-5 =0+

39 = ViR -5+ /i) — (357 o Po)
38 =322l -5~ iz 0 Br=5)
38 =yERDE -5+ y/ioE ) :><(v—§) £ )

35 =20l -H-2Ro)E 8 (r=30)
3-b =izl -h+y/H-03 b :><<7+gﬂ> 5 )
3-3) =3O -~ 22~} 3) 6 Br+38)
5= =yiR-DI3-H+i2-215 ) (08, B
3-3) = 3l2- Dl - 3) - /412213 §) @)

S ST
Q= =-2/32-1l3 -5+t -213 .
G-3Q-P=(-D-1=-F G-IQ-P=(-D-i=-¢
(5 -31QI2 = 8) = —2y/5\/s +\/5y/s =5 5= -5=(2 —5lQl3 — 3}

So the 18 x 18 matrix —W splits into six 1 x 1 blocks and six 2 x 2 blocks. We need the eigenvalues of the
2 x 2 blocks. This means solving 3 characteristic equations (the other 3 are obtained trivially by changing the
sign of f3):

(37_§ﬁ—)\> (97—%5—)\) = 0= X4 A~ 129) (277~ 78) =0.
(7_25—A> (37—25—A> —;552—o:>A2+A(35—47)+7<372—§7ﬂ+2ﬂ2> =0

3 2 6 11
—Zp-A — 8- - =B*=0= XN+ )\B -4 - —p) =
(7 5ﬂ >(3v 55 ) 25ﬁ 0 +A(B v)+7<3v 56)
The solutions are:
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CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY 177
1= FE3—9y+
€g = E373’Y+26
€3 = Eg*’)"i’?)ﬂ
4= B3 —6y+B/2+ /92 + By + §*/4
A= —F/2+6v+£ 2)2 4+ By + 972
A f/ oo !(ﬂ/ )22 P & = B3 — 67+ 5/2 — /02 + By + p°/4
—_ﬁ/ + 2 \/(6/) +5ﬁ’7+7 = 66:E3—2’7+3ﬁ/2+\/’}/2+%5'7+ﬂ2/4
A= —pB/2+2y+ 2)2+1 2
5/ + 2y \/(/6/) +56'Y+’7 67:E3*2’Y+35/2*\/72+%5'Y+/82/4
es = B3 —2y+3/2+ \/72 + 50y +52/4
€= E3—2y+[3/2— \/72 + 50y + B2/4
(The other 9 €’s are the same, but with § — —f.) Here v = 13367'3\/042, and 8 = g Bext-
In the weak-field limit (8 < v):
2
€4~ B3 —6y+B/2+3v/1+6/9 ~E3—67+5/2+3’Y(1+5/18'7):E3—3'Y+§ﬁ-
1
€5 ~ By — 67+ 5/2 = 3v(1+ §/187) = Es - 97 + 3 6.
9
66@Es*Q’Y+35/2+’Y(1+3ﬂ/10’7):E3*’Y+35~
6
e~ E3 —2y+308/2 —~v(1+36/10y) = E5 — 3y + gﬁ.
3
es % By =27+ 5/2+9(1+ 5/107) = B3 =7 + 0.
2
€9~ B3 —2y+ /2 —y(1+4 8/107) = E5 — 3y + gﬁ-
Noting that v = —(F3/36)a? = %az, we see that the weak field energies are recovered as in the first table.

In the strong-field limit (8 > ~):

€4~ FE3—6y+3/2+ (/2\/1+4v/8~ E3—6v+ /24 3/2(1+2v/8) = Es — 5y + .

€5~ By — 67+ 3/2— B/2(1+2v/8) = By — 7.

66 ~ By — 27+ 36/2 + B/2(1 + 69/50)

&7 ~ By — 29+ 38/2 — B/2(1 + 6y/58) = E

5

7
13
3~y 6.

s ~ By — 2+ B2+ /21 + 2/50) = By — 27+ 6.

¢~ By — 2y + B/2 — B/2(1 + 29/58) = By — —.

5

Again, these reproduce the strong-field results in the second table.
In the figure below each line is labeled by the level number and (in parentheses) the starting and ending
slope; for each line there is a corresponding one starting from the same point but sloping down.
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178 CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

3(3)
E
A
6(9/5—>2)
8(3/5—>1)
2(2)
E; o 7(6/5—>1)
Ez—Y 4(2/5—>1)
] 9(2/5—>0)
E3*3'Y—.
- 1(1)
N 5(1/3—0)
E3*9'Y—"

Problem 6.27
I=[(a-#)(b-#)sin0dode

= [(ay sinf cos ¢ + a, sinfsin ¢ + a, cos ) (by sin 6 cos ¢ + b, sin O sin ¢ + b, cos 0) sin 6 db dep.
27 27 2w
But / singpdp = / cospdp = / sin ¢ cos ¢ dp = 0, so only three terms survive :
0 0 0

I = /(asz sin” 0 cos? ¢ + ayby sin? @sin? ¢ + a.b, cos? ) sin 0 df d.

27 27 27
But / sin® ¢ dop = / cos® pdop =, / dé = 27, so
0 0 0

I = / [w(axbm + ayby) sin? 6 + 27a,b, cos? 9] sin 6 d6. But/ sin®0dh = 3 / cos?0sinfdf = 3
0 0 0

4 2 4 4
so I =m(aghs +ayb,)g +2mab. g = g(axbm +ayb, +a.b.) = %(a -b). QED
[Alternatively, noting that I has to be a scalar bilinear in a and b, we know immediately that I = A(a-b), where
A is some constant (same for all a and b). To determine A, picka=b = k; then = A = f cos? fsinfdf dp =
47/3.]
For states with [ = 0, the wave function is independent of 6 and ¢ (Y = 1/v/47), so

<3(Sp-f)(Se ) _Sp~Se> _ {/OOO rig|w(r)2r2dr}/[3(sp~f)(se 7)) sin 0 d6 de.

3

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.



CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY 179

The first angular integral is 3(47/3)(S, - Se) = 4n(S, - S.), while the second is —(S, - S¢) [sinfdfdp =
—4n(S, - Se), so the two cancel, and the result is zero. QED [Actually, there is a little sleight-of-hand here,
since for [ = 0, » — constant as » — 0, and hence the radial integral diverges logarithmically at the origin.
Technically, the first term in Eq. 6.86 is the field outside an infinitesimal sphere; the delta-function gives the
field inside. For this reason it is correct to do the angular integral first (getting zero) and not worry about the
radial integral.|

Problem 6.28

_9
mpmead
Eq. 6.85); the notation in Eq. 6.93 obscures this point.

From Eq. 6.89 we see that AF ( ) ; we want reduced mass in a, but not in mpm, (which come from

(a) g and m, are unchanged; me — m, = 207m,, and a — a,. From Eq. 4.72, a « 1/m, so

a  my(reduced) my,my 1 207 207 207

a _ _ L _ — L 186
a, Me my+my, me  14+207(me/mp) 14 207% 1.11
AE = (5.88 x 10~ eV) (1/207) (186)% =[0.183 eV.
2
(b) g:5.59 —2; my, — me; @ my(reduced) _ome L 1
ap Me Me +Me  Me 2
2 1.67 x 10727\ /1\°
AE=(588x10%eV) | — | (=) | 2] =|4.82x107%eV.
(588> 107 eV) (5.59) (9.11 X 10-31 (2) 482 x10 " e
a My (reduced) MMy, 1 207
L 5.59 — 2; L _ 1207
() g — 2 mp — my; an oy Me+m, me 208

= Lo 10 207’ _
= —6 = -5 -\/
AE = (588>x1077) (5.59) ((207)(9.11 X 10—31)> (208) 1841077 eV.

Problem 6.29
Use perturbation theory:

2. /71 1
H/:_476re <3_;>’ for 0<r<b AE=|H'|¢Y), with o=
0

—r/a

1
e
Vra3
2 1 b 1 1 2 1 b b
AE = — € —47r/ e P ot/ - € —/ r26_2r/adr—/ re=2r/ady
4dmeq wad o \b r mepad \ b Jo 0

b
e? 1 a 5 _o a\’ 2r a\’ 2r
- )|z —2r/a “ —2r/a I | _ “ —2r/a I |
7TGO(IB{b[ 2T ‘ +a(2> ‘ ( a >:| |:<2) ‘ < a )]}

0
e [ a,, o a’ 2b a? 2b a®  a?
_ % —2b/a wo=2bja| _ =Y Y% =2b/a _ =Y L%
Tegad be N * ¢ ( a 1) ¢ a 1) * 4 4 ]

2 r 2 3 2 2
___¢ e—zb/a<_a_b_a__a_+a_b+a_>+a_(e_1)]

mepas | 2 2 4 2 4
2 T 2 2 2
:_6— —2b/a _(l_ g 1 a_ 9_1 — € 1_9 1 ﬂ —2b/a
Tepad _e ( 4>(b+ >+ 4(1) dega b + +b € ’
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180 CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

Let +2b/a = € (very small). Then the term in square brackets is:

2 2 e &
1— - 1+ - 1-— — — — 4
(-3 (=)0 5-5+)

=X—Z+1+Z—%—2+%+¢—%—%+()e3+---=%+()e3+()e4--.

201462
To leading order, then, AE = c -
47eg a 6a2
me?t Aegh? €2
E=F =————: = . Ea=— )
! 2(4meg)2h?’ 9T Tpez 0 %0 H 2(4mep)

AE € 204meg)\ 202 | 4(b)®

E  4drwe e? 3¢2 | 3\a/
Putting in a = 5 x 107 m:

AFE 4 10-15 16

S5 i 00y 16

E 3 (5 X 1011> 3~ x

fine structure: AE/E ~a? = (1/137)> =5 x 107°,
hyperfine structure: AE/E = (m./m,)a? = (1/1800)(1/137)% = 3 x 1075.

By contrast, {

So the correction for the finite size of the nucleus is much smaller (about 1% of hyperfine).

Problem 6.30

() In terms of the one-dimensional harmonic oscillator states {1, (x)}, the unperturbed ground state is

10) = o (x)ho(y)o(2)-

= (0|H'10) = (o (x)vho(y)to(2)|Meyz[tbo(x)1ho(y)o(2)) = Aa?)o(y)o(2)o-
But  (y)o = (2)o =0. So there is no change, in first order.

(b) The (triply degenerate) first excited states are

)
1) = do(x)do(y)y (= )
12) = do(x)r1(y)vo(2)
3) = ¥1(2)0(y)¢0(2)

In this basis the perturbation matrix is ~ W;; = (i|H'|j), i=1,2,3.

(LH'[1) = (vo(@)vo(y)r(2) | Aa?yzlipo (@)t (y)v1(2)) = Ma?)o(y)o(2)r = 0,
(2|H'(2) = (o (@)1 (y)tbo(2) | Aayz]vo (@)1 (y)to(2)) = M@)o (y)1(z)o = 0
(3[H[3) = (1(x)vo(y)vo(2) NPy z |y (@)tbo(y)to(2)) = Ma®)1(y)o(z)o = 0,
(11H'[2) = (o ()0 (y)1 (2)|Ae?yz[o (€)1 (y)dho(2)) = AMa?)o(0ly[1)(1]=(0)

= )\%KOMI = ( )2 [using Problems 2.11 and 3.33].
(LIH'[3) = (vo(@)vo(y)1(2) Ayl (2)o(y)vo(2)) = AM0J2?[1) (y)o(1]2]0) = 0,
(2[H'[3) = (dho(x)¥1 (y)vo(2) NPy z [y (x)tbo(y)do(2)) = M0]z*[1)(L]y|0)o(z)o = 0.

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.



CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

181

0a0 R
W=1a00], where a:)\(—> .
000 2mw
—-E a 0 N
Eigenvalues of W : a —FE 0 |=-E*4+Ed>=0= E ={0,4a} =0, :I:A( ) .
0 0 —E 2mw

Problem 6.31

(a) The first term is the nucleus/nucleus interaction, the second is the interaction between the nucleus

atom 2 and the electron in atom 1, the third is between nucleus 1 and electron 2, and the last term is the

interaction between the electrons.

SO
1 e? T T1\2 To To T1 — To T1 — To
H = “li- (— n —1—(— (— 1
471'60R{ {+ R)+<R)] [ ) (R () (g
- 1 f 72x1w2 7762x1x2
~ dmeg R R2 ) 2w R3

(b) Expanding Eq. 6.99:

e 2 2
 AmeoR3 (er B mf)
2

ﬁ@x”?) = H’+ H' (Egs. 6.96 and 6.98).
0

1 1

1 1
= o (9 + gk (o a3) -

[k e? 1/2 1 e? 1 e? ?
ETV I (1 i 27reOR3k) Swo | 1F 2 (27reoR3mwg> 8 <2W60R3mw8> e

1 1 €2 1 €2 2
honllo 2 f—& )y _Z({_©
2 0{ 2 (2moR3mw3) 8 <2W60R3mw8> +
1 e2 1 e2 2
1 (—C V- (—C )| —hw
* 2 (271'60R3mw8) 8 (271'60R3mw(2)) } 0
1 1 e 1 e\ p
T 2hwy 4 2reoR3mwg ) 8m2wi \2men ) RS’

(d) In first order:

(c)

AV

1%

62 2

By = (01H'10) = ~ 5 (wolea () o(m)o(w2) = 5 (ot = 0.
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182 CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

In second order:

o) ! 2
E? = M. Here |¢o) = |0}]|0), |¥n) = |n1)|ne), so

0)| 0)[?
) Z Z |[(n1]z1]0)[? [(n2]z2|0)] [use Problem 3.33]
Eoo — Enyn,

ny= lTLQ 1

(e
( o2 >2( [(1]2|0)[? [(1]2]0)|?
(

zero unless np = ng =1
Shiso + Luan) — (3hio + Sha) o

e2 2 _ 1 h 2 _ h ez \? i v
2meg R3 2hwq 2mwy ) 8m2w0 21e0) RS

Problem 6.32
(a) Let the unperturbed Hamiltonian be H(\g), for some fixed value Ag. Now tweak A to Ag + d\. The
perturbing Hamiltonian is H' = H(Ag + d\) — H(Ag) = (O0H/OA) dX (derivative evaluated at Ag).
The change in energy is given by Eq. 6.9:

OH OF OH
ol 0 0N ) n o_
dE, = E, = (Y, |H'|¢,) = (wn|—a)\ [tn) dX (all evaluated at N\g); so B (n | X [tn)-

[Note: Even though we used perturbation theory, the result is exact, since all we needed (to calculate the
derivative) was the infinitesimal change in E,,.]

2 2
1
(b) Bu=(n+ Dty H= -2y Ly

(i)

‘9En_( + Ly OH _ hd® 2/ B4\ _ 2,
on VT R T Tmdee T R\ 2mda?)

1 2
soF-H = (n+ 5) ﬁ<n\T|n> or |(T)=13%(n+1)hw.
(iii)
OF 0H R d® 1 1 2 d? 1 /1 1 1
'ﬂ:O il el -2 2:__ e - - 2. 2 :__T _V
Om " Om m2dx2+2 m( dex2>—l—m(2mwm m +m

1
SoF-H=0= _E<T> + E<V>’ or |(T)=(V).| These results are consistent with what we found in
Problems 2.12 and 3.31.
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Problem 6.33

(a)
oFE, dme3 4 OH 2e 1
E— =-FE,; — =————. So the F-H th S:
Oe 3272202 (Jmax + L+ 1)2 e " e dmeg 1 o ne corem says
4, e /1N /1 8meo 8meoEy Steo | m [ € \?] 1 e2m 1
-E,=-— —),or (—)=——->"F,=— =- 5 | T = = 33 5
e 2meg \ 7 r e? e?n? e? 2h? \ 47eg n?  4mwegh? n?
Amegh? 1 1
But 7“02 =a (by Eq. 4.72), so <—> = ——.| (Agrees with Eq. 6.55.)
me r n2a
(b)
OF, 2me? 2F, OH K2
— = —-——: —_— = — 2l 1 ] F'H
ol 32m2€3N2 (Jmax + 1 +1)3 n ' ol 2mr2( +1); so Sy
2E, R*(2l+1) /1 I\ amE, dmF,
n 2m 2/ AR/ T n(20+1)h2  n3(20 +1)h2’
dmE; 2 1 1 .
But — T = ﬁ’ SO <r—2> = W (Agrees with Eq 656)
Problem 6.34
) (l+1) 2mE, 2m [ ¢ \1
Equation 4.53 = " = [ T T 2 (m Sl
me? 1 2mE 2m m 2 \? 1 1
But — = - (Eq. 4.72 d - = — = .S
u e a (Eq ), an 2 72 9n2 (47T€0) 2 aZn? o
(+1) 2 1
* = [ 2 ar nQaQ] v
. s s l(l + 1) 2 1 s—2 2 s—1 1 s
../(uru”)dr:/ur { > —a+n2a2]Ud7‘—l(l+1)<T >_E<T >+n2a2<r>
d
¢ =— / d—(urs)u' dr = — /(u'rsu') dr — 5/(ur571u’) dr.
r
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184 CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

Lemma 1:/(ursu') dr = —/di(urs)udr = —/(u'rsu) dr — s/urs_ludr =

r

S

2/(ur8u’) dr = —s(r*1), or /(ursu’) dr = —2(r7Y),

d
Lemma 2: /(u”rs+1u’) dr = —/u’g(r‘”‘lu’) dr=—(s+1) /(u’rsu’) dr — /(u'rs+1u") dr.

2
2 /(u"rsﬂu’) dr=—(s+1) /(u’rsu’) dr, or: /(u’rsu’) dr = — /(u"rs+1u’) dr.

s+1

Lemma 3: Use % in Lemma 2, and exploit Lemma 1:

2 I(I+1 2 1
/(u/rsu’) dr = — { ( = ) _ o + n2a2} (urs ') dr

-2 [z(z+ 1) / (wr Nty dr 2 / (wru dr + — / (ursﬂu’)dr}
() 2300 e (5

Il
~
—
—
+
—
S~—
7N
)
|
—_
~_
—~
3
w
|
[ V)
~
|
| Do

4 D) = 207 + g )

sty = 2 [ el [ 24 2D e <o
2(s4+1), 4 2 s—1 2 (s> =D, a2

W<r >_E(25+1)<r ) +2s {l +1_T} (r°*7*°) =0, or, finally,
(8:21) (r*y —a(2s + 1)(r*~ 1) + %(412 +4l+1-5%)(r*"?) =0. QED

(20+1)2
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Problem 6.35

(a)
L —a() oo [Ty L
2 1 ) 5 /1 2 1 a o o
F<r>—3a<1>+1[(21+1) —1]a <;>=0:>ﬁ< ) =3a—1(l+1)a® 2a_ﬁ[3” —l(1+1)].
(r) [3n —l(l—i—l)}
3, 1 ) ) 3., ac, o a’ 2
§<r>—5a<r>+§[(2l+1) —4]a :0:>§(7“>:5a§ [3n —l(l+1)]—§[(21+1) — 4]
%(f“) %[1571 — 511 +1) — 4l(l+1)—1+4]:%2[15712—91(14—1)4—3]
37[571 -3l +1)+1]; <r2>:¥[5n2—3l(l+1)+1].
%<T3>—7a<7’2> Z[(Ql—!—l) -9l a*(r) =0 =
4 n2a? 3 a
ﬁ<r3> =T7a [5n* =311+ 1) +1] — 1 [41(1+1) — 8] a2§ [3n? — (1 +1)]
_ {35n* — 2101 + 1)n® + Tn* — [BI(1+ 1) — 6] [3n* — (I + 1)] }
= — [35n* — 211(L + 1)n® + Tn® — 9U(1 + 1)n® + 31%(L + 1)* + 18n® — 61(1 + 1)]
= % [35n* + 2502 — 301(1 + 1)n® + 312(1 + 1)2 — 61( + 1)] .
(r3) = @ [35n* +25n2 — 300(1 + 1)n® + 31%(1 + 1)® — 61(1 + 1)].
(b)
o+a( LY=L —ge (5) —os () cwaen (£
(c)

WD) = arieiae 7 (\5 ) = oA ith Eq. 6.64.
a ( + )<’I"3> (l+1/2)n3a2 = <7,3> l(l+1/2)(l+1)n3a3 grees wi q. 6.6
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Problem 6.36
(a)

1
|100) = —se—’“/“ (Eq. 4.80), E} = (100|H’|100) = eEext?/e_QT/“(rcosﬁ)TQ sin 6 dr df de.
Ta Q0
T . 2T
0
But the 6 integral is zero: / cos@sinf df = S =0. So ES1 =0. QED
0 0
1 1 r
1) = — - (1 _ _) —r/2a
1) = Y200 Tqa 2a1 2q) €
12) = 211 = — —re /20 gin fe'?
(b) From Problem 4.11: Y ma 81a p
[3) = 1210 = %anre "74% cos 0
11 L
[4) = Y21-1= —=g5re "/24 gin e~

A = {...
@UH2) = {..
(31H13) = {..
(H ) = (..
(H)2) =

AH ) = (..
(2 H.)3) =

@1H4) = {..
(3| HJ4) = {..

<1‘Hé|3> = eEext

(..

{..

}/ cosfsinfdf =0
O7T
1),
}/ cos? 0 cosfsinfdf = 0

sin 0 cosfsinfdl = 0

}/ sin? 0 cos Osin 6 d = 0
.}/27r e dp =0
}/QW e dg=0
.}/277 e dp=0

o
J [ ede=0
}f%Ww¢o

1

1 1 1

fo

All matrix elements of H. are zero
except (1|H.|3) and (3|H/|1)
(which are complex conjugates,

so only one needs to be evaluated).

L) e T/20re/2% cos O(r cos 0)r? sin 0 dr df dg

4(12 2a
eEext *° r _
= 20sin 6 do 1——)e"/%4a
27ra8a3 OL cos”fsin } [% ( Qa) "
_ Bext 2 / rle /o dr — i/ rPe "/ dr b = eLext 4la® — i5!a6
80/4 3 0 2a 0 12@4 2a
_ eEext 5 5 _ _
= Toot 24a (1 2) = eaFext(—3) = —3aeFexs.
0010
W = —3aeF oyt (1) 8 8 8
0000
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CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY 187

We need the eigenvalues of this matrix. The characteristic equation is:

PR X0 0] [0-A0

=20 =X 0 |+|1 0 0 |==-AN+(=\)=N0N-1)=0.
L0 =A0 0 0 —\ 00 —\
0 0 0 =\

The eigenvalues are 0, 0, 1, and —1, so the perturbed energies are

Es, By, Es + 3aeFEqoy, Fs — 3aeFq. Three levels.

0 0
(c) The eigenvectors with eigenvalue 0 are |2) = (1) and |4) = 8 ; the eigenvectors with eigenvalues +1
0 1
1
)= = | ) |- S0 the “good states are |11, va1-1, =(¥a00 + ¥210), 5 (a00 — o)
are =—— . So the “good” states are , 1, — , — — .
/| 1 g 211, ¥21-1, 5200 + Y210 5\¥200 = ¥210
0

1 1 . . .
(Pe)s = _6E64a4 /7”26_T/“ sin” # {r sin @ cos @i + r sin @ sin ¢j + r cos Hk} 2 sin 0 dr df de.

. U
sin 0

4

27 27 T
But/ cos¢d¢:/ singdg = 0, / sin® 0 cos 6 df =
0 0

0 0

\ (pe)a = 0. Likewise (p.)s = 0. ‘

(Pe)x = —%e/(wl +43)2(r)r? sin 0 dr df do

1 1 1 2 N N .
= _Qeﬂ@/ [(1 - %) + %cos@} e/ (sin 6 cos ¢ i + sin O sin ¢ § + cos 0 k)r? sin 0 dr d6 d¢
T

k1 2
:fE——Qw/[(lfi) ZELCOSQ] r3e"/% cos O sin 0 dr db.
2 27a 4a? 2a 2a

But [, cosfsinfdf = [ cos®€@sin6#df = 0, so only the cross-term survives:

- 1 )
(Pe)+ = —Lk <:|:a> / (1 — %) rcosfrie "/ cossin O dr do

=F (8721/%) /OTr cos? QsinﬁdG] /OOo (1 — ;—a) rle "/dr = F (8%1%) % [4!(15 — %5!@6}

~ 1 5 5 ~

Problem 6.37

(a) The nine states are:

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.



188 CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

l:_O : |300> = R30Y00

[=1:1311) =Ry Y{
1310) = R3;YY
31 —1) = Ry Y !

l:_2 : |322> = R32Y22

1321) = RgoYy
1320) = R3oYy
132 —1) = RypY; !
132 — 2) = R3pY, 2

H! contains no ¢ dependence, so the ¢ integral will be:
2T ) o,
(nim|Hn I'm'y ={--- }/ e~ mPeim ¢ qg  which is zero unless m’ = m.
0

For diagonal elements: (nlm|H.|nlm) = {---} [ [P/"(cos 0))° cosfsinfdf. But (p. 137 in the text)
P/ is a polynomial (even or odd) in cos®, multiplied (if m is odd) by sin. Since sin®@ = 1 — cos? 0,
[P/™(cos 0)]” is a polynomial in even powers of cosf. So the @ integral is of the form

T

™ . 2j+2
/ (cos0)? T sinhdf = — (cos 6)
0

~———~—— | =0. All diagonal elements are zero.
(27 +2) I

0

There remain just 4 elements to calculate:

m=m'=0: (300[H.|310), (300|H.|320), (310|H.|320); m=m'==+1: (31 £1]|H.|32 +1).

(300|H%|310) = eFoxs / RagRsr3dr / YYY cos@sin @ df dp. From Table 4.7 :

2 1 8 11 2r 2r2 r
3 _ - o ar —r/3a ( _ _) 7'r/3a 3
/R30R317“ dr V27 a3/2 27./6 a3/2 a / <1 3a * 27a2> ¢ ! 6a) € dr.

Let «=2r/3a:

/R Ryir2d —724 _3a 5/ l—Jr:—|——2 (1——)3:4 —*d
roar = X
sttt 35\/_Cl4 0 6 4 ¢

) 1 a 5 5
1- — 2% — %) 2te de = — (4! — =5l —6'——7'
2\/_/ ( x+12x 24m>xe x 2\/5( 1 +12 )
= —9v2a.

/Y(?Ylocosesinﬁdﬁdqbz J%q/g/cosﬁcosﬁsnﬁd&d(b— —27r/ cos® fsin 0 df =
I 78

(300[H!|310) = Byt (—9v2a) (?) =| —3V6aeFeys.

(300|H[320) = eFex / RaoRa1r3dr / YOV cos 0 sin 0 do do.

V32 3
233

[V )
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CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY 189

1
/YOOYQOCOSHSiHQde(b: \/T\/%/@cosQG—1)cos€sin9d9d¢=0. ‘(300 |H!|320) 20.‘
T Y[

(310/H|320) = eEuxs / Rs1 Rapr3dr / Y'Yy cos Osin 6 df dep.

8 11 4 1 1 r 5
3 r/3a,2, —r/3a,3
/R31R32T dr = 27\/6 —a3/2 _a 81\/% a3/2 _a2 / (1 — _6a> re rUe T d'l"

24 3a\7 [ T a 1 95
- (= 1—2)abe2de = [ () I
3W5a6(2> /0 (1-3)s"eds 24¢5<6 47) 2 "

/3 |5
070 o _ 24 _ -
/Yl Y, sinfcosfdfdp = =\ 16x /cos9(3cos 0 — 1) cos@sin 6 db dep

V15 T V15 3 1 T 2
= —277/ (3cosf — cos? ) sinf df = ~—— {——cos50+—cos39] = —.
8 0 4 ) 3 0 V15

2
(310H’|320) = eEeox <—¥a> (\/—1_5) =| —3V3ae ex:.

(31 £1|H/32 1) = eEext/R31R32r3dr/ (YY) Y5 cos 0sin 0 d6 do.

(ZF 83) (ZF \/ 515_5> / sin BeT? sin 0 cos feT*® cos O sin 6 df do
s us

/ (Ylil)* V5! cos O sin 6 df dg

T 30 AYE
= %27( cos? §(1 — cos® 0) sinf df = §\/5 s r o8
8t Jo 4 3 5 )l
1
7
V5 1 9
<3 1+ 1|H;|32 + 1> = eEext <—97a (%) = _§a€Eext~

Thus the matrix representing H. is (all empty boxes are zero; all numbers multiplied by —aeFEqy):

(b) The perturbing matrix (below) breaks into a 3x3 block, two 2 x 2 blocks, and two 1 x 1 blocks, so we can
work out the eigenvalues in each block separately.

0 V20 -AV2 0
3x3: 3V3[v2 0 1] V22 1|==-X+r+22=-2\N=-3)=0;
0 10 0 1 —\

A=0,4V3 = E} =0, El =9aeFey, B} = —9aeF .

9 (01N, [-x 1| e , _
2x2: 5(1()), ‘1 )\’_)\ ~1=0= A==+l
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190 CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

300 310 320 311 321 31-1 32-1 322 32-2
300 36
310136 33
320 33

311 9/2

321 9/2

31-1 9/2
32-1 9/2

322

32-2

9 9
Ei = EaeEext, Esl = —iaeEext. From the other 2 x 2 we get Eé = Ei, E% = E51, and from the 1 x 1’s we

0 (degeneracy 3)
(9/2)aeFoxt (degeneracy 2)
get B3 = E} = 0. Thus the perturbations to the energy (F3) are: | —(9/2)aeEcx (degeneracy 2)
9ae Eoxt (degeneracy 1)
—9aeFext (degeneracy 1)
Problem 6.38
pogae” 1

Equation 6.89 = Bl = (Sa-S¢); Eq.691=8,4-S.= 5(52 — 5% - 5%,

3rmgmea’

Electron has spin 1, so 52 = 1 (2) A2 = 3h?; deuteron has spin 1, so S3 = 1(2)h? = 2h%.

Total spin could be 2 [in which case S? = 3 (2) h? = 137?] or 1 [in which case S = 2p%].  Thus

S . i

(Sq-Se) = ; the difference is ih , s0 AFE = D om——

TMgMea
b - 0 ) = |
1 1 2g4e2h? 2gqh* 3 ga my
But == == —0, AE = = = - —"AFE,drogen (Eq. 6.98).
th o Hoo =z = Ho €pc? 50 dregmgmec?a®  mgm2c?at 2 g, my hydrogen (Eq )
h 2 4 (5.59
Now, A = S = &, SO Ag = gg—ZZ—ZAh, and since mq = 2my, A\g = 3 (—1.71> (21 cm) = |92 cm.

Problem 6.39

(a) The potential energy of the electron (charge —e) at (z,y, z) due to ¢’s at x = +d alone is:

eq 1 1

V= -
dreo | \/(x+d)2+y2+22  J(z—d)?+y? + 22

Expanding (with d > z,vy, 2) :
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CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY 191

~1/2
! = (2® £ 2z 4+ d* + 1> + 22)7 V2 = (d® £ 2dx + 1) V2 = 1 <1 L2 ﬁ) /
V(£ d)?+y? + 22 d d = d?
1 T r? 3422 1 T 1
SR § I il ) I S e g
d(:Fd 2d2+8d2) d[¢d+2d2(gj T)}
€q 9 2eq eq 9 9
S 124 — _ 1 il _ - _ _ _
v 47reod{ d+2d2(3x r?) + +d+2d2(3x 7’)] Ireod 47reod3(3x r?)
= 28d? + 382% — pr?, where - 9
’ T Admeg d3

Thus with all six charges in place

H' =2(B1d; + Bod5 + Bs3d3) + 3(B12> + Boy® + B32%) — r*(B1 + B2 + B3). QED
1
(b) (100[H'[100) = _3/6—27-/GH/T251n9drd9d¢>
™a

(B1 + B2+ B3)

mas

Vot % / 2193102 4 B + Ba2?)r sin Odr df dp — / r2e=2r1902 sin 0 dr 6 dep.
iy

I = /TQe_QT/ar2 sinfdrdfdp = 47r/ rle2r/ady = 47T4!(g)5 = 3na’.
0

I e 2T‘/a 5133 + Boy? + P22 )7‘ sin 6 dr df d¢

Il
\ \

rte2/%(3; sin® 0 cos® ¢ + By sin? O sin? ¢ + B3 cos? 0) sin 0 dr d6 dep.

2m

2T 2m
But / cos> pdp = / sin? ¢ do = T, dp =2m. So

0

/ A —2r/ad,r/ [W(ﬂl + B2) sin? 6 + 2735 cos? 9] sin @ df.
0 0

But /sin39d9:é, /COS2QSin9d9:g. So
0 3 Jo 3

= 4! (g)S [4%(51 + B2) + %ﬁz&} = 71a’(B1 + B2 + B3).

3 (B1 + B2 + B3)

! _ 5 5 _
(LOOIH'[100) = Vo + —5ma® (B + o + B3) — =—————>3ma’ =
1200) = RyY?
211) = Ry Y}
|21 —1) = Ry Y, !
1210) = Ry Y?

Diagonal elements: (nim|H'|nlm) =Vy+3 (ﬂ1<x2> + Bo(y?) + ﬂg(z2>) — (B1 + B2 + B3)(r?).

(c) The four states are (functional forms in Problem 4.11).

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.



192

CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

For [200), (z?) = (y*) = (%) = 3(r?) (Yg does not depend on ¢,0; this state has spherical symmetry),
S0 ’ (200/H'|200) = Vj. ’ (I could have used the same argument in (b).)

n2a?

From Problem 6.35(a), (r?) = - [5n* = 3I(1+ 1)+ 1], so for n =2, = 1: (r?) = 30a®. Moreover,

2m 2
since (z?) = {.. }/ cos® pdo = {. }/ sin® pdo = (y*), and (z2) + (y°) + (%) = (r?), it follows
0 0
1

1
that (2?) = (y?) = 5((7’2) —(2%)) = 15a* — 5(22) So all we need to calculate is (22).

1 1
(210[2%1210) = 5o T6ad /726_’/“ cos? O(r? cos® 0)r? sin 6 dr df de
wa 16a

_ 1 006—1'/(1 T 4 . _ 1 |72_ 2. 2\ __ 2\ __ 2 2 2
= Toa® ; r’e dr/o cos 951n9d9——16a56.a 5—18@ i (z%) = (y*) = 15a° — 9a” = 6a°.
(210[H'|210) = V + 3(6a°B1 + 6a®0 + 18a%3) — 30a° (61 + B2 + B3)

= Vo — 1263(B1 + f + ) + 360255 |

1 1
(21 £1|2%121 £1) = o Ghad /rze”/“ sin? @(r? cos® 0)r? sin 6 dr df d¢
ma 64a

1 e T 1 2 2
= 3308 /0 7’6e_r/adr/0 (1 — cos? ) cos® fsinf dh = 390 6la” <§ — S) = 6a?;

(x?) = (y?) = 15a® — 3a® = 124°.

(21 £ 1|H'|21 £1) = Vi + 3(12a%B; + 12a*B2 + 6a*B3) — 30a*(B1 + B2 + B3)
= ‘ Vo + 6a2(B1 + B2 + B3) — 18a*fs. ‘

Off-diagonal elements: We need (200|H’|210), (200|H’|21+1),(210|H’|21+1), and (21 —1|H'|211).

Now (nlm|Vyln’l'm’) = 0, by orthogonality, and (nlm|r?|n’l’m’) = 0, by orthogonality of ¥;™, so
all we need are the matrix elements of 22 and y? ((|2%|) = —(|2z?|) — (|y?)). For (200[z3|21 £ 1) and
(210[22|21 &+ 1) the ¢ integral is f027r cos® peT? dp = f027r cos® o do + z'fo% cos? ¢psinpdp = 0, and the
same goes for y?. So ‘ (200/H'121+£1) = (210|H'|21+1) = 0. ‘

For (200[z2210) and (200|y%[210) the 6 integral is [ cosf(sin®@)sin@df = sin*0/4|] = 0, so
[(200]H'[210) = 0.  Finally:

1 1 )
(21 —1]2%]211) = Ry /r2e_T/a sin? 0e?'? (12 sin? 0 cos® ¢)r? sin @ dr df d¢
7a 64a

0o T 27
1 / rﬁef’q/adr/ sin® 0d9/ €2 cos? ¢ do
0 0 0

 64ma®

6la” 16/15 /2

16 7 9
1—55 = —6a”.

= L 6la”

 647a’

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.



CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY 193

For 2, the ¢ integral is °T 2% sin? $ dp = — 2,50 (21 — 19?21 1) =6a2, and (21 —1]23]211) = 0.
0

(21— 1|H'1211) = 3 [B1(~6a%) + B2(6a%)] = | ~18a%(B1 — (). |

The perturbation matrix is:

200 210 211 21-1
200 Vo 0 0
210 0 Vo — 12a%(B1 + B2) + 240233 0 0
211 0 0 Vo + 6a2(B1 + B2) — 12a°33 —18a2(B1 — f2)
2 1-1 0 0 —18a%(By — fo) Vo + 6a%(B1 + B2) — 124233

The 2 x 2 block has the form (

or

g i >; its characteristic equation is (A—\)?—B2 =0,s0 A—\ = +B,

Vo + 24a2ﬁ1 — 12a2ﬂ2 — 12a2ﬂ37

A= AF B =Vo+6a°(B1 + f2) — 124° 03 £ 180* (51 — f2) = { Vo — 12426, + 240% 8y — 12a° 35,

e =V

€2 = Vo —12a*(B1 + B2 — 203)
€3 = Vo — 12a* (=201 + B2 + f3)
es = Vo —12a*(01 — 262 + B3)

The first-order corrections to the energy (F») are therefore:

(i) If By = Bo = B3, then €] = 3 = €3 = €4 = Vp: (still 4-fold degenerate).

(if) If By = B # B, then e = Vo, €2 = Vo — 24a(B1 — B3), €3 = es = Vo + 12a%(By — Ba):

(one remains doubly degenerate).

(iii) If all three §’s are different, there are (no remaining degeneracy).

Problem 6.40

(a) (i) Equation 6.10:  (H" — EQ)y = —(H' — E§)y].

h? S| h? 2 dmegh?
HY = ——V? € = (V2+—>, since a=

2m . dmegr  2m ar me?
h2
EY) = - :
0 2ma?
H' = eEqrcosf; Ei =0 (Problem6.36(a)).
1
Y = ———=e/% Wt = f(r)e "/ cosb.
wa3
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194 CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

Equation 4.13 =

2.1 _ Cosei 21 —r/a fe_r/ai . i
Vi = g [’" dr (fe ) * zma s |10 g5 o)
_cosf@d | 50, 1 —r/a fe /e d .9
2 dr [r <f af) ¢ } + r2sind do [ sin®6]

_ cos o f/—lf e—r/a_’_TQ f//_zf/_’_if e—r/a _Mfe—r/a
7"2 a a &2 7‘2

(=33 =) ]

r

Plug this into Eq. 6.10:

h? 2 1 1 1 1 11 1] 1
e —r/a "2 opr . r_ = - - [ Sl B —r/a
5 cos fe [(f af +a2f)+2<f af>r 2fr2+2far fa2_ = eEextrcoseme ,
2 1 1 2mekF, 4 meFext
_Zp) pof s —of = (HCText) . 2T h = ext |
¢ (f af> A (hz\/@ Pl R VRN

Now let f(r)=A+Br+Cr? so f'=B+2Cr and f”=2C. Then

2 2 2 4
2 = Z(B+20r) + ~(B+20r) = S(A+ Br+0r?) = %r.

Collecting like powers of r:

2 A=0.

r~': 2B-2B=0 (automatic).
r: 20 -2B/a+4C —2C =0 = B = 2aC.
rl —4C/a =4v/a = C = —.

Evidently the function suggested does satisfy Eq. 6.10, with the coefficients | A = 0, B = —2avy, C = —v;
the second-order correction to the wave function is

Vg = —yr(r +2a)e”"/% cos 6.

(ii) Equation 6.11 says, in this case:

1 meFqoyy

 Vnad 2h2/Ta
m(EEext)2

= ———2 Hr+2 *2T/ad/ 20sin 0 do
a2 ]2 77/0 r*(r + 2a)e r ; cos” 0 sin

eFoxt 2 a\b a\?d cos® 0
_ . | (= _
() 6 e ()] (57
_ eEext ? 2_7 6 g | Sefaexta2 2
I Y s )3 7"\ o
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(b) (i) This is the same as (a) [note that E} = 0, as before, since 1] is spherically symmetric, so (cos ) = 0]
except for the r-dependence of H'. So Eq. ¢ =

1 1 1 2mep > 1 203 mep
1 !
yof (o) mopn = (TP ) D 2P here _me
! ! <7“ a) r? (47Teoﬁ2\/ mad) 12 r2 & 4megh?vma3

The solution this time it obvious: f(r) = [ (constant). [For the general solution we would add the general
solution to the homogeneous equation (right side set equal to zero), but this would simply reproduce the
unperturbed ground state, ¥, which we exclude—see p. 253.] So

w(l) = Be "/ cosh.

(ii) The electric dipole moment of the electron is
(pe) = (—ercost) = —e(yy+up|rcos Olvg+ig) = —e ((olr cos Olyh) + 2| cos Blwsg) + (gl cos blag)) -
But the first term is zero, and the third is higher order, so

1
<pe> = —2e
ma’

oo ™ 2 4
_ __mep 3 —2r/a 20 __(_mep (@ 2
2e <47r60h27m3> 27r/0 re dr/o cos” 0sin 6 df (eohgwaf’) [3. (2) } <3
me?p 3a* 2 me?pa
B <60h27m3> <?> (§> T <47T€052> B

Evidently the dipole moment associated with the perturbation of the electron cloud cancels the dipole
moment of the nucleus, and the total dipole moment of the atom is zero.

8 / efr/“(r COS Q)efr/“ cos 0% sin 0 dr df d¢

(iii) The first-order correction is zero (as noted in (i)). The second-order correction is
1 ep ) ( mep >/ _ (cos@) _ .
0y zy/1,,1\ . r/a r/a 2
H = e — e cosOr-sinfdrdfd
0 = 75 (=10 ) (e ” ¢
2 o] ] 0 2 2
= —mL%T/ e_QT/adr/ cos? Osinf df = —2mL (E) (—)
0

(4meg)2h2ma® 0 (4mep)?h2ad \2/ \ 3

4 me* p274(p)2E
3\ 2(4me)?h? ) e2a? |3 \ea -

Ej
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196 CHAPTER 7. THE VARIATIONAL PRINCIPLE

Chapter 7

The Variational Principle

Problem 7.1

(a)
(V) = 2aA* /OOO ze~ 27" dp — 20, A2 ( 0 _2b$2> . = O;—/ZQ = % ?b: ;bﬂ
<H>min:h_2< ma )2/3+L<@>1/3:M<1+1) _ §<a2h2>1/3.
2m \ /2rh2 o mao ml/3(2m)1/3 \ 2 2\ 2mm
(b)

o 2 3 T 3a T [2b 3a
—9 AZ 4 —2bx _ 22 A o “v .
V) =2a /0 vie T de =2adgm o\ % T e\ 2V 7 T 1612

R*b  3a O(H) 3« 3am 3am /3
H - — 5 —_— = — — —F = b3 = : b =
W =om Tl b om w0 U T R ( e )

<H> ‘ 7h_2 304_m 1/3+3_a AR2 2/37a1/3h4/331/3471/3 1+1 7§ 3okt 1/3
T om \ 4k2 T m?2/3 2 4] |4 '

Problem 7.2

™

Normalize: 1 2|A|2/00 b g —oap WP L
: = €Tr = _— = — . = _
o (z2+02)2 ¢ 23 7
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1 d? 1
R 2 _
Kinetic Energy: (T) = |A| /_Oo 1 19 da? ((:c2 +b2)) dx.
But —2x B - + o 4x 20327 - b?) <
a:2+b2 (22 + b?)2 - (22 4 b2)2 (22 + b2)3 - (22 + b2)3 ’
K2 2B [ (322 — b?) ARV [ 1 °
[ Yy (0l S R R —
(T) 2m /0 (22 +b2)4 . ™m {3/0 (2 +b2)3 . /0 (22 +b2)4 4
77471263 337r g2 0T | h?
 mm |16k 3207 | Amb?
[eS) 2 3
Potential Energy: (V) = %maﬂ/ﬂ2 2/0 (:623:_7[)2)2(& = mw2%41b = %mw2b2.
h? 2,2 O(H) n? 2 4 ? 2 h
(H) 4mb2+§mwb. o = meg—i—mw b=0=b S22 b* = 5
R Vemw 1 1 A V2 o1 V2 1
Hmln 5 2__:h = =|—hw|=0. h —hw.
(H) v T <4+2\/§> . 0.707hw > Sho.
Problem 7.3
Alx+a/2), (—a/2<z<0),
Y(x) =< Ala/2 —z), (0<z<a/2),
0, (otherwise).
a/2 2 3 |a/2 2 3 3 12
1 A12 a __ 2L fa — A2 (AN a2 _ 1=
1= |4 2/0 (5-2) dr=-2147; (2 ) 24P (3)" = L1ap, 22 (as before).
A, (—a/2<2<0),
dy 2y a a
=) 0<e<a) o= a0 (e 5) —240(0) + 43 (0 - 3).
0, (otherwise).
Ty = /w [Aé (a:+9) — 248(z) + Ab (xff)] dz = h—22A¢( 0) = 2 p28
N m 2 2 - 2m
h2a 12 h?
ey L fore).
51 23 o (as before)
— o [P — alp(0) = —ad? (%) = 3% g
vy = oz/|1/1| §(z) dz = —ap(0)]2 = —aA (2) = =32, (H) = (T)+(V) =6 — 3=
bl h2 2
o) =125 435 =0=a=4—
R? rmaon 2 mo ma? (3 3 3ma? ma?
Hyain =0 (553) — 32 (35) = 2 (éz) s | e Y
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198 CHAPTER 7. THE VARIATIONAL PRINCIPLE

Problem 7.4

(a) Follow the proof in §7.1: ¢ = chz/)n, where 1; is the ground state. Since (¥1|y) = 0, we have:

n=1

oo
Z (1)) = ¢1 = 0; the coefficient of the ground state is zero. So

n=1

oo oo
= ZEn\cnP > FEg Z lcn|? = Ee, since E, > F, for all n except 1.

n=2 n=2

oo 1 [« 2b
1=A 2070 gy = |AP 2 [ o = |A]? = 4by | =
| |/_oome do = |4 8b\ 2b 4] b T

R e [T e @ —bx?
(T) = 7%\A| [m xe e (xe )dx

(b)

d? d
— (me‘bxz) = — (e_b’” — 22t ) — _2bze " _ 4bge b’ +4b%z3e?

2h2b
T) = f—4b\/ b + 4b%zt) e d
) / ~Gba +AbaT) e T 8b 32b2
4h2b 3h%b
= —_— —|— — = .
m 4 8 2m
1 0y ope? 1 263 T 3mw?
_1 A2 2,-2b0% 20, 1o 24 [0 [
(V) 2mw\ | [mx e xdx 57w b — 230\ 21 )
30 3mw  O(H) 3h%  3mw? m2w? mw

H) = . = _ T = _ b = .
H =5 “op ~om w0 172 oh

<H>min =

32 mw  3mw? 2k 3 3 3
—_— 4 R hw
2m 2h 8 mw

This is ezxact, since the trial wave function is in the form of the true first excited state.

Problem 7.5

(a) Use the unperturbed ground state (wgs) as the trial wave function. The variational principle says
WOIHIWL) > EL. But H = HO+ H', so (W H[UL) = (WO [00) + (o H[uL). But (6l HOJS,) =
Egs (the unperturbed ground state energy), and <’(/Jgs|H ! Wgs) is precisely the first order correction to the
ground state energy (Eq. 6.9), so EOS + ElS > Ey. QED

0 H'
(b) The second order correction (E2 is E2 = Z I ¢ | |¢g’s>‘ . But the numerator is clearly positive,

m#gs
and the denominator is always negative (since Egs < Efn for all m), so Egs is negative.
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CHAPTER 7. THE VARIATIONAL PRINCIPLE 199

Problem 7.6
He™ is a hydrogenic ion (see Problem 4.16); its ground state energy is (2)%(—13.6 eV), or —54.4 eV. It takes

79.0 — 54.4 = 24.6 €V | to remove one electron.

Problem 7.7

T’ll do the general case of a nucleus with Z; protons. Ignoring electron-electron repulsion altogether gives

3
Yo = Z—Ogefz"(”*”)/“7 (generalizing Eq. 7.17)
Ta
and the energy is 2Z2E;. (Ve.) goes like 1/a (Eqgs. 7.20 and 7.25), so the generalization of Eq. 7.25 is (V,.) =
—5ZyE1, and the generalization of Eq. 7.26 is (H) = (228 — 2Z,)E;.
If we include shielding, the only change is that (Z — 2) in Egs. 7.28, 7.29, and 7.32 is replaced by (Z — Zp).
Thus Eq. 7.32 generalizes to

(H)—-PZQ—4ZQZ—Z@——ZZ}E1—[—2ZQ+4ZZO—§Z}EL

o(H) _ _ 5
57 5 5 5
(H)min = |—2 (Zo_l_6> +4(Z0—1—6) ZO_Z <ZO_1_6> Eq
5 25 5 5 25
= —222 — = y4z2-= .
( 5+ 4ZO 198 + 475 4Zo 4Zo + 64) By

5 25 16Zy — 5)?
— <QZSZZO+HS>E1 :u]gh

generalizing Eq. 7.34. The first term is the naive estimate ignoring electron-electron repulsion altogether; the
second term is (V) in the unscreened state, and the third term is the effect of screening.

5 11
Zo=1MH"): Z=1- 6116~ 0.688. | The effective nuclear charge is less than 1, as expected.
112 121
H)min = Py =|—F =—-12. .
H) 8 128! Jev
5 27 272 729
Zo=2(He): Z=2- 616 1.69 (as before); (H)min = ESEl = ESEl = —T77.5eV.
5 43 432 1849
= it): = _—_— = — = . = — = | — = —
Zy =3 (Lit): Z 16 16 2.69 | (somewhat less than 3); (H)min 128E1 198 Eq 196eV.

Problem 7.8

D = a(tpo(r1)

i\ Yo(ra)) = altbo(r2)

1 1 —ors/a L 3
- - q— r2/a g
1 ‘ Yolr2)) amlg /e 1 "
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200 CHAPTER 7. THE VARIATIONAL PRINCIPLE

1 W 2/ 2T R?—2rRcos 0
=— et aritcos o *sinfdrdf dp = — / [ / TR 2TR°056s1n0d9} dr.
Ta T™a

1 r+R

e—2y/ay dy = __a

5 [e—m“ﬂ/a (r +R+ g) — e~ 2Ir=Rl/a (|r - R|+ %)]

1
" 4R [e_QR/a (a®* +aR) + (—a2)} —|D = % - (1 + %) e 2B/ | (confirms Eq. 7.47).
1 1
<¢0 Tl —‘ 1/)0 7"2 =a—3 B*Tl/aefm/a_dgr
ma r
_ 1 [ rja-vimFEm RS 0/a L ~r?sin @ dr df dg = 2_”/ o/ [/We—\/m/asinede .
ma? el

L] :—rR [ ~(rtR)/a(p 4 R 4 q) — ‘T_Rl/a(|r—R|+a)}

73 72 —R/a > —2r/a
X = 2( R) [e /0 e (r+R+a)dr

R [eS)
—e f/a / (R—7+ a)dr —ef/? / e~ /%y — R+ a)dr
0 R

2

_ _% {e—R/a [(3)2 + (R +a) (g)] — g R/a [(R+G)R - R?}
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CHAPTER 7. THE VARIATIONAL PRINCIPLE 201

—eR/a(—R—l—a) (_%e*%/a) oo

2
__2 R/ <_@ _ R_) | X = ¢ R/a (1 + E) (confirms Eq. 7.48).
a

Problem 7.9

There are two changes: (1) the 2 in Eq. 7.38 changes sign ... which amounts to changing the sign of I in
Eq. 7.43; (2) the last term in Eq. 7.44 changes sign ... which amounts to reversing the sign of X. Thus Eq. 7.49
becomes

D-X
(H) = {1 +2 T ] E;, and hence Eq. 7.51 becomes
Eiot  2a D-X 2 1oz —(1+1/z)e 2 — (1 +2)e @
F(z) = S — 1+ Z 9
(z) -E;, R 1-1 7 1—(14+xz+2a%/3)e ™
__1_’_2 1-(1+z+2%/3)e ™ =1+ (z+1)e 2 + (z +2%)e®
N x 1-(1+z+22/3)e "
. 2 |(1+a)e ™ + (32— 1) e
N x 1-—(1+z+22/3)e®

The graph (with plus sign for comparison) has no minimum, and remains above —1, indicating that the energy
is greater than for the proton and atom dissociated. Hence, no evidence of bonding here.

F(x)

-0.5
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202 CHAPTER 7. THE VARIATIONAL PRINCIPLE

Problem 7.10
According to Mathematica, the minimum occurs at x = 2.493, and at this point F” = 0.1257.

it =y By oL [OTEE
a m
1
Here m is the reduced mass of the proton: m = LI - —m,.

my + 1My, 2

8 .
B 3% 108 m/s \/(0.1257)(13-6 eV) = 3.42 x 1014/5,

~(0.529 x 10-10 m) |/ (938 x 106 eV)/2

1 1
57%1 = 5(6.58 x 107106V -5)(3.42 x 10* /s) ={0.113 eV | (ground state vibrational energy).

Mathematica says that at the minimum F = —1.1297, so the binding energy is (0.1297)(13.6 eV) = 1.76 V.

Since this is substantially greater than the vibrational energy, it stays bound. The highest vibrational energy is
1.76 1

giver;)by (n+ %)hw =176 eV,son = 0226 2= 7.29. T estimate bound vibrational states (including

n = 0).

Problem 7.11
(a)

a/2 7
e /W‘thmf/ (E) dr=APY = a=,/%
a/2 a 2 a
sz/; h2 ) 2h2
a/2 2 /2

1 1 2 3
(V) = —mw2/x2¢2 dx = —mwQ—/ 22 cos? (E) oy = =~ (ﬁ) / y? cos® y dy
2 2 aJ_q/2 a a T -

= mw’e” [y—g + (y—2 - l) sin 2y + yeos Qy] v = —mWQQGQ (F—Q — 1) .
—n)2 4 6

73 6 4 8 4

(H) = 72 h? +mw2a2 7r_2_1 - O0(H) __7r2h2 +mw2a 7r_2_1 _0 o
© 2ma? 472 6 ’ da mad 22 6 N

i 9 1/4

azﬂ\/%(w2/6—1> '
w2h? mw [m2)6 -1  mw? (72 h 2

Hmin = 5 ——1 SRy P

(H) 9mr? h 5 <6 )77 mw\[ 72/6 — 1

1 2 1 1
=|-hw{/ — —2|=zhw(l.1 —hw.
3 3 5 (1.136) > 5 v

[We do not need to worry about the kink at +a/2. It is true that d?t/dx? has delta functions there, but
since 1(£a/2) = 0 no “extra” contribution to T comes from these points.]
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CHAPTER 7. THE VARIATIONAL PRINCIPLE 203

(b) Because this trial function is odd, it is orthogonal to the ground state, so by Problem 7.4 (H) will give
an upper bound to the first excited state.

a
1
1:/\¢\2dx:|3|2/_ sin® (H)dfC:lBIQa = Bzﬁ.
d2’¢ h2 2h2
T = _
) /wdxz /¢ = 2ma?
—l 2 22 —1 21/22E —mWZES/W2.2
(V) = oMW /33 Yodr = 5w _ax sin (a ) dr = 2q (71-) _Wy sin® y dy

mw?a? [y3 y2 1\ . yecos2y] |” mw?a? [ 2m2
= — == —=]sin2y - ——= = — —1].

273 6 4 8 4 472 3

72h?  mw?a® [2n2 O(H) 72h?  mw?a (272
gy =% @ Em ), - T 1)=0 =
(H) dmaZ T dn? ( 3 )’ da ma® | 2n? ( 3 )

h 9 1/4

“:W\/%<2w2/3—1) '
w2h? mw [272/3 -1  mw? (27?2 h 2

H min — 7 — -1 R

(H) omn? h 2 T ( 3 )77 mw\| 2723~ 1

1, [an2 1 3
= | Ghen) - —2|= Shw(3341) > She. v

Problem 7.12
We will need the following integral repeatedly:

[ P ()T (2
0 e P T wE T T

(a)

© 1 A7 T (5) T (*57) bin 1T (2n)
1= 2x*2A2/ —dx: 2 2 >A=,/——~——5~.
[ et =2iaf [ = A T
d21/1 h o 1 d —2nx
T) = = A2 —
< > / ’(/} /_oo ($2 +b2)n dx (372 +b2>n+1]
B n_h2A2/°° 1 1  2(n+ 1)a?
S om @2+ (@24 02)" T (@24 2)" P
— MAQ

m

[e'e] 1 [e'e] ZL'2
/0 (22 + b2)2n+1 ( ) o (22 + b2)2n+2

_ 2 ynr(n) l L) (i) 2<n+1>r<%>r<4z—+l>] R nfan—1)

m DT (2F) |21 T@n+1) 201 T@n+2) | 4mb® 2o+ 1)
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204 CHAPTER 7. THE VARIATIONAL PRINCIPLE

1 e’} 1 0 xQ
(Vy = —mwQ/ V2a? de = —mw22A2/ ——dzx
2 - 2 o

(x2 + b2)*"
L eTen) 1 DTN e
ST (D %8 T(2n)  2(4n-3)
R n(dn—1)  mw??®  9(H)  h* n(dn-—1) mw?b
(H) = 4mb? (2n + 1) * (4n—3)" b 2mb® (2n+1) * (4n — 3) =0=
B h [n(dn —1)(4n — 3) 1/4
b=\ e { 2(2n +1) ] '
R n(dn—1) mw 2(2n+1) mw?  h [n(dn —1)(4n — 3)
(Hmin = 30 (2n+ 1) T\/n(zm —1)@n—3) " 2an—3) M\/ 2(2n + 1)

1 2n(4n — 1) 1 8n2 —2n 1
=|-hwy| ————— | = Zhw\| =————— —hw.
2 \/(2n+1)(4n3) 2 8n? —2n — 3 73 v

(b)
o 2 B2 T(2)T (42 An—31(9
1 = 2|B|2/ x —da = |4n|73 (3)T (%) ~ B— bg—g,ﬁ)g.
o G T ) T ()
n? > i d 1 2nx?
T) = —— B2 4 _ d
0 = -5 | [wer T |
_ h2B? /oo x —2nx 4dnx N 4n(n+1)x3
= 2m oo (g;2+b2)n (m2+b2)"+1 ($2+b2)n+1 (1‘2+b2)n+2

4nh?B?
2m

3/00 v dzr —2(n+1) /Oo v d
5.7 ar — n -+ —————— 5.5 a4
0 ($2+b2)2n+1 0 (x2+b2)2n+2

2k b 002n) | 3 TE)T(ME) 2+ )T ()T (M) | 34 n(dn—3)

m I (3)T(4%2) |20t~ T(2n+1) 2041 T(2n+2) | 4mb2 (2n+1)°
4 1 b =30(2n) 2 T(3)T(25) 3 mwp?

_* 2232/ z dr = —mw? 2 2 ) _° )
Wi = gmen2B | ey T ™ T ()T (52 S T(en) 2 (4n — 5)
(H) = 3h% n(4n — 3) +§ mw?b? ; O(H) _ 3h% n(4n — 3) N 3mw?b PN

dmb? 2n+1) 2 (4n—15) b 2mb® (2n+1)  (4n—15)
b — ~h[n(4n —3)(4n —5) 1/4
Vo 2(2n + 1)
()i = 31 n(4n — 3) mw 2(2n+1) 3 mw® h[n(4n —3)(4n - 5)

T 4m 2n+1) R\ n(dn —3)(4n —5) 2 (4n —5) mw 2(2n+1)

|3 2n(4n — 3) —§hw 8n? — 6n - §hw %

|2 (2n+1)(4n—5)| 2 8n2 —6n — 5 2
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CHAPTER 7. THE VARIATIONAL PRINCIPLE 205

(¢) Asn — oo, ¥ becomes more and more “gaussian”. In the figures I have plotted the trial wave functions
for n =2, n =3, and n = 4, as well as the exact states (heavy line). Even for n = 2 the fit is pretty good,
so it is hard to see the improvement, but the successive curves do move perceptably toward the correct
result.

DN WS U101 00

SOOOOOOO
L]
SO OOCOOOO
L[] L] L]
PN WSUITOYNJ00

1 2 3 4 1 2 3 4

ho(nedn-4n\'Y' _ [ank
Analytically, for large n, b ~ (w> n

— =4/=—, so
mw 2.2n ’

2 | 12\" 2n z?\" 2n mwa?\" on_mwz>/2h
(22 +0%)" =b L4 33) =" 1+ 5 — b .

Meanwhile, using Stirling’s approximation (Eq. 5.84), in the form I'(z 4+ 1) = 2%e¢™*:

2 b4n711"(2n) pin—1 (2n _ 1)2717167(27171) pin—1 1 (2n -1 > 2n—1 5 3/2
= ~ ~ — n — .
r(Hren-1) V3 (2n — %)2"—3/2 e—(2n—3/2) VT e \2n—3
1— - 1 3 3 1 1
But )1 — 14— |=1+———=1+—;
b (1—%) ( Zn) ( +4n) T Ty
2n—1 n2
2n —1 1 1 2
~ (1) | e () = e
@ (ag) =l0a) w0
an—1 2 2 1/4
= bf\/E\/Zn: Dyl 5 A (—”) p>"=12 8o
e s ™
,(/) ~ 2_7’l e b2n—1/2 Le—mwzz/Qh — 2_77’ e (ﬂ)l/4 e—mwx2/2h — (y)l/4 e—mwzz/Qh
T b2n T 2nh wh ’

which is precisely the ground state of the harmonic oscillator (Eq. 2.59). So it’s no accident that we get
the exact energies, in the limit n — oo.

Problem 7.13

™

2 o 2 TN\ 3/2 2 3/4
1= |A|2/e—2“ r2 sin 0 dr df dep = 47T|A‘2/ 22" gy = | A2 (%) = A= (—) .
0
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206 CHAPTER 7. THE VARIATIONAL PRINCIPLE

oo 2 op\¥? g 2 2
(V)= |A| 47r/ e~ 2br —r r2dr € (—b> PR 3
0

47T60 47T60 T 4b 4meq T

hZ
(T) = 72_|A\2/e*b’“2(v26*b’"2)r2 sin 0 dr df do
m

: 1d d , 1d . —2b :
But (VQe_I”Z) =< (rQ—e_b72> =< — (—2br3e_b’2) = (3r 2br4) et
T'

rZ dr dr

—h2 [2b\%? o o opr? h? 2b\ /2 [7 [
=5 (?> (477)(—2())/0 (3r= —2br%)e dr = Eﬂ'b4< ) [ % 32b2 }

h? 2b 3 3h2b
= 4 .
(%) (5 1) = 5

3h2%b 2 20 O(H 3K? 2 21 2 /22
=30 g A S S 2L e S 2
s

2m  4meg 0 b 2m  4meg \/_ =  Adre
() = S () 242 e 2\/2 ? \@_m_ e \'m(4_ 8
W om \dreg /) 7w ORE dweg m \ 4meg 73h2  \dmey) K2\ 37  3r¢

2 2
S (6_) S 18 p — 1150v.
3T

2h? \4dmeg ) 37

Problem 7.14

Let ¢ = ﬁe_r/b (same as hydrogen, but with a — b adjustable). From Eq. 4.191, we have (T) = —F; =

h2 h2
5 for hydrogen, so in this case (T) =

2m 2mb?’
e? Amx [ e Hr e 4 [ e? 4 1 e? 1
Vye - S0 [ el 2o © 2 2y g = C 2 =- .
v dmeg b3 J, ¢ r dmeg b3 J, ¢ rar dmeg b3 (1L +2/b)? dmeo b(1 + %)2
h? e? 1
(H) = 5 — et
2mb 4meg b(1 + %)2
O(H) _h_2+ e? 1 N U _ R e (L+3ub/2)
ob  mbd  dmey [D2(1+pub/2)2 T b(14pb/2)3 | mbd  dmwey b2(1 + ub/2)3

n? (47%0) _ A +3ub/2) o (14 3ub/2)
m\ e ) " AT w2 T

This determines b, but unfortunately it’s a cubic equation. So we use the fact that u is small to obtain a suitable
approximate solution. If ;4 = 0, then b = a (of course), so pa < 1 = pub < 1 too. We'll expand in powers of

b:
: azb<1+37ub> [137’w+6<“2b) ] zb[1§(ub)2+g(ub)2] b[lz(ub)Q].
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CHAPTER 7. THE VARIATIONAL PRINCIPLE 207

Since the %(ub)2 term is already a second-order correction, we can replace b by a:

bziﬂ%a{l%-zwa)ﬂ.

K2 e? 1

" 2ma? [1+ g(,m)zf " dmeg g 1+ 3(pa)?] 1+ 3 (ua)]2

%h_2[1_2§w>2}_ ¢ 1[1—2(;@2} [1—2%”(%)2]

2ma2 4 4meo a

B [1 - g(,ua)Q] +2F, {1 — pa + %(ua)Q — Z(W)Q} =|F [1 — 2(pa) + g(ua)ﬂ.

Problem 7.15
(a)

H:(%é‘); det(H—=X) = (E, =\ (Ey —\) —h? =0= N> — \(E, + E}) + E,E, — h* = 0.
b

1
A= (Ea t B+ \/Eg + 2B,y + B2 —4EaEb+4h2) =By =1 [Ea + By £ \/(B, — By)? +4h2]

(b) Zeroth order: EY = E,, E) = Ej. First order: E! = (1,|H’|¢,) = 0, E} = (p|H'|thp) = 0. Second

order: / 2 2 / 2 2
P L O RPN (N3 O
a E, — E, E,—E,’ b E, — E, E,—E,’
h? h?
F ~E,————; E,~E+——-—.
(By—E.) """ (Ey—Ed)
(c)
(H) = (cos ptha +sin @4y |(H® + H')| cos ¢ Pa + sin ¢ 1))
= c0s” ¢ (a| H'[1ha) +sin® ¢ 4y H[1hp) + sin ¢ cos ¢ (hp| H'|¢0a) + sin ¢ cos ¢ (va| H'[v0s)
= F, cos® ¢ + Epsin® ¢ + 2hsin ¢ cos ¢.
O(H
éf; = —E,2cos ¢sin ¢ + Ep2sin ¢ cos ¢ + 2h(cos® ¢ — sin? ¢) = (E, — E,) sin 2¢ + 2h cos 2¢ = 0.
o°h 2h sin 2¢ .2 2 .2
tan2¢p = ——— = —e where €= . = —¢; sin“2¢ = €°(1 — sin” 2¢);
=& BB oo ¢ =e( 9)
+ 2 1
or sin®2p(1 + €?) =€ sin2p = ﬁ; cos?2¢p =1—sin?2¢p =1 — # =1ra
1 in 2
cos2¢p = \/1:2__62 (sign dictated by tan2¢ = :)I; 22 = —¢).
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1
sin? ¢ =

1 1

N | =

1 1 1 1 ¢ 1 (Eb—Ea—F?he)]
Hmin:_Ea 1 +_E 1:': :I:h :—EQ+E :I:—
W 2 ( y 1+e2> 2 b( \/1+e2) V1+e? 2{ ’ V1+e?

(By— Eq+2he)  (Bo—Ed) +2hiz2es (B, — B2 +4h% s
But JSte e BV AT = V(BEy — E.)? + 402, So
€ 1 + —(E'bea)z b — a) +

1
(H)min = 3 [Ea +Ey+/(Ey—E,)? + 4h2] we want the minus sign (+ is maximum)

=1 [Ea +Ey— /(B — Ba)2 + 4h2].

(d) If h is small, the exact result (a) can be expanded: E; = 1 {(Ea +Ey) £ (Ep — Ey)y/1+ ﬁ}

B~ Byt Byt (B - E) e N g i(E—E)j:L
:tN2 a b b a (Eb—Ea)2 —2 a b b a (Eb—Ea) )
h? h?
3 F. . ~FE - F ~FE,— ——
S0 + b+(Eb—Ea)’ “ T (By—Eq)’

confirming the perturbation theory results in (b). The variational principle (c) gets the ground state (E_)
ezactly right—mnot too surprising since the trial wave function Eq. 7.56 is almost the most general state
(there could be a relative phase factor e).

Problem 7.16
For the electron, v = —e/m, so Fy = teB.h/2m (Eq. 4.161). For consistency with Problem 7.15, E}, > E,,

1 0 eB.h eB.h
SOXb—X+—(O)7 Xa—X—(1>7 Be=Ey=—"—, Ba=E_ =-—".
(a)

bttt =525 (01) (1) (1) = 2o 0 (5) =e
)(6) =0 ol = Gt 1) (1) () = i

eB.h 01 1 eB.h 0 eB.h eB.h
(XalH'Ixo) = == (0 1)<10) (0) (0 1)<1> . So |h= ,

, _eBgh 01
<Xb|H |Xb>— om (1 O) (1 0

and the conditions of Problem 7.15 are met.
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(b) From Problem 7.15(b),

h2

_eBzh B

(eBh/2m)? eh

Com

2m (eB.li/m)

(2

B2

xT
2B, )’

(c) From Problem 7.15(c), Egs = 3 [Ea +Ey,—/(Ey— Eg)? + 4h2} (it’s actually the ezact ground state).

Eye =

Ly

A <63xn>2 _
2m

eh BB

(which was obvious from the start, since the square root is simply the magnitude of the total field).

Problem 7.17
(a)

ry :ﬁ(u—i—v); ro = 7

—(u-—

2, .2
v); ri+r; =

1
§(u2+2u-v+v2+u2—2u~v+v2):u2+v2.

)

0% f 82f 82f 0%f 0%f O3f
2 2 _
(Vit Va)f(r1,r2) = (5‘x1 8y | 922 922 t o2 y3 822) '
of _ of duy | Of Ovy 1 of\. of _ 0f duy  Of Ov, _ 1 (Of  Of
0ry  Ouy Oxry  Ov, Ox1 /2 \Ou Ovgy ) Oxo  Ouy Oxy  Ovy Oxy /2 \Ou,  Ov,
82f_ii of +8f _ b 0% f Ouy 0% f vy O%f Ouy 32f8119;
02 20x1 \Ouy Ovy) 2 \Ou20x; OuyOv, Or1  Ov0uy Oy (%2 0z,

1 [/ 0%f

=3 (? + 28%8%

ﬁ_ii aof of\_ 1 82_f8um 0% f vz O%f Ouy 32]‘8%
03  /20x9 \Oup, Ov,) /2 \Ou20xzy OuyO0v, Ory  Ovdu, Oxo 61}2 Ozo

1(of L&

2 \ Ou? 8ux8v:,3 w2

*f  *f O*f  O*f N Ce2 L v2 o2 2
So <6m1 + 8332) (8u2 ) and likewise for y and z: Vi +V; =V, + V.
2
H = —;—(V2 +V32) + ;mw (u? +v?) — 2mw22v2
2 2
= [—h—V3 + —mwzuﬂ + {—h—VQ + 1mw21)2 — 1)\mw 2y? QED
2m 2 2m 2
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210 CHAPTER 7. THE VARIATIONAL PRINCIPLE

(b) The energy is 3w (for the u part) and $hwy/1 — X (for the v part): | Egs = 3hw (1 + /1 = X).

(c) The ground state for a one-dimensional oscillator is

mw 1/4 —mwz?
wo(g;):(ﬁ) e~me /20 (Eq. 2.59).

M)3/4 efmwr2/2h

So, for a 3-D oscillator, the ground state is ¥ (r) = ( T , and for two particles

3/2 e
P(ri,ra) = (m_;;}) e~ B (ri+73), (This is the analog to Eq. 7.17.)
T

(H) = gfw + ;hw + (Vee) = 3hw + (Vee)  (the analog to Eq. 7.19).

3 mw ]
(Vo) = —Zmw? (E) /e*T(’”fJ“”‘f’) (ry —r2)? d°ry1d’ry  (the analog to Eq. 7.20).
wh ——

Tf —2rq-ro +T§

The r; - r2 term integrates to zero, by symmetry, and the r3 term is the same as the 72 term, so

A 3 mw
(Vee) = —meQ (m_;;) 2/6_ i (Tf'”g)r% d3ry dPry
0

A 3 o0 o0
— —§mw2 (%) (47r)2/0 e’mw%/hrg dTQ/() e*m“’rf/hril dry

sm'w® |1 b [xh | [3( b \® [«h 3
— ) == s = — | = —=Nw.
h3 [4 mw mw] [8 (mw) mw] 4

(H) = 3hw—gAhw= 3hw (1—%).

The variational principle says this must ezceed the exact ground-state energy (b); let’s check it:
A 3 A A A2
Bho (1-5) > 5w (1+VI=2) & 2=5>14VI-2 © 1-5>VI-2 & 1-A+ - >1-x

It checks. In fact, expanding the exact answer in powers of A, FEy ~ %hw(l +1- %)\) = 3w (1 — %),
we recover the variational result.

Problem 7.18

1= :/|1/J|2d3r1 dPry = | AP [/z/}f d3r1/¢§ d®ry +2/¢1¢2 d3r1/w1¢2 d’ry +/w§ d3r1/w% d‘”‘rz}
= |AP(1+25%+1),
where
= 3_7V(21Z2)3/ —(Z1+Z2)r/a 2 _i QBL_ gs
S_/wl(r)%(?“)d r=-"——3 e dmrdr = pE (2) Zi+ 22 ~ (w) :
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1

2= —_—
e

K2 e? 1 1 e? 1
H=——(V?+V3) - - 4+ = S
2m( 1+ V2) Admeg (rl +7‘2> +47T6() [r; —ra|’

h2 2 VA 7
Hy=A { [—%(V% +V3) - 4;60 <—1 + —2)] Y1(r1)a(re)

T1 T2

B2 2 [z Z
g T = i (24 2 vt}

T2
2 Zi—1 Zy—1 Zo—1 Z;—1
+A47ereo{{ —t ]%(nwz(rzw{ e }wxn)wl(m)%wew,
e? 1

where V,, = ————.
471'60 |I'1 — I‘2|

The term in first curly brackets is (Z2 + Z2)E191(r1)Y2(r2) + (Z3 + Z2)1)o(r1)11(r2), so
Hy = (27 + Z3)Erd

AEe I

(B B s [0 B ) v
2

(H) = (23 + Z3)Er + (Vee) + A® (4250)

X {Wl (11)2(r2) + 2(r1)Y1(ra)

Z1—1 Jy—1
(St
T1 T2

Y1(r1)a(r2)) + [Z2T1_ ! + 21~ 1}

walra)inra) )}

{1 =@ - v o0 + @ - D) | vt
H(Za = () || () () (r2)
(2= D) a(r))ar2) || d1(r2)) + (22 = Dalr1) || dnra)) (o (r2) ()
+(Z2 = D) a(r)) (0a(r2) || dalra)) + (Z2 = D) || dalra)
+(Z1 = 1) (¥ (r2) % Y1(r2))
1 1 1 1
—2z- (1) +22-1(3) A2 - Dl |} ) + 2 - Dl |1 )
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o =2 () =2 w0 =@+ 2)m

e2 1
1 A? (4_> [ (Zy —1)Zy + = (22 —1)Zs + (Z1 + Zz = 2) (41 [h2) (¢n |~
TEQ a

]|+ v

And  (g]ih) = S = (y/2)* 50

V(%12,5)° ZlZ2 —(Zi4Z)r)a . g a 17 4P
(Y1 ‘¢2 / + rdr = —[Z1+ZJ = 5
1 2 2 3 .3
(H) = (2 - 5yz)El + A2 <47€T_60) - {[Zf + 25— (Z1+ Z2)] + (z — 2) (%) 2%} + (Vee)
= (ac2—1 2By + 4B A? 22— 1 2—:1c+l(:r—2)y—6 + (Vee)
= 21/ 1 1 2y 5 o e)-
e2 1
e = ot | 2w
1
B (47re > A (W1 (r)g2(r2) + o (r1) + ¥ (r2) W’ P1(r1)2(r2) + Ya(r1)vn(r2))
= <4;€0> A? {2@/11(7"1)1/12(7”2) —|r1 ] ‘ P1(r1)Y2(r2)) + 2(h1 (r1)v2(r2) Flrﬂ’ 1/}2(?“1)1#1(?‘2))]
_ 2
=2 <47T€0> A*(B+ (), where
1 1
= (Y1(r1)¢2(r2) 12l (r)a(r2));  C = (Y1(r1)ya(ra) 112l (r1)a(r2)).
= (iif)% /6_22”'1/“3_2227'2/““—1[.‘ d®ry dry.  As on pp 300-301, the ry integral is
1 -T2
—2Zsra/a 1 d3
/e /12 + 13 — 27179 cos 02 "
a3 7 )
;37"1 [1 _ (1 i 2“) 6_222”/“] (Bq. 7.24, but with a — Z-a).
B— Z%ZS’ (7Ta3)4ﬂ-/oo e_221'f‘1/ai 1— 1+ @ 6_2227-1/& 7"2 dr
- (ma®)? Z3 0 T a 1501

4zi13 > —2Z1r1/a —2(Z14+Z2)r1/a 2y 2 —2(Z1+Z2)r1/a
=— rie” 2% — e 1Te)nl/e — ——prle 12T dry
a3 Jo a
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2 2 3
N a _ 2, a
(221> (2(21 +Zz)) a (2(21 +22)>
7 2 2
1422[1+—le2 }y_<1+y_).
a(Zy + Zz) (Z1 + Z3)? 4ax 4z2

Z:ISZ:QS —Ziri/a,—Zara/a,—Zaor1/a ,—Z1ir2/a 1 3 3
C= T [ € e R e Gem AR 0 e d°r1 d°ry
(ﬂ-a) |I‘1—I‘2

47}
(13

z? ( 1 1 Zy )
o a Zl2 (Zl + Z2)2 (Zl + Z2)3

3
_ (41%,) /6—(Zl+Z2)(r1+T2)/a L e drs,

(wa?)? ry —ra|
The integral is the same as in Eq. 7.20, only with a — ﬁa. Comparing Egs. 7.20 and 7.25, we see that the
integral itself was
5 (7ad\® 5 205 gy oo (L1Za)'5n’  £d” 20 (Z12,)? 5 ¢f
—_— _ = ——1T . = D = = —
da \ 8 256 (mad)? 256 (Z1 + Z2)°  a (Z1+ Z3)5  16a 25

2 2 6 2 2 4
e y y 5y 2 y Yy oy
=2 ()2 | (1 )+ 2L —oa(2m) L (14 L 20 )
(Vee) (47‘(’60) [4am< Jr4302> + 16ax5] ( 1)41‘( +4x2 +49U4>
1 1 y®

L _W{ﬁ—iﬁ—x—l—i(:ﬂ—?)ﬁ]—mg (1+%+%>}

Ey o 1 o6 6 62 15 13/6 yﬁ y2 y4 51/6
= _ — —2 _ = — _— = — —_—
(w6+y6){(x QU@ ) — 2 sy et S 5t T 16 T o
Ey 8 26 1 go 14 8 6,2 7 2.6 6 1 so 15, 5 4
Ey 8 7, o0 159 1 g, 11 4 14
= —_— —_— 2 —_ —_—— _—— —_— _ .
(m6+y6)<x+x+2xy 2Ty 8xy+8xy 5Y

Mathematica finds the minimum of (H) at x = 1.32245, y = 1.08505, corresponding to Z; = 1.0392, Zy =
0.2832. At this point, | (H)min = 1.0266FE; = —13.962 eV, | which is less than —13.6 eV—but not by much!

Problem 7.19

The calculation is the same as before, but with m, — m,, (reduced), where

m,mq m,2m m
m,,(reduced) = ® = e [
ul ) my+mqg  my+2m,  14+myu/2m,

my (207 (9.11 x 10731)
m, 2 ) (1.67 x 10—27)

This shrinks the whole molecule down by a factor of almost 200, bringing the deuterons much closer together,

as desired. The equilibrium separation for the electron case was 2.493 a (Problem 7.10), so for muons, R =
2.493
Sog (052051070 m) =[6.73 x 10~ m. |

From Problem 6.28, m, = 207m., so

1+

= 1.056; m,,(reduced) = 0% 196 me.
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Problem 7.20
(a)

h? (0% 0%
—— | =+ =5 | = FEv. Let = X(2)Y (y).
s (s e ) = ¥ Lt Ulay) = X(@)Y (1)
Yd2X—|—Xd2Y ——2mEXY' ld2X+id2Y _ 2mE
dz? dy? h? X dx? Y dy? k2
NEDS d’y 2mE
— = —k2X; — =K%, with k24+k%= M The general solution to the y equation is
dz2 z Y2 Y z Ty 72

Y (y) = Acoskyy + Bsink,y; the boundary conditions Y (+a) = 0 yield k, = % with minimum %.

[Note that k; has to be positive, or you cannot meet the boundary conditions at all.] So

52 2
E > o (k:fC + Zﬁ) . For a traveling wave k2 has to be positive. Conclusion: Any solution with E <
T2 h?

8ma?

will be a bound state.

(b)

II

Y

Integrate over regions I and II (in the figure), and multiply by 8.

oo a 2
I = AQ/ / <1 — Q) e~2v/odr dy. Let u= g, v= g, dr = adu, dy = adv.
z=a Jy=0 a a a

oo 1 31 —2au |
1—
= A2a2/ / (1 —wv)?e ?*dudv = A%a® [ (L—v) x & }
1 Jo 3 | 2a |,
A2q? A?%q?
— _1 _ —2a — —20t.
6 ( )( € ) 6
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Lo [ ¢ Ly —20
112514/ / (1—;) dzx dy

1
_ A2 2/ / 2 72adudv _ A2 2 —2a /1 M dv
0 —3v |y
1 (1o -1 1
_ 7_A2a26—2a_/ % A2 2 *20‘/ (v? — 3v + 3)dv,
2 3 0 [ 0
1 v 0P ' [n
_ —A2 2 2« > — —A2 2 —204.
gAae 3 3 5 + 3v ET: a-e
A242 11 9 e«
N lizine: —2a _A2 2 ,—2a| _ 1 A2 e
ormalizing 8[ 6o ¢ + 3g A e = 2a2 (6 + 11q)

h? 0? 0? h?
(H) = —%Wﬂw + 8—yz|w) 82—(J1 + Jr1).  [Ignore roof-lines for the moment.]

02 02 y
42 —azx/a _Jd )\ —az/a
A/ ( > <8x2 y2>{<1 a>6 }dxdy
2 ¢2
A2 —2az/a _ g _ g Aﬁ‘Z/ —2a _ 1 2 —2a
S L) () (3 () S [
e [ _w o2 ~ ) oy dy —
g [ () (G ) (1 ) =[ol

[Note that 88 3 (1 - ﬁ) ;x (—3—2) =0, and likewise for 9% /0y?.]

0

@I‘d

QI@

Now the roof-lines; label them as follows:

I. Right arm: at y =0: K.
II. Central square: at xt =0 and at y =0 : K.
ITI. Boundaries: at x = +a and at y = +a : Kyjj.

2 %] a 2, 2
K; :4(—h—)A2/ / <l—|i>ew/“<gza +8_> (1— M)e‘m/adxdy.
2m e=a Jy=—a a 0y? a

ly| = y{%/) - 9(—y)]»
8(02) <L s,
- (1= ) =215 - (-] = - 2500)

a
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216 CHAPTER 7. THE VARIATIONAL PRINCIPLE

2 2 [e’e} a
K; = —iAQ/ e‘mw/adx/ (1 |y|>{ =4( )}dy
m T=a y=—a a a
| S —
L) L)
e—20¢x/a o0 e 2a a 9
* = T = — = — _2(1’ ‘ = ——,
(—2a/a)|, (=2a/a) 2« a
U2A2 d [ 2 212
7 2« <. K, =22 72aA2.
m Zae (/yi)’ 1= a®

2, 2
KH:4A2( )/ / (1 JUyl)e (gz—i-a—) (1—¢‘g|>e%‘dxdy
=0 Jy=—a 8y a
2 a a
m z=0 Jy= a?
h2A2 —2a 2h —2a A2
_/ /%) /0\ .’I,' €, KII = F@ A

h2 a ate 82 82
K =8 — — g & .
=) [, L (G g o

1-— my/a2>6”‘ (x < a)

1- y/a)e_‘”/a (z > a)

In this region (x, y both positive) ¢ = A , or

oo+ 2ot ] s,

v [M+ ég(a ) M —al6a—2)+£0(c—0)
- {1 -2 {9(3: —a)+ =6~ z)] }e—a[f’(a—m)ﬁf’(f—a)] [QM— “f(z—a) - —sle=a ])
(

[Note: f(x) = zd(x) should be zero—but perhaps we should check that this is still safe when we’re
planning to take it’s derivative: df/dx = d(x)+ xdd/dx :

/Q%dx = /g[é(x) + x%} dz = g(0) + /gx%dx
)+ azsbette=s [ gt =0~ [ (42 )stwra

= 9(0) — 9(0) — (zg')[,—o = 0.

This confirms that f(x) can be taken to be zero even when differentiated.]

<
I
S
N
/—\ ,_/H
—_
|
Q|

1
So d(z—a)— gé(a —x) = E(a —z)0(a —x) = 0. Hence the cancellations above, leaving
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31/’ _ Y 704[9(a7x)+£9(27a)]
D A( a29(a x)e

- g@(x - a){l - g [o(x —a)+ %o(a - 1:)] }e—a[ﬂa—m)ﬁf’@—@])
— Ae—olta-n)t506—a)] ( — 00— ) = 20(x - a){l -2 [9(9@ —a)+ =~ x)] })

_ A —afpte-o)+20(-a)] [%Q(a — )+ af(z —a) (1 - Q)] .

a a

0x? a

2
o _ _éea[e<”>+;9<w>]{ —Y5(a—x) + ad(z — a) (1 _ Q)
a

a
1 x
a[M+—0(wa)+M}
N
integral 0
=——e “(x—a) {a _ Q}
a a

4 2 a a+te€ A
KH]:—i/ / W(x,y) [——e‘aé(x—a)(a—%—g)} dz dy
M Jy=0Jz=a—¢ a a a

42A a 42A2 a 2 2
_4h e_a/ Hary) (a_%_y)dy: h e_m/ (a_Q%_g+%+y_2>dy
y=0 ~S—~— a 0 a

ma a ma
A(l—y/a)e—

4n%A% adt 142 ad® 143 4R%A% d ad o
= e (““%353*@?%‘2?)76 (MMT *g)

2 k2 2h2 242 252
<H> _ _§A2 Q@ _a9q + _e—2aA2 + _e—2aA2 + 3—A2(2OZ _ 1)6—205
m mao m m
AZe20p2 2 2 2 2A%e20p2 3
_4e v ——a+—4+2+-2a-1) _ae v —a+—+3+2a—-1
m 3 « 3 3m «
2A2%2e20p2 3 2A2e— 22 7 e=2"R2 9o 27
=00 24+ ) =2 " (0242 N =" (0242 L2
3m <a+ T 3ma (0" 420 +3) 3 mer (0% + 20+ )2a2(6+11a)

302 (a® 4 2a + 3)
ma? (64 1la)

d(H)  3h* (6+ 11a)(2a +2) — (& + 2a + 3)(11)
do ma? (6 + 11ax)?

=0 = (6+11a)(2a+2) = 11(a* + 22+ 3).

12a + 12 4 2202 + 220 = 11a? + 22a + 33 = 11a? + 12a — 21 = 0.

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.



218

CHAPTER 7. THE VARIATIONAL PRINCIPLE

—12+£2,/(12)2+4-11-21  —6+ /36 + 231

o =

2 2
™ R
But Ethreshold =

22 11
—-6+16.34 10.34 .
= = [ has to be positive] = |0.940012239.
11 11
3h2 2(a+1) |6 M2 12
HY i = -2 1] =[1.058(
(H) ma? 11 11 ma? (a+1) ma

so Ey is definitely less than Eipreshold-

2

)

8 ma?

2
1.2337h—2,
ma
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Chapter 8

The WKB Approximation

Problem 8.1

/ap(a?) de =nmh, withn=1,2,3,... and p(z)=+/2m[E—-V(z)] (Eq.8.16).
0
Here /Oap(x) dz = vV2mE (g) +/2m(E - Vp) (g) =V2m (%) (\/E—F \/ﬂ) =nnh

4 n\>
;»E+Ev0+2\/E(E%)_%<E) = 4E%  2/E(E — V) = (4E° — 2E + Vj).

a

Square again: 4E(E — V) = 4E* — 4EV, = 16}322 +4E? 4+ VE —16EE? + 8E%V, — 4EV

0 __ 02 0 2 — 0 E V02
= 16EE, =165, +8EVo+V§ = | By =B+ + 16E0

\%
Perturbation theory gave FE, = Eg + 70; the extra term goes to zero for very small V; (or, since EC ~ n?), for

large n.

Problem 8.2
(a)

& i, 2y i . i . i 1 .
_1/} — _f/ezf/h; W _ % <f//61f/h+ ﬁ(f/)Zelf/h> — |:ﬁf// _ ﬁ(f/)2:| ezf/h'

; 2
1 %(fl)2:| €if/h:_%eif/h:ihf//_(f/)2+p2:0. QED

dQ'(/} p2 "
TR L {ﬁf -
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220 CHAPTER 8. THE WKB APPROXIMATION

(b) f'=fo+hfi+Rfy+- = () =(fo+hfi + R f+ ) = (fo)” + 2hfo f1 + h*[2fof5 + (f1)%] + - -

Fr=f AR AR A ah(fg R+ R = () = 2hfo f = RP2fofs + (F1)P + 0P+ =0
W (f) =p% W afg =2fofl Wil =2 fs 4 (£
d d L fY +p' ;d ]

(c) £ =1p = fo = j:/p(as)dz—i—constant ;% = %% = % <j:l;) = %%lnpzfl = %lnp+ const.

1 = exp (%) = exp [% (i/p(m) dx + h% lnp—l—K)] = exp (i% /pdw) p_l/zeiK/h

= %exp <:I:%/pda:> . QED

Problem 8.3

2a
v = %/\p(xﬂdm = % V2m(Vo — E)dx = 2Ea\/2m(V0 —E). |T = e tav2mo-E)/h
0

From Problem 2.33, the exact answer is

1

T = . .
1+%sinh27

Now, the WKB approximation assumes the tunneling probability is small (p. 322)—which is to say that v is

large. In this case, sinhy = %(e‘* —e ) & %e“’, and sinh? vy ~ ieh, and the exact result reduces to

1 16E(Vy — E)

T~ ~ { } e 2,
% 2
L+ wEmi—m) e Vo

The coefficient in { } is of order 1; the dominant dependence on E is in the exponential factor. In this sense
T ~ e 27 (the WKB result).

Problem 8.4

I take the masses from Thornton and Rex, Modern Physics, Appendix 8. They are all atomic masses, but the
electron masses subtract out in the calculation of E. All masses are in atomic units (u): 1 u = 931 MeV/c?.
The mass of He? is 4.002602 u, and that of the a-particle is 3727 MeV /c2.

U8 . 7 =92, A=238, m=238.050784 u — Th** : m = 234.043593 u.
r1 = (1.07 x 107 m)(238)1/3 = 6.63 x 107*° m.
E = (238.050784 — 234.043593 — 4.002602)(931) MeV = 4.27 MeV.

2F 2)(4.2
V=4 — = %x3x108m/s:1.44x107m/s.
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90
— 1.980—22 — 1.4851/90(6.63) — 86.19 — 36.28 — 49.9.
7 NIk (6.63)

(2)(6.63 x 10715)

7.46 x 102!
= 98.8  _ 21 _ "
T= 144)(107 (& S—746X10 S—myr— 24X10 yIs.

Po*'?: Z =84, A =212, m = 211.988842 u — Pb?*® : m = 207.976627 u.
r1 = (1.07 x 107 m)(212)1/3 = 6.38 x 107° m.

E = (211.988842 — 207.976627 — 4.002602)(931) MeV = 8.95 MeV.

[2E  [(2)(8.95
V=y/—= %x?)xlosm/s:zOleWm/s.

82
= 1.980——= — 1.485,/82(6.38) = 54.37 — 33.97 = 20.4.
7 Vv8.95 ( )

2)(6.38 x 10715
S )(2 = :107 )05 _[32% 101 s,

These results are way off—but note the extraordinary sensitivity to nuclear masses: a tiny change in F produces
enormous changes in 7.
Much more impressive results are obtained when you plot the logarithm of lifetimes against 1/ VE, as in

Figure 8.6. Thanks to David Rubin for pointing this out. Some experimental values are listed below (all energies
in MeV):

Al E T
238|4.198|4.468 x 107 yr
236(4.494[2.342 x 107 yr
23414.775]2.455 x 10° yr
23215.320 68.9yr
230|5.888 20.8 day
22816.680 9.1 min
226|7.570 0.35s

224(7.488] 0.79s
Protactinium (Z = 91): |222(8.540| 2.9 ms
220(9.650(0.78 us
218(9.614[0.12ms

Uranium (Z = 92):

Al FE T
2264.784| 1600 yr
22415.685|3.66 day
22216.559| 38 s
220(7.455| 18 ms
218(8.389| 25.6 us

Al E T

232[4.012[1.405 x 100 yr
Thorium (Z = 90): [230|4.687| 7.538 x 10*yr Radium (Z = 88):
228(5.423 1.912yr
226|6.337| 30.57 min
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222 CHAPTER 8. THE WKB APPROXIMATION

Problem 8.5

@

(b)
B2 d2y a2 2m2g E B E _ fom2g\'?
—%@—i—mgxw:Eszw: h2 (.’L’-m—g> Lety:x—m—g7anda:< ﬁ2 ) .
d? E d?
Then a9 _ Py, Let z = ay = a(z — —), so a9 _ ztp. This is the Airy equation (Eq. 8.36), and
dy? mg dz?

the general solution is ¢ = aAi(z) + bBi(z). However, Bi(z) blows up for large z, so b = 0 (to make 1
normalizable). Hence |¢(z) = aAi {a(m - i)]

mg

(c) Since V(z) = oo for < 0, we require 9(0) = 0; hence Ai [a(—E/mg)] = 0. Now, the zeros of Ai are
an (n=1,2,3,...). Abramowitz and Stegun list a; = —2.338, ay = —4.088, a3 = —5.521, a4 = —6.787,

> p2 o\ /3
ete. Here — 220 — an, or B, = —@an = —mg G, or | B, = —(%mg2h2)1/3an. In this case
mg a 2mig

Img?h? = 1(0.1 kg)(9.8 m/s?)2(1.055 x 10734J:5)2 = 5.34 x 10758 J3;  (2mg?h?)Y/? =3.77 x 1072 J.

‘El =881x1072%J, E,=154x10"22], E3=208x10"22J, FE;=256x10"221]. \

(d)
av av dv 1

2T) = <xﬁ> (Eq. 3.97); here 5 = Mg, 0 <xa> = (mgzx) =(V), so (T)= §<V>
3 2 2E,

Buw (T)+(V)=(H)=E,, so -(V)=EF,, o (V)=-E, But(V)=mgx), so(zx)= .
2 3 3mg

1 1/3 1 1/3
For the electron, (§mg2h2) = {5(9.11 x 10731)(9.8)%(1.055 x 10734)?|  =7.87 x107% J.

2(1.84 x 10732)
E;=184x10"%J=[1.15x 10713 eV. = =137x10"2=]1.37 )
1 X ‘ X © ‘ () 3(9.11 x 10-31)(9.8) X

Problem 8.6
(a)

xro 1
Eq. 847 = / p(x)de = (n— Z>7Th7 where p(x) = v/2m(E — mgz) and E = mgzes = x2 = E/mg.
0

2

/Oﬁp(x) do = \/%/OI VE —mgzdz = v2m [%Qg(E _ mgx)g/z] O

2 /21 2 /21
__- 22 (E - 3/2_E3/2 _ = ——ES/Q.
3Vmg[( myas) } 3Vmyg
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V(x)
A

E

mgx

9\ 4

1 1 1/3
3ﬁg(2E)3/2 =(n-— Z)’l‘rh, or |E, = [%W2mgzh2(n — i)Q] / .
(b)
9 1/3 9 1/3
<§7r2mg2h2> = [§7r2(0.1)(9.8)2(1.055 X 1034)2} = 1.0588 x 10722 J.

15 2/3
Ey = (10588 x 107%) <Z) —[2.56 x 1022 .|
These are in very close agreement with the exact results (Problem 8.5(c)). In fact, they agree precisely
(to 3 significant digits), except for E; (for which the exact result was 8.81 x 10723 J).
(c) From Problem 8.5(d),

2E, 2 (1.0588 x 10~22) 1\%? 1\%? v
_ 1=2= — = —2)  =1.388x 10%
@) =3y % 37 (ones) \"1) T \"1 .

1
n=+ (1388 x 1022)3/2 =1 1.64 x 1033,

Problem 8.7

v2 1 1 1 /2F
/x p(z)dx = (n— 5) wh; plx) = \/2m <E— §mw2x2); XTog=—x1] = ;\/ —

1

1 vz 2F vz 2
n— = | 7h=mw \/ —22dz = 2mw \/ 23— 22dr = mw |z\/23 — 22 + 2isin (2 /zz)
2 Czy ¥ MWw? 0 0
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224 CHAPTER 8. THE WKB APPROXIMATION

9 . 1 T 9 2F mF
=mwzysin® (1) = smwr; = Smw—; = —.
2 2 mw w

E,=(n-3)hw|(n=1,2.3,...)

Since the WKB numbering starts with n = 1, whereas for oscillator states we traditionally start with n = 0,

letting m — n + 1 converts this to the usual formula F,, = (n + %)hw In this case the WKB approximation
yields the exact results.

Problem 8.8
(a)

(2n+1)h

1
§mw2x§ =FE, = (n—l——) hw  (counting n=0,1,2,...); |xs=

mw

(b)

1 1
Vi () = §mw2m§ + (mw?xs)(z — 22) = Vi (22 + d) = §mw2m§ + mw?ad.

V(zg +d) — Viin(z2 +d) imw?(ze 4+ d)? — tmw?ad — mw?zod

V(z2) imw?a?

23 4 2x9d + d? — 23 — 2w9d

d 2
— =0.01. |d=0.12xs.

(c)

2m 1/3 2m2w? 1/ 2m2w? /3
o= [—mwzxg} (Eq. 8.34), so 0.1z {T@} >5= {Tafé} > 50.

2m2w? (2n + 1)2h2
h? m2w?

50)3 249
2) =62500; 2n+12>250; n> - =1245.

> (50)%; or (2n+1)*> (

However, as we saw in Problems 8.6 and 8.7, WKB may be valid at much smaller n.

Problem 8.9

Shift origin to the turning point.

! De 7 Il da’ (x<0)
|Ii($)|

p(z)]

"/}WKB =
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CHAPTER 8. THE WKB APPROXIMATION 225

overlap 1 A overlap 2
\ 1\ WP
<
l'IWKB‘ ; \IIWKB

E

\\
Nonclassical Classical N
>

X

<«— patching region ——)»

Linearized potential in the patching region:

2 ! / 1/3
V(z) ~ E+V'(0)z. Note: V'(0) is negative. dd ¢2p = 2m¥2 ©) x1p, = —a’x1,, wherea = (W) :
x

Yp(x) = aAi(—ax) + bBi(—ax). (Note change of sign, as compared with Eq. 8.37).

= V2m[E — B =V'(0)2] = v/=2mV'(0)z = \/2m[V'(0)]z = Va®B2x = ha®//a.

Overlap region 1 (z < 0):

0 0 0
2 2 2
/ Ip(z)| da’ = hoz3/2/ V=a'da' = ha®? [ —Z(=2/)¥? )| = Zha®?(—2)*? = Sh(—ax)?/?.
" " 3 . 3 3
PWKB ~ ;De_%(_w)a/2 For large positive argument (—az > 1) :
h1/2a3/2(—g)1/4 : :

1 2 3/2 1 2 3/2 s
~a —2(—ax) 2(—ax) . _ . _
Up 2\/—( )1/46 3 +b4\/_( $)1/463 . Comparing = a =2D/—; b=0.

Overlap region 2 (z > 0):

T

/0 Ip(x’)ld:c’zha3/2/0 V' dz' = ha®/? [g(x’)‘?’/?} = gh(aa:)3/2.

0

1 . : .
PYWKB ~ Fi/253/A1/1 {Belg(”)m + C’e’Z%(‘”)Wﬂ . For large negative argument (—ax < —1) :
- 1 .12 3/2 , | _ a 1 in/4 2 (az)?/? —in/4,—i2(ax)3/? ber: b =0
Yp(z) = GW sin g(aa:) + 1T e i [e e —e e (remember : b = 0).

lah . lah _.
Comparing the two: B = i a—e”/‘l, C= fi a—e*”/zl.
21 T 21 T
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226 CHAPTER 8. THE WKB APPROXIMATION

Inserting the expression for a from overlap region 1: B = —ie'™*D; C =ie”"™/*D. For z >0, then,

D[kl p st oI ar—it) - 2D, [1 / p(:c')dx'ﬂ]
10 @ LhJo 1

Finally, switching the origin back to x1:

/(/)WKB =

D i)l de’ (< 21)
X
vwis(a) = { Vo) [1/ e+ ] ) b
———sin | — p(x da:—i——}, T > x1).
p(z)  LhJe 4

Problem 8.10

At x1, we have an upward-sloping turning point. Follow the method in the book. Shifting origin to x1:

]. T ’ ’ i ’ ’
p(x) [Aeﬁfmop(x)dx +B—gf£p(w)dw:| (£E<O)
Ppwks(x) = 1 e N
e [Ce% I§ pa)da’ | =4 1§ Ip(x )\dx} (x> 0)

1
In overlap region 2, Eq. 8.39 becomes ¢Ywkp ~ Fi/ag8/Ag1/h [Ce%(‘)"‘)s/2 + De_%(az)?»/z} ’

whereas Eq. 8.40 is unchanged. Comparing them = a = 2D,/ %, b=0C,/ %.

1 X )
In overlap region 1, Eq. 8.43 becomes ¢Ywkp ~ W(—HJ)IM [Ael%(—ax)z/z n Be—z%(—am)S/z} ,

and Eq. 8.44 (with b # 0) generalizes to

a

71' b 2 3/9 T
Vo i oo o+ ]

sin E(—w)W2 + 4} + N 3 1

Vp(7) =

1 ) 3/2 . ) : )
= [(fia + b)e’g(*”‘"”)sﬁe”r/4 + (ia + b)eﬂg(*o‘m)sme*”/‘l] . Comparing them =

= 2w (—az) /%)

IR —ia+b\ ; [h ia +b ,
A= 22 (%) e”/4; B=/2 (%) e i/, Putting in the expressions above for ¢ and b :
0 T

A= (% _ ZD) ei'rr/4; B = (% +ZD> e—iw/4.
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CHAPTER 8. THE WKB APPROXIMATION 227

These are the connection formulas relating A, B, C, and D, at ;.
At z9, we have a downward-sloping turning point, and follow the method of Problem 8.9. First rewrite the

middle expression in Eq. 8.52:

bwKE = {06%«‘:5 ()l da’+ 3 T2 p(a) da’ | py o= T2 p(a) da’ ~ T2 \p(x')\dx/] .
Ip()]

Let v = f;lz |p(z)| dz, as before (Eq. 8.22), and let C' = De™7, D' = Ce". Then (shifting the origin to z3):

! [cfe%f;wp(z'ndw’ Dl kY \p(w’)\dw'} (< 0);

wWKB = 1 i x ’ ’
Fet g ds (z > 0).

)

2m| V()" :
In the patching region ¢,(z) = aAi(—azx) + bBi(—ax), where a = (T) o p(x) = ha?V/a.

0
2
In overlap region 1 (z < 0): / Ip(z")|dz’ = gh(—aaj)3/2, S0

1 2(_qp)3/2 _2(_ )32 T
Ywks ~ 23— )12 [0163( ) ) } a=2y/—D
as/4(—x) C . ha
a 2 (a2 b 0 omparing = —
wp ~ —— 73 az) + —es( az) b= o4
2/ (—aux)t/4 VT (—ax)t/4 ha

1

In overlap region 2 (z > 0): /0 p(z')dz’ = gh(az)3/2 = PWKB ~ WFBZ%(M)sm.

1 e e+ 7]

22

1 in ‘x
= {(—z’a T b)eiT e | (jq 4 p)ei% e‘lg(ax)m} . Comparing => (ia + b) = 0;

~ 2/ (ax) /!

F:\/h—a —latb ei”/4:b\/h—ae”/4. b= 16_”/4F; a =i e /AR,
™ 2 ™ ha ha

C'=4/ h—ab —e AR D = % h—aa = %e*”/‘lF. D=¢le AR, C= %efve*”/le.
T 7

These are the connection formulas at xzo. Putting them into the equation for A:
e~

A= (% — iD) e/t = (%e‘”e_”/‘lF — ie’*e‘”“F) e/t = (T — e”) F.

2 _
1 e 2

S @ | e

r-|

r
A

If v > 1, the denominator is essentially 1, and we recover T = e~ 27 (Eq. 8.22).
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228 CHAPTER 8. THE WKB APPROXIMATION

Problem 8.11
1 T2 T2
Equation 8.51 = (n - 5) wh = 2/ V2m(E — az¥)dr = 2V 2mE/ \J1- %x" dx; FE=axy. Let
0 0

1/v 1/v
1
¥, s0x = (£> i dxr = (§> ~2v71dz. Then

« « v

z

&=l e

(n-3) 7= 2vamE <a>/l [ TR = 2 (§>/ 10(/0(E/2)

v T(E+3)
1/1/ 1/1/Fl 1
o (E)" NG OB _ g (Y 120
a LG +3) L', +3)
1 1,3 1 3y ()
pred = U2 MG e) T Y [ T )P
2rm I'(;+1 2 2ma T'(; +1)

1 I'(2 1 2
Forv=2 E,=||(n—=]|h RAC) =(n—2-)h -«
2 2ma T'(3/2) 2 m
For a harmonic oscillator, with o = mw?, E, = (n—3)hw (n=1,2,3,...). V
Problem 8.12
52 2 1 ) h2 2
V(z)=— a sech®(azx). BEq. 8.51 = (n - —) wh = 2/ \/Qm [E + 2 sech?(az) | dz
m 2 0 m
T2
= 2\/571@/ \/sechQ(ax) + dz.
0
h?a? 9 mE 9 1 1
E=- - sech”(azxg) defines z5. Let b= 732 z =sech”(ax), so that z = —sech™ /2, and hence
a a

i 1 < -1 ) 1 i 1 1 &s. The ( 1) ( > Vz-b
T = 2= ————daz. n(n—=|r=2 e
a\Vzv1—-2) 2z 2a z+/1 -z 2 z 1—2

r=0 = z=sech?(0) =1 1 1q b
Limits : 2 mE . n— - 7T:\/§/ —1/2 dz
x:mgﬁz:sech(awg):—m:b 2 y 2V 1—2
a

1 /z—-b 1 (z —b) B 1 b

-2 2 /0-2)(z-b) J0-2(z-0b) 2z/0-2)(z-0)
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CHAPTER 8. THE WKB APPROXIMATION 229

(n_ %) =V /bl ﬁd%b[ z\/—b+(11—|— b)z — 22 d'z]
b

z—b z(1—b)
=2 [—2tan_1(0) + 2tan"!(00) — VbsinT1(1) + \/Esinfl(—l)} =2 (O + 2% - \/Eg - \/5%)
_ . (n—p) _ CoVhe1- L, L
= V2r(1 - Vb); \/52 =1- Vb \/51\/§<n 2).

Since the left side is positive, the right side must also be: (n — %) <V2, n< % ++v/2=0.5+1.414 = 1.914.
So the only possible n is 1; there is only one bound state (which is correct—see Problem 2.51).

1 9 1 R%a? (9 1 h%a?
= |Ej=—— [ - —)|=-0418 .
+ 8 2 ! m (8 \/§> m

1 1
Forn=1 vVb=1— ——; b=1-——
2v/2 V2 8

2.2

h
The ezact answer (Problem 2.51(c)) is —0.5

m .

Problem 8.13

(n _ l) h = /T0 V2m[E — Voln(r/a)]dr; E = Vyln(ro/a) defines rg.
0

4
- vom [ " Vola(rofa) = Voln(r/a) dr = \/2mVy / " inGro/r) .

Let  =1In(ro/r), soe® =ro/r, orr=rpe = dr = —rge” “dz.
1 B r2 e . fr=0= x1=00
(n—z) ﬂh—\/Qme(—ro)/Il Vze ¢dr. Limits : {rr0:> g = 0 }
1 & W LS
-7 wh=+/2mVyrg Vze P dr = /2mVyrol'(3/2) = \/2mVy o5
0

27 1 h | 27 1 1 h | 2w
ro Voh (n 4) = n = Voln [a Vo (n 4)] Voln (n 4) + Voln [a Vo]

3 1 3/4
Eyv1—FE,=Vyln (n + Z) —Voln (n — Z) =Voln (%) , which is indeed independent of m (and a).
n—
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230 CHAPTER 8. THE WKB APPROXIMATION

Problem 8.14

(n—— 7rh / \/2m E+4;260%—h—2l( )> \/—/ \/—1+———

ez 1 R2I(1+1)
— d B=_--—"
dmeg B a 2m K

T2 \/T
(n — %) wh = \/—ZmE/ Wdr.

are positive constants, since F is negative.

where A = —

Let 71 and 75 be the roots of the polynomial in the numerator: — 1%+ Ar — B = (r —r)(ry — 7).

(- 2) v [ SO g

1
2<n—§>h:\/—2mE(r2+r1—2M). But — 72+ Ar — B = —r? 4 (1] +1r9)r — 1179

== + Ty = 147 rire = B. Therefore

1 2 1 R+ 1)
2 <n _ 5) h=v—2mE (A - 2\/3) — V-2mE <— s N an B
62
- ,/—— YN
47eg 1+

2 2 1 E 2 [Ame)?
46 —fm:Qh{n—§+ l(l+1)]; —o = (e /4me) .
TEQ m 4h2 {n _ % + /11 + 1)}
B —(m/2h?)(e? J4meg)? _ —13.6 eV

[n—%-i— l(z+1)]2 (n—§+ l(l+1))2.

Problem 8.15

D p(a’)] da’

ehz2

(z > x2);

(a) (i) |[Ywks(z) =

[Belfmp(m/)dw'+ce w122 p(x )dz'} (l‘l<l’<$2);

(ii) Ywxs(z) = o)
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CHAPTER 8. THE WKB APPROXIMATION 231

2D 1 [*
Equation 8.46 = | (ii) ¥wkp = sin {—/ p(a')dx’ + z} (z1 < T < x3).
p(7) hJ, 4

To effect the join at xq, first rewrite (ii

~—

2D 1 [ 1 [* T 2D 1 [/* T

(ii) Ywks = sin {—/ p(z’) dx’ — —/ p(z’) dx’ + —] =— sin [—/ p(x’)ds’ —0——|,
where 6 is defined in Eq. 8.58. Now shift the origin to z1:

! {Fe%f;’ () dz’ | o=t 12 |p<z/>|dw’} (z < 0)

vwis = VI
. N T
— sin | = p(z dx—@——] x>0
Zsin 3 [ o) . (@>0)
2m|V’ (0)]\ "/

Following Problem 8.9: ¢, (x) = adi(—ax) + bBi(—azx), with a = (%) : plx) = ha®/?V/x.

0
2
Overlap region 1 (z < 0): / Ip(z’)| dz’ = gh(—ax)?’/Q.

1 2 3/2 2
~ 2(—ax —2(—ax
PYWKB ~ —h1/2a3/4(—x)1/4 [Fed T4 Qe )

Y T
—a=2G, 1 b=F] .
d)p ~ 67%(70493)3/24_ b e%(fom)a/2 “ ha ha

3/2

a

2/ (—az) /A V(—az) /1

r 2
Overlap region 2 (2 > 0): / p(a’) dx’ = gh(ax)S/Q.
0

-~ 2D . 2 3/2 s
ﬁwWKBwfwsln |:§(Olf£) GZ:| ,
N a L2 32 | T b |2 32 | T
wp ~ W Sin |:§(Oé$) + Z:l + W COS g(&x) + Z .
—2D 1

. . 2 ()32 i i —i2(am)?/? 00 i
Equating the two expressions: [613(‘”) e~ Wemin/4 _ gis(ax) 6166”/4]

B1/203/4 9

1 [ 520p)?/? 4 —i2(az)3/? —j

_ i2(az) /4 i2(az) 177/4}

= ———<4 = |€3 e e '3 e +
Vral/4 {22’ [

N o

[ei%(ax)3/2 eim/4 4 efi%(az):me*m/ﬂ }

—2D,/ %e_we_i”/4 = (a+ib)e™*,  or (a+ib)=2D %ie‘w

2D,/ %ewe”/4 = (—a +ib)e /4, or (a—ib)=—-2D,/ %iew

=
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232 CHAPTER 8. THE WKB APPROXIMATION

2a = 2D,/ ol i(e”" — ') :>a:2D1/lhsin9,
= [T I

2ib = 2D 0 4 e = 2D,/ — cos.

b = i ie™ +e”)=0b o, €08

Combining these with the results from overlap region 1 —

2G| = =2D/ = sinf, or G=Dsin; F,/~ =2D/" cosf, or F =2Dcosé.
ah ah ah ah

Putting these into (iii) : | Ywks(z) =

o] [20089% Lt pNlde” i e w10t Ip(a)] da’ 0<z <)

(b)

Odd(—) case: (iii) = 1(0) = 0 = 2 cos fe* Tt @l de" 4 iy ge=nto " (el da" —

1

Xy 1
ﬁ/ Ip(z")|dz’ = 5(]5, with ¢ defined by Eq. 8.60. So sinfe%/? = —2cosfe®?, or tand = —2e®.
0

D dip(z)]
(Ip(x))??  dx

Even(+) case: (iii) = ¢'(0) =0 = —%

{2 cos 0e?/? + sin 067(15/2}
0

D 1 I 1
+ o] 2 cos fen o ! 1)l da’ (ﬁ|p(0)|> +sinfe#lo " (=)’ (ﬁp(0)|)] =0.
d|p 1 dV av d|p(z)]
Now \/2m and —| =0, so =0.
2 VV —F dx dz |, dr |,

2cosfe?/? = sinfBe~?/2, or tand = 2¢®. Combining the two results: tanf = +2¢?. QED

(c)

K 1> ] sin[(n+3) 7+ ¢ (—1)™cose cose 1
tanf =tan |(n+=|7+e€| = T = - = —— ~——.
2 cos[(n+3)m+el (=1)nFlsine sin e €

1 1 1 1 1 1
So ——~+2® orexTF-e ? orf0— (n+=|rxF=e® sob~x~|n+=-|rF=-e? QED
€ 2 2 2 2 2

[Note: Since 6 (Eq. 8.58) is positive, n must be a non-negative integer: n = 0,1,2,.... This is like
harmonic oscillator (conventional) numbering, since it starts with n = 0.]
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CHAPTER 8. THE WKB APPROXIMATION 233

V(x)

(d)

)
|
D?‘I'—‘
§
&

2m E - —mw2(x - a)z] dx. Let z =z — a (shifts the origin to a).

1
2m E - —mw2z2} dz, where E = _—mw?z2.

= ﬁmw/o 22 dz = % {z./zg — 22 4 22 Sin_l(Z/ZQ):|

Tmw 2K TE
2 h mw? | hw

|
\] Qf‘ll\’)
O
&

z2
mw ™ mw
2 o —1 2
=—z5sin” (1)= ——=z
0 h 2 ( ) 2 h 29

E 1 1 1 hw
Putting this into Eq. 8.61 yields PO +=)rF=e® or Eﬂf ~(n+=)wF—e? QED
hw 2 2 2 21

\Il(x,t) — (er ZE+t/h+¢ e —iE, t/h) —

Sl

¥ (2, 1) =

DN | =

[|1/)+| T ( (B —EF )t/h_i_efz(E’fE*)t/h)]
E- _
(Note that the wave functions (i), (i), (iii) are real). But ——" x~ —2—e ¢ = Ye=?, so
™

[, ) = 5 [ ) + g (@) + 0 @) () cos (Let)

It oscillates back and forth, with period 7=-—7-— = 76 . QED

(f)

2 I mw?
—2 2m m(,uzrv—a)2 E dx—ﬁ\/QmE ﬁ(x—a)Q—ld:v.
0
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234 CHAPTER 8. THE WKB APPROXIMATION

m 2E'1 =0 _ |m _
Let 2=/ —w(a—x), so dr=—y/——dz. Limits: =0 = 2= ) 5pwa =20
2F m w

r=x1 — radicand =0=2=1

Z Z
¢ = %\/QmE\/%%/0\/22—1dz:%/0\/22—1&4:gl [Z\/Z2—1—IH(Z+\/ZQ—1)}
1 1

hw 2
2F
=7 [zm/zg—l—ln (zo—i-\/zg—l)],

where | zg = aw, / QE V(0) = gmw?a®, so V(0)>E = %wQaz > E = awy/ % >1, orz> 1

In that case

L2E ., N2E2_2E22m_mwa2
¢~ P (2§ — In(220)] =~ PR = AW s =

This, together with Eq. 8.64, gives us the period of oscillation in a double well.

Problem 8.16

2 2h2 2h2
nr Withn=1, |E =_

(a) E, =

2m(2a)?’ 8ma?’
(b)
V(x)
Yo
____IE_]___________
V(x)
—
E=-1-~""""f -~~~ fnneling ="
\
(c)
1 %o Vo—FE
'y:}—_L/ lp(z)|dz. azog=Vo—E1 = xoz%.

p(z) = V/2m[E-V(2)]; V(z)=-ax, E=E —"V.

= 2m(E, — Vo + ax) = V2ma e —xo;  |p(z)| = V2mazo — .
1 o 2 2 0242
v = 3vama | m——xdxzvm“[_ = ZY2ma

2 e — )32
h 3(@0 —2) } 3 h

(zo —a)*/?.

a
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CHAPTER 8. THE WKB APPROXIMATION 235

Now zg —a = (Vo — E1 — aa)/a, and aa < h%/ma? ~ E; < Vj, so we can drop E; and aa. Then

_21/2ma (E)?’/Q V/8mVg

K 3 h o - 3ah
4a 1 T2 h? w2 K2 wh
Equation 8.28 = 7=—e*, wh St —— = = —— = .S
quation T . e where 2mv SmaZ v m2a? r v 2ma 0
4da 8ma?
= —2mae? = 27,
T 7 mae — e

(d)

(8) (9.1 x 10731 (10-10)? -
T (w(1.05 x 1())—(34) ¢ = (2x 207 e

\/(8) (9.1 x 10-31) (20 x 1.6 x 10-19)°
77 (3) (1.6 x 10-19) (7 x 106) (1.05 x 10-34)

T = (2% 1071%) x 107000 s = [ 10700 yr. |

Seconds, years ... it hardly matters; nor is the factor out front significant. This is a huge number—the
age of the universe is about 10'0 years. In any event, this is clearly not something to worry about.

= 4.4 x 10% &2 = (88x10% (lologe)8'8“04 — 1038:000

Problem 8.17
Equation 8.22 = the tunneling probability: T' = e~27, where

1 [*o
v = ﬁ/ V2m(V — E)dz. Here V(x)=mgz, E=0, xg =+/R?>+ (h/2)? — h/2 (half the diagonal).
0
V2 o 2 o2
- _m\/m_g/ 22 do = m /29_333/2 _zm 295133/2-
h 0 h 3 N 3h
I estimate: h =10 cm, R =3 cm, m = 300 gm; let g = 9.8 m/s2. Then z=+/9+25—5=0.83 cm, and

2)(0.3
= (3)(1F0;(>< 1)0—34) (2)(9.8) (0.0083)%/? = 6.4 x 10°°.

Frequency of “attempts”: say [ = v/2R. We want the product of the number of attempts (f¢) and the
probability of toppling at each attempt (T'), to be 1:

v, 2R ,
t—e 7 = = t=—e.
2Re v c
Estimating the thermal velocity: %mu2 = %kBT (I'm done with the tunneling probability; from now on T'
is the temperature, 300 K) = v = \/kpT/m.
m 0.3 30 13x10%°
t = 2 2y :2 . 12.8x10 — 1 8 1 loge — 1 8 1 5.6x1
R T € (003)\/(1.4x10—23)(300)6 5 x 10° (10'°%°) (5 x 10%) x 10

— 16 x 105-6%10% ¢y

Don’t hold your breath.
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Chapter 9

CHAPTER 9. TIME-DEPENDENT PERTURBATION THEORY

Time-Dependent Perturbation Theory

Problem 9.1

’(/}nlm = Rnl}/lm .

1

1

From Tables 4.3 and 4.7:

. r -~
P100 = e ahggg = ———= (1 — —) e /2.
' Va3 V8ma3 2a
1 T —r/2a 1 T r/2a +ig
Y210 = —e cost; P41 =F —e"?%gin g eT,

V32mad a

But 7cosf = z and rsinfet® = rsinf(cos ¢ £ isin¢) = rsinfcos ¢ + irsinfsin ¢ = x + iy.

V64mad a

So |[¢|? is an

even function of z in all cases, and hence f zlp|2dx dy dz = 0, so Moreover, 119 is even in z, and

S0 are 00, P211, and P11, SO
1

/ _
H100,210 = —ek

el
4y/27al

or |—0.7449eFa.

Hl(j:O

1 1 —r/a_—r/2a 2 33, __
vra? \/327m35/e ‘ sdr=-

/ rre=3r/2aqy / cos? 0sin 6§ df
0 0

for all except

el
4/ 2mrat

/ e31/2412 ¢os? 0 1% sin 0 drr df do

2a\° 2
41 (g) ~om =

27
el

dp = ————

0 ¢ 4v/2mra*

28

3 (m) cha

Problem 9.2
. _ Z ! —’iwgt .
Co = —ﬁHabe Cp;

7

Cp = 5

Cy =

7

h

Hj, [iwoe“’otca + e“”of’éa] = jwy {—

Hj e*“c,. Differentiating with respect to t :

7

h

7

h

, , i »
Héaew”tca] Hj et {—ﬁHl’Ibe 7""Otcb} , or
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CHAPTER 9. TIME-DEPENDENT PERTURBATION THEORY 237

1 1
¢y = iwocp — ﬁ|H;b|20b. Let o? = ﬁ|H¢/w|2- Then &, — iwoép + a’cp = 0.

This is a linear differential equation with constant coefficients, so it can be solved by a function of the form

cp, = et
{iwo +4/—wi — 4042} = % (wo £ w), where w = /w2 + 4a2.

M —ivpA+ ol =0= A=

N~

The general solution is therefore

(t) = Aet@otw)/2 | peilwo—w)/2 _ giwot/2 (Aeiwt/2 n Be—iwt/Q) . or

ep(t) = €012 [C cos (wt/2) + Dsin (wt/2)]. But ¢,(0) =0, so C =0, and hence

cp(t) = De™°t/2sin (wt/2). Then

&, =D [%emtﬂ sin (wt/2) + gei“’otm cos (wt/2)] = %Dei‘”otm cos (wt/2) + i 20 sin (wt/2)] = —%
w
Cq = ih Y e—iwot/2 [cos (wt/2) +i%%gin (wt/2)} But ¢,(0) =1, so ih “D=1. Conclusion:
“ Hj 2 w ' “ ’ H, 2 ' '
— 72'0.)0t/2 ﬂ .
co(t) =e cos (wt/2) 4+ i— sin (wt/2) |,
w h — 2 4‘Héb|2

2H, isot/2 (wt/2) where | w = /wp + 4
ep(t) = ——2€"°“sin (w ,

ihw

A|H,|?

sin? (wt/2)

2
w
lca|? + |ep|* = cos? (wt/2) + w_g sin? (wt/2) +

1 H/ 2
= cos? (wt/2) + e (w% + 4%) sin? (wt/2) = cos? (wt/2) +sin? (wt/2) =1. v

h2w?

Problem 9.3

This is a tricky problem, and I thank Prof. Onuttom Narayan for showing me the correct solution. The safest
approach is to represent the delta function as a sequence of rectangles:

(1/2¢), —e <t <,

0c(t) = { 0, otherwise. }
Then Eq. 9.13 =

t< —e: ca(t) =1, a(t) =0,
t>e€: co(t) = a, o(t) =0,
éa = _%e_iwotch
—e <t<e
ép = f%ei‘*’otca.
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238 CHAPTER 9. TIME-DEPENDENT PERTURBATION THEORY

In the interval —e <t<e ,

d%cy o iwoty | giwot —IQ i [, i2¢hde, i , dcb a*
— = —— |iwee"c, + ¢ —e )| =—5= |w - —c — —
dt2 2h | 0 2¢h b 2h | Car dt  2eh’ 0at T (2en)2 ™

Thus ¢; satisfies a homogeneous linear differential equation with constant coefficients:

d*c, . dcb |Oz|2
— 1w + 50 =

2 Odt " (2¢h)?

Try a solution of the form c;(t) = e:
’ wo £ /—wi — [af?/(ch)?
)\2 o )\ |Oé| . )\ —_ o 0
WA + —5 (2eh)? =0= 5 ,
or
A\ = u;o j: 5 where w = /w2 + |a|?/(eh)2.

The general solution is
ep(t) = iwot/2 (Aeiwt/2 4 Be’i“’t/z) '

But
Cb(—e) =0= Ae—iwe/Q + Beiwe/Q —0= B = _Ae—iwe7
SO
cp(t) = Aptwot/2 (eiwt/Q - e—iw(e+t/2)) .
Meanwhile
calt) = @e—iwotcb 2ieh e—iwot/2 4 wo (eiwt/Q _e—iw(e+t/2)) + w (eiwt/Q +e—iw(g+t/2))
[ a* 2 9
h _, , .
_ _%e—lwot/QA [(w +wO)ezwt/2 + (w _ wo)e—zw(e—&-t/Q)} )
But c¢u(—¢)=1= 7%ez(wofw)e/2A [(w+ wo) + (w —wp)] = — ;* 6z(wofw)e/2A’ so A= 72?hwez(w7w0)e/2'
1 . . _
calt) = Eefzwo(ﬂre)/? [(w + wo)ezw(tJre)/Q +(w— wo)efzw(tJre)/Q}
— o—iwo(t+9)/2 ) og w(t+e) % gn w(t+e) ;
2 w 2
_ 0T (t—e)/2 [ iw(tre)/2 —iw(t-{-e)/Q} _ 0T (-2 w(t+e)
cp(t) 5ers e e pro sin 5 .
Thus '
a = cq(€) = e ™oe [cos(we) + i% sin(we)] , b=cy(e) =— @ sin(we).
€

This is for the rectangular pulse; it remains to take the limit € — 0: w — |a|/eh, so

a — cos o + iwoeh sin o cos o b ta” sin o
— — — | — — — — —
R || I h)’ || h)’
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CHAPTER 9. TIME-DEPENDENT PERTURBATION THEORY 239

and we conclude that for the delta function

1, t <0,

calt) = {cos(|a|/h), t>0;
0, t<0,

—i\/a— sin(|a|/R), t > 0.
a

Obviously, |c,(t)|? + |ep(t)|> = 1 in both time periods. Finally,

Cp (t)

P,y = |b|2 = SinQ(\a|/h).

Problem 9.4
(a)

Eq. 910 = ¢, = —3 [caH ), + coHpye "]
4 _ (these are ezxact, and replace Eq. 9.13).
Eq. 911 = & = — [eoHyy, 4 caHypae™"']

Initial conditions:  ¢,(0) =1, ¢,(0) =0.

Zeroth order: c,(t) =1, ¢(t)=0.

=il =l 1——/

. 1 ;
Cp = —ﬁHz;aewot = | o(t) = / H;, (¢ ™ot gy’

ca|2[1—/ dtH1+ / dt}1+[/ ]1(toﬁrstorderinH’).

leo)? = {%/ Hj, (e dt’] [%/ H!, (t")e "ot dt'} =0 (to first order in H').
0 0
So |ca|? + |ep|? =1 (to first order).

(b)

First order:

: i t ’ / ’ Z ’ / ’, . Z .
d, = et o Haol(t') dt (ﬁHtlza> Ca _|_erz Ty Hoo(t) dt ¢a. But é, = -5 [CaH;a +CbH;b€ uuot]

Two terms cancel, leaving

M Z i t ’ / ’ .
d, = —ﬁeﬁf Hoo ) o | o=t But ¢ = e —wdo Hyp () dt! g,
i it / N_ gyt / ’ . . 'L . .
= LIS [HL ()= HY (#)]dt H! e woltg,  or d, = _ﬁezd)HZzbe iwot g,
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Similarly,

H i [t ’ / ’ 7, ( . Z .
dy = eh Jo Hpy(t') dt (i_iHl;b> cp + eﬁ Hi,(t")dt" . ép. But ¢, = _ﬁ [chéb + CaHl;aezwot] )
_ Z Pl HL() A ) giwot B — e # g Hia(tdt' g

—e ca ba . ut c, =e 0 a-

_ _ie%fot[be(t')fH W(t )]dtH zwotd :_ﬁe—wﬁH/ MOtda. QED

>t

Initial conditions: ¢,(0) =1 =d,(0) =1; ¢(0) =0= d;(0) = 0.

Zeroth order:  do(t) =1, dp(t) =0.

First order: dy, =0 = do(t) = 1 = | co(t) = e~ /o Healt) dt’,

. .t
db _ _%64¢H£aeiwot = d = _%/ e*i¢(t’)HI/)a(t/)€iwot’dt/ —
0

. t
cb(t) _ —%e 15 Hyy (t)dt! /0 6—i¢(t’)Hl/)a(t/)eiwot’dt/.

These don t look much like the results in (a), but remember, we're only working to first order in H’,

S0 cq(t

~1-+ fo ")dt" (to this order), while for ¢, the factor Hp, in the integral means it is

already first order and hence both the exponential factor in front and e~* should be replaced by 1. Then

Cb(t

—7 fo H}, (t')eo! dt’, and we recover the results in (a).

Problem 9.5

Zeroth order: {9 (t) = a, ci()o) (t) =0.

First order:

Cq = —%H'be’“’“tb — (¢ / e~ iwot’ gy
h— ,EH’ iwot (1) H 'Lwot d
Ccp = 5 bat a = ¢ ba t.

: -
Second order: ¢, = —%H{lbe_iwot [b - %/ Hl;a(t')ei”"t/dt’} =
0

(2
Ca

—qa— _/ b 7zwot dt h2/ b 72w0t [/ Hba //) iwot’ dt//] d/

To get ¢, just switch a <> b (which entails also changing the sign of wy):

(2)

_ / Hba zwgt dt’ — _/ Hba zwgt l/ H/ // zwgt”dtl/] dt’.
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Problem 9.6

t
For H' independent of ¢, Eq. 9.17 = 01(72)( t) = (1)( t) = tha/ ot g —s
0

H, .
——ba (g0t _1).| Meanwhile Eq. 9.18 =>

hwo
t ] ,
dt—l——| b\2 /(1—@‘“"°t)dt’
wWo Jo

0
1 t o, t
0512)(t) -1 ﬁ'HQbF/(; e—zwot /0 zwot dt//

. , t
) e~ twol ) 1 -
H/ 2 tl =11 H/ 2 + = —twot __ 1 .
w0h2| ab‘ < + iwo ) . + thQ‘ ab| + 7;0}0 (6 )

For comparison with the exact answers (Problem 9.2), note first that c,(¢) is already first order (because of
the H] in front), whereas w differs from wy only in second order, so it suffices to replace w — wy in the exact

formula to get the second-order result:

1+

2H] . 2H] , . v .
ep(t) A e eiwot/ 2 gi (ot /2) = ——ba Mot/22 (e“"‘)t/2 - 671&10”2) = ——ba (glwot 1),
i

ihwo ZFI,WQ th
in agreement with the result above. Checking ¢, is more difficult. Note that
AJHG 2 | Ho|? Hyl*  wo [ Hyy|?
W = Wy 1+ th wo 1+2w8h2 :w0+2 h27 E%1*2w3h2
Taylor expansion:
t |H. %t H!, %t
cos(xz + €) = cosx — esinz = cos (wt/2) = cos w; | wO;Z‘Q ~2 cos (wot/2) — % sin (wot/2)
t |H! %t H!, %t
sin(x + €) = sinx + ecosz = sin (wt/2) = sin (w; + ‘WO%L ) ~ sin (wot/2) + %cos(wotﬁ)

wot |H,, [t wot , [H! 2\ [ . [ wot |H!,|%t wot
( ) ool sin 53 +1 1_2w§h2 sin > +WCOS 53

Ca(t) s zwot/Q{
t 2 t t 2i t
e~ iwot/2 + isin wot | b| t | sin wob —icos wob + —Zsin wob
2 woh? 2 2 wo 2
2 .
— p—iwot/2 ) yiwot/2 _ |Hab‘ _iteiwot/2+%l (eiwot/Q_efiwot/Q)
w 21
=1- [Hyl? it + i (I—e ™) =1+ ! |H! 12 |t + L (e7™0t —1)|, as above. v
woh? wo woh?' P iwo ’ .
Problem 9.7
(a)
o —iwot , . : :_i —iwt _iwot
Cq 2hV ;. Cp 2thae e"“%c,.
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242 CHAPTER 9. TIME-DEPENDENT PERTURBATION THEORY

Differentiate the latter, and substitute in the former:

. V . (wo—w (wo—w)t -
& = —z% [ (wo — w)elwoWite, | gilwo )tca}
Via Via Vab _ , . Vab|?
= oo [rigge e gt gt =i —on g
d2cb dCb |Vab|

Van|?
¢y = 0. Solution is of the form ¢, = e : A% +i(w — wo) A + [Vas| =0.

Gz Tl —wo) o A2

dt?

dt 4h?

1| Vab|?
>\:§ [z(wwg)i\/(wwo)Q | hg|

2

+ wr} , with w, defined in Eq. 9.30.

[ _ (u;wo)

[ (w—wq)
General solution: c;(t) = Ae’ R

+ow,lt 4 B = emiomwn)t/2 [ ggiert 4 Bemient]
or, more Convenienﬂy: Cb(t) = e_i(w_WO)t/Q [C cos(wrt) + D sin(th)] . But Cb(O) = O, soC=0:

Wy — W

ep(t) = Do 2gin(w,t). é =D [z ( ) W02 6in (W, t) + wyetWomw)t/2 cos(wrt)] ;

2h 2h . _
Ca(t) = i——ellwmwolte — iv—el(“’_“‘))t/QD [z <w02 w) sin(w,t) + w, cos(wrt)] . But ¢, (0)=1:
ba ba
2h —iVba
1= zﬁDw,«, or D= 2ﬁwbr .
op(t) = _2hlw V€ O™ 26in(w,t),  cq(t) = el @mwo)t/2 [cos(w t)+i (w02— ) sin(w,t)}
T wT

(b)

|Vas|? /1
w2

2
Py_p(t) = |ep(t)* = <|2‘;‘Zj|) sin?(w,t).| The largest this gets (when sin? = 1) is

and the denominator, 4w? = (w —wp)? + |Vap|?/h?, exceeds the numerator, so P < 1 (and 1 only if w = wy).

lcal® + o

=) ) + (D) ot
sin”(w, 2, sin®(w,

Il
@)
o
)

[\v]
—~~
&
3
Nyt
+
RS

— Van|/R .
= cos®(w,t) + (w = wo)® 1 2(| bl/7)” sin?(w,t) = cos?(wyt) +sin’(w,t) = 1. v
w?"
1 ab|? o5t
(c) It ‘ [Vas|? < R*(w — wp)?,| then w, =~ §|w —wpl, and P, = W};g| 812‘)( 50)2), confirming

Eq. 9.28.

@ ot =m = [[= 7]
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Problem 9.8

31 |2
Spontaneous emission rate (Eq. 9.56): A = 3w |ph|c3' Thermally stimulated emission rate (Eq. 9.47):
TEQ
_ T 2 . . h w3
= gopplelirw), with  plw)= 55 (T T 1) (Eq. 9.52).

So the ratio is

é _ w3|@|2 ' 3€0h2 . 23 (ehw/kBT _ 1) _ ehw/kBT .
R 3meghc®  w|pl? Fuw® '

The ratio is a monotonically increasing function of w, and is 1 when

or 9 e w2 R T =300 K,

hw/k‘bt — 2
¢ ’ kT h 7 h

(1.38 x 10-2* J/K)(300 K) .
= 2 = 4.35 x 10'2 H.
Y (663 %1031 J.5) 2= 480X 0T

For higher frequencies, (including light, at 10'* Hz), spontaneous emission dominates.

Problem 9.9

(a) Simply remove the factor (eh“’/kBT - 1) in the denominator of Eq. 5.113: | pp(w) = ——=

(b) Plug this into Eq. 9.47:

|2 hwg w3‘9|2

Ry_.. =
- w23 3meghcd’

.
360h2 @

reproducing Eq. 9.56.

Problem 9.10
N(t)=eY"N(0) (Egs.9.58 and 9.59). After one half-life, N(t)=1N(0), so 2=e"*", or 2=¢!/",

Problem 9.11

28
In Problem 9.1 we calculated the matrix elements of z; all of them are zero except (100|z|210) = P a. As

for = and y, we noted that [100), [200), and |210) are even (in z, y), whereas |21 + 1) is odd. So the only
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244 CHAPTER 9. TIME-DEPENDENT PERTURBATION THEORY

non-zero matrix elements are (100]z|21 + 1) and (100|y|21 £ 1). Using the wave functions in Problem 9.1:

1 1 1 )
(100|z]21£1) = ( il ) /e”’/are#/m sin 0 e (r sin 0 cos ¢)r? sin  dr df d¢

Va3 \8vrmad a
1 00 T 27
— / r4e*3’”/2“d7"/ sin39d0/ (cos ¢ £ isin @) cos ¢ dd
8ma* Jy 0 0

1 [ /2a\°] /4 97
= rat ¥ (?) ] (5) (7) = F550-
F1

i 5 2m
srat | [z?a) ] (%)/0 (cos ¢ + isin ) sin 6 do
F1 L (29 (4 (s o

27V2 . 27 L.
3—\5/_ak; (L00[r21 1) = Za (qm' —ij), and hence

(100[y|21 £ 1)

(100|r|200) = 0; (100[r|210) =

215
©? =0 (for [200) — |100)), and |p|* = (qa)2'3ﬁ (for 210) — 100) and |21+ 1) — [100)).

= so for the three [ = 1 states:

4

E;—FE 1/FE E
Meanwhile, w:%—ﬁ( ! El) G

A= — - - 7" _Z
26K3 310 3weghcd 387 eghitc? 38

210 13.6 ? (3.00 x 108 m/s) 1
= =627x10%/s; 7=—=[1.60x10""s
38 (0.511 X 106) (0.529 x 10—10 m) <105 =5 A

for the three [ = 1 states (all have the same lifetime); for the I = 0 state.

33E} (ea)?25 1 29 EPe?a® 210 ( Ey )2 c

mec2 ) a

Problem 9.12

[L2,2] = [L2,2] + [L2, 2] 4 [£2,2] = Lo[Luy 2] + [Loy 2)Lo + Ly Ly 2] + [y, 2Ly + LalLa, 2] + (L, 2)Ls

[Las 2] = [yp: — 2py, 2] = [yp=, 2] — [2py, 2] = ylp2, 2] = —ihy,
But ¢ [Ly,2] = [2ps — zp2, 2] = [2Da, 2] — [2p2, 2] = —2[ps, 2] = ihx,
(L2, 2] = [xpy — ype, 2] = [2py, 2] — [ypa, 2] = 0.

So:  [L* 2] = Ly(—ihy) + (—ihy) L, + L, (ihz) + (ihz)L, = ih(—Lyy — yL. + Lyx + xL,).

But Lyy= Lyy—yLy +yLe = [Le,yl +yLe = ihz + yLa,
Lyx= Lyx— L, +xL, = [Ly, ]| +xL, = —ihz+ xL,.
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CHAPTER 9. TIME-DEPENDENT PERTURBATION THEORY 245

So: [L?, 2] = ih(2xL, — ihz — 2yL, — ihz) = | [L?, 2] = 2ih(z L, — yL, — ihz).

[L?,[L?,2]] = 2ih{[L? zL,] — [L? yL,] — ih[L? 2]}
= 2ih{[L? z]Ly + z[L* L,] — [L*,y|L, — y[L?, Ly] — ih(L*z — zL?)} .

But [L% L, =[L% L] =0 (Eq.4.102), so

[L?,[L?,2]] = 2ih{(yL. — 2L, — ihx) L, — 2ih (2L, — 2L, — ihy) L, — ih (L?z — zL*)}, or

[L2,[L?, 2] = —2h? (ZyLZLy —2zL2 —22L2  —2ihaLy, + 2xL.L, + 2ihyL, — L*z + zL2>
N—————
—2z(Li+L§+L§)+22L§
= —2n* (2yL.L, — 2ihxL, + 22L.L, + 2ihyL, + 2zL? — 22L* — Lz + zL?)

= —2h* (2L* + L?z) — 4h*| (yL. — iha) Ly + (zL. + ihy) L, + ZLZLZ:|

L.y L,x
=2h* (2L + L?2) — 4R* (L.yLy + L.aL, + L.zL.) = 2h*(zL* + L?z). QED
L. (r-L)=0
Problem 9.13
1 1 R . .
n00) = Ruo(r)YY(0,¢) = ——=Rno(r), so (0’ 00[r[n00) = — /Rn/o(r)Rno(r)(xi +yj+zk)dedydz.
Vam 47

But the integrand is odd in z,y, or z, so the integral is zero.

Problem 9.14

(a)
1210)
300y — < |211) » —|100).| (]300) —|200) and |3 0 0) — |1 0 0) violate Al = £1 rule.)
|21-1)
(b)

From Eq. 9.72:  (210|r[300) = (210/2[300) k.
From Eq. 9.69: (21 +1]r[300) = (21 £ 1]z|300)7 + (21 + 1]y[300) j.
From Eq. 9.70: 4 (21 +1]z|300) = (21 + 1]y[300).

Thus  [(210[r[300)|* = [(210|2300)|> and [(21+1]r[300)|* = 2|(21 4 1|z|300)?,
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246 CHAPTER 9. TIME-DEPENDENT PERTURBATION THEORY

so there are really just two matrix elements to calculate.

Vo1m = Ra1 Y™, 300 = RgoYOO. From Table 4.3:

/3 /1 (™ 2 V3 [ cos®6
YOYO . . _ / 2 . — _
/ 1Yy cosOsinfdfdo ey cos” fsinf do | do y 3
+1\*y0 2.2 0 0 _ 3 1 " .3 0do o Fi¢ d
(}/1 ) YO Sin COS d) d d¢ = F g E ) sin . COS ¢6 ¢

F L.J3 <4) {/Qﬂcofgbdgzb:l:i/%cosgbsingbdqﬁ} :|:—1 (rF0)=7F 1
= —_— — — = T = e
4V 2\ 3 0 o ™6 /6
From Table 4.7:
e 1 2 < p 2r 2 /7r\2 )
K = Ro1Rsor2 dr = Te-r/2a|y _ 20 | =2 (_) —r/3a,3 g
/0 o14v30 T AT \/ﬂa3/2 \/ﬁ(ﬁ/? /0 ae 3a + AV e r°dr

1, [ 2 2 9\ 4 s a 6\° 2_/6\° 2 /6\’
-~ 1— Zut— WOy =2 |a(2) —Z51(2) + et~
9v2a3 " /0 ( TR T )“ ¢ "ol |t\5) T3 5) T G

416° 2 2 416° 2734
=2 (5—36.5+§63): “ = V2a.

9\/5 56 9\/5 56 56
So:
1
(21 £1|z]300) = /Rgl(Ylil)*(’l“SiHHCOS(ﬁ)RgoYEJO r?sin@drdfdp = K (q:%) .
1
(210]z]300) = /Rlelo(rcosH)R;;OYOOT2 sinfdrdfdp = K (ﬁ)

[(210[r[300)> = [(210[2[300)|> = K?/3;

[(21+1[r|300 )] =2|(21 4+ 1|z]300 )|* = K?/3.
Evidently the three transition rates are equal, and hence go by each route.

3e2 2 Es - FE 1 (B FE E
(c) For each mode, A = %; here w = % =5 <?1 - f) = _35_6?1’ so the total

decay rate is
E\® &2 1 /2734 2 N/ B \?
3 S EN e 1 —3\/§a —6( 2 1 (E)
36 h 3meghe3 3 \ 56 5 mc? a
2\° 13.6 2 3% 108 1
6<5 (0.511><106) (0.529><10—10>/S 68251075, 7= 7 =[1.38x 107" s

R
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Problem 9.15
()

U(t) =D calt)e P/, HY = zh%—‘f H=Hy+ H'(t); Hotbn = Entbn. So

chefiEnt/hEnwn + chefiEnt/hH/wn _ ihzénefm"t/hwn +ih (%) chEnefiE"t/hwn.
The first and last terms cancel, so

Z cne_iE”t/hH'wn = ihz c'ne_iE"t/hwn. Take the inner product with ,,:

S e I G H ) = i3 e B 1)

Assume orthonormality of the unperturbed states, (¢, |tn) = dmn, and define  H,, = (W, |H'|1n).

—i o . i (B —
E cne Bt — b e Bt or |y, = -3 E cnH! e Em=En)t/h
n

(b) Zeroth order: ¢n(t) =1, c¢pn(t)=0 form# N. Then in first order:

t

i

éN = hHJ’VN, or |en(t)=1-— % Hyn(t') dt', | whereas for m # N :
0
. . t
ém = _%H;nNei(EmiEN)t/h, or Cm(t) = _%/ H,:nN(t/)ei(EmiEN)t//h dt/
0

(c)
K i Bri—BEx)t/h _ 1

i
— = —H|
. MN{ Ey — En

h

t .
0

ei(EM—EN)t//h
i(Ex — En)/h

= —7HJ/WN e (Em—EN)t/2h 9 gipy 7EM _ENt .
(Em — EN) 2h

Py = |em|® =

A HY 2 Ey—E
Hunl” o (Bu = Bv
(Er — En)? 2h

(d)

] 1 t . 7 . ’ . ’
CM(t) _ 7%VMN§/O (ezwt + efzwt ) 6z(EMfE'N)if /h dt,
t
. WVun

2h

oi(hw+En—EN)t /h oi(—hw+Ev—EN)t /h ]

i(ho + Enx — En)/h T i(—hw+ Eni — En)/h i
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248 CHAPTER 9. TIME-DEPENDENT PERTURBATION THEORY

If Epr > En, the second term dominates, and transitions occur only for w & (Ey — En) /R

VN 1 i(Ent—En—hw)t/2h o Ey — En — hw
t) ~ — M= BN —he 2 e
eu(?) 2h (i/h)(Ea — Ex — hw)© L 2K ) 50
VMN|2 . EM —EN —hw
P _ — 2 _ | 2 t
NoM = |car] (Bar — By — )2 sin (| ———————

If By < En the first term dominates, and transitions occur only for w ~ (Ey — E)/h:

VN 1 i(Err—E .. EM_EN+hW
1) ~ — W(Em N+hw)t/2h2 M ON T, d h
e (t) oh G/h) (B — B £70) e i sin o7 , and hence
P, = Varn [ sin? Eu _EN+hwt
N=M= By — En + hw)? 2h '

Combining the two results, we conclude that transitions occur to states with energy Fy; ~ Fn + hw, and

[Varn |2 .o (Ey— En £ hw
)QSH ¢t .

Py =
N=MT By — En + hw 2h

(e) For light, V,, = —pEy (Eq. 9.34). The rest is as before (Section 9.2.3), leading to Eq. 9.47:

Rn—n = 3:}12 |go|2p(w), with w = +(Ey — En)/h| (+ sign = absorption, — sign = stimulated emission).
0
Problem 9.16
For example (c):
: H, : Ey — Ex
=1——Hynyt; — _9;__ MmN i(En.—En)t/2h m N
en(t) 5 vt em(t) Z(Em = EN)e sin | =5 t) (m#N)

1 H/ 2 E_ —E
lenl” =1+ 5 Hyn P8, lem|” = 47"71”)2 sin” (Mt) , 50

|
(Em — En 2h

t2 |H’ ‘2 E,, — En
E 2 _ 2 § : mN 22 m
— ‘Cm‘ =1+ K2 ‘HNN| +4m¢N (Em — EN)2 sin 7271 t].

This is plainly greater than 1! But remember: The c’s are accurate only to first order in H'; to this order the
|H'|? terms do not belong. Only if terms of first order appeared in the sum would there be a genuine problem
with normalization.

For example (d):

. t . . N |t B
t
ey =1-— %VNN/O cos(wt')dt' =1 — %VNN sm(('diw) . = |cen(t) =1- éVNN sin(wt).
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CHAPTER 9. TIME-DEPENDENT PERTURBATION THEORY 249

VmN ei(Em—EN-i-hw)t/h -1 ei(Em—EN—hw)t/h -1
m(t) = — N).| S
em(?) 2 { B —Bn i) (B —Ew—h) | M7 So
2
len? =1+ nggl sin?(wt); and in the rotating wave approximation
2 |VmN‘2 .9 Em—ENifu,u

m = —t N .
el = F By TR O ( 2h (m # N)

Again, ostensibly " |¢,,|? > 1, but the “extra” terms are of second order in H’, and hence do not belong (to
first order).

You would do |better to use 1 =37\ [en[*.| Schematically: ¢, = a1H + axH? + -+, 50 |en|* =

atH? + 2a1a2H + ---, whereas cy = 1 + b1 H +boH? + -+, so |en]? = 1+ 2b1H + (2by + b3)H? +
Thus knowing ¢, to first order (i.e., knowing a;) gets you |¢,,|? to second order, but knowing cy to first order
(i.e., by) does not get you |cy|? to second order (you'd also need by). It is precisely this by term that would
cancel the “extra” (second-order) terms in the calculations of Y |c,,|? above.

Problem 9.17
()

Equation 9.82 = ¢, = f% N en BB Here HY,\ = (1 |Vo (D)) = SunVa(2).-

n

Cm = —%cmVo(t); dem _ —%Vo(t) dt = Incp, = —%/Vo(tl) dt’ + constant.
Cm

I ,
em(t) = e (0)e™ 7 o Vo dt’ Tt B(t) = _ﬁ/ Vo) dt';  em(t) =e®e,n(0). Hence
0

1
lem (1)]? = |em(0)|%, and there are no transitions. | ®(T) = _ﬁ/o Vo(t) dt

(b)

St
Eq. 9.81 = cN(t)Nl——/ ot dt = 1+ i, o =1,

em(t) =0 (m # N).

Eq. 9.85 = ¢t :——/ Smn Vo (') ! Em=Bx/h gyt — 0 (m, £ N).

The ezact answer is ey (t) = e’ ¢, (t) = 0, and they are consistent, since e'® ~ 1 4 i®, to first order.
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250 CHAPTER 9. TIME-DEPENDENT PERTURBATION THEORY

Problem 9.18

2 2ﬁ2 2p2
Use result of Problem 9.15(c). Here E, = %, so E,—FE; = 3m
ma

2 [? 2
Hiy = —/ sin (zm) Vo sin (—Wx) dx
a Jo a a

sin (gx) sin (37”:5)1 “?

2ma?’

2(m/a) 2(37/a)

2
o a

4V oma?\ 2 .o [ 37%h 16ma?V, 3m2hT\ 12
Eq. 9.86 = P, =4 —2) (22— b)) = || 2omatVo o (ORI
b 2 ( 3 ) (37T2h2) i 4ma? 93 h2 St 4ma?

Actually, in this case H|, and HJ, are nonzero:
11 22

0

2 [P, ym Vo 2 (Y%, (2m Vo
Hi, = (1|H |[¢1) = EVO/O sin? (Em) dr = 5 Hly = (| H'|1he) = EVO/O sin? <7x> dr = 5

However, this does not affect the answer, for according to Problem 9.4, ¢ (¢) picks up an innocuous phase factor,
while co(t) is not affected at all, in first order (formally, this is because Hj, is multiplied by ¢, in Eq. 9.11, and
in zeroth order ¢;(t) = 0).]

Problem 9.19

Spontaneous absorption would involve taking energy (a photon) from the ground state of the electromagnetic
field. But you can’t do that, because the gound state already has the lowest allowed energy.

Problem 9.20
(a)

A vh 01 0 —1 10
H = 75 (B.oy + By, + Boow) = -2 [Bm (1 0) + By (z 0) o <0 1”

_h B, B, —iBy\ _ ~h By By¢(coswt + i sin wt)
2 \B,+iB, -B, 2 \ Byt(coswt — isinwt) —DBy

_lﬁ BO Brfeiwt
2 \Bge ™ —By )’

(b) ihx = Hx =
ih a _ _'7_h By By et a\ _'y_h Boa Byreith .
b 2 Brfe*iwt —By b 9 Brfefiwta —Byb

a = z% (Boa + Brfeiwtb) = % (Qewtb + woa) ,

b = —z% (Bob — Brfe_i“ta) = (Qe‘mta — wob) .

v
2
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CHAPTER 9. TIME-DEPENDENT PERTURBATION THEORY 251

(¢) You can decouple the equations by differentiating with respect to ¢, but it is simpler just to check the quoted
results. First of all, they clearly satisfy the initial conditions: a(0) = ap and b(0) = bg. Differentiating a:

. , . ’
i=a+ {—ao% sin(w't/2) + = lao(wo — w) + boS2] 5 cos(w’t/Q)} giwt/?
w

= %ei‘*’t/z{wao cos(w't/2) + zil [ao(wo — w) + b sin(w't/2)
w

+ iw'ag sin(w't/2) + [ap(wo — w) + bpY] cos(w’t/Q)}
Equation 9.90 says this should be equal to

3 (Qe™'b + woa) = Ee“"t/Z {Qbo cos(w't/2) + i [bo(w — wo) + ap] sin(w't/2)

+ woag cos(w't/2) + iw—(,) [ap(wo — w) + bp{] sin(w’t/Z)}.
w
By inspection the cos(w’t/2) terms in the two expressions are equal; it remains to check that
LW . 0 .Wo
ZJ [ao(wg — W) + on] + Za)lao = ZJ [bo(w — WO) + CL(]Q} + ’LU [ao(wo — W) + on} s
which is to say

aow(wo — w) + bowQ + ag(W)? = beQ(w — wo) + aeQ? + agwo(wo — w) + bowo 2,

or
ap [wwy — w? + (W) — O — W + wow] = by [Qw — W + weQ — W) = 0.

Substituting Eq. 9.91 for «’, the coefficient of ag on the left becomes
2wwy —w? + (W—w)? + - —w2=0. v
The check of b(t) is identical, with a < b, wy — —wp, and w — —w.

(d)

b(t) = zg sin(w't/2)e ™2, P(t) = |b(t)|> = (%) sin?(w't/2).

(e)

P(w)
1+
1/2 D
o o

The maximum (Pyax = 1) occurs (obviously) at w = wp.
P=l=s(w-w)l=0C=2w=w*Q so Av=w;—w_ :
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252 CHAPTER 9. TIME-DEPENDENT PERTURBATION THEORY

(f) Bo = 10,000 gauss = 1 T; By = 0.01 gauss = 1 x 1075 T. wg = vBy. Comparing Eqs. 4.156 and
6.85, ~v= 29pe , where g, =5.59. So

myp
59)(1.6 x 10717
DU N L) CU LS e Y S PR IVET T
2r  4mrm, 47(1.67 x 10—27)
Aw Q 2Brf 7 _6
av=2=2o1 9By = st o = (426 % 107)(2 x 10°°) = [85.2 Hy.
s m 0

Problem 9.21
(a)
H = —qBE r=—q(Eq 1)k r)sin(wt). Write Eg = Eyi, k = %k: Then

Eow

7 L
H' = —q=>=(i-x)(k - r)sin(wt). o), = -

(b|(7 - 1) (k - 1)|a) sin(wt).

This is the analog to Eq. 9.33: H], = —qEy(b|n - r|a) coswt. The rest of the analysis is identical to the
dipole case (except that it is sin(wt) instead of cos(wt), but this amounts to resetting the clock, and clearly
has no effect on the transition rate). We can skip therefore to Eq. 9.56, except for the factor of 1/3, which
came from the averaging in Eq. 9.46:

wS q2w2 q2w5

A= |l v) (k- r)]a) | =

meghed  c?

[(b](7 - 1) (k- v)a).

Teghc®

(b) Let the oscillator lie along the # direction, so (7 -r) = fizz and k-r = kyz. For a transition from n to n/,

we have
q2w5 R 2
A= mehd (kzﬁx> |(n/|2%|n)|?.  From Example 2.5, (n/|z?|n) = T ——(n/|(a}+ara_+a_ay+a®)|n),

where w is the frequency of the oscillator, not to be confused with w, the frequency of the electromagnetic
wave. Now, for spontaneous emission the final state must be lower in energy, so n’ < n, and hence the
only surviving term is a? . Using Eq. 2.66:

R
(n'|z?%n) = (' |v/nn—=1)n—-2)= ——+/n(n—1) 6 n_o2.
2ma
Evidently transitions only go from |n) to |[n — 2), and hence

E,-FE, o 1

w= 77 =7 [(n+ 3w — (n— 2+ L] = 2w.
(n'[a*|n) = o V7 (n—=1)0pn-2; Rpopn-2= ﬂ(ﬁizﬁl)Qin(n —1).
’ meghc® m2w?

It remains to calculate the average of (l;:gmz)2 It’s easiest to reorient the oscillator along a direction 7,
making angle 6 with the z axis, and let the radiation be incident from the z direction (so k, — k, = cos¥).
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CHAPTER 9. TIME-DEPENDENT PERTURBATION THEORY 253

Averaging over the two polarizations (z and j): (A2) = z (23 —I—j?)
1

: = % (sin2 6 cos® ¢ + sin? 6 sin” ¢) =
5 sin® #. Now average overall directions:

. 1 [1 1 "
(E*n?) = — / —sin” f cos? Osin 0 df de = —27r/ (1 — cos? ) cos® Osin O d
4 | 2 8m 0

™

_1 _c0s39+cos59 12 2y 1

4 3 5 1, 4\3 5) 15
1 ¢*hwd . R(forbidden) 2 hw
= —— -1).] C Eq. 963 ————=-(n—1—
15 megm2c® n(n—1) OHbarmg £4 R(allowed) (n )mc2

For a nonrelativistic system, iw < mc?; hence the term “forbidden”.

(c) If both the initial state and the final state have [ = 0, the wave function is independent of angle (Y =
1/+/4m), and the angular part of the integral is:

<Mwm@ﬂm:m/mﬂ@mmwwm:m%m%)mqmw

But 7 -k = 0, since electromagnetic waves are transverse. So R = 0 in this case, both for allowed and
for forbidden transitions.

Problem 9.22

[This is done in Fermi’s Notes on Quantum Mechanics (Chicago, 1995), Section 24, but I am looking for a more
accessible treatment.]
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254 CHAPTER 10. THE ADIABATIC APPROXIMATION

Chapter 10

The Adiabatic Approximation

Problem 10.1
(a)

[ v nmav n 0¢ dp 1 [ 2ELa v 9 i _ Ela v
B { 2w w? k ( x) “aJ ®n ot 2k { w 5 (mva” = 2B,at) | = haw w¢

d¢  mvx 0P, nmw nmw
or  hw O [ (

9, nw\%2 o /nm imb nmw nw .mouzx 2
= |- (—) csc (—x) + —1 9, + {— cot (—x) +1 ] P,.
0z w w hw w w hw

So the Schrodinger equation (ihd0®,, /0t = H®,,) is satisfied <

Ei
i g+ T con (M) i i)
w w hw w

= _h_z {_ (T)2csc2 (%x) + imo 4 {T cot (%x) +Z_mvxr}

2m w hw w hw
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CHAPTER 10. THE ADIABATIC APPROXIMATION 255

h2
Cotangent terms: — ih (ﬂaf) r_ v (2
w 2m

v

nw _moT L NTUT
—1 = —ih 5
w  hw w

Remaining trig terms on right:

() e () + () ot () == () [y ) =~ ()

This leaves:

[ gy o (et S2Eaty] 2 b [ omy? i et
2w hw w 2hw T 2m w hw h2w?

%_ Eja mv%+ vEpat ¢ hn*r? +%_ mvae”
h _Ahw o 2mw hw

_Eviza(w —vt) = _Bya? 2 P & _wrhiat | tnt rhs. v
haw hw 2mw 2ma? hw 2mw

So ®,, does satisfy the Schrodinger equation, and since ®,,(x,t) = (---)sin (nmz/w), it fits the boundary
conditions: ®,(0,t) = &, (w,t) = 0.

(b)

2 nm ; 2
E t1 104 = ¥(z,0) = 2@, (2,0) = ot/ = si ( ) imvzx /2ha'
quation (z,0) E cn®n(z,0) E c \/;sm L)

2 n' -
Multiply by \/jsin (—W:z:> e~imve®/2ha o q integrate:
a a

2 a / . 2 ™ /
\ﬁ / ¥ (x,0) sin (MI) emimvet/2ma gy _ § e, { - / sin ("2 ) sin (ﬂm> dx} =,
a Jo a a Jo a a

1

TL’I?./

2 [ _.
So, in general: ¢, = \/j/ e imva®/2ha g (Ex) U(x,0)dx. In this particular case,
a Jo a

2 .o/nmN\ . /T T a muz?  moz? a? mua
Cp = — e~ imvet/2ha gin (—) sin (—x) dr. Let —x=z do=—-dzy —(—=—""—F5=,> 22
0 a a a m 2ha 2ha ™ 2m2h

Cp = —/ g iz’ sin(nz)sin(z) dz. QED
0

™
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256 CHAPTER 10. THE ADIABATIC APPROXIMATION

(c)

, E 2 h
w(Te):2a:>a+UTe:2a:>vTe:a:> e_lElt/héwzfléTi:Uﬂ-:%’E—l, or
2mh 4 2 dma? 4ma? 4
Ti= = loma? = 20 I = 2 Adiabatic = T, > Ty = © o o 5 20 o o
m2h T h wh v wh T h

2 s
8 (%) =8ra<k1l, so a<1l Thencg,= ;/0 sin(nz) sin(z)dz = Therefore

U(z,t) =1/ 2 sin (E) ei(mwgﬂEiat)/zhw’
w w

which (apart from a phase factor) is the ground state of the instantaneous well, of width w, as required

by the adiabatic theorem. (Actually, the first term in the exponent, which is at most ";Z‘Zz =5 <1
and could be dropped, in the adiabatic regime.)

(d)
1 (7%h? t 1 2 1 1
o(t)=—+ (= h / Pl
h\ 2m ) J, (a+ot')? 2m | v \a+ot/
__772h l_i __7r27i v_t __7727115
T o 2mo\a w/) 2mv \aw) = 2maw’

2
mox 2 X i
So (dropping the term, as explained in (¢)) ®(z,t) =4/ —sin (—) e"tE1at/hw can be written
w

t

0

2hw w
. Eiat w2h? at w2 ht 2 . mxN
(since — b = amai e = omaw =0): \Il(x,t)fy/asm (U)e .

This is exactly what one would naively expect: For a fized well (of width a) we’d have ¥(z,t) =
U, (z)e F1t/"; for the (adiabatically) expanding well, simply replace a by the (time-dependent) width
w, and integrate to get the accumulated phase factor, noting that F, is now a function of ¢.

Problem 10.2

9]
To show: zha—)t( = Hy, where x is given by Eq. 10.31 and H is given by Eq. 10.25.

Ox

at

wols

{— sin (3) — i—(“’l/\_“’) cos (%)} cos (&) ewt/2 — [cos (3) - —i(wl)\_”) sin (%)} cos (§) e wt/2

N>

| sin (3) = 62552 cos () sin () /2 + i [cos (3) — 55 sin (§) | s () /2
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CHAPTER 10. THE ADIABATIC APPROXIMATION 257

Hy =

cos {cos(%) - i(‘”;w) sin(%)} cos e wt/2 4 emiwlgin g [COS(%) - M Sin(%)} sin 2e™wt/2

1

2

et cosa [cos(%) — i(wl)\_w) sin(%)} cos e H2 — cosa [cos(%) - i(wl;'“’) sin(

ol
N
[t
w0
=,
=
|2

(9]
.
€
S
~
(V)

(1) Upper elements:

3o 2) o (] () ()]
2 ﬁ%{ [cos (%) —i@ sin (;)} coscregs’s + {cos (;) —iw sin (%)] éi\n;gsin%},

«
where % = 2sin —cos>
ere Sin 2CO B

The sine terms:

sin <&> {—i)\ - zw(wi\— w) + wl(wi\_ w) cos o + 4@w1(w; +w) 2 sin? %] .

' At
Y sin <7> [767— w? + 2wwi cos a — wwy + 407 + (w2 — wwi) cos o + (W + wwr )(1 — cosoz)}

) At
_ *%sm <3> [7@+ 2wwlcosa*M+9ﬁ/€ﬁs/*wwlcosaJF%JfM’M*wwlcosa] =0 v

The cosine terms:

cos (%) [(wl — 1) + 4 — wy cos a — wy 2 sin? %} = —wj COS (;) [-1+cosa+ (1l —cosa)]=0. Vv

(2) Lower elements:

Ao () e () () ()] o)

Lo () 252 (3] () 2 () ens).

The sine terms:
sin <ﬁ> [—i)\ + s + ) + (@ = w) 2 cos? (g> - —iwl(wl +w) cos a] Z0.

A A A

' At
Y sin (—) {—MZ— w? 4 2wwy cos a + wwi + 4« + (W — wwi)(1 + cosa) — (w? —&—wwl)cosa}

A 2
| At
= %sin (?) {fyf,+ 2wwy cos o +M+%*M+M7ww1 COS —Mfwwl cosa} =0. V
The cosine terms:
At 9 Qv At
cos | 5 {(wl + ) — ' — wy 208 5 + wy cosoz} =cos | o [w1 —wi(1+cosa)+wicosal =0. v
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258 CHAPTER 10. THE ADIABATIC APPROXIMATION

As for Eq. 10.33:

Mt - At ; 2 At - in 5
cos| — | — ii(wl wcosa) sin [ = )| e7t/? iS?S.Q o | T Ysinasin [ 20 )| eit/? ,SJ? 2
2 A 2 e sin 5 A 2 —e*™fcos 5

B . At wy . At oz+iw o oz+, oo . At —iwt)2
o= 0S 5 /\sm 5 COS2 3 csozcos2 smozsm2 sin 5 e

cos(a—$)=cos §

At ; — At .
= [cos <—> _iwizw) sin <?>} cos %e*“"tﬂ (confirming the top entry).

8= ALY dwr (A ,g_’_i_w P al (A iwt/2
=1 [cos (5 yosin | ) [ sing 4 = | cosassin g —sinacos o | sin | 5 e

sin(§ —a)=—sin §

At ' At ;
= [cos (—) _ e tw) sin (5)} sin %e“"tm (confirming the bottom entry).

2 A

2

(
'

(wi —wecosa)? |, (Mt w? o, (A
)+ e Sin 5 + 2 sSin” o sin 9

1 At
) + 2 <w% — 2wwy cos o + w? cos? a4 w? sin? a) sin? <—>

jexl? + le—[2 = cos

wlx X

= COS

= COS2 (

2

w2+w% —2wwy cos a=\2

)+sin2 (;) =1. V

vo| X

Problem 10.3
(a)

2
Y (z) =1/ —sin (Eaz) . In this case R = w.
w w

W Va3 ) s () 2 (- 250) s (M)
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CHAPTER 10. THE ADIABATIC APPROXIMATION 259
0w (91%
(l5 )=, 5
9 2nmw (Y nw nw
= ——2 sin (—:E) de — — x sin (—x) cos <—;v) dx
w 0 0 w w
%sm(zgwx)
1 /w nw Y
—— (3)- ﬁ/o rein (79“) e
1 nmw ( w )2 . [ 2n7 wr 2nm v
=————|(=—) sin|—=x ) ———cos| —=x
2w w3 | \2nmw w 2 0
1 nm w? 1 1
—7E7E [ﬁcos@nw)} —7% % 0
So Eq. 10.42 = (If the eigenfunctions are real, the geometric phase vanishes.)
(b)
. 1 ['n?n2R% n’n2h 1 dt’
Equation 10.39 = 6,,(¢) = ﬁ/o 3 t'=— 5 3 7 W
0 — _n27r2h /“’2 de _ n?n?h 1 Y I n?n%h 1 1
T 2mo J,, w2 2mo \w v, 2me \wy  wi /)
(c)
Problem 10.4
P = —'?;;ae_m"‘””'/ﬁ. Here R=a, so
O _vm (11N ajeyne | VO mlE] o ne.
OR h \ 2+« h h?
Ov _ Yma [ L [m _myma, | oamalai _ (0 amalel/i
OR h (2R « h3 -\ 2h2 ht '
oY m [T 5 2 mia [ 2 m [ h? n \?
b Q) N i max /h dr — 2maz/h d _ 7
<w‘8R> {27? /0 N T T / e * 2\ 2ma 2ma
:____0 So Bq. 1042 = [4(t) = 0.]
ma? 1 [T/ ma? m [ dt’ m [ m
E=_"" — _ = _ " 2 — 3_ .3
onz SO 0(t) h/o ( 572 )dt 2 ), d = 2i3e a“do e (a3 — af)
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260 CHAPTER 10. THE ADIABATIC APPROXIMATION

Problem 10.5
According to Eq. 10.44 the geometric phase is

Ry
() = i /R V) - R

Now <wn|'¢n> =1, 50

and hence (¥, |Vgwy,) is pure imaginary. If 1, is real, then, (1,,|V gt,) must in fact be zero.
Suppose we introduce a phase factor to make the (originally real) wave function complex:

Pl = en(B)y,  where 1, is real. Then Vi, = eV g, +i(Vrdn)e’ 4,. So
(WLIVRY,) = e (| VRibn) +ie” " (Vron)e'" (Unln). But (Ynltn) =1, and

(Yn|VRrRYn) =0 (as we just found), so (¢}, |VgrY.) =iVge,, and Eq. 10.44 =

R
v () = i/R. ' iVr(¢n) - dR = — [pn(Rf) — &0 (R;)], so Eq. 10.38 gives:

U (2,1) = ¢, (x, t)e# o Bn(t)d o=ilon(Ry)=dn(Ra)]

The wave function picks up a (trivial) phase factor, whose only function is precisely to kill the phase factor we
put in “by hand”:
U (,t) = [W(x,t)e*%-’é En(t)dt' | idn(Ri) — @, (z, £)e'¥n(Ra)

In particular, for a closed loop ¢, (Ry) = én(R;), so v, (T) = 0.

Problem 10.6

H= B. S. Here B = By [sianos i+ sin@singzﬁj' + cos @ fc} ; take spin matrices from Problem 4.31.
m

B h 010 0—i 0 V20 0
H=-"2"_ sinfcos¢p |101| +sinfsing |i 0 —i ] +cosfd| 0O 0O O
m V2 010 0i 0 0 0—v2

V2cos0 e sinf 0
B . .
_c oh e sind 0 e~ sind
m 0 e sin® —+v/2cosb

S

eB
We need the “spin up” eigenvector: Hyy = —OhX+.
m

V2cos@ e sinf 0 a a (i) V2 cosba + e~ sin 6b = v/2a.
e sin 0 e ¥sinf bl =v2([b] =< (ii) e?sinfa+ e ®sinfc = /2b.
0 €?singd —+/2cosf c c (iii) e’ sin b — V2cosfe = +/2c.
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CHAPTER 10. THE ADIABATIC APPROXIMATION 261

(i) = b= V2e? (1_—0‘;59> a=+v2etan (0/2)a; (i) = b= v2e "¢ <1+—COS‘9> c=2e""%cot (0/2) c.

sin sin 6

Thus ¢ =e*?tan? (§/2)a; (ii) is redundant. Normalize: |a|? + 2tan®(0/2)|a|* + tan*(6/2)[a)* =1 =

4
! )} — 1= Jaf? = cos* (8/2).

2 2 2 _ 2
|al [1—|—tan (9/2)] = |a] [W

Pick a=e "cos®(0/2); then b=+/2sin(6/2)cos(d/2) and c=e?sin?(9/2), and

e % cos? (0/2)
X+ = | V2sin(/2)cos (/2) | .| This is the spin-1 analog to Eq. 10.57.
' sin? (6/2)

_Oxy . 10x4 5 I Oxy -
Ve = or r+r a0 rsinf 0¢ ¢

—e~ % cos (6/2)sin (0/2)

1 A 1 —ie”"?cos? (0/2)\
=— | V2[cos? (0/2) —sin*(0/2)] /2 | 0 + — 7 0 ¢.
" €' sin (6/2) cos (6/2) e ie'® sin? (0/2)

(X+|Vx+) = % {— cos® (6/2) [cos (0/2) sin (6/2)] + sin (6/2) cos (0/2) [cos® (0/2) — sin® (0/2)]
+sin® (6/2) [sin (6/2) cos (6/2)]} 0

Tsiln ; {cos? (8/2) [~icos® (8/2)] + sin® (0/2) [isin® (§/2)] } &
_ rsfn 5 [sin® (6/2) — cos* (0/2)] 6
= rsfn ; [sin? (/2) + cos? (8/2)] [sin? (8/2) — cos? (6/2)] ¢
. rsfng(l)(—cos@d;: —%coteq%.

—i 0 1sin 6

1 0 i i
= P lsing(-Leott)| = = (cosO)F= 2 s Lp
Vo O Vx) rsiné 06 [sm < TCOt ﬂ " 1 2sin6 06 (cos6) 7 r2sing’ 12

. [
Equation 10.51 = v, (T) = Z/ r—27" dQd =

Problem 10.7
(a) Giving H a test function f to act upon:

Hf= L (’—7v - qA) - (?w —qu) +apf

~2m \i
|- T voan AW+ A AL baer
m 2 N—_—— 2

(V-A)f+A-(V])
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262 CHAPTER 10. THE ADIABATIC APPROXIMATION

But V- A =0 and ¢ =0 (see comments after Eq. 10.66), so
1 1
Hf = 5 [—R*V2f +2iqhA -V f+ ¢*A%f], or H= 5 [—h*V? + ¢*A® 4 2ighA - V] . QED
(b) Apply (%V - qA) - to both sides of Eq. 10.78:
h 2 h h : b
(—_v - qA> U= (—,v - qA) : (—_WV@’) = 12V - (V) — Leisp . vy,
i i i i

But V- (e¥9VV') =ie(Vg) (V) +¢e9V - (V¥') and Vg= %A, so the right side is

—z‘fﬂ%eiﬂA VU — B2V 4ighe A - VI = —h2e9VAT . QED

Problem 10.8

(a) Schrodinger equation:

_h_2d2_w:Eq/)7 or 6i2—¢:—k2’ll) (kEV?TﬂE/h) {

O<x<%a+e,

2m dx? dx? %a+e<x<a.

Boundary conditions: ¢(0) = ¢(3a+€) = ¢(a) = 0.
Solution:

(1)0<z<ja+e: o(zr)=Asinkz+ Bceoskr. But (0)=0= B=0, and

Y(la+e) oi’{k(%aﬂ):m (n=1,2,3,...) = B, = n*n°h?/2m(a/2 + €)%,
5 =

orelse A=0.
(2) 3a+e<z<a : t(z)=Fsink(a—xz)+ Geosk(a—=xz). But t(a)=0=G=0, and
b(la+e)=0= k(3a—e)=n'm (0 =1,2,3,...) = E, = (n)*n?h?/2m(a/2 — €)?,
orelse F =0.
2h2
either FE; = 7{7 (n=1), with F =0,

. 2m(za + ¢€)?

The ground state energy is 27r2h2

orelse Ey = (' =1), with A=0.

2m(za — €)?

Both are allowed energies, but Fj is (slightly) lower (assuming ¢ is positive), so the ground state is

2 : T 1 .
() = s (155), 0<e<harg

0, %a—i—eﬁxﬁa.
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Y(x)
(b)
o sa—e-0u =By > ua) = { ot SE20 O e = Y2
Continuity inwatx:%aJre:
Ablnk‘( ate)= Fslnk(a—§a—e) Fslnk( a—€) =F= A%.

Discontinuity in ¢’ at = $a + € (Eq. 2.125):

2mf

2m
—Fkcosk(a—x)—Ak coskx = = fAblnka: = Fcosk(3a—e€)+Acosk (a+e) =— ( =7

)Ablnk( a+e).

Asink (%a + e)

Wcosk( a*E)‘FACOSk( a+e)<ZZT)Asmk:( a+e)

smk( a—l—e)cosk(%a—e)—i—cosk( a—i—e)smk( a—c¢€ ):—(2ZT>smk( a—l—e)smk( a—e)

smk’( a+e—+ a—e):—<£>§[cosk( a—l—e—§a+e)—cosk( a+e+2a—e)].

z
: T X
sinka = —— (cos 2ke — coska) = ‘zsmz = T[cos z — cos(z0)]. ‘
z
(c)
. T z cosz—1 z
ban—;(CObZ—l) = 7 —W——tan(zﬂ) = tan(z/2)——T.

Plot tan(z/2) and —z/T on the same graph, and look for intersections:

A

tan(z/2)

T 2T 3n

-z/T
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264 CHAPTER 10. THE ADIABATIC APPROXIMATION

Ast:0 — oo, T:0 — oo, and the straight line rotates counterclockwise from 6 o’clock to 3 o’clock,
h2 2

so the smallest z goes from 7 to 2w, and the ground state energy goes from ka = 7 = FE(0) = 5 71-2
ma

K22

(appropriate to a well of width a) to ka = 27 = E(o0) = (/22 (appropriate for a well of width a/2.

o . T 0 1 5 20 100 1000
(d) Mathematica yields the following table: | — s reg e ara =631 572036 | 6.13503 | 6.21450

L 1

P = - ,
(E) Ir+Il 1+(Il/Ir)

where

a/2+e€

a/2+e€ 1
I = /0 A?sin® kx dx = A? [295 I sm(2kzx)}

0
1/a 1 a a 2¢
= A2 (24 €) — —sin[2k (2 =242 1+ =~ sin (ka+ 5k
{2(2“) 4ksm[ (2 } 1 {+ Sln(a+a a)]

@ 42 1y
4A {1+5 Zsm(z+z§)].

Ir:/ F?sin’k(a —z)dx. Let wu=a—z, du= —dx.
a/2+e€

0 a/2—e a 1
= 7F2/ sin? ku du = F2/ sin? kudu = — F? [1 — 0 — —sin(z — 29)
a/2—e 0 4 z

I, A?[140—(1/z)sin(z + 20)] A2 sin®k(a/2 —€)  sin®[z(1 —0)/2]
L~ FP—0—(1/7)sm(—z0) CutErom®) 5= sin?k(a/2 +¢)  sin?[z(1+0)/2]
= % where |11 = {1 +6— %sinz(l + 5)] sin?[z(1F6)/2].| |P-= m

Using § = 0.01 and the 2’s from (d), Mathematica gives

T 0 1 ) 20 100 1000
P, | 0.490001 | 0.486822 | 0.471116 | 0.401313 | 0.146529 | 0.00248443

Ast:0— oo (soT :0 — o00), the probability of being in the right half drops from almost 1/2 to zero—the
particle gets sucked out of the slightly smaller side, as it heads for the ground state in (a).

(f)

T: =1 T:S

T=20 T=100 T=1000
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Problem 10.9

(a) Check the answer given: z.= wfo t)sinw(t —t')]dt! = z.(0) =0. v

i = wf(t)sin[w(t —t)] + w2/0 f(t)cos[w(t —t)]dt' = w? /0 f(t)cos[w(t —t)]dt' = 2.(0)=0. v

Fe = w?f(t)cos [w(t —t)] —w? /0 f()sin[w(t — )] dt' = W?f(t) — w3,

Now the classical equation of motion is m(d?z/dt?) = —mw?xr + mw?f. For the proposed solution,
m(d?z./dt?) = mw? f —mw?z., so it does satisfy the equation of motion, with the appropriate boundary
conditions.

(b) Let z=z—x. (so¥n(x—2x.)=1n(z), and z depends on t as well as z).

ot~ dp E) Fumetip ] = (A e mie(r — o) = S+
1 mw? 9 ac?:
(=~ + Do+ ™ {2x(f—$c)+xc—§]o
ov . dYn - .
Ov _ dyn iy () P PYn iy oW it mi\* g
il el 7 . _ et 9rn i 2 — N i}
gr a4z C Tne h(mx LI v e h(mz‘) no) vne
R 02U 1
HU = 20 — mw? fz
om0 + 2mw x mw” fx
o h d wn ,L{} h dwn Z{} mec h2 mi’c 1 2 2
C2m d2? 2m dz h 2m h \Il + 2mw Y —mw” fel.
w2 d*y, 1
B - 2.2 — - .
ut o d? + 5w Un = (n+ 2)ﬁwwn, )

1 1
HU :%\P — —mw?2%T —M o —|— P20+ 2mw2x2\11 mw? fx¥
v - 1
6 /‘ﬁ/ii/el{} ho W+ — 2z f — 2zx. + 1:? — —21‘?)}
w

1 1 1
fgmw222 +%+ —mw?a? fmwz’ff; f% <}z’f 2rw, + 12 — 42

2

22— 2% L o, + a2 22 < (2% = 2z2, + 22) = (x —2)% v

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.



266 CHAPTER 10. THE ADIABATIC APPROXIMATION

(c)

n 02 1 1
Eq. 1090 = H = —— — + —mw? (x2 —2xf—|—f2) — —mw?f?. Shift origin:  u=z— f.
2m 0x2 2 2
h? 02 1 9 9 1 2 40
B=1"5mae2 T2™ M}—[a’m’f}

The first term is a simple harmonic oscillator in the variable w; the second is a constant (with respect
to position). So the eigenfunctions are v, (u), and the eigenvalues are harmonic oscillator ones, (n +
$)hw,  less the constant:  E, = (n + 3)hw — tmw? 2.

T2
(d) Note that sin[w(t—1t')] = i% cos [w(t —t')], / f(t @ cos [w(t —t)]dt', or
/ / t ! d / ’ K q / /
x(t) = f(t") cos[w(t —t")] ’07/0 <d{’) cos [w(t —t)]dt' = f(t) 7/0 <d{’> cos [w(t —t)] dt
(since f(0) = 0). Now, for an adiabatic process we want df /dt very small; specifically: % <L wf(t)

(0 < t' <t). Then the integral is negligible compared to f(t), and we have | z.(t) = f(¢).| (Physically,

this says that if you pull on the spring very gently, no fancy oscillations will occur; the mass just moves
along as though attached to a string of fixed length.)

(e) Put z.~ f into Eq. 10.92, using Eq. 10.93:
\p( ) wn(l‘ t) [ (n+3 )ﬁwt+mf(m7f/2)+m7w2f0t f2(t’)dt’].

The dynamic phase (Eq. 10.39) is

1t ) )
— / E,(t')dt' = —(n+ hwt—i—— / 2 so  W(z,t) =y (z,t)efn®eim®)
0

confirming Eq. 10.94, with the geometric phase given (ostensibly) by ~,(t) = %f(x — f/2). But the
eigenfunctions here are real, and hence(Problem 10.5) the geometric phase should be zero. The point is that
(in the adiabatic approximation) f is extremely small (see above), and hence in this limit o flz—f/2)~0
(at least, in the only region of x where ¥, (x,t) is nonzero).

Problem 10.10
(a)

. . b, ,
Cm = —Z(Sjnez')'n <wm|wj>61(9j_QM) <¢m| ,(/} > Z’Ynez(an_em) =

t
Cm(t) = Cm( ) / <wm|%ﬁ;,n> W"ei(eniam)dt/.

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.



CHAPTER 10. THE ADIABATIC APPROXIMATION 267

(b) From Problem 10.9:

Yn(x,t) = Yp(x — f) = Yp(u), where w=z—f,

Dbn _ 9n O _
ot  Ou ot

- ou

and ¥, (u) is the nth state of the ordinary harmonic oscillator;

. ho Opp i _
But p= Ton 5° (] ot y = hf(m|p\n>7 where (from Problem 3.33):
(mlp|n) =i ? (Vmbp,m-1 — VM6 n—1). Thus:

(i 2 = £ (b ns Vi)

Evidently transitions occur only to the immediately adjacent states, n+1, and

I)ym=n+1:

t
Cnt1 = —/ (f\/ Z—;vn + 1) e el0n=0ns1) gy’
0

But 7, = 0, because the eigenfunctions are real (Problem 10.5), and (Eq. 10.39)

1 1 1 1
O, =——=(n+ 5)7‘wt=>0n—9n+1 = {—(n+ §)+(n+1+—) wt = wt.

h 2
t
So Cni1 = — %,/n+ 1/ feth,dtl-
\ 2n o
(2)m=n-1
‘ P Tw iV i (0 —0
Cno1 = —/ <—f —\/ﬁ> et (On=0n—1) gy’

1 1 t,
Op—0n1=|-(n+=)+(n—1+2)|wt=—wt. |cp1= @\/ﬁ/ fe ™tat.
2 2 2h 0
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Chapter 11

Scattering

Problem 11.1
(a)

b R

d,

Y

1 ; 1
Conservation of energy: FE = im(f" +72¢%) +V(r), where V(r)= %—.
e T

. . J
Conservation of angular momentum: J =mr2¢. So ¢ = —

mr?’
J2
T E(E — V). We want r as a function of ¢ (not t). Also,let u=1/r. Then

%+

~dr drduds 1\duJ , Jdu Jdu\®  J? , 2
_a_araude (2 )\l LW ey (—L8) L2 Sp o
"TU T duds dt ( u2> dom" m dg i ( m ) toE =BV, or

du 272m 2. du\/?m Y B du du
<d_¢> f?(E V) —u*; b ?(E V) —u?; dd)\/?]_@(E_v)_Qﬁ\/I(u)’ where
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CHAPTER 11. SCATTERING 269

2
I(u) = J—n;(E — V) —u?. Now, the particle ¢; starts out at r = co (u = 0), ¢ = 0, and the point

Umax du

7

of closest approach is rmin (Umax), @ : P = / It now swings through an equal angle ®
0

du
T(u)

on the way out,so ®+d+60=m, or 6O=m—20. 9:77—2/
0

So far this is general; now we put in the specific potential:

_2mE  2m qiqe

I(u) = 72 T2 dreg u—u® = (up —u)(u—uy), where u; and uy are the two roots.

(Since du/d¢p = \/I(u), umax is one of the roots; setting wus > U1, Umax = U2.)

U2

r 4 2sin-] (M)

U2 — Uy

§ = 77—2/0u2 \/Mm

Uy — U7

S [z it (M)] _ ogint (M) ,
2 Uy — U Uz — U

Now J = mwb, E = %va, where v is the incoming velocity, so J? = m?b*(2E/m) = 2mb*E, and hence
2m/J? = 1/b*E. So

0

1 1 /1 qg 2 q1G2 s A 1
W)= ——— (= —u? Let A= 0 —I(u) =+ > u— —.
W=%"% (E 4m0) o e AreoE’ (W) =u"+ 5 u

A 1 1 A A2 4 A op\ 2

. 20, A 1 1 B -

To get the roots:  u”* + 2 U 3 0=— u 5 3 + ot o L4414 <A>
A 2\ ? A 2\ 2 —1
Thus U = _262 -1+ 14 (Zb) , U] = @ —1—= 1+ (A:) : Uy + U2 _ .
Y2t 4 (2n/4)
1 2 1

0 =2sin~" 1 , Oof ——— =gin (g) 14 (—if) =—5;

1+ (2b/A)? 1+ (2b/A)>? sin®(0/2)

20\>  1-sin®(0/2) cos®(6/2)  2b e
(Z) = a0 k62) i cot(0/2), or |b= SncoE cot(6/2).
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270 CHAPTER 11. SCATTERING

(b)

b |db db _ qige 1
DO) = ——| 2|, Here & = - :
(©) sin 6 ’d@ a0 8meg B ( 231112(9/2))

_ 1 @12 cos(0/2) qige 1 { 7192
2sin(0/2) cos(0/2) 8meo E sin(0/2) 8meo E 2sin®(6/2) 16meo E sin®(0/2)

(c)

2 r
. 7192 sin ¢
= [ D(f)sin0dbdp = 2 —————db.
7 / (6)sinfdf dg = 2m (87T€0E> /0 sin'(6/2)
This integral does not converge, for near § = 0 (and again near ) we have sinf ~ 6, sin(6/2) = 6/2, so
the integral goes like 16 [; 673 df = — 89’218 — 0.

Problem 11.2

6

ikr
Two dimensions: |¢(r,0) ~ A [e“”” + f(@)%} .

One dimension: |[¢(z)~ A [ei’m + f(x/|x|)e—ikz] .

Problem 11.3

Multiply Eq. 11.32 by Py (cos)sinfdf and integrate from 0 to 7, exploiting the orthogonality of the Leg-
endre polynomials (Eq. 4.34)—which, with the change of variables x = cos 6, says

T . 2
/0 Py(cos )Py (cos ) sinf df = (m> o

The delta function collapses the sum, and we get
24! {jl/(ka) v ikal/hl(})(ka)} —0,

and hence (dropping the primes)
j1(ka
a; = *% QED
ikh; " (ka)
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Problem 11.4

Keeping only the [ = 0 terms, Eq. 11.29 says that in the exterior region:

Al . (1) ~ [sin(kr) L eMNT ) [sin(kr) etkr
P~ A []O(kr) + ikaohy (k:r)} Py(cosh) = A { . +ikag | —1 . =A o + ag " (r>a).

In the internal region Eq. 11.18 (with n; eliminated because it blows up at the origin) yields

sin(kr)
kr

Y(r) = bjo(kr) =0 (r <a).

The boundary conditions hold independently for each [, as you can check by keeping the summation over [ and
exploiting the orthogonality of the Legendre polynomials:
sinka etka } sin ka
aon =
a ka

(1) ® continuous at r =a: A {

(2) o' discontinuous at r = a: Integrating the radial equation across the delta function gives

B[R RIS H?
™ ngr—i—/[aé(r—a)—f—%(; )}udri—%Au’—i—au(a):O, or Au =

2mao 2mao I)

2 aR(a), or Ay’ = = P(a) = .

l::ia [kcos(ka)Jraoi]g?eika] _ %Mﬁ %kcos(ka) +Jg%_ gbmn]gja).

Now u=rR, sou =R+rR; Au = AR+aAR =aAR =

The indicated terms cancel (by (1)), leaving A [cos(ka) + iagke™™®] = b [cos(ka) + kﬁ sin(ka)} .
a

Using (1) to eliminate b: A [cos(ka) + iagke™] = [cot(ka) + %] [sin(ka) + agke’™] A.

cosfkal + iagke™® = costkay + kﬁ sin(ka) + agk cot(ka)e™*® + ﬁa—oeik“.
a a

iagke™® [1 + icot(ka) + Zkﬁ] = kﬂ sin(ka). But ka < 1, so sin(ka) =~ ka, and cot(ka) =
a a

i

ka

i

ka

iagk(1 + ika) {1 + —(1 +ﬁ)] =0; daok {1 +—01+p) +ika—1 —ﬂ] ~ tapk [kia(l +ﬂ)_ = 0.

af3
1+ 5

Equation 11.25 = f(0) = ag =|—

2
Equation 11.14 = D = |f|? = (ffﬂ) ~

2
a3
Equation 11.27 = o =4nD = |4 .
quation o m W(l+ﬂ)
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272 CHAPTER 11. SCATTERING

Problem 11.5

(a) In the region to the left 4 ‘
Y(z) = Ae*® 4 BT (< —q).

In the region —a < z < 0, the Schrodinger equation gives

h? 2 a2y
MYV yw=E Y _
2m dx? oy v = dx? ¥

where k' = y/2m(E 4+ Vp)/h.  The general solution is
Y = Csin(k'z) + D cos(k'x)
But ¢(0) = 0 implies D = 0, so

W(x) = Csin(k’'z) (—a <x <0).

The continuity of ¢ (z) and ¢’'(z) at © = —a says
Ae~ka 4 Betke — _C'sin(k'a), ikAe”*® — ikB** = k'C cos(K'a).

Divide and solve for B: ) )
ikAe~*a — ik Betka

Ae—tka + Betka
ikAe™™*® — ikBe*® = — Ae~ %L’ cot(k'a) — Be™* K cot(k'a),

Bet*® [—ik 4+ k' cot(k'a)] = Ae™*¢ [—ik — k' cot(K'a)].

k — ik’ cot(k'a)

k + ik’ cot(k’a) | -

= —Fk cot(k'a),

B = Ae—Zika |:

(b)

7k / 1./ /
B2 = |42 [k ik’ cot(k a)] . [k‘—i—zk cot(k'a)

=|AP2 v
k + ik’ cot(k'a) k‘ik"cot(k’a)} 14l

(c) From part (a) the wave function for © < —a is

N / )
w(x) :Aeikx +A€72ika |:k ik COt(k a):| efzkx.

k + ik’ cot(k'a)
But by definition of the phase shift (Eq. 11.40)
W(z) = A [eikw _ ei(26—kw):| .
S0)
o~ 2ika k — ik’ cot(k'a)] _ _p2ib
k+ ik’ cot(k'a) | '
This is exact. For a very deep well, E < Vp, k=+vV2mE/h < \/2m(E + Vy)/h=F, so

—2ika | —iK' cot(K'a) 25 —2ika _ _2i5
I o) | _ s, — ¥, [§= _ka.
¢ [ ik’ cot(k'a) cc a
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Problem 11.6

1, 1(k ; 1(k
From Eq. 11.46, a; = —€"sind;, and Eq. 11.33, a; = ijéf)ia), it follows that ¢ sind; = i](llg—a).
k khy (ka) hy (ka)
But (Eq. 11.19) AV (2) = ji(x) + iny(z), so
‘ (k 1 1—itn/i N
€™ sin §; = i— Jul a) =1 - ~ =1 Z(n/.Jg = (n/7) —|—.12’
gie) +im(x) 1 +i(n/j) 1+ (n/5)? 14 (n/j)
(writing (n/j) as shorthand for n;(ka)/j;(ka)). Equating the real and imaginary parts:
. (n/7) 2 1
5 sin 6y = ; sind; = .
cos d; sin§y = T— /) sin & = 7 CYE
Dividing the second by the first, I conclude that
1 i1k
tand; = ——, or |0 =tan ! []l( a)} .
(n/4) ny(ka)

Problem 11.7

r>a: u(r) = Asin(kr +9);

r<a: u(r)=Bsinkr+ Dcoskr = Bsinkr, because u(0) =0= D =0.

in(ka + 6 in(ka + 0
Continuity at » = a = Bsin(ka) = Asin(ka + §) = B = Aw. So u(r)=A4 M sin kr.
sin(ka) sin(ka)

From Problem 11.4,
du
Al 2=
(@)

cos(ka + &) —

sin(ka + 0)

= gu(a) = Akcos(ka+96) — A sin(ka)

r=a

k cos(ka) = §A sin(ka + 9).

sin(ka + 0)

sin(ka) cos(ka) = kﬁa sin(ka + 9),

sin(ka) cos(ka + 0) — sin(ka + ) cos(ka) = k:ﬁ sin(ka + 9) sin(ka),
a

sin(ka — ka — 0) = kﬁ sin(ka) [sin(ka) cos § + cos(ka)sin o],
a

.2 s 2
—sind = ﬁsm (ka) [cosd + cot(ka)sind]; —1= ﬁsm (ka) [cot § + cot(ka)].
ka ka
td = —cot(ka) — ———5——; td=— t(k —_—
co cot(ka) FemZ (k) co cot(ka) + Foin (ha)
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Problem 11.8

ikr 1 1 4 ' 1
G = —e — VG _ —_ (_velkr + elk?"v_) —
r r

47r 47

1 1 . 1 ) . 1
VG =V-(VG)=—— {2 (v-) A(VekT) 4 2V (er) 4 eihry? (—)} .
4 r r r
But V2 — — - 7 V(™) = ike*ri; V2R =ik - (7)) = ik— L d — (r2e'*r)
r 72 ' r2 dr

. ik . 2
(see reference in footnote 12) = V2" = (27“6““" + ikr?e*T) = ikelkT <— + Zk‘) ;
r

r s 72

1 1 1 : Lo o (2 .
v? (_> = —4n6*(r). So V?G = = {2 (—— f) - (ike™ ) + ;ike”” (; + zk) - 47relkr63(r)} .

But  e*783(r) = 6%(r), so

1, 2ik 2k k2 etkr

20 _ 30 _ L ik | SR SR RT3 2 _ 3 2
VG = §°(r) e [ r2+r2 r] 6(r)+k47rr 0°(r) — k°G
Therefore (V2 +k?)G = §*(r). QED

Problem 11.9
1 e? m2 1 —2mE i

= —r/a, =— =——= (Eq.4.72); k=i—F—=—.

¥ 7ra3e v Admeor ma r (Eq. 4.72); h a

In this case there is no “incoming” wave, and ¢o(r) =0. Our problem is to show that
zk\r ro\

27rh2 [r — r0|

ro)Y(ro) d®ro = ¥(r).
We proceed to evaluate the left side (call it I):
2 —|r— a
I = <_£> _h_ 1 /e rrl/ ie*m/ad?’ro
2nh? ma ) \/ra3 |r —ro| 70

1 1 e—a/r2+r(2)—2rro cosG/ae—m/a
2ra \/7ad /12 + 12 — 2rrg cos g

(I have set the zp axis along the—fixed—direction r, for convenience.) Doing the ¢ integral (27):

T e—w/r2+r§—2rroc059/a
6*7’0/0«
/12 + 12 — 2rrgcos

72 sin 0 dro df do.

sinfdf| drg. The 60 integral is

1
avma3d
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T —/r24r2—2rrgcosf/a T
c et sn0do = — % o—\/rPHre—2rrocoso/al” _ _ O [e—(r+ro)/a _ e—|r—r0\/a:| _
0 /124713 —2rrgcosf 7o 0 7o
f—__ L [T [emtrorni/e _ e=lr=rife] g,
rvma® Jo
1 r o0 T o0
= _ e_r/“/ e2r0/% dro — e_r/“/ dr — er/a/ e~ 2ro/a dro}
rvmad | 0 0 r
1 r a a ©
_ —r/fa (%) _ —r/a _rfa (_ % —2rg/a
o r 7TCl3 _e (2) € (T) ¢ ( 26 ) r :|
1 r 1
- _ gefr/a _ refr/a _ ger/a€72r/a:| — efr/a — w(r) QED
rvmad 2 wad
Problem 11.10
For the potential in Eq. 11.81, Eq. 11.88 =
2 e 2 1 “ 2
f0) = thW;VO ; rsin(kr) dr = fhmT‘:) e sin(kr) — gcos(nr)} . = 7717;—/2/30 [sin(ka) — ka cos(ka)],

where (Eq. 11.89) & = 2ksin(6/2).  For low-energy scattering (ka < 1):

1 1
sin(ka) ~ ra — 5(’“‘)33 cos(ka) =1— 5(Mz)2; o)

2mVy 1, . 1§l | 2mVa® | . .
28 R0 g(na) — ka + E(na) =|"3 72 | agreement with Eq. 11.82.

f0) =

Problem 11.11

1, ; o 1 [ ; ;
sin(kr) = % (™" —e ™), so / e M sin(kr) dr = 5 [67(“71”)’" - 67(““”)’”] dr
¢ 0 tJo

% | —(p—ix) —(pu+ir)

1 [e(p=im)r e~ (ptin)r 71 1 1 1 1 fpu+ik—p+ic) K
0 20 N 12 + K2

_M2_|_K2'

2mpB kK 2m
So f(0)=-— 2 74 R = 7712(M2 ) QED
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Problem 11.12

2
Equation 11.91 = D(6) = |£(0)| = (2mﬁ) ( 1

h2 2 R2) where Eq. 11.89 = x = 2ksin(6/2).
2 s
o= /D(H)sin9d9d¢ =27 (2::—26) %/ ! 525sin(6/2) cos(6/2) df.
w=Jo [1 + (2k/u)281n2(9/2)}

Let 2k sin(f/2) =x, so 2sin(f/2) = %a@ and  cos(0/2)df = %dx. Then
,u

B 2mg 21 N2 [T x . 0=0=—= x=1x0=0,
0’—27T< h2) E(E) /xo mdw. The limits are 0= — z—m21 = 2k/p. So

7o @36)2 @)2 [‘%ufxz)} zw - (Z;T;ﬂf (,i)? [1 14 <21’f/ﬂ>2]

omB\> 1 4(k/u)? 4mB\? 1 1 5 2mE
= — . Buwt k= ——
i < h? > (uk)? [1 + 4k2 /2 A p? p? + 4k? " m2

~ (amp\°® 1
o=n uh (uk)? +8mE"

Problem 11.13
(a)

V(r) =ad(r —a). Eq.11.80 = f = —% V(r)d®r = —£a47r/ 5(r — a)ridr.
T 0

2ma 9 2ma 2 dma 2
f=—h2a; D=|f]= 0 ) c=4rD=|7 a® ) .

(b)

2m o

Eq. 118 = f = ~73,. ré(r —a)sin(kr)dr =| —
0

o asin(ka) | (k= 2ksin(0/2)).

(¢) Note first that (b) reduces to (a) in the low-energy regime (ka < 1 = ka < 1). Since Problem 11.4
was also for low energy, what we must confirm is that Problem 11.4 reproduces (a) in the regime for
which the Born approximation holds. Inspection shows that the answer to Problem 11.4 does reduce to

f = —2maa?/h? when 8 < 1, which is to say when f/a < 1. This is the appropriate condition, since
(Eq. 11.12) f/a is a measure of the relative size of the scattered wave, in the interaction region.
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Problem 11.14

1 qiqa 1 qig2 b 1 qigeb dx
F = =7 F| = —_— ; = - F, = sodt = —.
dmeg 12 L7 dney 12 cos ¢ cosg pr 50 L7 dneg 13 v
FJ.
A
qll
r :b >
1 qugob /°° dx
I, = | Fidt= . But
+ / + dreg v J_o (22 +12)3/2 "
i dx e dx 2z o 1 2q192
_——— = 2 = = = SO IL =
oo (2 +12)3/2 o (@2402)3/2  p2/22 1 9?|, b2 dmeg  bu
I, qge 1 Qg2 1 1| 12
tanf = — = = —. 0=t .
at mv  4meg b(%mﬁ) 4meg bE a dmegbE
Qg2 1 q192
b= = 2cot h).
4dmeg Etand (87T€0E>( cot )

The exact answer is the same, only with cot(¢/2) in place of 2cotf. So I must show that cot(6/2) = 2cot 6,
for small @ (that’s the regime in which the impulse approximation should work). Well:
cos(0/2) 1 2 cos @ 1

cot(6/2) = (02 ~ 92 =2 for small #, while 2cotf =2 ~ 25. So it works.

sin 6

Problem 11.15
First let’s set up the general formalism. From Eq. 11.101:

B(x) = Polr) + / g(r — xo)V (xo)o(ro) d*ro + / o(r — o)V (xo0) { / gro — r1)V (r o (r1) dry | Pro+ -

m ezkr

Put in 1o (r) = Ae?**,  g(r) = o

] A eik\r—ro\ )
— A ikz n / Vv ikzo d3
w(r) e 21 h2 |I‘ — I‘o\ (rO)e To

m 2 eik"’_ro‘ eik|r0—1r1| ]
— A ——V N v ikz1 g3 Bro.
+ (27‘(}12) |I'—I‘0| (1‘0) |: \I‘o —I‘1| (1'1)6 r )
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eikll‘—l‘gl eikr
~

In the scattering region r > rg, Eq. 11.73 = e~kro  with k=kF, so

|r — ro| Ty

_ ikz et —ik-ro ikzo 73
P(r)y=Aqe e Rl K V(rg)e™*d ry
Th? r

m 2 eikr e eik|r0—r1| )
(W) . /6 ik TOV(I‘Q) |: rO—r1|V(I‘1)elkZ1d3r1:| d3r0}

zk|r r0|
___m i(k’—k)r 3 m / —ik-r / ikzo 73 3
f(0,9) Imh? /6 V(r)d’r + (271_7#) V(r o I‘o| ro)e"™°d’rg | d°r.

I simplified the subscripts, since there is no longer any possible ambiguity. For low-energy scattering we drop
the exponentials (see p. 414):

10.6) ~ 5 /V )dr + (2";‘12 2/V(r) U %MV(ro)d?’ro} &r.

Now apply this to the potential in Eq. 11.81:

1 @ 1
/ = I‘_0|V(r0) dPry = VO/ - 0|r0 sin 6y drg dfy doy.
_ 0 _

Orient the zp axis along r, so |r — rg| = r? + 72 — 2rrq cos 0.

1 @ 4 1
/ —V(ro) d3r0 = V027T/ 7’(2) |:/ > sin 0y d90:| drg. But
|r — rof 0 0 \/r2 + 7§ — 2rrg cos by

1 1
sinfp dfy = — /12 + r¢ — 2rrg cos by
V12 + 12 — 2rr cos by 7o

7T_ 1 2/, ro <y
=l ==l = {3 ST

Here r < a (from the “outer” integral), so

1 1 /" e 1 1 1
/WV(TO) d’ry = 47V}, {;/0 1"(2) drg +/T ro dro} =47V} {;% + 2(a —r )] =27V (a — §r2> .

1 ¢ 1 a® 1ad® 32
/V(r) {/ T —ro] r0|V(r0) dgro} d*r = VO(27TVQ)47T/O <a2 - §r2> r2dr = 87?V} {a2§ - 53} 5 Via

m 4 4 m 32 2 2mVpa® 4 (mVya?
-yl -2 .
1) = =5 Vogma” + (27rh2) 5o ( 302 5\ 2

Problem 11.16

2 1 .
(% + kzz) G(z) =6(x) (analog to Eq. 11.52). G(z) = Nt /e"szg(s) ds (analog to Eq. 11.54).
™
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(i +47) 6 = oo [l mtereas = o) = o [ s — 000 = S

2m 2 52
1 eisa: 1 1 eisa:
Ga)=—— ¢ () ——ds=———2mi
() 2m <s—|—k>s—k s 2m m(s—&—k)

1 eisx 1 1 eisx 6—ikx
G = 4+— ——ds = —2mi = —1 .
() +27r <sk> s+ k 5T oM (5k>’s_k "ok

In either case, then, | G(z) = —;—keikm. (Analog to Eq. 11.65.)

1 (o9} 18T
G(z) = —/ kei ds. Skirt the poles as in Fig. 11.10. For x > 0, close above:

eik:p
= — .
sk 2k

For x < 0,close below:

2m i 2m

Y(z) = Gz — 20) 5 V(0)h(w0) dzo = T e FT=T0lY (20 )1) (w0) dao,

plus any solution 9y (z) to the homogeneous Schrodinger equation:

d2
(W + k32) Yo(xz) =0. So:

b(a) = o) — 2 [ ekl (20 )p o) dzo.

Problem 11.17

For the Born approximation let ¥o(z) = Ae?*®, and 1 (z) ~ Aeik®.

: 00
P(r)~ A {eik“ - @ eiklx_x"V(xo)eikx”dxo]
2k ) .
ke _ M [T ko) 2 im0 ko) s
=A [el r— wr ) e ETTIV (1g)e 0 dwy — 5 ). e EOTTIV (1) e’ *deo} .
Y(x)=A [e’kx - me’kz/ V(xo) dxo — T k / 2Ty (14) dmo} .

Now assume V' (z) is localized; for large positive x, the third term is zero, and

im [

Y(z) = Aeth® [1 ~ ok V(o) d:f:o] . This is the transmitted wave.

For large negative x the middle term is zero:

- oo
Y(z) = A [eikx — ke / e%mV(xo)dxo] :
n2k o

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.



280

CHAPTER 11. SCATTERING

Evidently the first term is the incident wave and the second the reflected wave
R = (2)2 /00 2k (1) dx
- \Rh2k e

If you try in the same spirit to calculate the transmission coefficient, you get

‘ th/ V(z —1+(%)2{/_(:V(x)dx]2,

2

which is nonsense (greater than 1). The first Born approximation gets R right, but all you can say to this order
is T =~ 1 (you would do better using T'=1— R)

Problem 11.18

o) ) 2
Delta function: V(z) = —ad(x). / 2k (r)de = —a, so R= (%) ,
or, in terms of energy (k* = 2mFE/h?):
m2a? ma? ma?
= e M. r_1-R=|1- 2
2mER?  2R2E’ 2h2E
. 1 ma?
The exact answer (Eq. 2.141) — =

o 1-— or2p’ they agree provided E > %.

e ) Vo (ma<z<a)
Finite square well:  V(z) { 0 (otherwise) .
[ a 2ikx |
2ika 2ika € Vi
V(z)dz = —V, dz = —V,
/Ooe (x)dx O[Ge x 0 S

2F h

_rmy (Vo Pl [V (20 ’
So R_{ﬂ) <?sm(2ka)] . T—l—[—mn( 2mE>} .

If E > Vp, the exact answer (Eq. 2.169) becomes

Vo . (2a 2 Vo . [2a ?
T ~1+{ﬁsn(h 2mE)] :>T~1—(—Sn{% QmEﬂ )

Yok
so they agree provided E > V.

Problem 11.19

The Legendre polynomials satisfy P;(1) =1 (see footnote 30, p. 124), so Eq. 11.47 =

| —

(oo} oo
1
=7 E,O (2l +1)e “iging;. Therefore Im[f =7 Eio (20+1) 5111 o1,
and hence (Eq. 11.48):

o= %Im[f(o)]. QED

currently exist.

2itka _ ,—2ika 7
EL N )
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Problem 11.20
Using Eq. 11.88 and integration by parts:

2 & 2mA [ 1
16) = - / rAe """ sin(xr) dr = —%/ i (‘_) sinleer)dr
K Jo 0

_ 2mA {e’”2 sin(kr)

2uh?k

mA > —pr? mA \/7_T —yrm
= T {0—&/0 et COS(IQT)dT}Z—W <me /’)

_ mAﬁ e—’i2/4ﬂ
2h2N3/2

From Eq. 11.14, then,

,  where & =2ksin(6/2) (Eq. 11.89).

do 7rm2A2e_K2/2M
aQ T anis ’
and hence
242
o= Z_;d(z - % / e~ 4k?sin®(0/2)/20 iy, 9 4 d
2,242 [T _
= 71-2;?73/ e 2K sin*(0/2) /1 6in 9 49, write sin6 = 2sin(6/2) cos(0/2) and let a =sin(0/2)
K 0
2,242 rl 2,2 42 pl
_rma ﬂz é / e~ 2R3 /190 9 dy = —27T T3A / ze~ 2K /1 gy
2ntp Jo Bt 0
1
o 27r2m2A2 ,LefszIQ/IJ N 77r2m2A2 672]62/“ 1
- E4M3 4k2 0 - 2h4u2k2

2,,2 A2
= | Grie (1= ).
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Chapter 12

Afterword

Problem 12.1

Suppose, on the contrary, that

al$a(1))|¢6(2)) + Blon(1))|¢a(2)) = |1br(1))18s(2)),

for some one-particle states |¢,.) and |1)s). Because |@,) and |¢p) constitute a complete set of one-particle states
(this is a two-level system), any other one-particle state can be expressed as a linear combination of them. In
particular,

|wr> = A‘¢a> + B|¢b>7 and |1/}9> = C|¢a> =+ D|¢b>7

for some complex numbers A, B, C, and D. Thus

alda(1))]66(2)) + Blow(1))|6a(2)) = [Alga(1)) + Bléw(1))] [Cléa(2)) + Dlgw(2))]

= AC|¢a(1))|¢a(2)) + AD[da(1))|65(2)) + BC|¢p(1))|¢a(2)) + BD|¢p(1))|¢6(2))-
(i)  Take the inner product with (¢, (1)|{(¢s(2): « = AD.
(ii)  Take the inner product with (¢, (1)[{(¢.(2)]: 0= AC.
(ili) Take the inner product with (¢s(1)|{(¢4(2)|: 6 = BC.
(iv) Take the inner product with (¢5(1)|{(¢s(2)]: 0= BD.

(ii) = either A =0or C = 0. But if A = 0, then (i) = « = 0, which is excluded by assumption, whereas if
C = 0, then (iii) = g = 0, which is likewise excluded. Conclusion: It is impossible to express this state as a
product of one-particle states. QED

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.



APPENDIX. LINEAR ALGEBRA 283

Appendix A

Linear Algebra

Problem A.1

(a) ‘Yes; two-dimensional. ‘

(b) the sum of two such vectors has a, = 2, and is not in the subset. Also, the null vector (0,0,0) is not
in the subset.

(c) ‘Yes; one-dimensional. ‘

Problem A.2
(a) ‘Yes; 1,z,22,... 2N "1 ‘ is a convenient basis. Dimension:

(b) [ Yes; 1,4%,2%....| Dimension (if NV is even) or [ (N + 1)/2] (if N is odd).

(c) The sum of two such “vectors” is not in the space.

(d) ’Yes; (x—1),(x—1)2%(x—1)3,... (x—1)N"L ’ Dimension:

(e) The sum of two such “vectors” would have value 2 at = 0.

Problem A.3

Suppose |a) = ayle1) + aslea) + -+ - anlen) and |a) = byler) + bales) + - - - + bylen). Subtract: 0 = (a1 — by)ler) +
(ag —ba)lea) + -+ (an — by)|en). Suppose a; # b; for some j; then we can divide by (a; — b;) to get:

(a1 = b1) (a2 — by) (an — bn)
le;) = — le1) — les) — - — Oles) — -+ — o 0n)ye
’ (a; — b)) (aj — bj) ! (a; — b;)
so |e;) is linearly dependent on the others, and hence {|e;)} is not a basis. If {|e;)} is a basis, therefore, the
components must all be equal (a1 = b1,a2 = ba,... ,a, =b,). QED
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Problem A.4

(1)
erler) =1 +iP+1+]iP=1+)1—)+1+@G@)(—)=1+1+1+1=4 e =2.
\e’1>:%(1+i)2+%j’+%fg.

(ii)
<egeg>=%(1—i>(i)+%(3)+<;>1:%<i+1+3—i):2.
) = lea) — (el lea)le]) = (i = 1 — )i+ (B —1)j + (1 — i)k = (=1)i + (2)j + (1 — i)k
(hley =1+4+2=T1. \e'2>:%[—%+23+(1—i)i€].

(iii)

1 2
(€] ]es) = 528 =14 (ehles) = W% =8VT.

leg) = les) — (eiles)lel) — (ebles)|er) = |es) — Tler) — 8leq)

—(0—T—Ti+8)i+(28—7—16)] + (0 —7i — 8+ 8i)k = (1 — Ti)i + 5] + (=8 + i)k.

led]|> = 1449 + 25 + 64 + 1 = 140. [(1 = 7d)i 4 57 + (=8 + i)k].

) = ——
2v/35

Problem A.5

From Eq. A.21:  (y|]y) = ('y<|,6’) - %mo = (v|8) — %(’ﬂa). From Eq. A.19:
o @B g @8 o BE
19)° = (p) = (91(1) - 22100 ) = (919) ~ 122 s10) = go1n - LIIE, whic s reat
ooty 1B N @l |
(o) = (o) = (al(18) = {2101 ) = (al3) = {5 ala) =0, (la) =0, So (Ea. A20):
(o) = (B18) - 'ﬁfcj)'Q >0, and hence [{a|)|? < (a]a) (3]8). QED

(©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.



APPENDIX. LINEAR ALGEBRA 285

Problem A.6

(@) =1 —-)(A—i)+1)0)+ (=) (2-2) =4—-5i—1-2—2=1-Ti; (Bla)=1+Ti;

1149 1
(ala) =14+1+1+1=4; (BB =16+1+4+4=25 cosf= 4+—259:ﬁ;

Problem A.7

Let |y) =la)+18); (7)) = (vla) + (v]6).

*

(vle)™ = {aly) = (ala) + (alf) = (yla) = (ala) + (5]a).
(118)" = (Bl7) = (Bla) + (B18) = (VIB) = (alB) + (BIB)-

() + 1BNIZ = (1) = {ala) + (B16) + (alB) + (Bla).
But («|B) + (Bla) = 2Re({(«|B)) < 2|{«|B)| < 24/{c|a){B|B) (by Schwarz inequality), so
() + 18017 < lladl* + 11817 + 2l 18]l = (el + 15I)?, and hence [|(l) + [8)]l < llall + [|6]l.  QED

Problem A.8

1 1 0
(a) 2 1 3.
(3¢ (3 — 2i) 4)

(—240—1) (0+1+3i) (i+0+2i) 3 (1+3i) 3i
(b) ((4+0+3¢) (04+0+9) (—2i+0+6))((4+3i) 9 (6—2i)).

(4i+0+2i) (0—-2i+6) (2+0+4) 6i (6—2i) 6

(—=24+0+2) (24+0-2) (20 +0~— 29) 0 0 0
(c) BA:((O+2+O) (0+0+0) (0+3+0)):< 2 0 3).
(

(—i+6+4i) (i+0—4i) (—1+9+4) 6+ 3i) —3i 12
1—|—3z) 3i
[A,B]=AB—-BA = 2+3z (3-2i) ).
6—|—3z 6—|—z —6

-12 2
(d) 10-2i).
(i3 2)
-1 1 —
(e) 2 0 3].
(—2i2i2)
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(f)

—-12 -2¢
1 0 2¢
-3 2

() 4+04+0-1-0-0=]3.]

(h)

11 |§ogji _2‘2;2) |?2é(|) 2‘0
B - §C7 C - _(’)3712 | | ‘2271' _|2i03| B _'32 s
137 *roo 1511 i 0
| (4+0—1) (=6i+0+6i) (2i+0—2i)
BB”:§ 0+0+0) (04+3+0) (0+0+0) | =
(20 +0—2i) (3+9—-12) (—14+0+4)

300
030] =
003

L (2 3
B'=-(0 30
—i —6 2

100
010]. Vv
001

detA=04+6i4+4—-0—61—4=0. A does not have an inverse.

Problem A.9

(a)

(b)

(c)

(d)

31
6+ 21

(i —2i2) [1—i| =-2i—2(1—4)+0=]-2—4i]

—i+ 20+ 21
214046 | =
—2+4+4+4
2
0
20—
(i 24 2) 010
73 2

4

3—1

% (—1+1i)
4 (—2 + 20)
4 (24 2i)

0
0
0

1—i| =(i202) [1—i] =di+2i(1—i)+2(3—i) =[8 + 4. |
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Problem A.10

(a) |IS==(T+T); A:%(T—T).

(b) [R=S(T+T):| (M= (T-T°).

(c) |[H= %(T+TT); K= %(T —Th.

Problem A.11

n n

(étl/_)kl = (ST)ik = ZSijTjk = ka]S‘ﬂ = (Tg)kz = §:|- = —T—g QED
j=1 j=1
(ST)t = (ST)* = (TS)* = T*5* = Tist. QED
(TS HET) =TS T=T"'T=1 = (ST)"'=T"!s7t. QED
1

Uh=u"t, wi=w! = (WU) =UW =U"'W~! = (WU)~! = WU is unitary.
H=H" J=J" = (H) =JH" = JH;
the product is hermitian <> this is HJ, i.e. & |[H,J] = 0| (they commute).
U4+W) =UT+Wh=u=t+w! < (U+w) L. the sum of two unitary matrices is not unitary.
(H+J)t

Hf +Jf =H+J. the sum of two hermitian matrices is hermitian.

Problem A.12

UiU=1 = (UlU)ix =0 => ULUj=>> UsUjr = 6.
j=1

j=1

Construct the set of n vectors al9); = Uij (a(j) is the j-th column of U; its i-th component is U;;). Then
201 = 3 a7 o, = S UL, = b
j=1 j=1

so these vectors are orthonormal. Similarly,

UWi=1 = (U =6dp = D UyU},=> Ui;Uij = 0.
j=1

j=1

This time let the vectors b() be the rows of U: b\, = Uj;. Then

b(F)TH(E) —

J

b6 =3 U Uiy = S,
— =1

so the rows are also orthonormal.
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Problem A.13

Hf = H (hermitian) = det H = det(H') = det(H*) = (det H)* = (det H)* = detH is real. v’
= U~! (unitary) = det(UUT) = (det U)(det UT) = (det U)(det U)* = |det U|> = detl =1, so detU=1.
S = S7! (orthogonal) = det(SS) = (det S)(detS) = (detS)? =1, so detS ==+1. v

c
—
|

Problem A.14
(a)

R X o R o A cosf —sinf 0
i =cosfi+sinfj; 3 =—sinfi+cosly; k'=k To=||sind cosd 0
0 0 1
y' y
0
o
e -
(b)
. o X X . 001
iV =3; =k k=i |[Ty=(100
010
y. X' X, Z
z,y'
(c)
A o A . . 10 0
V=1 =3, K=—-k |T.=(01 0
00 -1
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(d)

cosf sinf 0 cosf) —sinf 0 100
T,To= | —sind cosb 0 sinf cosf 0|l =]010). VvV
0 0 1 0 0 1 001
010 001 100 10 0 10 0 100
T, T,=(001|(100]=(010]. v T.T.=[01 0 01 0|=(010]. v
100 010 001 00 -1 00 -1 001

det T, :c0829+sin29= dethZ detTc:

Problem A.15

1 0 0
7 =cosj+sinfk; kK =cosfk—sinfj. |T,(0) = [0 cosf —sind
0 sinf cos6

.
I
S0

y.y'

R . N . R A cosf 0 sinf
' =cosfi—sinfk; j =j; kK =cosOk+sinfi. |T,(0)= 0 1 0
—sin# 0 cos6

10 010
o].] ss't=1[1-100
1

0 —
i'=7 j=-i K=k |S=[10
00 001
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0-10 1 0 0 010
ST,S'=110 0] [0cos§ —sinf| | —-100
001 0 sinf cos#f 001
0-10 0 1 0 cosf 0 sinf
=1100 —cosf 0 —sinf | = 0 1 0 =T,(9).
001 —sinf 0 cosf —sinf 0 cos6
0-10 cosf 0 sinf 010
ST,S'=(100 0 1 0 -100
001 —sinf 0 cos@ 0 01
0-10 0 cosf sinf 1 0 0
=|100 -1 0 0 =10 cosf sinf | =T,(-0).
001 0 —siné cos@ 0 —sinf cosf

Is this what we would expect? Yes, for rotation about the z axis now means rotation about the y axis, and
rotation about the y axis has become rotation about the —x axis—which is to say, rotation in the opposite
direction about the +z axis.

Problem A.16
From Eq. A.64 we have

A’Bf = SA°STISB*S™! = S(A°B®)St =scest =/, v

Suppose ST = S~ and H® = H®! (S unitary, H® hermitian). Then
l)T — (Sfl)THeTsT

In an orthonormal basis, (a|8) = a'b (Eq. A.50). So if {|fi)} is orthonormal, (a|3) = affb/. But b/ = Sb*
(Eq. A.63), and also aff = a®TST. So (a|3) = a®’STSb°. This is equal to a®’b® (and hence {|e;)} is also
orthonormal), for all vectors |a) and |3) < STS =1, i.e. S is unitary.

FT = (SHes~ = SH®S™! = H/, so H’ is hermitian. v/

Problem A.17

Te(T,Ty) = Z (TiTo)ii = ZZ (T)ij(T2)ji = D > (T2)ji(To)iy = Y _(TaT1),5 = Tr(T2Ty).
=1 5=1 Jj=11:i=1 Jj=1
Is Tr(TiToTs) = Tr(T2T1Ts)? Counterexample:
01 00 10
n=(00): ==(11) =(o0)-
01\ /00\ (10 01\ /00 10
TiToTs = (0 0) (1 0) (0 o) = (o 0> (1 0) = <0 0> = Tr(TiT2Ts) =1
00\ 01\ (10 00\ /00 00
ToTaTs = (1 0) (0 0) (0 o) = <1 0) (0 0) = (0 0) = Tr(ToTaTs) =0
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Problem A.18

Eigenvalues:

(cosf@ —A) —sinf
sinf  (cosf — \)

‘ = (cosf — \)? +sin? 0 = cos? @ — 2\ cos @ + A\? +sin?f = 0, or A2 — 2\ cosf + 1 = 0.

2cosf + vAcos2 — 4 :
5= cos 2COS :cosgi\/m:CosaiiSinez

So there are two eigenvalues, both of them complex. Only if sinf = 0 does this matrix possess real eigenvalues,

i.e., only if

Eigenvectors:

cosf —sinf\ fa\ L . . o . T
(sin9 030 ) <ﬁ) =e <ﬂ) = cosfa —sinf = (cosf tisinf)a = = Fia. Normalizing:

a<1>L<1'>; a<2>L(1,>_
V2 \—1 2 \ ¢
Diagonalization:

-, i
(S™Hu = ag1) = (S N1 = agl) =—= (S Na= a(22) =—.

S

1 .
\/57

1 1
Sl=— ( 1. 1) ; inverting: S = (

—i @
1 4 cosf —sinf Lry_1/1 (cos@ +isin@) (cosf — isinh)
1 —i) \sinf cosf —i 1) 2\1 —i) \(sinf —icosf) (sinf + icosb)

1 4 ei@ 671‘9 _1
1 —i) \—ie® je=@ ] — 9

Problem A.19

’(1—,\) 1
0 (1—-2X)

0) ()= () =eramememmn o)

(only one eigenvector—up to an arbitrary constant factor). Since the eigenvectors do not span the space, this

‘ =1-N?’=0= (only one eigenvalue).

matrix ’ cannot be diagonalized. ‘ [If it could be diagonalized, the diagonal form would have to be <(1) (1)), since

the only eigenvalue is 1. But in that case | = SMS™!'. Multiplying from the left by S~! and on the right by
S: SHS=S"'SMS™!S =M. But S7HS =SS =I. So M = |, which is false.]
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Problem A.20

Expand the determinant (Eq. A.72) by minors, using the first column:

(Tog — A) ... .
det(T — A1) = (T11 — \) : + Z Tj1 cofactor(T}y).
' (Tan =N 7
But the cofactor of T}; (for j > 1) is missing two of the original diagonal elements: (T7; — A) (from the first
column), and (7;; — A) (from the j-th row). So its highest power of A will be (n — 2). Thus terms in A" and
A"~ ! come exclusively from the first term above. Indeed, the same argument applied now to the cofactor of

(Th1 — M) — and repeated as we expand that determinant — shows that only the product of the diagonal elements
contributes to A" and A"~ !:

(T11 = AN (Toz = A) - (T — A) = (=N)" + (=N Ty +Tog + -+ Ton) + -+

Evidently then, C,, = (=1)", and C,,_; = (=1)""! Tr(T). To get Cy — the term with no factors of A — we simply
set A = 0. Thus Cy = det(T). For a 3 x 3 matrix:

(Tii—A) Tio T3
Tor  (Toa—A) T3
ES Tsy  (T33—A)

= (T — A\)(To2 — N)(T33 — A) + T12T23T31 + T13T21 T30
—T51T13(To — A) — T3oT23(T11 — A) — T12T01(T33 — A)

= =\ + N (Th1 + Tz + Ts3) — MT11 T + T11Tss + TooTs3) + N(TisTs1 + TosTso + ThoTo1)
+ T11T52T33 + T12T23T31 + T13T21T32 — T31T13T22 — T32T23T11 — T12T21T33

=X+ X2 Tr(T) + ACy +det(T), with

‘ C1 = (T13T31 + TosTe + T12T51) — (Th1To2 + Th1T33 + TooTs3). ‘

Problem A.21

The characteristic equation is an n-th order polynomial, which can be factored in terms of its n (complex) roots:
()\1 _A)()\2 _/\)(/\n _)\) — (_)\)n + (—)\)77’_1(A1 + Ao ++)\n) I ()\1)\2)\71) =0.

Comparing Eq. A.84, it follows that Tr(T) = Ay + Aa + -+ - A\, and det(T) = A Ao -+ A\ QED

Problem A.22
(a)
T, T =TI T, —TIT) = STS1STES 1 —STES1STSS ™! = STSTES ' —STSTeS ! = S[T¢, TS = 0.
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(b) Suppose SAS™! = D and SBS™! = E, where D and E are diagonal:

dl 0 --- 0 e1 0--- 0
Od2 0 062"' 0

Then
[A,B] = AB — BA = (S™'DS)(S™'ES) — (S"'ES)(S™'DS) = ST'DES — ST'EDS = S~![D, EJS.

But diagonal matrices always commute:

d161 0 0
0 deea -+ O
DE=| . .. |=ep
0 0 ~dn-en
so [A,B]=0. QED
Problem A.23
(a)
P (1 1Y, 2 (1—d) o (2 A+ a0 =2
M_(l—i>’ MM_((1+i) o ) MIM={q_y o) MM =1{y, o ) #0
(b) Find the eigenvalues:
1-X 1 . . .
‘< : )(i_)\)‘:(1—/\)(2—/\)—1:z—/\(1+z)+/\2—1:0;
/\:(1+i)i\/(1+i)2—4(i—1):(1+i)i\/4—2i

2 2
Since there are two distinct eigenvalues, there must be two linearly independent eigenvectors, and that’s
enough to span the space. So ‘ this matrix is diagonalizable, | even though it is not normal.

Problem A.24

Let |v) = |a) + ¢|8), for some complex number ¢. Then

(Y| T) = (a|Ta) + c(|TB) + ¢* (B|Ta) + |c|*(B|TH), and

() = (Tala) + (T Bla) + (TalB) + |c*(T5]5).
Suppose (T|y) = (y|T) for all vectors. For instance, (T'a|a) = (o|Ta) and (T8|3) = (B|T)), so
cla|TB) + ¢ (B]Ta) = e(Ta|3) + ¢*(TB)a), and this holds for any complex number .

In particular, for ¢ = 1: (a\Tﬁ)+<ﬁ|Ta> = (Ta|B)+(TB|a), while for ¢ = i: (a|T8)—(8|Ta) = (Ta|B)— (TB|a).
(I canceled the i’s). Adding: {(«|T5) = (Ta|B). QED
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Problem A.25

(a)
TTT*<1—1H'10_Z)T v
(b)
’<(11:L?)) ((3:;)) =—(1-M)A—1-1=0; A2—A—2:0;A:1i”21+8=1:;3. \A1:2, Ao = —1.
(c)
1 (1-9)\ [\ [« B =% o= (1—i
<(1+i) 0 ><ﬁ)—2<ﬁ):>a+(1 )B =20 = a=(1-1i)p.
off +18 = 1= 208 + 16 =1 = 8 = ==, a<1>:%(11i).
11—\ () [« e —r e —i(1_i
(010 S5 ()= (2) = e 0090 a=—ba-im
raer e =1= = g =2 [0 = L (10).
ata@ = 1 i G-Dy_ 1 129 =
Dia2 3\/5((1+)1)< 5 > 3\@( 1-1-i+2)=0. vV
(d)
Eq. A.81 = (S 1) =al?) = %(1 —i); (S Hp=a? = \/i(_j(i —1);
IR CONNE NG
(S™H)a1 = ay =5 (S Va2 = ay 7
G L (A=) G-1)/V2 ooy L A+ 1
7= (WY sme =5 (e va)-
1 (1+4) 1 1 (1—=d)\ (Q—4) G—1)/v2
515 =5 (L va) (o Mo ) ()
1 (1+14) 1Y (21 —4) (1—14)/vV2\ _1/(6 (20
_§<(1+z/\/§\/§)( 2 —V2 >_§(0—3)_<0—1) v
(e)
Te(T)=1;| det(T)=0— (1+i)(1—d)=|-2.] Tr(STS ) =2-1=1. v det(STS™")=-2. v
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Problem A.26

(a)
det(T)=8—-1-1-2-2-2=[0.] Tx(T)=2+2+2=[6.]
(b)
2-)) i 1
—i (2= i =N} =1-1-(2-N)-2-N)—-(2-X)=8—-12X4+6X7 - A* -8 +3)1=0.
1 —i (2-))
AP HBAZ 9N = AN —6A+9) = —AA=3)7=0. |A\1 =0, g =\3=3.
000
M+A+A3=6=Tr(T). v MlA3=0=det(T). v Diagonal form:| |0 30
003
(c)
_22, ;1 g _ g [2a+ifty=0
, - —ia+20+iy=0=a+2i—7=0]"
1 —i2 ¥
Add the two equations: 3o+ 3if=0=—= 0 =ia; 2a0—a+y7=0=v=—a.
o 1
a = | ia | . Normalizing: |a|2+|a\2+|a|2:1=>a:i. a(l):i
- 3 v\
2 i1 « « 2a+i+v=3a = —a+if+v=0,
-t 21 Bl =3|8] =< —ta+20+ivy=30=a—i—7=0,
1 —i2 ~ 5 a—if+2y=3y = a-—if—~v=0.

The three equations are redundant — there is only one condition here: a —¢3 — v = 0. We could pick
v=0, f=—ia,or =0, vy=a. Then

«
aé2) = | —ta]; ag?’) =10
0 o
But these are not orthogonal, so we use the Gram-Schmidt procedure (Problem A.4); first normalize 382):
1
RO
V2 \ o
f.(3) @ ! « 3) t.(3) ! @ ' 12
@, _ i - 3 @) 7T 3 .2 _ S .
a7’ =—=(170) 0| =—. So a;’' —(a¥ay)a¥ =a|0]—=|—-i|=a]|i/2
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11 3 2 1 (1
Normalize: |a2(1 + 1 + 1> = 5\042 =1 = a= 3 a® = 7 ; .
Check orthogonality:
; 1 1 1
W@ = — (1 - -1)|-i|=—=01-14+0)=0. v
alta i i .
A= g
1 1 1 1
MG = = (1 5 — il = — —_9) =
altV Al = 1—i-1)|i] = 1+41-2)=0. Vv
gt (1) - gz
(d) S~ is the matrix whose columns are the eigenvectors of T (Eq. A.81):
(VR VB (V2 2i 2
St=—[v2i —V3ii]|; S=(H=|—=|vV3 V3i 0
6\-vz 0 2 e\ T

L (V2 ViV (2 0 1) (V2 V3B L )
STS'=_|Vv3 Vv3i 0 —i 2 i || V2i —VBidi| =<
6(1 —i 2 )(1-42)(—%5 0 2) 6(
(0 3v3 3\
10 —3v/3i 3il
lo o0 6/

000 000
0180 | =(030). Vv
00 18 003

Problem A.27
(a) ({Ua|UB) = (UTUalB) = (alB). v
(b) Ula) = Ma) = (Ua|Ua) = |A[*(a]e). But from (a) this is also (a|a). So [N =1. v
(c) Ula) = Aa), UIB) = ulB) = |8) = pU|6), s0 U'|8) = %\@ = p*|B)  (from (b)).

(BlUa) = \Bla) = (UTBler) = p(Blax), or (A — p)(Blay = 0. So if X # pu, then (Bla) =0. QED

Problem A.28

(a) (1)
004 000
MZ=1000]; M*=(000]|, so
000 000
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100 013 L (004 115
eM=[o10]+]004 +5 000|=|(014
001 000 000 001

(ii)

2 —6> 0 2 3 3 4 4
M* = 0 —g2 =—0°; M°’=—-0°M; M*=20%; etc.

M 01y 1, 6701 o
e —|+9<_10> 29| s 10 +I|_~_...
0> ot 6 01
_(1_?+Z_...>|+<9_§+§_...> (_1())
10 . 01 cosf sinf
= cos0 (0 1) +sind (1 O) - (sin9 cos@)'

(b)

dy 0
SMS™' =D = for some S.
0 dy,

1

1
M L= |+M+—M2—|—

M3 + . ~-)Sl. Insert SS™' =1 :

SeMS—1 =1+ SMS™! + %sms-lsms-1 + %snﬂs-lsnvls-lsnﬂs-1 4

1 1
:I+D+§D2+§D3+~- =¢P. Evidently

det(eP) = det(SeMS™1) = det(S) det(eM) det(S~!) = det(eM). But

d? 0 d3 0 d¥ 0
D? = , D3 = . , DF= , SO
0 2 0o d 0 d~
dy 0 d? 0 d3 0 ed 0
P =1+ + = + % o=
0 dn 0 dz 0 d3 0 edn

det(eP) = e®redz ... edn = glditdatodn) — (TrD _ JTIM (B A 68)) so det(eM) = ™™™, QED

(¢) Matrices that commute obey the same algebraic rules as ordinary numbers, so the standard proofs of
e = e%e¥ will do the job. Here are two:
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%

(i) Combinatorial Method: Use the binomial theorem (valid if multiplication is commutative):

MM =D —(M+N)" :Z—Z<)MN sz'n_ MTIN

n=0 n=0 m=0 n=0m=0

Instead of summing vertically first, for fixed n (m : 0 — n), sum horizontally first, for fixed m (n :
m — 00, or k=n—m:0— oco)—see diagram (each dot represents a term in the double sum).

o0

eMHN — Z —M’”" Z k||\|’f eMeN. QED

mO

(ii) Analytic Method: Let

d
S(\) = eMMeN: —S = MeMMeAN 1 AMNeAN — (M 4 N)eMeAN = (M + N)S.

dA
(The second equality, in which we pull N through e*™, would not hold if M and N did not commute.)
Solving the differential equation: S(\) = AeM*TNXA | for some constant A. But S(0) =1, so A = 1,

and hence e*MeN = AMHN) “and (setting A = 1) we conclude that eMeN = eM+N). [This method
generalizes most easily when M and N do not commute—leading to the famous Baker-Campbell-

Hausdorf lemma.

As a counterexample when [M,N] # 0, let M = (8 (1)) , N= (01 8) . Then M2 = N? =0, so

Mo 11\ N (1 0)  wmn_[(11\/10\ (01
—I+|\/|—<01>7e —|+N—<_11>, ele —<01><_11)—<_11>.

But (M + N) = <01 é) . so (from a(ii)): eMHN — (CZ;SH) jg;%))) .

The two are clearly not equal.

(d)

Hoone L : 1 — 1 :
et = Z —'Zan (e ZH)Jr Z —'(fi)"(HT)” = Z —l(fi)”H” — ¢ (for H hermitian).
=o' n=0 e
(e (e™) = emMeM = MM — | using (¢). So e is unitary. v/
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2" Edition — 1°' Edition Problem Correlation Grid

Chapter 2 (cont.)
2/e 1/e
45 42
46 43
47 44

48N
49 45
50 47
51 48M
52 34M, 35M
53 49
54N
55N
56N

Chapter 1
2/e 1/e
1 1

2N
3 6
4 7
5 8
6 11
7 12
8 13
9 14
10 2
11 3
12 4
13 5
14 oM
15 10
16N
17N
18N

Chapter 2
2/e 1/e
1 1
2 2
3 3
4 5
5 6M
6 7

7N
8N
9N
10 13M
11 14
12 37
13 17M
14N
15 15
16 16
17 18
18 19M
19N
20 20
21N
22 22
23 23
24 24
25N
26 25
27 26
28 27
29 28
30 29
31 30
32 31
33 32
34 33
35 41M
36 4M
37 36
38 3.48
39N
40N
41N
42 38
43 40
44 39
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2"! Edition — 1* Edition Problem Correlation Grid
N = New
M = 1/e problem number (modified for 2/e)
(M) = 1/e problem number (distant model for 2/e)
X = 2/e problem number (unchanged from 1/e)

Chapter 3 Chapter 4 Chapter 4 (cont.)
2/e 1/e 2/e 1/e 2/e 1/e
1N 1 1 43 43
2N (33M) 2 2 44N
3N (21M) 3 3 45 14
4N (12M) 4 4 46 15
5N 5 5 47N
6N 6 6 48N
7N 7 ™ 49N
8N 8 8 50 44
9N 9 oM 51 45M
10N 10 10 52 46
11 38 11 11 53N
12 51 12 12 54 47
13 41M 13 13 55 48
14 39 14N 56 49
15N 15N 57 50
16 42 16 17 58N
17 43 17 16 59 51
18 44 18 19 60 52M
19 45 19 20 61 53
20 46 20 21
21 57M 21N

22N 22 22
23N 23 23
24 57M 24 25
25 25M 25 26
26N 26 27
27N 27 28
28 52M 28 29
29N 29 30
30N 30 31M
31 53 31 32
32 56 32 33
33 50 33 34
34 49M 34 35
35N 35 36
36N 36 37
37N 37 38
38N 38 39
39 55 39 40
40N 40 41

41N
42 42




N = New

2" Edition — 1°! Edition Problem Correlation Grid

M = 1/e problem number (modified for 2/e)
X = 2/e problem number (unchanged from 1/e)

Chapter 7
2/e 1/e
1 1
2 2M
3 3M
4 4
5 5
6 6
7 7
8 8
9 9
10 10

11N

12N

13 11
14 12
15 13
16 14
17 15
18 16
19 17
20N

Chapter 5 Chapter 6
2/e 1/e 2/e 1/e
1 1 1 1M
2 2 2 2
3N 3 3
4 3 4 4
5 4 5 5
6 5 6 6
7 6 7 7
8 7 8 8
9 8 9 9
10 9 10N
11 10 11 10
12 11M 12 11
13 11M 13 12
14 12 14 13
15N 15N
16 13 16 14
17 14 17 15
18 15M 18 16
19 16M 19 17
20 17M 20 18
21 18 21 19
22 19M 22 20
23 20 23 21
24 21M 24 22
25 22 25 23
26 23 26 24
27 24 27 25
28 25 28 26
29 26 29N
30 27M 30N
31 28 31N
32N 32 27
33 29 33 28
34 30 34 29
35 31 35 30
36 32 36 31
37 33 37 32
38 33
39 34
40N
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N = New

2" Edition — 1°! Edition Problem Correlation Grid

M = 1/e problem number (modified for 2/e)
X = 2/e problem number (unchanged from 1/e)

Chapter 8 Chapter 9 Chapter 10
2/e 1le 2/e 1/e 2/e 1le
1 1 1 1 1 1
2 2 2 2 2 3M
3 3 3 3M 3 4
4 4 4 4 4 5
5 5 5 5 5 6
6 6 6 6 6 8
7 7 7 7 7 9

8 8 8 8 8N
9 9 9N 9 10
10 10 10 9 10 11M
11 11 11 10
12 12 12 11
13 13 13 12
14 14 14 13
15 15 15 14
16N 16 15
17N 17 16
18 17
19 21
20 19M
21 20
22N




N = New

2" Edition — 1°! Edition Problem Correlation Grid

M = 1/e problem number (modified for 2/e)
X = 2/e problem number (unchanged from 1/e)

Chapter 11 Chapter 12
2/e 1/e 2/e 1/e
1 1 1N
2 2
3 3
4 4
5N
6N
7N
8 5
9 6
10 7
11 8
12 9
13 10
14 11
15 12
16 13
17 14
18 15
19N
20N

Appendix
2/e 1/e
1 3.1
2 3.2
3 3.3
4 3.4
5 3.5
6 3.6
7 3.7
8 3.9
9 3.10.
10 3.1
11 3.12
12 3.16
13N
14N
15 3.13
16 3.14
17 3.15
18 3.17
19 3.18
20 3.19
21 3.20.
22 3.40M
23N
24 3.21M
25 3.22
26 3.23
27 3.24
28 3.47
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